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Acceleration of the density-functional tight-binding (DFTB) method on single and multiple graphi-
cal processing units (GPUs) was accomplished using the MAGMA linear algebra library. Two major
computational bottlenecks of DFTB ground-state calculations were addressed in our implementa-
tion: the Hamiltonian matrix diagonalization and the density matrix construction. The code was
implemented and benchmarked on two different computer systems: (1) the SUMMIT IBM Power9
supercomputer at the Oak Ridge National Laboratory Leadership Computing Facility (OLCF) with
1 to 6 NVIDIA Volta V100 GPUs per computer node, and (2) an in-house Intel Xeon computer with
1 to 2 NVIDIA Tesla P100 GPUs. The performance and parallel scalability were measured for three
molecular models of 1-, 2- and 3-dimensional chemical systems, represented by carbon nanotubes,
covalent organic frameworks, and water clusters.
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I. INTRODUCTION

Computational simulation of chemical systems and materials has enriched our understanding of matter
from the atomic to the microscopic scales1–3. For the simulation of complex chemical processes, quantum
mechanics (QM)-based methods like ab initio wave function theory (WFT) or Density Functional Theory
(DFT) are currently the most commonly used methods because of their capability to explicitly describe elec-
tronic structures, chemical bond breaking and making, including electron transfer occurring on electrodes4,5

among other chemical reactions on the surface of heterogeneous catalysts6,7 or in biosystems8–10. How-
ever, the applications of these methods are typically limited to systems containing a few hundred atoms
focusing on static minimum energy reaction mechanism pathways or only short-time molecular dynamics
(MD) simulations, due to the tremendous computational cost required to compute large numbers of integrals
over electronic degrees of freedom11,12. Even though DFT calculations comprising of more than 106 atoms
are possible, these must be considered heroic calculations and are not feasible for their routinely use in
science13,14.

To overcome the challenge in computational cost, semi-empirical WFT-based (MNDO, AM1, PMx, OMx,
etc.) and approximate DFT-based methods (DFTB, xTB) have long been developed1,15–18 and have not
lost their relevance3,19. Among them, the density-functional tight-binding (DFTB) method is particularly
attractive due to its hierarchical way of approaching the DFT level of theory at a considerably lower com-
putational cost, greatly reducing the time-to-solution ratio by several orders of magnitude16,20–23. A key
feature of DFTB originates from is the construction of the Slater-Koster tight-binding approximation24

to the Kohn-Sham Hamiltonian25,26 based on a two-center approximation which enables the use of tabu-
lated, distance-dependent electronic integrals and repulsive potentials. Explicit computation of the highly
resource-demanding integrals27,28 can thereby be avoided and the construction of the corresponding Hamil-
tonian matrices is very efficient and scales quadratically with the number of atoms29,30. For example, on a
single central processing unit (CPU) of an ordinary laptop computer, the DFTB+ code allows for geometry
optimizations of molecular and bulk solid systems containing thousands of atoms within a few hours, and
can perform MD simulations for systems containing hundreds of atoms on the nanosecond time-scale with
a similar time-to-solution20,31.

Unfortunately, the wall-clock time of DFTB calculations increases cubically with the size of the simulated
systems, which imposes a heavy toll on large-scale applications (systems containing more than several
thousand atoms). The cubic scaling of DFTB is due to BLAS3 type dense matrix-matrix operations and
is primarily driven by its most time-consuming step, namely a generalized eigenvalue problem used for
solving the time-independent Schrodinger equation32–35. Several reduced-scaling DFTB approaches have
been suggested to address this problem, such as the divide-and-conquer (DC)-DFTB method33,36,37, modified
DC (mDC)-DFTB38, the fragment molecular orbital (FMO)-DFTB method32,39–42, a graph-based, sparse
linear algebra approach to formulating the eigenvalue equation34, and various methods for Fermi-function
expansion via matrix polynomials or expansion of it’s poles3,43. In addition, for quasi-2D and 3D bulk
systems, O(N3/2) and O(N2) scaling can be achieved, respectively, for large systems by means of the PEXSI
method44,45. While these approaches allow for DFTB-based simulations of systems containing up to 100
million atoms by taking advantage of conventional homogeneous parallel computational architectures46, the
procedures cannot be easily applied to chemically reactive systems or metallic systems32. However, general
purpose methods with no worse than quadratic scaling can be used in these cases43. Moreover, several of the
techniques mentioned above sacrifice the accuracy of the energy and the gradient in an uncontrollable way33.
The accuracy of the method can be particularly affected in MD simulations due to error accumulation, where
a small error would lead to qualitatively different MD trajectories.

While DFTB calculations can in principle be accelerated in homogeneous parallel computer architec-
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tures using open multi-processing (OpenMP) or message passing interface (MPI) techniques, the resulting
speedup factor is usually low for multiple-node calculations due to the limited parallel scalability of matrix
diagonalization and slow speed of inter-node communication. Alternatively, the calculations can be accel-
erated by taking advantage of modern computer graphics processing units (GPUs) in a similar fashion as
other QM-based methods47–55. In addition, modern supercomputer architectures are increasingly employ-
ing heterogeneous CPU architectures56. In the past, several attempts to accelerate the DFTB calculations
on heterogeneous CPU+GPU computational architectures by porting only the Hamiltonian matrix diag-
onalization onto the GPUs and leaving the remainder of the DFTB calculations on the CPU have been
reported57–59. The latest implementation by Allec et al. showed promising results, for instance, a speedup
factor of ∼6x (when 4 NVIDIA P100 GPUs and 24 threads of an Intel Xeon E5-2680v3 CPU was compared to
24 threads of the same CPU) on the diagonalization of the Hamiltonian matrix for a water cluster containing
16,000 atoms was reported59. However, only a modest ∼1.5x speedup factor was achieved for a single-point
energy calculation of the same water cluster under the same conditions. Furthermore, no parallel scalability
with the number of GPUs has been reported. In this work, we report a new implementation in which
the two most time-consuming steps for ground state calculations, (1) diagonalization of the Hamiltonian
matrix and (2) the construction of density matrix, are ported to the GPU (being the only cubic scaling
parts of the calculation). As in the ELPA2 library55, the MAGMA GPU-accelerated library60 is employed
for the linear algebra manipulations on GPUs. The general performance and parallel scalability of the new
implementation was benchmarked with various numbers of GPUs employed in parallel for a wide range of
system dimensionalities (linear 1D, planar 2D, and cluster-type 3D) and system sizes. The benchmark was
performed on two different CPU+GPU architectures, namely one on the Summit supercomputer at Oak
Ridge National Laboratory featuring IBM Power9 CPU architectures and up to six NVIDIA Volta GPUs
per node, and another, workstation-type computer using ordinary Intel Xeon CPUs with up to 2 NVIDIA
Tesla GPUs. Finally, we analyzed and report in detail the benefits of porting the construction of the density
matrix onto the GPU.

II. METHODOLOGY

A. Density-Functional Tight-Binding (DFTB)

The electron density of a system can be approximated using a Taylor series around a reference density61.
Truncating the expansion at the first, second, or third orders gives rise to a hierarchical family of DFTB
“flavors”: beginning from the simplest formulation, the non-self-consistent charge (non-SCC)-DFTB (or
DFTB1)29,30; secondly, the self-consistent charge (SCC)-DFTB (or DFTB2)62,63, and finishing with the
most involved third-order DFTB3 flavor16,64,65. The DFTB methods have already been the subjects of
many comprehensive reviews16,22,63,66–69; hence, they will not be discussed in detail here. In this section, as
a reminder, a brief review of the SCC-DFTB (DFTB2) method62 is given. In this method, the total energy
is defined as

E =
occ.∑
i

ni 〈Ψi| Ĥ0 |Ψi〉+
1

2

atoms∑
AB

γAB∆qA∆qB +
atoms∑
A>B

Erep
AB , (1)

where Ĥ0 is the initial Hamiltonian constructed from the superposition of neutral atomic densities in a
two-center approximation29,30; |Ψi〉 are molecular orbitals (MOs); ∆qA are the Mulliken charges70, and
γAB∆qA∆qB represents the electrostatic interaction energy between the two Mulliken charges on atom A
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and atom B62. The molecular orbitals |Ψi〉 are expanded as a linear combination of atomic orbitals |φµ〉,

|Ψi〉 =
∑
µ

ciµ |φµ〉 . (2)

As with other QM-based methods, the molecular orbitals |Ψi〉 as well as the total energy are determined
by applying the variational principle. By recasting the problem of solving the coefficient ciµ into a secular
matrix equation, the task becomes solving the generalized eigenvalue problem∑

ν

Hµνciν = εi
∑
ν

Sµνciν , (3)

where H and S are the Hamiltonian and overlap matrices, respectively. The SCC-DFTB Hamiltonian is
then given by

Hµν = 〈φµ| Ĥ0 |φν〉+
1

2
Sµν

∑
C

(γAC + γBC)∆qC , with µ ∈ A, ν ∈ B. (4)

In the framework of the two-center approximation, the initial Hamiltonian integrals 〈φµ| Ĥ0 |φν〉 and the
overlap integrals 〈φµ|φν〉 are pre-tabulated for each atomic pair. The Mulliken charge on atom A is defined
as

∆qA =
occ∑
i

ni
∑
µ∈A

∑
ν

ciµciνSµν − q0A =
∑
µ∈A

∑
ν

PµνSµν − q0A, (5)

where Pµν =
∑occ
i niciµciν are the single particle density matrix elements. Since the gross atomic charges,

∆qA, depend on the molecular orbitals |Ψi〉, the eigenvalue problem must be solved self-consistently. This
entails solving equation 3 iteratively until convergence of the eigenvalues is reached, as depicted in Figure 1.
Due to the pre-tabulated integrals in the formalism of DFTB, the most time-consuming step in traditional
DFT is avoided. In DFTB calculations for systems containing more than tens of atoms, the performance-
critical routines correspond to the diagonalization of the Hamiltonian matrix, taking on the order of 90−95%

of the total running time, and the construction of the density matrix accounts approximately for 5− 10%.

Converged?
(∆q, E) 

Evaluate the Mulliken charges, ∆q

Ouput quantities

Solve HΨi(r) = ɛiΨi(r)

or |H - ɛS| = 0

Update the Hamiltonian matrix, H 

Construct matrix H0 
Initial guess ∆q

Construct the density matrix, P

FIG. 1. Workflow illustrates the self-consistent-charge (SCC) procedure in the DFTB method.
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B. Implementation

In this work, we utilize the MAGMA GPU-based eigensolver to diagonalize the Hamiltonian matrix and
replaced the BLAS routines required to construct the density matrix with the corresponding GPU-based
routines. In our implementation, the number of GPUs of the “magma” solver can be specified by the user via
the environment variable “MAGMA_NUM_GPUS”. The code detects all available GPUs and ensure that
the requested number does not exceed the number of physically available units. Otherwise, only one GPU is
used by default. Furthermore, a Fortran wrapper, namely device_info, based exclusively on MAGMA Device
Management routines, was created to guarantee future portability with GPUs manufactured by companies
other than NVIDIA. Such an interface facilitates the acquisition of information regarding the available
devices by enabling seamless communication between the GPUs and the DFTB+ program. Subsequently,
the MAGMA routines are called from the eigensolver module; an appropriate subroutine is selected from
the gpu_gvd interface, depending on the type of chemical system, periodic or molecular.

The second most time-consuming routine in DFTB calculations is the construction of the density matrix,
P , from the matrix of eigenvectors, C. The matrix construction is carried out after obtaining the eigenvectors
and the occupation numbers ni, as explained in Figure 1. For dense matrices, the computational cost
typically scales as O(N3), but it can be reduced to O(N2) by exploiting the sparsity of P 20. The building
of this matrix is done by calling the BLAS level-3 routines performing the Hermitian rank-k (HERK )
operations, P ← αCCH + βP . We replaced these CPU-based HERK routines with their single-GPU-based
equivalents, as provided by the MAGMA library. A patch for the 19.1 DFTB+ release71 can be found at
https://doi.org/10.5281/zenodo.7566762. The transfer of the eigenvectors, density matrix between the
host and devices, and the memory allocation are carefully managed by handling the GPU pointers directly.

C. Computational Details

As mentioned above, the performance of our implementations was examined on two different computer
architectures: (1) the SUMMIT supercomputer and (2) an in-house workstation-type Intel-based Linux
computer which we call KOFUN. On the SUMMIT computer, two “IBM Power9 CPUs” at 4.00GHz in
conjunction with 6 “NVIDIA Volta V100” GPUs were used. Each GPU is paired with 16 GB of High
Bandwidth Memory (HBM) with a bandwidth of 900 GB/s. Bidirectional GPUs-HBMs interconnect at 50
GB/s. Communication between CPUs and GPUs-HBMs units rates at 50 GB/s. CPU to RAM possesses
a bandwidth of 170 GB/s. Each “NVIDIA Volta V100” GPU has a peak performance of 7.8 teraFLOPS.
The two CPUs in each node interconnect at a bandwidth of 64 GB/s. On the KOFUN computer, two
“Intel Xeon CPU E5-2630 v4” at 2.20GHz paired with 2 “NVIDIA Tesla P100” GPUs were used. Each Xeon
CPU is capable of 704 GFLOPS. The system possesses a max memory bandwidth of 25.6 GB/s. GPUs
interconnect with a bandwidth of 16 GB/s. Each “NVIDIA Tesla P100” GPU has a peak performance of
4.7 teraFLOPS. Firstly, computational performance and parallel scalability of only the Hamiltonian matrix
diagonalization ported onto the GPUs were benchmarked on SUMMIT for various carbon nanotubes (CNTs,
1D), covalent organic frameworks (COFs, 2D), and water clusters (3D). For the test of parallel scalability,
the number of GPUs varied from 1 to 6. Secondly, an equivalent test was carried out on KOFUN with
the constraint to using only up to 2 GPUs. Finally, the time savings of building the density matrix on
the GPU was investigated on both SUMMIT and KOFUN computers. For all tests, the wall-clock time of
SCC-DFTB single-point energy calculations was used to evaluate the computational cost. The wall-clock
time was measured using the Unix “time” command. In these benchmarks, we only discuss the single-point
energy calculation because the force calculation often takes on the order of only 1-3% of the total running
time, even when the Hamiltonian matrix diagonalization is carried out on the GPUs, as shown in Table
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S1 in the Supplementary Material. All DFTB single-point energy calculations were performed with the
number of SCC iteration cycles set equal to 10 to ensure a consistent comparison, except in comparison
with energy+gradient calculations where the default options were used. The constant number of SCC
iteration cycles was achieved with the following options: “SCCTolerance = 1e-12” and “MaxSCCIterations
= 10”. DFTB calculations were performed using a development version of the DFTB+ program20,72 in
combination with the MAGMA (2.5.3) library60. The math kernel library (MKL) was used to maximize the
performance of its “Intel CPU,” similarly to the engineering scientific subroutine library (ESSL) used in the
SUMMIT computer.

III. RESULTS AND DISCUSSION

A. Effect of the Hamiltonian matrix diagonalization on the GPUs: performance and
parallel scalability

To assess the effects, we measured the wall-clock time of DFTB single-point energy calculations using
various computer configurations (with and without GPUs) for a set of water clusters, varying from 3 to
11,944 water molecules. The calculations with CPU+GPUs were carried out using 21 or 42 Power9 CPU
threads combined with 1, 2, 3, or 6 V100 GPUs; the calculations with CPU-only were carried out using
the corresponding 21 or 42 CPU threads. We emphasize that, in this test, only the Hamiltonian matrix
diagonalization utilized the GPUs in the calculations with CPU+GPUs.

Figure 2 shows how the wall-clock time increases with the system size, and Table S2 shows actual values
of the wall-clock time. In the case of the CPU-only calculations, the time increases drastically for systems
having more than 10,000 basis functions. It is important to note that the wall-clock time increases with
the system size cubically in all cases, with and without GPUs. However, the rate of change (slope) is much
lower in the cases of GPU-accelerated calculations compared to CPU-only calculations.
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FIG. 2. Comparison of the wall-clock time of DFTB single-point energy calculation for water clusters as a function of
the number of basis functions. For the heterogeneous CPU+GPU architecture, only the Hamiltonian diagonalization
was performed on GPUs. All calculations were carried out on the SUMMIT supercomputer with IBM Power9 CPU
+ NVIDIA Volta GPUs. The dotted lines represent extrapolated data. Detail of the blue shaded region is shown on
the right. A log-log version of the left panel is provided in Figure S1 in the Supplementary Material.

While doubling the number of CPU threads from 21 to 42 only sped up the calculation in a minimal way,
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using GPUs to diagonalize the Hamiltonian matrix significantly sped up the calculations in general. When
the GPUs were employed, the wall-clock time was greatly reduced for moderate- and large-size systems
with more than 10,000 basis functions. For instance, while the CPU-only calculation took 10,403 seconds
for the (H2O)5280 cluster, the calculation took only 1,285 seconds with the aid of 3 GPUs. Nevertheless,
the acceleration is less substantial for smaller systems: The wall-clock time only reduces from 97 seconds
to 43 seconds when the 3 GPUs were used for the (H2O)1046 cluster. The calculation can be even slower
with GPUs for the smallest system, the (H2O)3 cluster. The optimization of the algorithms and kernels
implemented in the MAGMA library for different matrix sizes has been the subject of several studies, and
we refer the reader to Refs.73,74

For a more comprehensive benchmark, we extended the test to include three representative types of
systems: (1) carbon nanotubes (CNTs) for 1D materials, (2) covalent organic frameworks (COFs) for 2D
materials, and (3) water clusters for 3D materials. The wall-clock time is listed in Table S2 for water clusters,
Table S4 and Table S3 in the Supplementary Material for CNTs and COFs, respectively. Figure 3 compares
the speedup factor as a function of the number of GPUs and the number of basis functions for these systems.

FIG. 3. Comparison of the speedup as a function of the number of basis functions gained by different computer
configurations on DFTB single-point energy calculation for carbon nanotube (CNT), covalent organic frameworks
(COF), and water clusters. For each system, the speedup is referenced to the running time of the corresponding
calculation on the homogeneous computer with 21 CPU threads. For the heterogeneous CPU+GPU architecture,
only the Hamiltonian diagonalization was performed on GPUs. The asterisk symbols label extrapolated data.

Generally, the advantages of using GPUs, with a speedup factor larger than one, were observed for
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systems having more than 4,000 basis functions. The parallel scalability increases with the system size and
only shows a good scaling factor with the number of GPUs for large systems. For systems with less than
36,000 basis functions, using 6 GPUs slows down the calculation, as data must be transferred through two
different sockets in the computer. We note that in the SUMMIT supercomputer all three GPUs in a single
socket are interconnected via NVLink with a bi-directional bandwidth of 50 GB/s, while data transferred
between sockets and thus between GPUs in different sockets share a single bandwidth of 64 GB/s. Although
using 42 threads is marginally faster than 21 threads, the combination of 42 threads + 6 GPUs is significantly
faster than 21 threads + 6 GPUs. Interestingly, for a similar size, the larger speedup factor was observed
with 2D systems (COFs) compared to the 3D materials (water clusters), and the largest speedup factor
was observed with 1D materials (CNTs). The trend might be attributed to the sparsity of the Hamiltonian
matrix of these systems.

B. Xeon CPU + P100 GPU versus Power CPU + V100 GPU

To further evaluate the effects of different hardware configurations on the performance of our implemen-
tation, we carried out the same test for CNTs, COFs, and water clusters on our in-house KOFUN computer.
The wall-clock time of DFTB single-point energy calculations for CNTs, COFs, and water clusters is listed
in Table I.
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FIG. 4. Comparison of the wall-clock time and speedup factor of DFTB single-point energy calculation for water
clusters as a function of the number of basis functions on Xeon CPU + P100 GPU versus Power CPU + V100 GPU.
For each system, the speedup is referenced to the running time of the corresponding CPU-only calculation with: “20
Xeon CPU threads” in the case of “Xeon CPU + P100 GPU” and “21 Power CPU threads” in the case of “Power CPU
+ V100 GPU”. For the heterogeneous CPU+GPU architecture, only the Hamiltonian diagonalization was performed
on GPUs. A log-log version of the left panel is provided in Figure S2 in the Supplementary Material.

Figure 4 compares the wall-clock time and the speedup factor of DFTB single-point energy calculations for
water clusters on SUMMIT and KOFUN computers. For water clusters, the calculation is faster on KOFUN
than on SUMMIT when they are carried out using CPU-only, suggesting that the Intel Xeon CPU/MKL
combination is faster than the IBM Power CPU/ESSL for this specific case of study. Nevertheless, the V100
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GPU is faster than the P100 GPU, making the GPU-accelerated DFTB calculations faster on SUMMIT
than on KOFUN. As a result, remarkably more significant speedup factors were observed on SUMMIT. For
example, for water clusters of (H2O)5280 computed using 2 GPUs, the speedup factor of 7.6x and 4.6x was
observed on SUMMIT and KOFUN, respectively.

We noticed that in the case of CNTs, the homogeneous computation is drastically slower on KOFUN than
on SUMMIT, as shown in Table I. As a result, an unreasonable high speedup factor of 32x was observed.
The issue can most likely be attributed to the implementation of the MKL library. Similar behavior was
observed for COFs but in a less severe manner.

TABLE I. The wall-clock time in seconds of DFTB single-point energy calculations, each with 10 self-consistent
cycles, for CNTs, COF, and water clusters on SUMMIT (using 21 Power-CPU threads + V100 GPUs) and KOFUN
(using 20 Xeon-CPU threads + P100 GPUs) computers. For the heterogeneous CPU+GPU architecture, only the
Hamiltonian diagonalization was performed on GPUs.

Natoms Nbasis
Power CPU + V100 GPUs Xeon CPU + P100 GPUs

no GPU 1 GPU 2 GPUs no GPU 1 GPU 2 GPUs

CNTs
106 358 1.0 2.6 3.9 0.4 3.5 4.1
274 1030 2.4 3.6 4.8 1.4 4.6 5.4
610 2374 9.1 8.0 9.0 7.4 10.6 11.0
1150 4534 40.2 23.2 22.4 48.8 32.7 29.8
1966 7798 176.4 62.6 56.0 309.9 101.0 86.7
3106 12358 678.7 166.8 139.0 1554.2 269.4 215.7
4618 18406 2132.6 426.6 329.9 6722.5 666.3 505.8
6562 26182 5900.6 1036.1 776.3 30901.0 1593.0 1166.9
8986 35878 14820.7 2387.0 1723.8 83040.5 3694.2 2545.4

COFs
142 394 1.1 2.7 3.9 0.5 6.2 6.9
560 1568 4.0 4.9 6.1 3.4 6.5 7.3
1254 3522 21.2 15.2 15.9 18.3 20.5 18.6
2224 6256 92.2 40.0 37.4 136.0 63.4 57.2
3470 9770 341.0 99.1 84.9 339.7 162.6 136.5
4992 14064 965.4 223.5 181.0 1000.6 354.7 282.0
6790 19138 2363.9 477.4 363.4 2842.3 739.1 552.3
8864 24992 5075.4 920.3 691.3 6865.0 1408.9 1039.7
11214 31626 10140.7 1750.3 1275.5 14796.6 2516.0 1868.5

Water clusters
9 18 0.8 0.9 1.0 0.1 2.3 2.3
1302 2604 11.3 9.5 10.2 8.8 12.4 12.8
3138 6276 96.9 42.2 39.0 135.6 66.6 60.0
5526 11052 498.9 135.7 114.3 469.1 218.3 178.2
8829 17658 1914.2 414.8 319.4 1672.7 638.2 485.5
11967 23934 4601.1 893.0 677.9 4128.3 1312.1 990.1
15840 31680 10403.2 1860.6 1374.3 9223.7 2599.8 1988.8
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C. Effect of building the density matrix on GPU

For DFTB calculations using CPU-only, the Hamiltonian matrix diagonalization is the bottleneck, taking
90 − 95% of the total wall-clock time, and the density matrix construction generally takes in the order of
5− 10% of the total wall-clock time. When the GPUs are used to accelerate the diagonalization by a factor
of 10 − 15x, the density matrix construction becomes a relatively more time-consuming step. Therefore,
it is natural to question whether porting the density matrix construction to the GPU is worthwhile. This
section assesses the effects of constructing the density matrix on the GPU. The differences in wall-clock time
of DFTB single-point energy calculations with and without the density matrix constructed on the GPU are
compared for water clusters; the wall-clock time values are listed in Table II. The corresponding wall-clock
time values for COFs and CNTs are listed in Tables S5-S6 and Tables S7-S8 in the Supplementary Material,
respectively.

Figure 5 shows the comparison of running times and speedup factors obtained on the SUMMIT com-
puter. Similar to the case of porting only the Hamiltonian matrix diagonalization to the GPUs, the effects
of porting the density matrix construction to the GPU increase with the system size: The larger the system,
the higher the speedup factor is observed. While the trend is similar, having both the Hamiltonian matrix
diagonalization and the density matrix construction on the GPUs speeds up the calculation more signifi-
cantly. For instance, in the case of (H2O)5280 with 3 GPUs, the speedup factor increases from 8x to 13x.
Figure 5 shows that including the density matrix construction on a single GPU can make the calculations
as fast as having only the Hamiltonian matrix diagonalization on 2 or 3 GPUs.

FIG. 5. Comparison of wall-clock time and the speedup as a function of the number of basis functions of DFTB
single-point energy calculation for water clusters. For each system, the speedup is referenced to the running time of
the corresponding calculation on the homogeneous computer with 21 CPU threads. ‘dm’ denotes the calculations,
where both the Hamiltonian matrix diagonalization and the density matrix construction were carried out on GPUs.
A log-log version of the left panel is provided in Figure S3 in the Supplementary Material.

Analogous to the results observed on the SUMMIT supercomputer, a similar effect was measured on
KOFUN by performing the density matrix construction on a GPU, shown in Table II. Nonetheless, the
overall speedup is less pronounced as the P100 GPU on KOFUN is less powerful than the V100 GPU on
SUMMIT. For example, compared to the GPU-accelerated only-diagonalization implementation in the case
of (H2O)5280 with 2 GPUs, having the density matrix construction on GPU speeds up the calculations by
1.51x on SUMMIT, and the speedup factor is only 1.26x on KOFUN.
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TABLE II. Wall-clock time in second of DFTB single-point energy calculations for water clusters on SUMMIT
(using 21 Power-CPU threads + V100 GPUs) and KOFUN (using 20 Xeon-CPU threads + P100 GPUs) computers
without/with the density matrix constructed on a GPU.

Natoms Nbasis no GPU 1 GPU 2 GPUs 3 GPUs

Power CPU + V100 GPUs
9 18 0.8 0.9 / 2.9 1.0 / 2.1 0.9 / 2.3
1302 2604 11.3 9.5 / 9.5 10.2 / 10.4 12.1 / 12.0
3138 6276 96.9 42.2 / 39.1 39.0 / 36.7 43.1 / 40.5
5526 11052 498.9 135.7 / 115.5 114.3 / 97.9 119.3 / 98.2
8829 17658 1914.2 414.8 / 322.1 319.4 / 242.8 316.6 / 235.7
11967 23934 4601.1 893.0 / 671.9 677.9 / 473.4 639.5 / 425.3
15840 31680 10403.2 1860.6 / 1349.0 1374.3 / 907.3 1285.4 / 797.2

Xeon CPU + P100 GPUs
9 18 0.1 2.3 / 2.9 2.3 / 3.0
1302 2604 8.8 12.4 / 11.7 12.8 / 13.1
3138 6276 135.6 66.6 / 61.9 60.0 / 54.9
5526 11052 469.1 218.3 / 196.8 178.2 / 158.0
8829 17658 1672.7 638.2 / 549.7 485.5 / 408.7
11967 23934 4128.3 1312.1 / 1121.5 990.1 / 804.8
15840 31680 9223.7 2599.8 / 2219.5 1988.8 / 1583.5

To further analyze the effects of the Hamiltonian matrix H diagonalization and the density matrix P

construction on the GPUs, we decomposed the total running time of DFTB single-point energy calculation
for (H2O)5280 into three components: (1) time for the matrix H diagonalization, (2) time for the matrix
P construction, and (3) the rest. The percentage of these components with respect to the total wall-clock
time was examined. Figure 6 shows how the percentage of these components varies with the number of
GPUs on SUMMIT. When only the Hamiltonian matrix diagonalization is ported to the GPUs, the matrix
H diagonalization percentage reduces drastically from 95.5% with CPU-only to 56.3% with CPU+3GPUs.
On the other hand, the matrix P construction percentage increases from 5.4% with CPU-only to 43.1%
with CPU+3GPUs. However, having the Hamiltonian matrix diagonalization as well as the density matrix
construction on the GPUs shows a modest change in these percentages, varying from 94/5% to 91.1% in the
case of the matrix H diagonalization and from 5.4% to 7.9% in the case of the matrix P construction, with
CPU-only and CPU+3GPUs respectively. Thus, besides the Hamiltonian matrix diagonalization, porting
the density matrix construction to the GPU is worth doing and necessary.
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FIG. 6. Percentage of the wall-clock time of DFTB single-point energy calculation for water cluster (H2O)5280 de-
composed to the Hamiltonian matrix H diagonalization, the density matrix P construction, and other contributions.

IV. SUMMARY AND OUTLOOK

We presented the acceleration of the density-functional tight-binding (DFTB) method on single or multi-
ple graphical processing units (GPUs) using the MAGMA linear algebra library. In the new implementation,
both the diagonalization of the Hamiltonian matrix and the construction of the density matrix were ported
to the GPUs. The implementation was carefully benchmarked on two different computer systems with
various numbers of GPUs for three molecular models of 1-, 2- and 3-dimensional chemical systems.

The GPUs can speed up DFTB calculations remarkably up to 15x for large-size systems having more than
70,000 basis functions (when 6 NVIDIA V100 GPUs and 42 threads of IBM Power9 CPUs was compared to
42 threads of the same CPUs on the SUMMIT supercomputer) but are less notable for the small ones. The
difference in speedup for systems with different dimensionalities is rather small, as it varies only between
14x and 15x.

Likewise, the parallel scalability with number of GPUs increases with system size as well. Our benchmark
results suggest that employing only 1 to 2 GPUs can be an efficient option for routine applications, as a trade-
off between available computational resources and largest-possible acceleration for small- and moderate-size
systems. On the other hand, using multiple GPUs on a supercomputer like SUMMIT can be worthwhile
for simulations of large-size systems when the Hamiltonian matrix exceeds the size of the available memory.

Besides the Hamiltonian matrix diagonalization, constructing the density matrix on a GPU makes uti-
lizing GPUs more effective, especially when the GPU speedup for diagonalization is significant. It can make
DFTB calculations using one GPU as fast as when using two GPUs where only matrix diagonalization is
performed on the GPUs.

The current implementation offers the possibility of efficiently accelerating the time–to–solution for
systems in which the calculations can be parallelized as individually independent calculations, such as
MD ensembles and anharmonic vibrational frequency calculations along normal modes. These type of
calculations can be spanned over several nodes in a cluster, as most commonly available in computational
chemistry groups.

A limit of our current implementation is the lack of control in memory allocation provided by MAGMA‘s
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diagonalization routines. If eigenvectors obtained from the Hamiltonian matrix diagonalization procedure
could be left on the GPUs to construct the density matrix, we could further improve the performance and
endow the software with superior speedup.
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