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Abstract: Predictive maintenance is considered as one of the most important strategies for managing 

the utility systems of commercial buildings. This research focused on chilled water system (CWS) 

components and proposed a methodological framework to build a comprehensive predictive 

maintenance program in line with Industry 4.0/Quality 4.0 (PdM 4.0). This research followed a sys-

tematic literature review (SLR) study that addressed two research questions about the mechanism 

for handling CWS faults, as well as fault prediction methods. This research rectified the associated 

research gaps found in the SLR study, which were related to three points; namely fault handling, 

fault frequencies, and fault solutions. A framework was built based on the outcome of an industry 

survey study and contained three parts: setup, machine learning, and quality control. The first part 

explained the three arrangements required for preparing the framework. The second part proposed 

a decision tree (DT) model to predict CWS faults and listed the steps for building and training the 

model. In this part, two DT algorithms were proposed, C4.5 and CART. The last part, quality con-

trol, suggested managerial steps for controlling the maintenance program. The framework was im-

plemented in a university, with encouraging outcomes, as the prediction accuracy of the presented 

prediction model was more than 98% for each CWS component. The DT model improved the fault 

prediction by more than 20% in all CWS components when compared to the existing control system 

at the university.  

Keywords: predictive maintenance; Industry 4.0; Quality 4.0; decision tree algorithm; chilled  

water system; HVAC; commercial buildings; industrial engineering; engineering management 

 

1. Introduction 

1.1. Overview 

In the past decades and especially today, the downtowns of large cities have been 

mainly made up of commercial buildings, and the owners or the caretakers of these build-

ings make efforts to develop strategies and plans for their upkeep and to control their 

equipment. One of the said strategies is predictive maintenance (PdM), which is defined 

as a strategical monitoring approach that optimizes the usability of a particular equip-

ment/system [1]. On a related note, PdM 4.0, which is in line with Industry 4.0/Quality 

4.0, can determine the best time to detect equipment/system faults using machine learning 

(ML) models or artificial intelligence (AI) [2]. Bousdekis and others have outlined the ben-

efits of developing the said strategies, especially PdM 4.0, and indicated that they have 

shown a positive impact for improving many aspects related to the organizations, such as 

maintenance and operation costs, replacement costs, repair downtime and verifications, 

machine failures, spare part stock, part service life, production, operator safety, and over-

all profit [3]. Using the outputs of a novel AI approach [4], PdM 4.0 can be considered a 

control task that maintains buildings efficiently. Moreover, PdM 4.0 ensures the 
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sustainability of the buildings, as it allows the human and the machine to be harmonized 

[5,6]. In contrast, Achouch and others discussed the challenges of PdM 4.0 regarding four 

aspects, which are financial and organizational limitations, the limitations of data sources, 

activity limitations for repairing machines, and the limitations in the deployment of in-

dustrial PdM models [7]. 

This article focuses on one of the most important building utility systems, which is 

the chilled water system (CWS). It is part of the heat, ventilation, and air conditioning 

(HVAC) system and contains four main components, which are chillers, cooling towers, 

pumps, and terminal units, which are operated in an interactive way [8]. It plays a signif-

icant role in controlling the ambient temperature, which should meet the satisfaction of 

the buildings’ occupants [9]. Furthermore, efficiently maintaining a CWS will prevent 

premature replacement of its components and save energy [8]. Therefore, the goal of this 

research was to present a comprehensive PdM 4.0 program for CWS via a methodological 

framework. There are a number of studies that have presented PdM 4.0 programs for 

CWS, focusing on either on one, two, or three components of the system to predict its 

faults. These faults were predicted through ML techniques such as the decision tree (DT) 

algorithm [10–12], artificial neural network algorithm [13–15], and support vector ma-

chine algorithm [16–18]. Moreover, a systematic literature review (SLR) addressed PdM 

4.0 applications in 168 studies on CWS [19]. This research followed this SLR study, which 

was underpinned by two research questions, responded to three research gaps, and pro-

posed a route for PdM 4.0. Table 1 shows the research questions and the research gaps, 

while Figure 1 visualizes the proposed PdM 4.0 route. 

Table 1. Research Questions and Gaps. 

Research Question  Research Gap 

1) How can faults be identified, 

in order to predict them? 

1) The literature did not consider the same faults and 

only concentrated on selected faults, as some faults 

were either not stated/mentioned or were not fully de-

scribed. 

2) What are the methods that 

can be used to predict the 

faults? 

2) The current literature does not specify how data were 

collected or justify the period or the frequency of the 

collected data, as well as being limited to testing the 

model and not controlling it. 

3) The suggested programs/frameworks/models did not 

contain, or contained inconclusive, solutions for the 

mentioned faults from a management point of view, as 

they ended at how to detect/predict the faults. Moreo-

ver, these programs did not comprehensively 

study/cover the whole system. 
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Figure 1. PdM 4.0 Route. 

In addition, this research utilized the outcomes of an industry survey (IS) study [20] 

in building the framework. The IS study provided two tools that were used in this re-

search, which were the fault frequencies and fault solutions. The utilization of these tools 

are explained in the next sections. Following Jebreen [21], and as the IS study collected 

quantitative and qualitative data from a number of professional participants [20], this re-

search employed an inductive approach that proposed a methodological framework for a 

PdM 4.0 program for CWS in commercial buildings. From a philosophical point of view, 

this research follows the pragmatic paradigm, which was introduced by William James in 

1898 [22]. This is defined as a philosophical tradition that considers ideologies as instru-

ments for prediction as well as for problem solving [23]. According to Sakib and Wuest, 

the aforementioned research paradigm is ideal for PdM research [24]. Therefore, this re-

search is an extension of the previously published SLR and IS studies [19,20]. It rectifies 

the research gaps that were identified by the SLR study and applies the recommendations 

of the IS study.  

From an ML point of view, this research utilized the DT algorithm within the pro-

posed framework; as the SLR study indicated that DT typically shows a high accuracy for 

predicting faults that affect the condition of a CWS over time [19]. The next subsection 

gives an overview of the mentioned algorithm. 

1.2. Decision Tree Algorithm 

DT is a common ML algorithm that is mainly used for classification, prediction, and 

regression applications. It has many benefits, and Sharma and Kumar argued that it can 

be used to predict continuous and discrete values [25]. They also indicated that it can cap-

ture nonlinear relationships, as well as being easier to use than other ML algorithms for 

understanding, interpretation, and visualization [25]. 

The DT has a tree-like structure, with a root node and intermediate nodes that split 

into branches. The last intermediate node is split into leaves and is terminated with an 

end node. Each node represents a classification or prediction feature. A branch or a leaf 

represents the possible value of the feature. The path from the root node to the end node 

is labeled using the predicted outcome or target classification, which is assigned using an 

existing training dataset. Using supervised training algorithms, the features are split re-

cursively from top down according to certain criteria. Figure 2 depicts the general struc-

ture of the tree [26]. 
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Figure 2. General Structure of the DT. 

2. Methodological Framework 

Constructing management frameworks for projects, continuous activities, or any 

other core program of building facility management gives structure to the program and 

allows corrective measures that can achieve related goals [27]. The framework in this re-

search was built from an engineering management point of view, where each part of the 

framework contains multiple managerial steps. Table 2 describes the parts of the proposed 

framework, as well as the objective of each part. 

Table 2. Framework Structure. 

Part  Objective 

Setup 

• To understand the CWS at the building under study, in order 

to identify the numbers of each component, as well as their lo-

cation at the site; 

• To ensure that the data reading tools are in the right locations; 

• To prepare the data collection plan, which includes data col-

lection tools, determining the schedule of data collection, and 

formation of the team who will collect the data. 

Machine Learning 
• To formulate the algorithm, train the prediction model, and 

test it. 

Quality Control 
• To make a control plan for the maintenance program and eval-

uate the prediction model. 

The above parts should be followed in the same logical order as shown and detailed 

in the next subsections. 
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2.1. Setup Part 

In order to prepare the framework, three stages are suggested, to be gone through in 

the same order as they are listed in the following subsubsections. 

2.1.1. CWS Drawing 

As recommended by SLR [19], the first step in preparing the framework is to under-

stand the as-built drawing of CWS at the building under study, in order to determine the 

number of CWS components installed there and to determine their locations around the 

site; and then to study the whole system accordingly. Such drawings show the actual 

building layout and are normally handed over to the facility management after comple-

tion of the building construction [28]. Following the standard in [29], this research made 

a simplified schematic CWS drawing; in order to easily identify the numbers of each com-

ponent, as shown in Figure 3. 

 

Figure 3. CWS As-Built Drawing. 

2.1.2. Reading Tools for Operational Parameters 

Following the SLR and IS studies [19,20], one of the fundamentals of PdM 4.0 is the 

datasets that contain the readings of the CWS operational parameters. Here, operational 

parameters are defined as quantifiable factors that give numerical data about the perfor-

mance of the CWS [19]. In this research, the operational parameters chosen were the 
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temperature of water leaving the chillers and cooling towers, pressure for pumps, and the 

space temperature for terminal units; as they are the best for showing the health condition 

of these components [20]. 

In order to collect the readings of these parameters, the associated tools were as-

sumed to be available at the building under study. The measurement tools can be meters, 

gauges, sensors, thermostats, or any other agent, such as the building management system 

(BMS). In case of the unavailability of these reading tools, the authors in [30,31] outlined 

procedures on how to install such tools. Following the standard operating procedure in 

[29], Table 3 shows the best location for installing the reading tool for each CWS compo-

nent in the building under study. 

Table 3. Best Location for Reading Tools. 

CWS Component  Location 

Chiller Chilled water supply header 

Cooling Tower Straight pipeline entering the condenser 

Pump Discharge pipeline 

Terminal Unit 1.5 m above the floor level in a space or in the return air duct 

Once the reading tools are installed, they have to be connected to the computer unit 

(CU) that will be used in the PdM program. Kayastha and others outlined a procedure for 

how to connect such tools to computers [32]. This course of action was utilized and is 

explained in the third subsection of the methodological framework section (Quality Con-

trol). 

2.1.3. Data Collection 

After determining the numbers of each component and finalizing the reading tools, 

the last stage of the setup is data collection. The IS study proposed time frequencies to 

collect data in a building [20]. Following these proposals, the readings of water tempera-

ture leaving a particular chiller should be taken every thirty minutes over a study period 

of twelve weeks. The same should be applied for cooling towers, but over a study period 

of sixteen weeks. With regard to pumps, the readings of pressure should be taken every 

hour over a study period of twenty-four weeks. For terminal units, the readings of space 

temperature should be taken every forty-five minutes over a study period of eight weeks. 

The SLR and IS studies suggested utilizing a check sheet to collect the data for each com-

ponent, which should contain the readings as well as the inspection results. The inspection 

results will be either ‘1’ in case of fault or ‘0’ in case of no fault. As recommended by the 

IS study, the check sheet must be filled out by experienced technicians or users [20]. Each 

check sheet should be recorded by two team members, one for the morning and part of 

the afternoon shift, and one for the evening and the second part of the afternoon shift. 

Appendix A shows a proposed check sheet for terminal units, and the same was applied 

for other CWS components, taking into consideration the differences in the time intervals 

and the unit of the operational parameters between the components. After collecting the 

data, a file for each particular component should be created in Excel, and then the infor-

mation from the related check sheet should be logged. Thus, each file should contain two 

columns, one for the readings and the another for the inspection results [20], and then it 

should be saved in the CU in csv format. Therefore, these files present the required da-

tasets, and at to this point, the setup is completed, and accordingly the ML part can be 

started, as explained in the next subsection. 
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2.2. Machine Learning Part 

In this part, two DT algorithms are recommended for use, which are the C4.5, a suc-

cessor of the iterative dichotomiser 3 (ID3), and the classification and regression tree 

(CART) algorithm, as they are efficient for splitting the trees [33]. The basic principle of 

the splitting mechanism is to select a root node from the ‘N’ features and subsequently 

decide which attribute should be used next as the intermediate node. Different statistical 

criteria should be used to make these decisions, such as the Gain Ratio and the Gini Index. 

According to Grąbczewski [34], the Gain Ratio criterion is mainly used in the C4.5 algo-

rithm, while the Gini Index is used in the CART algorithm. The Gain Ratio is calculated 

as in Equation (1): 

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜(𝐴) =
𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜
=

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑎𝑟𝑒𝑛𝑡)−∑ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑗,𝑐ℎ𝑖𝑙𝑑)𝑘
𝑗=1

∑
𝐷𝑗

𝐷
𝑘
𝑗=1 𝑙𝑜𝑔2

𝐷𝑗

𝐷

  (1) 

In information theory, entropy measures the uncertainty in data. The entropy(parent) 

measures the amount of randomness (impurity) in the parent node before it splits. D is 

the number of instances in the parent node and Dj is the number of instances in the child 

j, and k is the number of discrete values of an attribute A, which is tested at the parent 

node for splitting. The entropy at each child node is found using Equation (2): 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 𝑙𝑜𝑔2
𝑛
𝑖=1  𝑝𝑖  (2) 

where 𝑝𝑖 is the probability of selecting an instance in class i, and n is the number of classes. 

The attribute that is selected for splitting the parent node is the one with the highest Gain 

Ratio. Similarly, the Gini Index for the CART algorithm can be found by Equation (3): 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥(𝐴) = ∑
𝐷𝑗

𝐷
𝐺𝑖𝑛(𝑗, 𝑐ℎ𝑖𝑙𝑑)𝑘

𝑗=1   (3) 

Similarly to the Entropy, the Gini Index measures the impurity at the parent node. 

The Gini of a child node is found using Equation (4): 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑖
2𝑛

𝑖=1   (4) 

The attribute that is selected for splitting at the parent node is the one with the small-

est Gini Index. In this research, this attribute is the operational parameter of each CWS 

component. Many programming languages/software can read collected data and train the 

prediction model, such as Python [35]. The software should be installed in the CU and the 

required codes should be written in a way that allows reading the files (datasets) for each 

CWS component, which were mentioned in the data collection stage of the setup part, and 

then to train and test the model. The next section of this article (Implementation and Dis-

cussion) gives a case study on how a prediction model is trained and tested. 

2.3. Quality Control Part 

This is the last part of the proposed framework, and its goal is to ensure the predic-

tion model is working correctly, as well as to rectify the faults immediately. To do this, 

this research suggests making a control plan, which should contain monitoring and re-

sponse actions [36]. Table 4 clarifies the descriptions of these two actions, as well as who 

is responsible for executing each action. 
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Table 4. Control Plan. 

Quality Control Action  Description Responsible 

Monitoring 

The prediction model should be connected to the 

reading tools, which were connected to the CU during 

the setup part. This is to ensure that the CU shows a 

continuous reading for each CWS component. 

Information Technology (IT) Depart-

ment or Programming Supplier 

Response 

When the prediction model shows a fault, which is a 

“1” as a result of a particular reading, the related com-

ponent should be inspected and then to be rectified as 

per the solutions tabulated in the IS article [20].  

Facility Department Officer/techni-

cian 

After that, the response actions should be documented as follows: 

• Listing the lessons learned from the proposed PdM program, such as focusing on the 

faults that occurred, and then brainstorming permanent solutions to avoid the reoc-

currence of such faults;  

• Tracking the spare part stock; 

• Ensuring that the CU is working efficiently; 

• Training more technicians to be familiar with the prediction model; 

• Making regular reports about the performance of the proposed PdM program for 

future improvements. 

3. Implementation and Results 

This section presents a case study on the proposed framework. The case study was 

performed at a university in Riyadh city, Kingdom of Saudi Arabia. Implementation of 

the framework was carried out as per the three parts proposed in the previous section 

(Methodological Framework). 

3.1. Implementaion of Setup Part 

3.1.1. CWS Drawing 

The main goal of the proposed framework is to make a PdM 4.0 program that con-

siders the whole CWS (i.e., all CWS components). Therefore, to start implementing the 

framework, the CWS as-built drawing was collected and then, following Figure 3, the 

numbers of each CWS component were determined, as shown in Table 5, as well as their 

locations around the site. 

Table 5. Number of CWS Components. 

CWS Component  Quantity 

Chiller 5 

Cooling Tower 7 

Pump 19 

Terminal Unit 72 

3.1.2. Reading Tools 

At this stage, the standard shown in Table 3 was followed, and it was ensured that 

the reading tools for the operational parameters of each CWS component were in the best 

location. Figures 4–7 show the reading tool location for each CWS component. As stated 

in the previous section, these tools read the temperature for water leaving each chiller and 

cooling tower, the pressure for pumps, and the space temperature for terminal units. 
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Figure 4. Chiller Reading Tool. 

 

Figure 5. Cooling Tower Reading Tool. 

 

Figure 6. Pump Reading Tool. 
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Figure 7. Terminal Unit Reading Tool. 

Through the IT department of the university, these reading tools were connected via 

sensors to a CU, to be ready for the quality control part. 

3.1.3. Data Collection 

The most important stage in setting up the PdM 4.0 program was the datasets re-

quired to build the prediction model. As the previous two stages had been finalized, data 

collection was started as per the recommendations of the IS study [20]. This research used 

the recommended minimum frequencies as time intervals when collecting the data, and 

the recommended maximum frequencies were used as study periods for each CWS com-

ponent.  

Twelve qualified technicians from the university were assigned for the subject mat-

ter. Two operational units for each CWS component were selected as subjects. The read-

ings for the water temperatures of each chiller and cooling tower were collected using 

check sheets. The same was performed for the pressures for each pump and the space 

temperatures for each terminal unit. In addition, the inspection result, which was either a 

fault “1” or fault free “0”, was included for each check sheet. Appendix B illustrates a fully 

filled one day check sheet for a particular pump, and Table 6 shows the data collection 

plan. 

Table 6. Data Collection Plan. 

CWS Component 
Time Interval for Reading and 

Inspection (Minutes) 
Study Time (Weeks) Study Period 

Chiller 30 12 From 29 May 2022 to 20 August 2022 

Cooling Tower 30 16 From 29 May 2022 to 17 September 2022 

Pump 60 24 From 29 May 2022 to 12 November 2022 

Terminal Unit 45 8 From 29 May 2022 to 23 July 2022 

After that, an Excel file was created for each component, and the information in all 

related check sheets was transferred to the associated Excel file. Following the procedure 

proposed in the methodological framework section, each Excel file represented a dataset 

that contained two cells, one for the readings and another for the inspection results, as 

shown in Appendix C for a one of the cooling towers. After that, each file was named and 

saved in csv format. For example, for a particular pump, the file was named and saved as 
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“pu.csv’’; so it could be read when training the prediction model, as shown in the next 

section. 

3.2. Implementation of the Machine Learning Part 

A DT was built for each CWS component selected. As stated in the methodological 

framework section, the faults of each component were predicted using the related attrib-

utes. Table 7 shows the attribute and the training data size for each unit of the selected 

CWS components that were in operation. 

Table 7. Main Inputs of The Prediction Model. 

CWS Component Attribute Data Size 

Chiller Water Leaving Temperature (°C)  2688 

Cooling Tower Water Leaving Temperature (°C) 3584 

Pump Pressure (Bar) 2688 

Terminal Unit Space Temperature (°C) 1288 

The C4.5 and CART algorithms were used to train the tree. Different training param-

eters were used to optimize the tree accuracy. The parameters included the training to 

testing ratio and the level of pruning. The model was executed in Python, with the script 

shown in Figure 8 being for a particular pump. The same was done with other CWS com-

ponents, taking into consideration the changes in file reading/loading. 

 

Figure 8. DT Python Code. 
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The initial run of the training stage was performed without pruning, which led to 

prediction overfitting, as can be seen for the chiller tree in Figure 9. The same was done 

for the other CWS components. 

 

Figure 9. Chiller DT without Pruning. 

Examining the different pruning methods, the optimally trained trees for each CWS 

component were found, as shown in Figures 10–13. 

 

Figure 10. Chiller DT. 
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Figure 11. Cooling Tower DT. 

 

Figure 12. Pump DT. 

 

Figure 13. Terminal Unit DT. 

Changing the training to testing ratio and the training algorithms had a very small 

impact on the prediction accuracy. A 70 to 30 percent training to testing ratio was adopted 

using the CART training algorithm. The prediction accuracies of each component at the 

optimal DT setting are presented in Table 8. 
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Table 8. CWS Component Prediction Accuracies. 

CWS Component  Prediction Accuracy (%) 

Chiller 98.50 

Cooling Tower 99.60 

Pump 99.80 

Terminal Unit 99.20 

3.3. Implementation of the Quality Control Part 

After successfully building the prediction model, the control plan mentioned in Table 

4 was actioned. In the monitoring of the control plan, the prediction model was connected 

to the CU, in order to begin the second stage of the plan (Response). After that, the read-

ings of all CWS components at the university, which are shown in Table 5, were observed 

daily, as per the minimum frequencies mentioned in Table 6, for a month time, excluding 

weekends. For example, for a particular terminal unit, the reading of space temperature 

was observed every 45 min. During this period, the DT model predicted 16 different faults 

in the chillers, 11 different faults in the cooling towers, 12 different faults in the pumps, 

and 19 different faults in the terminal units, noting that the occurrence of some faults was 

repeated. Table 9 lists how many faults in total were predicted by the DT model within 

the said period, as well as the fault that occurred most for each CWS component. All fault 

signals from the CU, which were displayed as “1”, led to real faults around the site. There-

after, all the faults within this period were solved immediately after their appearance, by 

following the solutions mentioned in [20]. 

Table 9. Number of CWS Faults. 

CWS Component  Number of Faults Most Occurred Fault 

Chiller 101 Refrigeration Leak 

Cooling Tower 113 Malfunctioning Blowdown System 

Pump 79 Noisy Non-Return Valve 

Terminal Unit 138 Low Static Pressure 

Furthermore, the facility department at the university was advised to keep observing 

the readings as was convenient and to inspect the site in case of a fault “1”. In addition, 

they were advised to document the response action of the control plan, as per the steps 

proposed in the previous section (Methodological Framework). On a related note, the ex-

isting monitoring system implemented by the department was a BMS, and they were 

asked to give a report for the same period that was used for observing the whole CWS via 

the DT model. The report contained the total number of faults that were predicted by the 

BMS for each CWS component. Figure 14 shows a comparison between the DT model and 

the BMS in predicting the faults within the same period. 



Buildings 2023, 13, 497 15 of 20 
 

 

Figure 14. Comparison of Prediction Performance. 

4. Discussion 

The case study applied a methodological framework proposing three parts to build 

an efficient PdM 4.0 program. During the setup part, the first stage gave an overview of 

the building CWS, by determining the number of units of each component, as well as 

identifying their locations on site. This action was easily carried out using the schematic 

shown in Figure 3. The second stage was to give a clear picture about the best location for 

the reading tools for each CWS component. The third stage was to produce a clear map 

on how to collect the data, as the main objective of the setup part was to create a dataset 

for each CWS component. These datasets were essential to allow beginning the second 

part of the proposed framework. To recall what was mentioned in the previous sections, 

each row of a dataset contained a reading of the operational parameter in one column and 

its associated inspection result in another column. 

In the second part, the datasets were used in building the ML model. The results were 

encouraging, as the DT model showed a very high prediction accuracy for each CWS com-

ponent, as shown in Table 8. This confirmed that the fault frequencies proposed in [20], 

which were used while collecting the data of this research, are valid for tracking faults. In 

the third part of the proposed framework, the aforementioned control plan in Table 4 fa-

cilitated the execution of the prediction model. The empirical period of this part provided 

the following findings: 

• The C4.5 and CART algorithms had a similar prediction accuracy for each CWS com-

ponent. 

• The DT model had a better performance than the BMS in predicting the faults for all 

CWS components, as shown in Figure 14. This fulfilled the requirements of the facil-

ity department, who manage the CWS at the university. 

• The most frequent fault in chillers was refrigeration leaks. This was also confirmed 

by the SLR study [19], as well as the IS study [20], which reported this fault as the 

most common in chillers; 

• A malfunctioning blowdown system was the most common fault in the cooling tow-

ers. This finding matches what was found in the IS study [20]. The IS study stated 

that the majority of the survey’s participants suffered from this fault; 

• With regard to the pumps, a noisy non-return valve occurred most often. This also 

matches the information provided by the IS study [20], where the majority of the 

survey’s participants faced this fault continuously; 
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• Low static pressure in the terminal units occurred more than twice a day. The IS 

study [20] had already confirmed that the most of the survey’s participants were find-

ing this fault on a regular basis while operating the associated terminal unit; 

• The solutions provided in the IS study [20] gave practical actions to rectifying the 

predicted faults. In this regard, one of the research gaps listed by the SLR study was 

that the previous 168 studies considered did not cover the whole CWS (i.e., all for 

components) and ended their PdM programs once detecting the faults [19]. However, 

the SLR study recommended having control measures, including fault solution, after 

completing the prediction model, which will allow a comprehensive PdM program, 

such as the proposed framework. 

As stated in the first section of this article (Introduction), this research is a response 

to the mentioned SLR study [19] as well as the IS study [20]. Considering the gaps in Table 

1, this study covered the first gap and prepared tools to rectify the second and the third 

gaps [20]. The first tool in the IS study was the frequencies, which were used in collecting 

the data and in controlling the whole CWS. The second tool was the solutions to faults, 

which were used in the quality control part. Therefore, this research has contributed to 

building a framework that will provide a comprehensive PdM 4.0 program for the whole 

CWS in commercial buildings. On a related note, this framework was implemented at 

another site for external validity purposes. The site is a hotel that is related to the same 

foundation that manages the university. The DT’s prediction accuracy for each CWS com-

ponent was similar to those at the university. Although this framework has obtained en-

couraging results, it has some challenges from a research point of view, as follows: 

• The availability of the data source; 

• The experience of the team who collect the data; 

• The organizational culture at the building, which may not be cooperative; 

• The associated costs, such as arranging the reading tools, the CU, and the labor. 

5. Conclusions 

This research proposed a methodological framework for a PdM 4.0 program for com-

mercial buildings. A framework was made for one of the most important utility systems 

of the commercial buildings, the CWS, which has four components. These are the chillers, 

cooling towers, pumps, and terminal units. The framework contains three parts, which 

are the setup, ML, and quality control. Each part of this framework has multiple manage-

rial stages or steps to build the maintenance program.  

The setup part of this framework contained three stages. The first stage allowed effi-

ciently understanding the building through analyzing its as-built drawing. By doing so, 

it was possible to determine the unit numbers of each CWS component in the building, as 

well as to know their locations on site. A schematic was made in this regard, to make a 

simplified view of such drawings. The second stage of the setup part focused on the read-

ing tools for the CWS operational parameters. How to make the reading tools available 

and the best location for each tool was discussed. The readings of the operational param-

eters were essential for creating the datasets that are were used in the second part of the 

framework, ML. The operational parameters chosen in this research were the water tem-

peratures for chillers and cooling towers, the pressures for pumps, and the space temper-

atures for terminal units. The third and last stage of this part addressed the data collection. 

It presented the data required and proposed a complete plan for collecting them. There-

fore, the main goal of the setup part was to provide the datasets that were required to 

build a prediction model, which was explained in the second part of this framework, ML. 

As this research was intended to implement a PdM 4.0 program, the second part of the 

framework utilized ML. The DT technique was chosen to build a model for predicting the 

CWS faults, as recommended by the SLR study. Two DT algorithms, C4.5 and CART, were 

proposed to build, train, and test the model. The last part of the framework, which was 

quality control, proposed a control plan to evaluate the prediction model. The control plan 
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required two actions, which were monitoring and response. Both actions proposed exe-

cuting the DT model while operating the CWS, and then to control the system via many 

aspects, such as solving the faults predicted and documenting the outcomes of the predic-

tive model from an engineering management point of view. 

This research implemented the proposed framework in a university in Riyadh city, 

Kingdom of Saudi Arabia. The DT model produced encouraging results, where the pre-

diction accuracy was 98.50 percent for chillers, 99.60 percent for cooling towers, 99.80 per-

cent for pumps, and 99.20 percent for terminal units. Furthermore, the DT model was 

evaluated over an empirical period. The model gave outstanding performance in predict-

ing the faults of all CWS components, especially when it was compared to the BMS, which 

was the existing control system at the university. During the said period, the DT made a 

27 percent improvement in predicting the faults for chillers, 22 percent for cooling towers, 

23 percent for pumps, and 31 percent for terminal units. On a separate note, refrigeration 

leaks, malfunctioning blowdown systems, noisy non-return valves, and low static pres-

sure faults occurred often during this period in chillers, cooling towers, pumps, and ter-

minal units, respectively. This confirmed the information provided by the IS study with 

regard to the most common faults. 

Though this research, along with the SLR and IS studies, provided significant out-

comes towards implementing PdM 4.0 for CWS in commercial buildings, future research 

agendas could explore further insights about this topic, as follows: 

• To discuss how to integrate the ML models with the building automation and man-

agement systems such as BMS, for a more efficient prediction model; 

• To propose an intelligent system for updating the datasets, which are required to build 

the prediction model, in order to rise the control efficiency of commercial buildings; 

• To investigate and give more focus to the repeated occurrence of faults, especially 

the aforementioned four faults, which are refrigeration leaks in chillers, malfunction-

ing blowdown systems in cooling towers, noisy non-return valves in pumps, and low 

static pressure in terminal units; 

• To use the ideas of this research, which built the framework, and extend them to 

other HVAC systems such as heating systems, as well as for other utility systems, 

such as the electrical system. 
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