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Abstract 
 
Soil strata delineation is a fundamental step for any geotechnical engineering design. The 

dynamic penetration test (DPT) is a fast, low cost in-situ test that is commonly used to locate 

boundaries between strata of differing density and driving resistance. However, DPT data are 

often noisy and typically require time-consuming, manual interpretation. This paper investigates 

a probabilistic method that enables delineation of dissimilar soil strata (where each stratum is 

deemed to belong to different soil groups based on their particle size distribution) by processing 

DPT data with Bayesian changepoint detection methods. The accuracy of the proposed method 

is evaluated using DPT data from a real-world case study, which highlights the potential of the 

proposed method. This study provides a methodology for faster DPT-based soil strata 

delineation, which paves the way for more cost-effective geotechnical designs. 
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List of notation 
N  DPT no. of blows 

𝑟𝑧  ‘Run length’ random variable 

𝑥1:𝑛    Set of data {𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛} 

𝛼, 𝛽   Parameters of inverse gamma distribution 

𝑝cp  Changepoint probability threshold 
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Introduction 1 

Soil strata delineation is a fundamental step for any geotechnical engineering design. 2 

Delineation divides the soil volume into separate layers of geological material deemed to belong 3 

to the same group. This process typically requires a time-consuming, manual interpretation of a 4 

combination of borehole data and associated in-situ and laboratory test results (Parry et al. 5 

2014). It is highly desirable to develop a rapid approach that can delineate the soil strata 6 

automatically.  7 

The cone penetration test (CPT) (Lunne et al. 1997) is an in-situ ground investigation method 8 

that is widely used for soil delineation by applying soil behaviour type (SBT) classification rules 9 

(e.g. Robertson 1990; Jefferies and Davies 1993; Schneider et al. 2008) to the measured CPT 10 

data. Other delineation approaches include fuzzy analysis (Zhang and Tumay 1999), clustering 11 

analysis (Hegazy and Mayne 2002; Depina et al. 2016), signal processing analysis (Ching et al. 12 

2015) and statistical/Bayesian analysis (Wickremesinghe and Campanella 1991; Phoon et al. 13 

2003; Wang et al. 2013, 2019, 2020; Li et al. 2016; Cao et al. 2019). Bayesian analysis has the 14 

advantages of being robust to noisy data and allowing quantification of uncertainty, although it 15 

tends to be computationally intensive. 16 

The dynamic probing/penetration test (DPT) is a fast and low cost in-situ ground investigation 17 

method (BS 2005), which bears some similarities to both CPT and the standard penetration test 18 

(SPT). Like CPT, DPT uses a cylindrical steel cone penetrometer. However, DPT drives the 19 

cone into the ground using a hammer, and the measured result is the number of blows 𝑁 for a 20 

given penetration (e.g. 100mm). The primary advantage of DPT over CPT is lower costs, faster 21 

speed of operation and applicability in terrains with poor accessibility. However, there are limited 22 

methods to interpret DPT results for soil strata delineation.  23 

This paper aims to develop a method that enables fast soil strata delineation using DPT data. 24 

The proposed method uses Bayesian changepoint detection (BCPD) methods to detect abrupt 25 

changes in the soil data trends indicative of transitions between different soil strata. Unlike most 26 

Bayesian approaches, the proposed method is computationally efficient. Two BCPD methods 27 

are explored: (i) ‘online’, where each data point is processed as it becomes available and 28 

inferences are made without knowledge of future measurements (e.g. Fearnhead and Liu, 2007; 29 
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Adams and MacKay, 2007); and (ii) ‘offline’, where the entire DPT dataset is required before 30 

making inference (e.g. Barry and Hartigan, 1993; Stephens, 1994; Fearnhead, 2005, 2006).  31 

The proposed method divides the soil profile up into three dissimilar soil categories: (i) 32 

predominantly fine-grained soils (e.g. clay, silt), (ii) predominantly sand, and (iii) predominantly 33 

gravel. These soil categories have very different permeability, stiffness and strength properties 34 

such that poor identification will have a negative impact on optimal geotechnical design. The 35 

proposed method bears some similarities to that of Zhang and Tumay (1999), who applied fuzzy 36 

analysis to CPT data to identify three soil categories, although the methodology and nature of 37 

the data are different. The performance of the proposed BCPD methods are evaluated using a 38 

real-world case study. 39 

 40 

Methodology 41 

Changepoints are abrupt changes in data, which typically represent transitions between states, 42 

as shown in Fig. 1. Given a sequence of data, these changepoints split the data into a set of 43 

non-overlapping partitions, where it is assumed that the data within a partition are generated by 44 

the same model. While many changepoint detection methods are available (Reeves et al. 2007; 45 

Aminikhanghahi and Cook 2017; Truong et al. 2020), this paper focuses on Bayesian 46 

changepoint detection (BCPD) methods.  47 

Online Bayesian changepoint detection 48 

The first method investigated in this paper is an online BCPD method (Adams and Mackay 49 

2007), denoted ‘BCPD-ON’. In the following exposition, the notation 𝑥1:𝑛 refers to the set of data 50 

{𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛}. BCPD-ON estimates the probability of a changepoint at a given depth based 51 

only on data processed up to that depth. It does so by computing the probability distribution of a 52 

random variable called the ‘run length’ 𝑟𝑧, which represents the length of the current data 53 

partition. Each new data point either (a) comes from the same distribution, in which case the 54 

parameter estimates of the current distribution is updated using Bayes’ theorem and 𝑟𝑧 55 

increases by one, or (b) it belongs to a new distribution which means a changepoint occurs and 56 

the new distribution will reset back to the prior distribution and 𝑟𝑧 resets to zero. When the most 57 
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probable value of 𝑟𝑧 is zero, it is likely that there is a changepoint at depth 𝑧, the probability of 58 

which is equivalent to the posterior probability of 𝑟𝑧 = 0: 59 

𝑝(changepoint at 𝑧| 𝑥1:𝑧) = 𝑝(𝑟𝑧 = 0|𝑥1:𝑧) (1) 

The posterior distribution of the run length i.e. 𝑝(𝑟𝑧|𝑥1:𝑧) can be calculated as: 60 

𝑝(𝑟𝑧|𝑥1:𝑧) =
𝑝(𝑟𝑧 , 𝑥1:𝑧)

𝑝(𝑥1:𝑧)
 (2) 

where 𝑝(𝑥1:𝑧) = ∑ 𝑝(𝑟𝑧 , 𝑥1:𝑧)𝑟𝑧
. The joint distribution 𝑝(𝑟𝑧 , 𝑥1:𝑧) can be calculated using the 61 

following recursive relationship: 62 

𝑝(𝑟𝑧 , 𝑥1:𝑧) = ∑ 𝑝(𝑟𝑧 , 𝑥𝑧 , |𝑟𝑧−1, 𝑥1:𝑧−1)𝑝(𝑟𝑧−1, 𝑥1:𝑧−1)

𝑟𝑧−1

 

= ∑ 𝑝(𝑟𝑧|𝑟𝑧−1) 𝑝(𝑥𝑧|𝑟𝑧−1, 𝒙𝑧
𝑟) 𝑝(𝑟𝑧−1, 𝑥1:𝑧−1)

𝑟𝑧−1

 
(3) 

where 𝒙𝑧
𝑟 is the set of data associated with the run length 𝑟𝑧. 𝑝(𝑟𝑧−1, 𝑥1:𝑧−1) is a recursive term, 63 

which represents the previous iteration of Eq. 3 at depth 𝑧 − 1. 𝑝(𝑟𝑧|𝑟𝑧−1) is the conditional 64 

distribution of the run length. Finally, 𝑝(𝑥𝑧|𝑟𝑧−1, 𝒙𝑧
𝑟) is the posterior predictive distribution and it 65 

can be calculated analytically by assuming that the data point 𝑥𝑧 comes from some probability 66 

distribution (e.g. Gaussian) and by adopting conjugate priors. More details about these 67 

calculations can be found in Adams and Mackay (2007). 68 

Offline Bayesian changepoint detection 69 

The second method investigated in this paper is an offline BCPD method (Fearnhead 2005, 70 

2006) denoted ‘BCPD-OFF’, which was previously employed by Houlsby and Houlsby (2013) for 71 

clay layer delineation using undrained shear strength data. BCPD-OFF is based on a recursive 72 

algorithm that computes the posterior probability distribution exactly over the location of 73 

changepoints. This is significantly more efficient than previous Markov Chain Monte Carlo 74 

(MCMC) approaches for computing the posterior (e.g. Punskaya et al. 2002).  75 

In this case, the data within each partition are modelled by some probability distribution, with 76 

distribution parameters independent of those determined for other partitions.  Let 𝑐𝑗  represent 77 
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the 𝑗th changepoint. The posterior distribution of 𝑐𝑗 is 𝑝(𝑐𝑗| 𝑥1:𝑛). The probability of a 78 

changepoint occurring at depth 𝑧 can be calculated as: 79 

𝑝(changepoint at 𝑧| 𝑥1:𝑛) = ∑ 𝑝(𝑐𝑗 = 𝑧| 𝑥1:𝑛)

𝑧

𝑗=1

 (4) 

where all possible scenarios of 1 to 𝑧 changepoints thus far are considered. This approach 80 

differs from that of Houlsby and Houlsby (2013), which first identifies the maximum a posteriori 81 

(MAP) number of changepoints and then the conditional MAP locations of the changepoints. 82 

This modification makes the outputs of BCPD-OFF and BCPD-ON identical, thereby allowing 83 

direct comparisons. 84 

𝑝(𝑐𝑗| 𝑥1:𝑛) in Eq. 4 is obtained by marginalising out the previous changepoints: 85 

𝑝(𝑐𝑗| 𝑥1:𝑛) = ∫ 𝑝(𝑐𝑗 , … , 𝑐1| 𝑥1:𝑛) 𝑑𝑐𝑗−1 … 𝑑𝑐1 (5) 

As the probability of a changepoint is assumed to be dependent only on the previous 86 

changepoint, the integrand in Eq. 5 can be calculated as: 87 

𝑝(𝑐𝑗 , … , 𝑐1| 𝑥1:𝑛) = 𝑝(𝑐𝑗|𝑐𝑗−1, 𝑥1:𝑛)𝑝(𝑐𝑗−1|𝑐𝑗−2, 𝑥1:𝑛) … 𝑝(𝑐2|𝑐1, 𝑥1:𝑛)𝑝(𝑐1|𝑥1:𝑛) (6) 

Each of the terms on the right hand side of Eq. 6 can be calculated exactly and efficiently using 88 

the recursive algorithm described in Fearnhead (2005, 2006). 89 

 90 

Case study 91 

The proposed BCPD methods are evaluated using a case-study involving multi-layered alluvial 92 

deposits, consisting of sands, silts, clays, and gravels. This case study is based on the 93 

Deutsche Bahn AG (German Rail) ‘DB46/2’ project, which is an expansion line from Emmerich 94 

to Oberhausen in Germany. A complex three-dimensional (3D) ground model for this project 95 

has been documented in Prinz (2019). This paper considers 26 DPT tests from the case study: 96 

20 (approximately 77% of the dataset) are randomly selected for calibration of the priors and 97 

hyperparameters for BCPD-OFF and BCPD-ON; the remaining 6 DPT locations (labelled ‘T1’ to 98 

‘T6’) are used for testing to evaluate the performance of the calibrated methods. A plan map of 99 

the DPT calibration and test locations is shown in Fig. 2.  100 
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Expert predictions are also made for each DPT location, where the soil strata are identified 101 

among the three soil categories defined in the introduction. These expert predictions were 102 

extracted from the 3D ground model that was developed separately for the case study (Prinz 103 

2019). This ground model was based on careful, manual interpretation of both the DPT data and 104 

the borehole data in an integrated manner, ensuring no conflicts between the interpretation of 105 

the soil layering boundaries based on both types of data (e.g. the soil stratification interpreted 106 

from the DPT data should be consistent with that observed from a neighbouring borehole). Fig. 107 

3 shows a typical DPT profile from one of the DPT locations and its corresponding expert 108 

prediction of the soil strata. The proposed BCPD methods will be applied to DPT data only. 109 

 110 

Calibration 111 

For both BCPD-OFF and BCPD-ON, the data in each partition are assumed to be normally 112 

distributed with unknown mean 𝜇 and variance 𝜎2. Therefore, the DPT data were preprocessed 113 

using a Freeman-Tukey transformation (Freeman and Tukey 1950): 𝑁transformed = √𝑁 + √𝑁 + 1  114 

where 𝑁 represents the raw DPT blowcount data. This transformation is typically used to make 115 

discrete count data better approximate a normal distribution (Mosteller and Youtz 2006; Lin and 116 

Xu 2020). To test for normality of the transformed data, the Shapiro-Wilk test (Shapiro and Wilk 117 

1965) was applied to the transformed data in each soil layer at DPT locations where 118 

neighbouring borehole data is available to determine the approximate locations of the soil layer 119 

boundaries. The p-values obtained are greater than 0.05 and thus the null hypothesis that the 120 

transformed data is normally distributed is not rejected. Following Houlsby and Houlsby (2013), 121 

the variance 𝜎2 is assumed to follow an inverse gamma distribution and the distribution 122 

parameters 𝛼 = 1.8 and 𝛽 = 0.38 are obtained by curve-fitting the cumulative distribution of the 123 

variance for the DPT calibration dataset, as shown in Fig. 4. 124 

Outputs of interest for both BCPD-ON and BCPD-OFF are the probabilities of a changepoint 125 

occurrence at each depth (i.e. using Eq. 1 and Eq. 4, respectively). When the changepoint 126 

probability exceeds a predefined threshold 𝑝cp, the soil is considered to have changed category 127 

at this depth. The optimal value of 𝑝cp is dependent on the method adopted (BCPD-ON or 128 

BCPD-OFF) and is calibrated as a hyperparameter. For each method, a grid search is 129 
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implemented within the set of trial 𝑝cp = {0.1, 0.15,0.2,0.25,0.3, … , 0.8,0.85,0.9} to identify the 130 

value of 𝑝cp that achieve the best match with the expert predictions for the soil stratification at 131 

each DPT calibration location. To quantify the match with expert predictions, the accuracy 132 

measure, F1 score, is adopted, 133 

F1 score = 2(Precision * Sensitivity)/(Precision + Sensitivity) (7) 

where Precision = True Positive/(True Positive + False Positive) and Sensitivity = True 134 

Positive/(True Positive + False Negative). True Positive (TP) is the number of times an expert 135 

prediction for soil layer boundary has been correctly identified, while False Positive (FP) is the 136 

number of times an expert prediction for soil layer boundary has been incorrectly identified. 137 

False Negative (FN) is the number of times an expert prediction for soil layer boundary has not 138 

been identified. A higher F1 value indicates a better match with the expert predictions. As the 139 

predicted boundaries based on the DPT data are not expected to exactly match the expert 140 

predictions, this paper considers a soil layer boundary to be correctly identified if the DPT-141 

predicted boundary is within a distance of 1m from the expert prediction for a boundary. The 142 

grid search exercise gives the optimal values of 𝑝cp = 0.45 and 0.4 for BCPD-OFF and BCPD-143 

ON respectively. 144 

 145 

Results 146 

Fig. 5 shows the soil strata predictions determined using BCPD-OFF and BCPD-ON for the 6 147 

DPT test locations. The BCPD changepoint probability predictions are shown in the figure as 148 

grey lines and a soil strata boundary is identified when these predictions exceed 𝑝cp.  149 

From this figure, it can be observed that both BCPD-OFF and BCPD-ON perform well for most 150 

locations, where the predicted soil strata boundaries are similar to the expert predictions. The 151 

exception to this is Location T3, where the expert prediction for the soil strata is very complex, 152 

and both BCPD methods only detect some of the soil strata boundaries. Nevertheless, the 153 

overall performance is encouraging as the BCPD predictions agree well with the expert 154 

predictions, despite using information only from the local DPT data. Some of the soil strata 155 
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boundary detections are noteworthy (e.g. see Fig. 5d), as they are not obvious from manual 156 

inspection of the noisy DPT data alone. 157 

Comparing the two BCPD methods, it is evident that BCPD-OFF is the more sensitive of the 158 

two, as it can detect more soil strata boundaries (e.g. at locations T3 and T4), despite having a 159 

higher 𝑝cp than BCPD-ON. However, this increased sensitivity comes with the drawback of 160 

producing more false positives (see Figs. 5b, c). To quantify the accuracy of both methods, their 161 

F1 scores are calculated based on Eq. 7, as detailed in Table 1. BCPD-ON has a slightly higher 162 

F1 score than BCPD-OFF, indicating that BCPD-ON has a slightly better balance of precision 163 

and sensitivity. In terms of computational efficiency, BCPD-ON has the advantage of being 164 

much faster than BCPD-OFF (on average, BCPD-ON takes approximately 0.03 seconds to 165 

process each DPT location, while BCPD-OFF takes approximately 5 seconds).  166 

A key highlight is that both BCPD-OFF and BCPD-ON could detect soil strata boundaries 167 

quickly and automatically without manual intervention. This makes them helpful to industry 168 

practitioners for extracting additional insights from the DPT data to complement their current 169 

workflow for identifying soil strata. A useful application of the approach could be, for example, to 170 

assist the design of large-scale foundation projects such as solar farms. Engineers could be 171 

faced with up to 1000 DPT locations in one project, and this approach provides a consistent, 172 

automated and rapid way to interpret the soil stratigraphy. 173 

When applying these BCPD methods to a new site, a calibration process should be carried out 174 

to obtain site-specific values for both the priors and the 𝑝cp hyperparameter; this should provide 175 

improved soil layer boundary detection results. Site-specific calibration should not be an issue 176 

as DPT tests are typically carried out in conjunction with borehole tests. However, if calibration 177 

data is not available at the new site, the calibrated parameters in this paper may be used for 178 

preliminary analysis, using the BCPD methods to highlight potential locations of soil layer 179 

boundaries through the ‘spikes’ in the changepoint probability. However, caution is advised as a 180 

non-site specific calibration of 𝑝cp and the priors will affect the precision of the soil layer 181 

boundary detections. To investigate the sensitivity of the calibration to the number of DPT tests, 182 

the calibration results (i.e. the calibrated values for 𝛼, 𝛽, 𝑝cp) were determined using random 183 

selections of 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 DPT tests. The analysis indicates that when 5 or more 184 
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DPT tests are used for calibration, the calibrated 𝑝cp values are the same and the calibrated 185 

values of 𝛼, 𝛽 change by less than 4% from the values used in the current study. However, 186 

caution should be advised against taking this as a general rule as these results may be specific 187 

to the dataset used in the current study. Furthermore, in this study, each DPT test location is 188 

near a calibration location. The effect of the distance between the calibration and test locations 189 

on the predictive accuracy of the BCPD methods has not been evaluated in this study. Further 190 

research is required with a comprehensive study, involving a larger database of DPT data from 191 

a wider range of sites, to provide more definitive answers to the above questions and to obtain 192 

values of the priors and hyperparameter more suited to general use across different sites. 193 

 194 

Conclusion 195 

This paper proposes a fast, automatic Bayesian approach for soil strata delineation using DPT 196 

data. The proposed approach is based on the concept of offline and online Bayesian 197 

changepoint detection, which allows both retrospective and real-time soil strata delineation. Its 198 

reliability and utility have been evaluated using DPT data from a real-world case study. The 199 

proposed approach is very fast to run and provides additional insights from the DPT data for a 200 

more robust soil strata identification solution.  201 
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Table 1 Accuracy calculations for the BCPD-OFF and BCPD-ON soil layer boundary predictions 301 

   TP FP FN Precision Sensitivity F1 score 

BCPD-OFF 12 3 2 0.80 0.857 0.827 

BCPD-ON 10 0 4 1.00 0.714 0.833 
 302 
 303 
 304 
  305 
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Figures 306 
 307 
 308 
 309 

 310 

Fig. 1 Illustration of a sequence of data with abrupt changes, where y is the measured quantity 311 
and x is the index. The dashed lines represent the locations of the changepoints. 312 

  313 
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 314 

 315 

Fig. 2 Locations of DPT dataset used for calibration and testing of the BCPD methods. 316 
 317 
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 318 

Fig. 3 Exemplar DPT profile showing the development of the DPT blowcount, 𝑁, with depth. 319 
The expert prediction for the soil strata at this location is also shown, where the soil categories 320 

are shown in the legend. 321 

 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
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 330 
 331 

Fig. 4 Cumulative distribution of the variance of the transformed 𝑁 data within each soil strata 332 
identified in the DPT calibration dataset, compared with the inverse gamma cumulative 333 

distribution with 𝛼 = 1.8, 𝛽 = 0.38.   334 
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 335 
Fig. 5 Comparison of soil strata boundaries (shown as horizontal black lines) predicted by BCPD-OFF and BCPD-ON, with the expert predictions, at locations T1 to T6. 336 
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