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Abstract: Many biological activities of pyridine and thiazole derivatives have been reported, includ-
ing antiviral activity and, more recently, as COVID-19 inhibitors. Thus, in this paper, we designed,
synthesized, and characterized a novel series of N-aminothiazole-hydrazineethyl-pyridines, begin-
ning with a N’-(1-(pyridine-3-yl)ethylidene)hydrazinecarbothiohydrazide derivative and various
hydrazonoyl chlorides and phenacyl bromides. Their Schiff bases were prepared from the condensa-
tion of N-aminothiazole derivatives with 4-methoxybenzaldehyde. FTIR, MS, NMR, and elemental
studies were used to identify new products. The binding energy for non-bonding interactions be-
tween the ligand (studied compounds) and receptor was determined using molecular docking against
the SARS-CoV-2 main protease (PDB code: 6LU?7). Finally, the best docked pose with highest binding
energy (8a = —8.6 kcal/mol) was selected for further molecular dynamics (MD) simulation studies
to verify the outcomes and comprehend the thermodynamic properties of the binding. Through
additional in vitro and in vivo research on the newly synthesized chemicals, it is envisaged that the
achieved results will represent a significant advancement in the fight against COVID-19.

Keywords: hydrazonoyl chlorides; acetyl pyridines; thiazoles; molecular docking; schiff bases;
COVID-19

1. Introduction

Recently, antiviral, chemotherapeutic drugs are ineffective in clinic settings. This is a
result of the development of a number of significant viral infections, which has resulted in
widespread human disease and mortality. Coronaviruses (CoV) are a large group of viruses
that affect a wide variety of animals. They have caused serious and deadly respiratory infec-
tions in both humans and animals, such as severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) and the Middle East respiratory syndrome coronavirus (MERS-CoV) [1-5].
The World Health Organization (WHO) reported the development of coronavirus disease
2019 (COVID-19). In terms of the persons afflicted and the geographic scope of the out-
break, COVID-19 has significantly exceeded SARS and MERS [6]. Therefore, new antiviral
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and MERS [6]. Therefore, new antiviral candidates that are based on diverse heterocyclic
compounds are urgently desired and are unquestionably necessary for the treatment of
numerous deadly viral infections [7-10].

Pyridine compounds are obtaining importance in the field of medicinal chemistry
because of the broad spectrum of their physiological activities, including antivital
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activity [11-15], especially against COVID-19 (Figure 1) [16-20]. On the other hand,
thiazoles are present in many drugs or prodrugs. Thiazoles have been researched for
theitidater tiad ttareomabed corotivense festercey thie pastperundasréFiggenty [@és2bil and are
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Figure 1. Pyridine and thiazele derivatives as potential eoronaviruses.

2. Experértretitalaforementioned reasons, and as a part of our ongoing research to develop
quclyllémgg}yye heterocycles [8,10,26-36], we report herein the simple and efficient synthesis
W Serics o of ¥r1 1ne—th1azole hyb éds utilizing molecular docking and molecular
g RHIRIR glmu ztp ﬁ}ﬂﬁg 1ve131 2§ a3t the ability of the studied compounds to
succggfawlﬁlﬁmﬂuﬂ@ @iREF@oWﬁaﬁdéﬁétéﬁg@ td sepusienhefr Mt RYpbpedtid
ggayﬁm)hﬁmcpfhgmip@d@@i@qp@) (0.209 g, 1 mmol) and the appropriate
hydrazonoyl chlorides 4a—e or a-bromoketones 11a—c (1 mmol for each) in DMF (20 mL).
2. Experimental
2.1. Chemistry

Synthesis of thiazole derivatives 6a—e and 13a—c.

Catalytic amounts of TEA were added into a solution of N’-(1-(pyridin-3-yl)
ethylidene)hydrazine-carbothiohydrazide (3) (0.209 g, 1 mmol) and the appropriate hydra-
zonoyl chlorides 4a—e or a-bromoketones 11a—c (1 mmol for each) in DMF (20 mL). The
reaction mixture was refluxed for 3-6 h. Finally, the formed precipitate was isolated and
recrystallized from the suitable solvent to yield the compounds 6a—e or 13a—c, respectively.

4-Methyl-5-phenyldiazenyl-2-((1-(pyridin-3-yl)ethylidene)hydrazineylidene)thiazol
-3(2H)-amine (6a). Red solid, 78% yield, m.p. 155-157 °C (EtOH); IR (KBr): v 3426, 3271
(NHb), 1606 (C=N) cm~!; TH-NMR (DMSO-dq): ¢ = 2.38 (s, 3H, CH3), 2.63 (s, 3H, CH3),
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5.81 (s, 2H, NH2), 7.18-7.66 (m, 6H, Ar-H and Pyr-H5), 8.20 (d, 1H, Pyr-H4), 8.58 (d, 1H,
Pyr-H6), 9.02 (s, 1H, Pyr-H2) ppm; *C-NMR (DMSO-de): 6 = 12.49, 14.14 (CH3), 101.16,
119.08, 123.68,129.26, 129.32, 129.51, 133.69, 133.85, 134.42, 137.20, 148.41, 150.19, 155.82
(Ar-C and C=N)ppm; MS m/z (%): 351 (M*, 58). Anal. Calcd for C1y;H;7N7S (351.13): C,
58.10; H, 4.88; N, 27.90. Found: C, 58.03; H, 4.66; N, 27.79%.

Synthesis of Schiff bases 8a,d and 14a—c.

A catalytic amount of HCI concentration was added to a solution of
4-methoxybenzaldehyde (7) (1.36 g, 10 mmol), and the appropriate 8a,d or 13a—c (1 mmol
for each) was added to DMF (20 mL). The reaction mixture was refluxed for 2—4 h. Finally,
the formed precipitate was recrystallized from the suitable solvent to yield compounds
6a—e or 13a—c, respectively.

Physical and spectral data of all synthesized compounds 6a—e, 13a—c, 8a,d and 14a—c are
frond in the supporting information file.

2.2. Docking Method

The newly synthesized compounds were subjected to docking tests using the molecular
operating environment 2019.012 suite (Montreal, QC, Canada) [37] to ascertain how well
they bound and to propose their mechanism of action as SARS-CoV-2 Mpro inhibitors in
comparison to the co-crystallized inhibitor (N3), which was used as a reference standard.
Energy was minimized and a partial charge was added to the freshly synthesized molecules
inside the MOE window [38,39]. The synthesized compounds were then combined with
(N3) in one database and stored as an MDB file that could be transferred into the ligand icon
during the binding stage. The Protein Data Bank provided the X-ray crystallography target,
MP™, of SARS-CoV-2 (PDB code: 6LU7) [40]. Additionally, it was ready for docking by
carefully following the previously detailed methods [41,42]. Furthermore, the downloaded
protein was energy-reduced, 3D-hydrogen-loaded, and error-corrected [43,44]. The newly
created molecules were substituted for the ligand location in a general docking approach.
The co-crystallized ligand site was chosen as the docking site after adjusting the default
program settings that were provided [45]. In a nutshell, the dummy atoms method was used
to select the docking point. The placement and scoring procedures that were chosen were
the triangle matcher and London dG. Out of a total of 100 poses for each docked molecule,
the stiffer receptor was employed as the new refining strategy and the GBVI/WSA dG was
employed as the new scoring methodology [46,47]. The optimal site for each ligand with
the highest favorable scores, binding modes, and RMSD values was selected for further
investigation. In the first step of the program validation method for the MOE program
used, the co-crystallized instinctual inhibitor (N3) was redocked at its binding pocket of
the generated main protease [48,49]. By obtaining a low root mean square deviation value
(1.29) when comparing the freshly synthesized compounds and the redocked N3 ligand, a
valid performance was demonstrated.

2.2.1. Molecular Dynamics Simulation (MDs)

MD simulations were performed using the Desmond 2020.1 (Schrodinger, New York,
NY. 2017) from Schrodinger, LLC on the docked complex for 6LU7 with the 8a ligand. In
this system, the explicit solvent model with the TIP3P water molecules and the OPLS-2005
force field [50-52] were applied in a period boundary salvation box with dimensions of
10 A x 10 A x 10 A [53]. Na* ions were supplied to the system to balance the 0.15 M
charge, and NaCl solutions were added to mimic physiological conditions. To retrain the
system over the protein ligand complexes, the system was initially equilibrated using an
NVT ensemble for 10 ns. Following the preceding phase, an NPT ensemble was used
to complete a brief run of equilibration and minimization for 12 ns. The Nose-Hoover
chain coupling approach [45,54] was used to set up the NPT ensemble and the variable
temperature. Throughout all simulations, an active suspension of 1.0 ps and a pressure of
1 bar were maintained. The time step used was 2fs. The Martyna-Tuckerman-Klein chain
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coupling technique was used to manage pressure [55], employing a barostat method with
a 2 ps relaxed period. The long-range electrostatic interactions were estimated using the
particle mesh Ewald method [56], with the radius for the coulomb interactions set at 9. A
RESPA integrator was used to determine the bonded forces for each trajectory during a
time step of 2 fs. Making use of Geo Measures v0.8 ( https://github.com/lkagami/geo_
measures_pymol, accessed on 1 January 2023) [57], the complexes underwent primary
component analysis (PCA). Geo Measures is provided with a substantial library of g
sham and eigen values, which are represented in a 3D visual using the Python program
matplotlib (https://github.com/matplotlib/matplotlib, accessed on 1 January 2023). The
final production run lasted 100 ns. The root mean square deviation (RMSD), radius of
gyration (Rg), root mean square fluctuation (RMSF), quantity of hydrogen (H-bonds), salt
bridges, and SASA were calculated to monitor the stability of the MD simulations.

2.2.2. Binding Free Energy Analysis

The ligand-protein complex binding free energies were calculated using the molecular
mechanics combined with the generalized Born surface area (MM-GBSA) method. Over the
previous 50 frames, the Prime MM-GBSA binding free energy in the simulation trajectory
with a one-step sampling size was calculated using the thermal mmgbsa.py Python script.
The binding free energy of the Prime MM-GBSA (kcal/mol) was determined using the
additivity concept, which required adding up each individual energy module, such as the
columbic, covalent, hydrogen bond, van der Waals, self-contact, lipophilic, solvation of
protein, and ligand modules.

The following equation is applied to determine Gbind:

AGping = AGym + AGsory — AGs 1)

In which:

- AGyjyg specifies the binding free energy;

- AGp specifies the difference between the free energies of the ligand—-macromolecule
complex and the total energies of receptor and ligand in isolated forms;

- AGg,y, specifies the differences in the GSA solvation energies of the ligand—macromolecule
complex and the sum of the solvation energies of the receptor and the ligand in the
unbound state;

- AGgy specifies the difference in the surface area energies for the receptor and the ligand.

3. Results and Discussion
3.1. Chemistry

N’-(1-(Pyridin-3-yl)ethylidene)hydrazinecarbothiohydrazide (3) was prepared via the
reaction of 3-acetylpyridine 1 with thiocarbohydrazide 2 in DMF in the presence of a
catalytic amount of HCI under reflux in DMF (Scheme 1). Product 3 was elucidated based
on spectral (IR, H-NMR, mass) and elemental data (see Experimental part).

The thiazole derivatives 6a—e were produced through the reaction of compound 3 with
the hydrazonoyl chlorides 4a—e [58] in the presence of EtsN. This was achieved by first
performing a substitution reaction with the removal of the HCI molecule to produce the
substituted intermediate 5, which was then followed by in situ cyclization with the removal
of the water molecule (Scheme 1). Elemental analysis and spectral data (:H-NMR, mass, IR)
were used to clarify the structure of the products 6a—e. In each case, two stretching bands
at 1692 and 3421-3160 cm !, attributed to the carbonyl and NH groups, could be seen in
the IR spectra of product 6. The singlet signal at 6 =10.69 ppm associated with the -NH
proton was observed in the 'H-NMR spectra of compound 6, in addition to the aromatic
and alkyl protons. Each mass spectrum of products 6a—e showed a molecular ion peak
with the appropriate molecular weight for that molecule.
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It was proposed that the hydrazine carbon of compound 4 is initially attacked by the
thiol group of compound 3 to yield intermediate 5, which is then cyclized to products 6.
By forming the Schiff bases 8a and 8d as a result of their interactions with
4-methoxybenzaldehyde 7 while being refluxed in acetic acid, the structural integrity of
product 6 was further demonstrated. The structures of the isolated products 8a and'8d

were elucidated based on their "TH-NMR, IR, and mass spectra (see experimental section).
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were elucidated based on their 'H-NMR, IR, and mass spectra (see experimental section).

A different synthetic approach might be used to create the real samples of 8a,d. Thus,
Schiff base 9 was produced as a result of compound 3 reacting with 4-methoxybenzaldehyde
7 while being heated in EtOH\ AcOH. After reacting with hydrazonoyl halides 4a,d in re-
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assigned to the NH: and thiazole-H5 protons, in addition to the predicted signals
assigned to the aromatic protons. The mass spectra of products 13a—c demonstrated
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products were determined to be 13a—c. The 'H-NMR spectra of product 13a, considered to
be a sample example of the product 13, revealed two singlet signals assigned to the NH;, and
azole-H5 protons, in addition to the predicted signals assigned to the aromatic protons7.

The mass spectra of products 13a—c demonstrated peaks that matched their molecular ions.
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aromatic heavy 6 18 17 16 16
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Table 1. (a). Physiochemical and pharmacokinetics profiling for compounds 3 and 6a—-d, (b) physio-
chemical and pharmacokinetics profiling for compounds 6e, 8a,d, 9, and 13a, and (c) physiochemical
and pharmacokinetics profiling for compounds 13b,c and 14a—c.

Properties Compounds
3 6a 6b 6¢ 6d
Formula C8H11 Nss C17H17N75 C18H19N7S C18H19N7OS C17H16CIN7S
Molecular weight 209.07 g/mol 351.43 g/mol 365.46 g/mol 381.45 g/mol 385.87 g/mol
N. Heavy atoms 14 25 26 27 26
Number of aromatic 6 18 17 16 16
heavy atoms
Number of Rotatable 4 4 4 5 4
Bonds
HBA 5 5 5 6 5
HBD 4 1 1 1 1
Molar Refractivity 58.6 100.24 105.20 106.73 105.25
TPSA 107.42 A2 121.52 A? 121.52 A? 130.75 A? 121.52 A?
Log P 1.52 1.52 1.52 1.52 1.52
Log S —1.82 -1.20 —-1.20 —-1.20 -1.20
& Very soluble Very soluble Very soluble Very soluble Very soluble
(GI absorption) High High High High High
BBB Nil Nil Nil No No
No No No No No
CYP1A2, CYP2C19, No No No No No
CYP2C9, CYP2D6, No No No No No
CYP3A4 No No No No No
No No No No No
Yes Yes Yes Yes Yes

Druglikeness (Lipinski)

0 violations

0 violations

0 violations

0 violations

0 violations

b
Properties Compounds
6e 8a 8d 9 13a
Formula C17H16NgO,S Cp5Hp3N70S Cp5H2,CIN;OS C16H17N50S C16H14CIN5S
Molecular weight 396.43 g/mol 469.56 g/mol 504.01 g/mol 327.40 g/mol 343.83 g/mol
Nur;‘sae‘r];i aromatic 28 34 35 23 23
Number of Rotatable 17 23 23 12 17
Bonds
HBA 5 7 7 7 3
HBD 7 7 7 4 3
Molar Refractivity 1 0 0 2 1
TPSA 109.06 136.02 141.03 95.37 95.10
Log P 167.34 A2 117.09 A2 117.09 A2 102.99 A2 96.80 A2
Log S 1.52 4.81 4.95 2.67 2.67
(GI absorption) " -1.20 —6.24 —6.83 -3.28 —3.28
ery soluble Poorly soluble Poorly soluble ~ Moderately soluble Moderately soluble
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Table 1. Cont.

BBB High Low Low High High
Number of aromatic No No No No No
heavy atoms
No No No No No
CYP1A2, CYP2C19, No No No No No
CYP2C9, CYP2Ds, No No Yes Yes Yes
CYP3A4 No No No No No
No No No Yes Yes
Yes
. . Yes Yes . . Yes Yes
Druglikeness (Lipinski) 0 violations 0 violations 1 VlOIit;%r(;' MW 0 violations 0 violations
c
Properties Compounds
13b 13c 14a 14b 14c
Formula C16H14BrN5S C16H14NgO5S Co4HyoCIN5OS Cy4Hy9BrN50S Co4HygNgO3S
Molecular weight 388.28 g/mol 354.39 g/mol 461.97 g/mol 506.42 g/mol 472.52 g/mol
N. Heavy atoms 23 25 32 32 34
Number of aromatic 17 17 23 23 23
heavy atoms
Number of Rotatable 3 4 6 6 -
Bonds
HBA 3 5 5 5 7
HBD 1 1 0 0 0
Molar Refractivity 97.79 98.91 130.88 133.57 134.69
TPSA 96.80 A2 142.62 A2 92.37 A2 92.37 A2 138.19 A2
Log P 2.67 2.67 4.40 4.46 3.66
oS Mo Mo —622 —654 569
8 ocerately ocerately Poorly soluble Poorly soluble Moderately soluble
soluble soluble
(GI absorption) High High High High Low
BBB No No No No No
No No No No No
CYP1A2, CYP2C19, No No Yes Yes Yes
CYP2C9, CYP2De6, Yes Yes Yes Yes Yes
CYP3A4 No No No No No
Yes Yes Yes No Yes
Yes
. . Yes Yes Yes . . Yes
Druglikeness (Lipinski) 0 violations 0 violations 0 violations 1 Vlolat15c(>)r(;. MW > 0 violations

A molecule’s druglikeness is represented by the bioavailability radar. The pink area
corresponds to the optimal range for each property (lipophilicity: Log P between 1.52
and 4.81; size: MW between 209 and 504 g/mol; polarity: TPSA between 92 and 142 0A2;
solubility: log S no higher than 6; etc.), with the pink area representing the best range for
each property. Carbons must make up at least 0.25;2.4 of the sp3 hybridization’s carbon
content to be considered saturated.
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3.3. Molecular Docking Studies

Using a molecular docking simulation, the fifteen thiazole derivatives were tested for
their capacity to engage with the main protease of COVID-19 (Pdb ID: 6LU7). Table 2 and
Figures 3-7 list the outcomes of this docking investigation. First, a redock was performed on
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the co-crystallized ligand (N3) for verification. ASN 142, GLY 143, GLU 166, GLN 189, SER
144, and CYS 145 residues formed an H-bond acceptor with the C=O of the co-crystallized
ligand, demonstrating a high docking score of -8 kcal/mol (Figure 3).

Table 2. The redocked N3 inhibitor within the active site of the SARS CoV-2 main protease (6LU7),
together with the interactions and binding scores of the substances that were tested.

Binding Hydrogen

Compounds Energy Bond Distance (A) Hydl‘Opl.lObIC Distance (A)
. Interactions
(kcal/mol) Interactions
GLN 110 2.75
THR 111 2.25 VAL 104 3.82
3 —5.8 SER 158 2.32 ILE 106 3.93
THR 292 2.16 GLN 110 3.67
ASP 295 2.49
GLY 143 2.07 THR 25 385
ASN 142 3.61
6a —7.8 SER 144 2.29
CYS 145 27 MET 165 3.43
’ GLN 189 3.35
LEU 141 191 THR 25 3.94
6b _83 GLY 143 1.78 LEU 27 3.80
’ SER 144 2.65 MET 165 3.32
CYS 145 2.92 GLN 189 3.54
GLY 143 1.66 THR 25 308
SER 144 3.29
LEU 27 3.95
6¢ -79 CYS145 3.42
MET 165 3.34
HIS 164 4.10 GLN 189 338
THR 190 3.96 ’
LEU 141 2.42 THR 25 3.82
6d 73 GLY 143 1.63 LEU 27 3.97
’ SER 144 2.51 MET 165 3.42
CYS 145 2.79 GLN 189 3.38
GLN 192 2.35 LEU 27 3.90
GLY 143 1.72
6e —8.4 MET 165 3.41
SER 144 2.61 HIS 163 343
CYS 145 292 '
GLU 14 2.67
CLY 71 341 GLY 120 3.91
ALA70 3.32
8a —8.6 GLN 19 2.99
MET 17 35 LYS 97 3.78
' VAL 18 2.98
TRP 31 3.53
GLY 143 3.47
8d -7.8 GLU 166 2.76,2.86 MET 165 391
VAL 18 3.69
MET 17 2.58 GLN 19 3.72
9 -72 GLN 19 2.28 TRP 31 3.68,3.73
GLY 71 2.48 GLN 69 3.73
PRO 96 3.99
GLU 14 314 ALA 70 3.38
13a —6.8 CLY 15 224365 VAL 73 3.94
o PRO 96 3.55
GLU 14 3.92
13b —7.2 GLY 15 2.5 ALA70 3.46

PRO 96 3.55
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Table 2. Cont.

Binding Hydrogen

Compounds Energy Bond Distance (A) I—IIydropl.loblc Distance (A)
. nteractions
(kcal/mol) Interactions

PRO 168 3.74

13c¢ —6.7 GLU 166 3.36 GLN 189 356
PHE 294 3.64

Curr. Issuies Mol. Biol. 2023, 1, FOR PEER REVIEW GLN 110 VAL 202 3.68;

14a —8.4 THR 111 2.39 PRO 252 3.72,3.65
PRO 292 3.45
ILE 249 3. 49
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All the thiazole compounds under investigation produced docking scores between
-5.8 and -8.6 kcal/mol. The docking scores for the thiazole derivatives 6b, 6e, 14a, 14b,

and 14c were higher than those for the co-crystallized ligand. As is shown in Table 2 and

Figure 4, these thiazole compounds were incorporated into the SARS CoV-2 main
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Figure 7. Ma surface demonstrating compound 8a existing in the Mpro active pocket.
gure 7.M }ﬁ}ﬁ surface demonstrating compound 8a existing in the Mpro active pocket.
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accessible to the solvent when the 8a-ligand was not attached to the receptor (Figure 8F,
red). When using the 8a-ligand to bind, the SASA value decreased in comparison to the
unbound state (Figure 8F, black). According to the overall analysis of the Rg, the
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Figure 8. MD simulation analysis of 100 ns trajectories of (A) Coc backbone of (Mpro) (6LU7) + 8a
ligand, (B) RMSF of Ca backbone of 6LU7 bound with 8a-ligand, (C) radius of gyration (Rg) of Cx
backbone of 6LU7 bound with 8a, (D) formation of hydrogen bonds in 6LU7 bound with 8a complex,
(E) numbers of salt bridge formation between and 8a, and (F) solvent-accessible surface area of 6LU7

bound with 8a complex.
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The radius of gyration (Rg) measures a protein’s degree of compactness. This experi-
ment saw a decrease in the radius of gyration (Rg) of the 6LU7 C-backbone linked to the
8a-ligand from 22.3 to 22.01 (Figure 8C). When the gyration (Rg) is noticeably reduced,
this indicates that the protein is strongly oriented in a ligand-bound state. The presence of
hydrogen bonds between the protein and the ligand points to the stability and strong inter-
action of the complex. Throughout the 100 ns of the simulation, there were considerable
amounts of hydrogen bonds between compound 8a and 6LU7 (Figure 8D). The average
constant number of hydrogen bonds between 6LU7 and 8a-ligand was three on average
(Figure 8D). Salt bridges were formed between the oppositely charged residues close to
each other and played a significant role in protein stability [64]. In this study, average single
numbers of salt bridges were formed between 6LU7 and the 8a-ligand (Figure 8E). An Rg
analysis was followed by similar patterns being observed in the solvent accessible surface
area (SASA), both in the ligand-bound and unbound states. It is evident from (Figure 8F)
that the protein 6LU7 had a high surface area, which was accessible to the solvent when
the 8a-ligand was not attached to the receptor (Figure 8F, red). When using the 8a-ligand
to bind, the SASA value decreased in comparison to the unbound state (Figure 8F, black).
According to the overall analysis of the Rg, the matching proteins were compelled to
become more compact and less flexible when the ligands were bound.

3.4.1. Calculations of Molecular Mechanics Generalized Born Surface Area (MM-GBSA)

The binding free energy and additional contributing energy in the form of MM-GBSA
were calculated for the 6LU7 + 8a complex using the MD simulation trajectory. This was
followed by Rg analysis, which likewise showed a similar trend. The results (Table 3)
suggested that the maximum contribution to AGypy,q in the stability of the simulated
complexes were due to AGpingCoulomb, AGpigvdW, AGpingHpond, and AGpingLipo, while
AGpingCovalent and AGy;,gSolvGB were linked to the corresponding complexes’ instability.
The 6LU7 + 8a complex had comparatively higher binding free energies, higher than
other complexes (Table 3). The potential for 8a to bind to protein with a high affinity,
efficiency, and the capacity to assemble a stable protein-ligand complex was substantiated
by these findings.

Table 3. Components of the binding free energy for the 6LU7 + 8a as determined by MM-GBSA.

Energies (kcal/mol) 6LU7 + 8a
AGping —56.81 £ 6.79
AGpingLipo —18.08 £ 1.04
AGpingvdW —48.49 £2.18
AGypingCoulomb —25.47 £ 6.20
AGpindHpond —1.73+£0.34
AGpingSolvGB 31.74 £ 3.34

AGypingCovalent 523 + 441

3.4.2. Principal Component Analysis

The outcomes of a study to explain the random, global mobility of the atoms in amino
acid residues are displayed in Figure 9’s principal component analysis (PCA) of the MD
simulation trajectories for 6LU7 + 8a. The more flexible scattered trajectories (0—600 frames)
are interpreted by this technique as a result of non-correlated global motion due to the
protein structure’s randomness. A covariance matrix contained the internal coordinate
mobility into three dimensions throughout the spatial time of 100 ns. Orthogonal sets,
or eigenvectors, were used to represent the rational motion of each trajectory. The MD
simulation trajectory of the Cx atoms of the 6LU7 + 8a protein displayed more unordered
orientation in PC1 and PC2 modes and was oriented more toward a negative correlation
from the initial 600 frames (Figure 9). Interestingly, for the last 400 frames (from 600-1000),
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it exhibited a positive correlation motion and clustered into a more oriented manner. As
a result, it was obvious that the centering of the frames in a single cluster by 6LU7 + 8a

Curr. Issues Mol. Biol. 2023, 1, FOKdteER RFgew) indicated that the periodic motion of MD trajectories was caused bygteady,
structural giobal motion. Consequently, the frames become more stable at the completion
of the simulation (Figure 9).
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4. Conclusions

According to the current work, a novel series of thiazole clubbed pyridines was created
by fefistieiyaipnsidine thiocarbohydrazone derivative with a variety of hydrazonoyl halides
and «-bremmoasgtephenenesnd hophysicncherieslgparaamekedubdeitibyadsesswant, and
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pave the way for developing more potent agents against SARS-CoV-2 in the near future.
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