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Abstract. Convection-diffusion-reaction equations model the conservation of scalar quantities.5
From the analytic point of view, solution of these equations satisfy under certain conditions maximum6
principles, which represent physical bounds of the solution. That the same bounds are respected by7
numerical approximations of the solution is often of utmost importance in practice. The mathematical8
formulation of this property, which contributes to the physical consistency of a method, is called9
Discrete Maximum Principle (DMP). In many applications, convection dominates diffusion by several10
orders of magnitude. It is well known that standard discretizations typically do not satisfy the DMP11
in this convection-dominated regime. In fact, in this case, it turns out to be a challenging problem to12
construct discretizations that, on the one hand, respect the DMP and, on the other hand, compute13
accurate solutions. This paper presents a survey on finite element methods, with a main focus14
on the convection-dominated regime, that satisfy a local or a global DMP. The concepts of the15
underlying numerical analysis are discussed. The survey reveals that for the steady-state problem16
there are only a few discretizations, all of them nonlinear, that at the same time satisfy the DMP17
and compute reasonably accurate solutions, e.g., algebraically stabilized schemes. Moreover, most18
of these discretizations have been developed in recent years, showing the enormous progress that19
has been achieved lately. Methods based on algebraic stabilization, nonlinear and linear ones, are20
currently as well the only finite element methods that combine the satisfaction of the global DMP21
and accurate numerical results for the evolutionary equations in the convection-dominated situation.22
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1. Introduction. Partial differential equations (PDEs) or systems of them are28

widely used for modeling processes from nature and industry. Usually, an analytic so-29

lution cannot be obtained. In practice, numerical methods are utilized for computing30

approximations of the solution. Such numerical methods consist of several compo-31

nents, like discretizations with respect to different variables, approaches for solving32

nonlinear problems, and solvers for systems of linear algebraic equations. The actual33

choice of these components might be dictated by different goals, like efficiency, or34

accuracy with respect to quantities of interest. A particular aspect of the second goal35

is the so-called physical consistency of a method, i.e., certain fundamental physical36

properties of the solution of the PDE should be inherited by the numerical solution.37

For many practitioners, the physical consistency is an essential criterion for utilizing38

a numerical method.39

Classes of PDEs that can be found in many models from applications are elliptic40

linear second order equations41

(1.1) − ε∆u+ b · ∇u+ σu = f in Ω,42

and their parabolic counterparts43

(1.2) ∂tu− ε∆u+ b · ∇u+ σu = f in (0, T ]× Ω.44
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In these equations Ω ⊂ Rd, d ≥ 1, is a spatial domain, (0, T ] a time interval, and u45

is some scalar quantity like the temperature or a concentration. This scalar quantity46

is transported by molecular diffusion with the diffusion coefficient ε [m
2
/s] and by47

convective transport with the velocity field b [m/s]. The zeroth order term in (1.1)48

and (1.2) is called reactive term with the reaction coefficient σ [1/s] and the term on49

the right-hand side describes sinks and sources of the scalar quantity. Both equations50

(1.1) and (1.2) have to be equipped with suitable boundary conditions at the boundary51

∂Ω of Ω and (1.2) also with an initial condition at t = 0 in order to define well-posed52

problems. Then, the analysis of (1.1) and (1.2) is very well understood. In particular,53

it can be shown that under appropriate assumptions on the data of the problems,54

so-called Maximum Principles (MP) are satisfied. That means, loosely speaking, that55

the solution at some point or in some subdomain can be bounded a priori, e.g., for a56

global MP by the values on ∂Ω and, for the evolutionary problem, also on {0} × Ω.57

In case that the assumptions for the satisfaction of the MP are satisfied, it represents58

a fundamental physical property of solutions of (1.1) and (1.2).59

A physically consistent discretization of (1.1) and (1.2) should satisfy discrete60

counterparts of the MP, the so-called Discrete Maximum Principle (DMP). Discretiza-61

tions that do not fulfill the DMP are prone to numerical solutions with unphysical62

values, so-called spurious oscillations. Usually, equations of type (1.1) and (1.2) are63

part of coupled problems and their numerical solution serves as input data for other64

equations. With spurious oscillations in this input, there is a high probability that65

also the numerical solutions of the remaining equations possess unphysical values and66

finally the numerical simulation of the coupled problem might blow up, as it is our own67

experience reported in [73]. Consequently, the satisfaction of the DMP is essential for68

discretizations of (1.1) and (1.2) to be useful for simulations in applications. If this69

property is satisfied, then efficiency or the satisfaction of other physical properties,70

like conservation properties, or the accuracy with respect to quantities of interest, like71

norms in Sobolev spaces, are further criteria for selecting a method.72

The first proof of a maximum principle for a discretization of a PDE was pre-73

sented by Gershgorin [48] already in 1930. A generalization of this result is given74

in the monograph by Collatz [34] from 1955, whose English translation is [35]. The75

consideration of discrete analogs of maximum principles can be found in papers by76

Bramble and Hubbard [19, 20] published in the early 1960s. In 1970, Ciarlet presented77

in [31] necessary and sufficient conditions for a discretization to satisfy a DMP. In all78

these works, finite difference methods are considered. However, all arguments from79

linear algebra that were utilized in these papers can be applied analogously to linear80

systems of equations arising from other discretizations. The first work that studies81

the DMP explicitly for finite element methods was published in 1973 by Ciarlet and82

Raviart [32]. Since then, numerous papers appeared studying the DMP for different83

discretizations of elliptic and parabolic boundary value problems.84

Convection-diffusion-reaction equations (1.1) and (1.2) possess a feature that85

makes the computation of a numerical solution challenging. In most applications,86

the convective transport by the velocity field strongly dominates the diffusive trans-87

port. Hence, the first order term in (1.1) and (1.2) is dominant. Under appropriate88

conditions on the smoothness of the data, it can be shown that (weak) solutions of89

(1.1) and (1.2) do not possess jumps, but they exhibit so-called layers. Layers are90

very thin regions where the norm of the gradient of the solution is very large. In91

the convection-dominated regime, the width of layer regions is much smaller than92

the affordable mesh width, apart from special cases when anisotropic layer-adapted93

meshes can be constructed. Hence, in general, layers cannot be resolved. Standard94
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discretizations, like the Galerkin finite element method or central finite differences,95

cannot cope with this situation. In general, numerical solutions computed with such96

discretizations are globally polluted with spurious oscillations. A well-known remedy97

consists in using so-called stabilized discretizations.98

Finite element methods are a popular approach for discretizing spatial derivatives.99

Major reasons include, but are not limited to, that unstructured meshes can be used100

easily, such that domains with complicated boundaries can be coped with, and that for101

many problems they allow an error analysis. In a nutshell, finite element methods start102

with a weak formulation of the PDE, replace the infinite-dimensional function spaces103

with finite-dimensional ones, usually consisting of piecewise polynomial functions,104

and they might approximate, modify or extend the forms (functionals, bilinear forms105

etc.) of the weak formulation. This procedure does not pay attention to physical106

consistency. The situation is different for other approaches, like finite volume methods,107

where a goal of the discretization process is to transfer conservation properties from108

the continuous to the discrete equation. However, in view of the attractive features109

of finite element methods, there has been a great interest in studying to which extent110

they lead to physically consistent discretizations and, in case of unsatisfactory findings,111

in developing modifications that possess the desired physical consistency.112

The goal of the present paper consists in providing a survey on finite element113

methods that satisfy local or global DMPs for linear elliptic or parabolic problems.114

To keep the presentation focussed on the DMPs, other properties of the respective115

methods, like results from the finite element convergence theory, will be discussed only116

in the form of brief comments. On the one hand, many proofs concerning the DMPs117

use just basic tools from linear algebra and they will be presented such that main ideas118

of the numerical analysis become clear. But on the other hand, since this survey is119

intended also for an audience without special knowledge in the mathematical analysis120

of the finite element method, it is referred to the literature for some other proofs,121

in particular for those which require many technical steps. Although the considered122

problems (1.1) and (1.2) are linear, both linear as well as nonlinear finite element123

methods for their discretization have been proposed. A nonlinear method contains124

stabilization terms whose parameters depend on the numerical solution. That such125

methods can be suitable becomes clear from the above described form of the solution:126

there are layers and gently varying parts in the solution and an adequate discretization127

should treat both parts differently.128

After formulating the steady-state problem and general notations in Section 2, the129

following Section 3 will introduce general results concerning the DMP for both linear130

and nonlinear discretizations. Then, several sections follow that consider discretiza-131

tions of the steady-state problem. First, problems without convection, in particular132

the Poisson problem, will be discussed in Section 4. Then, linear discretizations133

and finally nonlinear discretizations of convection-diffusion-reaction problems will be134

reviewed in Sections 5 and 6, respectively. The theoretical considerations are illus-135

trated by numerical results in Section 7. In all these sections, only discretizations136

with conforming piecewise linear (P1) finite elements are considered, since most of137

the literature is for this case. Methods for parabolic problems, and P1 finite elements138

in space, will be reviewed in Section 8. The survey reveals that many finite element139

methods that satisfy the DMP for P1 finite elements transferred ideas from finite vol-140

ume methods, like upwind techniques or the consideration of fluxes. Finite elements141

different than P1 are the topic of Section 9. The available results for the satisfaction of142

the DMP for other H1(Ω)-conforming finite elements, often even only for the Poisson143

problem, pose usually very restrictive requirements on the shape of the mesh cells, or144
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they are even negative. Thus, it turns out that the restriction to the P1 finite element145

in the literature (and the previous sections) has mathematical reasons. In addition,146

non-conforming finite elements are discussed. Then, Section 10 provides brief com-147

ments on methods that satisfy the DMP for hyperbolic conservation laws. Finally, a148

summary and an outlook are presented in Section 11.149

2. The steady-state model problem, general notations. Let Ω ⊂ Rd, d ∈150

{2, 3}, be a bounded domain with polygonal resp. polyhedral and Lipschitz continuous151

boundary ∂Ω. For a domain D ⊂ Ω we denote by Wm,p(D) the space of functions152

in Lp(D) with weak derivatives up to order m belonging to Lp(D), with the usual153

convention W 0,p(D) = Lp(D). The notation Wm,p
0 (D) denotes the closure of C∞

0 (D)154

in Wm,p(D). If p = 2 and m > 0, the usual notations Hm(D) and Hm
0 (D) are used155

instead of Wm,p(D) and Wm,p
0 (D), respectively. The norm (seminorm) in Wm,p(D)156

is denoted by ∥ · ∥m,p,D (| · |m,p,D), and whenever p = 2, the index p will be dropped157

from the notation, this is, ∥·∥m,D = ∥·∥m,2,D. The inner product in L2(D) or L2(D)d158

is denoted by (·, ·)D, and the subindex will be dropped if D = Ω. The Euclidean norm159

of a vector is denoted by | · |. Finally, for a number a ∈ R, we define its positive and160

negative parts as follows:161

a+ := max{a, 0} ≥ 0 and a− := min{a, 0} ≤ 0 ,162

and the same notation is used to define the positive and negative parts of a real-valued163

function.164

2.1. The steady-state model problem. Defining a characteristic length scale165

and a characteristic scale of the sought quantity, the steady-state equation (1.1) can166

be transformed to a dimensionless problem, where we use for simplicity the same167

notations: Find u : Ω → R such that168

(2.1)
−ε∆u+ b · ∇u+ σu = f in Ω ,

u = g on ∂Ω .
169

For simplifying the following presentation, we will suppose that ε > 0 and σ ≥ 0 are170

constants and that b is solenoidal.171

Let b ∈ W 1,∞(Ω)d, f ∈ L2(Ω), and g ∈ H1/2(∂Ω), then the weak formulation of172

(2.1) reads as follows: Find u ∈ H1(Ω) such that u|∂Ω = g and173

(2.2) a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω) ,174

where a(·, ·) is the bilinear form given by175

(2.3) a(u, v) = ε (∇u,∇v) + (b · ∇u+ σu, v) .176

Under the stated assumptions on the smoothness of the data, the existence and177

uniqueness of a solution of (2.2) can be concluded from the Lax–Milgram theorem.178

The weak maximum principle for a sufficiently regular solution reads as follows, e.g.,179

see [49, Chapter 3.1] or [42, Chapter 6.4.1].180

Theorem 2.1 (Weak maximum principle). Let u ∈ C2(Ω) ∩ C(Ω). Then181

−ε∆u+ b · ∇u+ σu ≤ 0 in Ω =⇒ max
x∈Ω

u(x) ≤ max
x∈∂Ω

u+(x),

−ε∆u+ b · ∇u+ σu ≥ 0 in Ω =⇒ min
x∈Ω

u(x) ≥ min
x∈∂Ω

u−(x).
182
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If σ = 0, then183

−ε∆u+ b · ∇u ≤ 0 in Ω =⇒ max
x∈Ω

u(x) = max
x∈∂Ω

u(x),

−ε∆u+ b · ∇u ≥ 0 in Ω =⇒ min
x∈Ω

u(x) = min
x∈∂Ω

u(x).
184

2.2. Triangulations and finite element spaces. We denote by {Th}h>0 a185

family of conforming and regular simplicial triangulations of Ω consisting of mesh186

cells K. Note that each mesh cell is the image of a fixed reference cell K̂ via an187

affine map. We use the notion of facet to denote an edge in 2d or a face in 3d. Let188

hG = diam(G) be the diameter of a set G and h = max{hK : K ∈ Th}. For a mesh189

Th, the following notations are used:190

− internal vertices: {x1, . . . ,xM}, vertices on the boundary: {xM+1, . . . ,xN},191

− set of internal facets: FI , set of boundary facets: F∂ , set of all facets: Fh =192

FI ∪ F∂ ,193

− set of internal edges: EI , set of boundary edges: E∂ , set of all edges: Eh = EI∪E∂ ,194

− for K ∈ Th, F ∈ Fh, and a vertex xi, we define the sets195

FK = {F ∈ Fh : F ⊂ K} , Fi = {F ∈ Fh : xi ∈ F} ,
EK = {E ∈ Eh : E ⊂ K} , EF = {E ∈ Eh : E ⊂ F} ,196

− for K ∈ Th, F ∈ Fh, E ∈ Eh, and a vertex xi, we define the following subsets197

of Ω198

ωK = ∪{K ′ ∈ Th : K ∩K ′ ̸= ∅} , ωF = ∪{K ∈ Th : F ⊂ K} ,
ω̃F = ∪{K ∈ Th : K ∩ F ̸= ∅} , ωE = ∪{K ∈ Th : E ⊂ K} ,
ωi = ∪{K ∈ Th : xi ∈ K} ,

199

− for a vertex xi, we define the set of indices corresponding to neighbor vertices200

by201

(2.4) Si = {j ∈ {1, . . . , N} \ {i} : xi and xj are endpoints of E ∈ Eh} ,202

− for a facet F ∈ FI , we denote the jump of a function across F by J·KF . The203

orientation of the jump is irrelevant, but fixed.204

Note that from the regularity of the triangulations a minimal angle condition follows,205

e.g., see [21, Section 4.3]. In particular, the number of mesh cells in ωK , ωE , and ωi206

is bounded uniformly for all K, E, i, and h. In addition, the mesh regularity implies207

that there exists a positive constant ρ such that208

(2.5) hK ≤ ρ hF ∀ K ⊂ ω̃F .209

Let xi,xj be two vertices that are connected by an edge Eij ∈ Eh (or, simply E210

when there is no possible confusion) and K ⊂ ωEij
, then, compare Figure 1 for the211

two-dimensional situation,212

− FK
i and FK

j are the facets of K opposite xi and xj , respectively, with outer unit213

normals nK
i and nK

j , respectively,214

− θKE is the angle formed by FK
i and FK

j , or, more precisely, θKE is the dihedral215

angle given by (cf. [22]))216

(2.6) cos θKE = −nK
i · nK

j ,217

− κKE = FK
i ∩ FK

j ; when d = 2, we will adopt the convention |κKE | = 1,218
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K

xj

nK
i

tE

FK
inK

j θKE

xi

FK
j

Eij = E

Fig. 1. Notations for a triangle.

− tE = (xj−xi)/|xj−xi|, where the orientation of this tangent vector is irrelevant,219

but fixed,220

− δEv := v(xj)− v(xi) for any function v ∈ C0(Ω) if the tangent vector tE points221

from xi to xj , and δEv := v(xi)− v(xj) in the other situation.222

Whether or not a discretization satisfies a DMP might depend on properties of223

the underlying mesh or family of meshes. Some relevant properties in two and three224

dimensions are defined next.225

Definition 2.2 (Properties of meshes). A mesh Th will be said to be connected if,226

for any two vertices xi,xj, there exists a path j0, . . . , js such that Eij0
, Ej0j1

, . . . , Ejsj
227

are all edges in Eh. In addition, the mesh Th will be said to be:228

− weakly acute: if every internal dihedral angle θ of the mesh satisfies θ ≤ π
2 ,229

− of Xu–Zikatanov (XZ) type (cf. [135]): if, for every E ∈ EI , the following holds230

(2.7)
∑

K⊂ωE

|κKE | cot θKE ≥ 0 ,231

− of Delaunay type: if the interior of the circumscribed sphere of any simplex from232

the mesh Th does not contain any vertex of Th.233

For d = 2, the definition of a Delaunay mesh can be equivalently stated as follows:234

for every E = K ∩K ′ ∈ EI there holds235

θKE + θK
′

E ≤ π .236

In two dimensions, the XZ-criterion and the Delaunay property are equivalent.237

Definition 2.3 (Strictly acute and average acute families of meshes). A mesh238

family {Th}h>0 will be said to be strictly acute if there is a constant δ > 0 independent239

of h such that every internal dihedral angle θ of any of the meshes satisfies240

(2.8) θ ≤ π

2
− δ .241

In two dimensions, a family {Th}h>0 will be said to be average acute if, for every242

h > 0 and every edge E = K ∩K ′ ∈ EI , the following holds:243

(2.9) θKE + θK
′

E ≤ π − δ ,244

where δ > 0 is independent of h.245

As already mentioned, most discretizations discussed in this survey are based on246

continuous piecewise linear finite elements. The corresponding finite element spa-247

ces and interpolation operators for this case will be defined next. Associated with248
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the vertices {x1, . . . ,xN}, the standard continuous piecewise linear basis functions249

ϕ1, . . . , ϕN are given by the property ϕi(xj) = δij for i, j ∈ {1, . . . , N}. Then, the250

corresponding conforming finite element spaces are251

(2.10) Vh := span{ϕ1, . . . , ϕN} and Vh,0 := span{ϕ1, . . . , ϕM} .252

Associated with Vh, the Lagrange interpolation operator is defined by253

ih : C0(Ω) → Vh , v 7→ ihv =
N∑
i=1

v(xi)ϕi .254

We will also use the symbol ih to interpolate functions with domain in the boundary255

of Ω, this is, ihg =
∑N

i=M+1 g(xi)ϕi.256

2.3. Finite element matrices. In this section, the main finite element matrices257

are introduced. The diffusion matrix Ad, the convection matrix Ac, and the reaction258

matrix Mc, which is also called consistent mass matrix, are defined by259

Ad =(ℓij)
N
i,j=1 where ℓij = (∇ϕj ,∇ϕi) for i, j = 1, . . . , N ,(2.11)260

Ac =(cij)
N
i,j=1 where cij = (b · ∇ϕj , ϕi) for i, j = 1, . . . , N ,(2.12)261

Mc =(mij)
N
i,j=1 where mij = (ϕj , ϕi) for i, j = 1, . . . , N .(2.13)262263

The entries of the matrices can be written as a sum of local entries, e.g.,264

ℓij =
∑

K⊂ωi∩ωj

ℓKij with ℓKij = (∇ϕj ,∇ϕi)K ,265

and analogously for cij and mij .266

In the derivations made in the coming sections, having exact formulae for the267

diffusion and consistent mass matrices will be of much use. A basic tool in the268

derivations below is a formula relating the gradient of the barycentric coordinates269

and the normal outward vector to K. Since the basis function ϕi|K vanishes on FK
i ,270

its derivative in any direction tangent to FK
i vanishes. So, ∇ϕi|K is proportional to271

the unit normal nK
i . Consider the height vector hi from FK

i to xi. This vector is272

parallel to nK
i , pointing in the opposite direction, and the derivative of ϕi|K in the273

direction of hi is the constant 1/|hi|. Hence, using the formula for the volume of the274

simplex K leads to275

(2.14) ∇ϕi|K = − 1

|hi|
nK

i = −|FK
i |

d|K|
nK

i .276

So, in view of (2.6), the local diffusion matrix is given by277

(2.15) ℓKij = (∇ϕj ,∇ϕi)K = |K|
|FK

j | |FK
i |

d2|K|2
nK

j · nK
i = −

|FK
j | |FK

i |
d2|K|

cos θKE .278

Concerning the mass matrix and using the formula for the integral of a product of279

barycentric coordinates, see, e.g., [131] where this is proven in any space dimension,280

one gets281

(2.16) mK
ij =


2|K|

(d+ 1)(d+ 2)
i = j,

|K|
(d+ 1)(d+ 2)

else .

282
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Both in the steady-state and time-dependent situations, mass lumping is a widely283

used technique to discretize terms without spatial derivatives. The derivation of mass284

lumping starts with the construction of a dual mesh, which is a technique from finite285

volume methods. For each node xi, all mesh cellsK ⊂ ωi are considered. In each mesh286

cell, a polyhedral subset with volume |K|/(d+ 1) assigned to xi is constructed. The287

vertices of this subset are xi, the barycenter of K, midpoints of edges of K containing288

xi, and, if d = 3, also the barycenters of faces of K containing xi. Now, the dual289

mesh cell Di is defined by the union of these subsets from all K ⊂ ωi. Consequently,290

one has291

|Di| =
|ωi|
d+ 1

.292

Piecewise constant basis functions, given by293

(2.17) ψi(x) =

{
1 if x ∈ Di ,
0 else ,

i = 1, . . . , N,294

are associated with this dual mesh. With the help of these functions, the following295

lumping operator is defined296

(2.18) L : C(Ω) → L2(Ω) , v 7→ L v =
N∑
i=1

v(xi)ψi .297

In addition, the lumped L2(Ω) inner product (·, ·)h : C(Ω)× C(Ω) → R is given by298

(2.19) (f, g)h = (L f,L g) .299

Since {ψi}
N
i=1 is an orthogonal set in L2(Ω) and (ψi, ψi) = |Di|, one obtains300

(f, g)h =
N∑

i,j=1

f(xj)g(xi)(ψj , ψi) =
N∑
i=1

|Di|f(xi)g(xi) .301

Using the lumped inner product, the following seminorm is induced in C(Ω), which302

is a norm in Vh,303

|f |h := (f, f)
1/2
h =

(
N∑
i=1

|Di| |f(xi)|
2

)1/2

.304

Finally, the lumped mass matrix, which is a diagonal matrix, is defined as follows305

(2.20) Ml = (m̃ij)
N
i,j=1 where m̃ij = (ϕj , ϕi)h = (L ϕj ,L ϕi) = |Di|δij .306

Utilizing an exact quadrature rule for linears and the fact that the basis functions of307

Vh form a partition of unity yields308

(2.21) m̃ii = |Di| =
∑

K⊂ωi

|K|
d+ 1

=
∑

K⊂ωi

(1, ϕi)K = (1, ϕi) =
N∑
j=1

(ϕj , ϕi) =
N∑
j=1

mij .309

So, the lumped mass matrix can be computed directly from the consistent mass ma-310

trix, without the need to build the dual mesh.311

This manuscript is for review purposes only.



10 G.R. BARRENECHEA, V. JOHN, AND P. KNOBLOCH

3. General results on DMP satisfying discretizations. This section pro-312

vides conditions for the satisfaction of local and global DMPs that are based on313

special properties of matrices for general linear discrete problems, and of nonlinear314

forms for general nonlinear discretizations. The presentation of the theory for linear315

discretizations is based on the concept of matrices of non-negative type, instead on316

the traditional approach with monotone matrices or, more special, M-matrices. This317

concept enables also the consideration of local DMPs.318

3.1. Linear discretizations. Let a matrix (aij)
i=1,...,M
j=1,...,N ∈ RM×N and real num-319

bers f1, . . . , fM , g1, . . . , gN−M withM < N be given. A linear discretization leads to a320

system of linear algebraic equations of the following form: Find u = (u1, . . . , uN )T ∈321

RN such that322

N∑
j=1

aijuj = fi for i = 1, . . . ,M ,(3.1)323

ui = gi−M for i =M + 1, . . . , N .(3.2)324325

Remark 3.1. The system matrix of the system (3.1)-(3.2) is of the form326

(3.3) A =

(
AI AB

O I

)
,327

where AI ∈ RM×M is the matrix associated with the internal (or non-Dirichlet) de-328

grees of freedom, AB ∈ RM×(N−M) is the matrix that couples the boundary values329

to the values in the interior of the domain, I ∈ R(N−M)×(N−M) is the identity matrix330

and O ∈ R(N−M)×M a matrix consisting of zeros. In what follows, A will always331

denote the matrix given by (3.3). □332

Definition 3.2 (Matrix of non-negative type). A matrix (aij)
i=1,...,m
j=1,...,n ∈ Rm×n

333

(m,n ∈ N) will be said to be of non-negative type if334

aij ≤ 0 ∀ i ̸= j, 1 ≤ i ≤ m, 1 ≤ j ≤ n ,(3.4)335

n∑
j=1

aij ≥ 0 ∀ 1 ≤ i ≤ m.(3.5)336

337

One should notice that the notion of a matrix of non-negative type must not338

be confused with the notion of a non-negative matrix as it is studied, e.g., in [126,339

Chapter 2].340

Remark 3.3. In some cases, e.g., when σ = 0 in (2.1), the matrix A will satisfy a341

stronger property than (3.5), namely342

(3.6)
N∑
j=1

aij = 0 ∀ 1 ≤ i ≤M .343

With this property, it will be possible to derive stronger statements for the DMP than344

with (3.5). □345

The next result is a local version of the results given in [31, 32].346

Theorem 3.4 (Local DMP in the case of matrices of non-negative type). Let347

aii > 0 for i = 1, . . . ,M . Then, any possible solution of (3.1)-(3.2) satisfies348

(3.7) fi ≤ 0 =⇒ ui ≤ max
j ̸=i,aij ̸=0

u+j , fi ≥ 0 =⇒ ui ≥ min
j ̸=i,aij ̸=0

u−j349
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for all i = 1, . . . ,M if and only if A is of non-negative type. The implications350

(3.8) fi ≤ 0 =⇒ ui ≤ max
j ̸=i,aij ̸=0

uj , fi ≥ 0 =⇒ ui ≥ max
j ̸=i,aij ̸=0

uj351

hold true for all i = 1, . . . ,M if and only if A is of non-negative type and satisfies in352

addition (3.6).353

Proof. Consider any i ∈ {1, . . . ,M} and let fi ≤ 0. If A is of non-negative type,354

then it follows from (3.1), (3.4), and (3.5) that355

aii ui = fi −
∑
j ̸=i

aij uj ≤
∑
j ̸=i

(−aij) max
j ̸=i,aij ̸=0

u+j ≤ aii max
j ̸=i,aij ̸=0

u+j ,356

which implies (3.7). If, in addition, (3.6) holds, then (3.8) follows from357

aii ui = fi −
∑
j ̸=i

aij uj ≤
∑
j ̸=i

(−aij) max
j ̸=i,aij ̸=0

uj = aii max
j ̸=i,aij ̸=0

uj .358

The statements for fi ≥ 0 follow analogously. The necessity of the conditions on A359

can be proved by constructing appropriate counterexamples, see [12, Appendix].360

In the context of numerical approximation of PDEs, Theorem 3.4 implies a local361

DMP. It should be emphasized that for the local DMP the invertibility of A is not362

a necessary condition. In particular, it holds also for convection-diffusion equations363

(2.1), without reactive term, and with pure Neumann boundary conditions as long364

as their discretization leads to a system matrix of non-negative type and there is a365

solution.366

Next, the global version of the DMP is shown. Its proof is based on a technique367

developed in [81] and can be considered as a generalization of [31, Theorem 3].368

Theorem 3.5 (Global DMP in the case of matrices of non-negative type). Let us369

suppose that A is of non-negative type and that the matrix AI = (aij)
M
i,j=1 is invertible.370

Then, system (3.1)-(3.2) possesses a unique solution. This solution satisfies371

(3.9)
fi ≤ 0 ∀ i = 1, . . . ,M =⇒ max

i=1,...,N
ui ≤ max

j=M+1,...,N
u+j ,

fi ≥ 0 ∀ i = 1, . . . ,M =⇒ min
i=1,...,N

ui ≥ min
j=M+1,...,N

u−j .
372

In addition, if A satisfies (3.6), the following holds373

(3.10)
fi ≤ 0 ∀ i = 1, . . . ,M =⇒ max

i=1,...,N
ui = max

j=M+1,...,N
uj ,

fi ≥ 0 ∀ i = 1, . . . ,M =⇒ min
i=1,...,N

ui = min
j=M+1,...,N

uj .
374

Proof. Inserting the values from (3.2) in (3.1) leads to a linear system of equations375

for u1, . . . , uM with the matrix AI. From the assumed invertibility of this matrix, the376

existence of a unique solution of (3.1)-(3.2) follows.377

Next, the first statement of (3.9) will be shown. The second statement of (3.9)378

follows by changing the signs of u and of the right-hand side of (3.1)-(3.2). Let379

s = max
i=1,...,N

ui and J = {i ∈ {1, . . . , N} : ui = s} .380

If s ≤ 0, then (3.9) holds trivially. So, consider s > 0 and assume that J ⊂ {1, . . . ,M}.381

It will be shown that382

(3.11) ∃k ∈ J such that µk :=
∑
j∈J

akj > 0 .383
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Let us suppose that (3.11) does not hold. Then, one concludes by combining (3.4)384

and (3.5) that385 ∑
j∈J

aij = 0 ∀ i ∈ J .386

Hence, the matrix (aij)i,j∈J is singular because the sum of its columns is zero. With387

(aij)i,j∈J , also its transposed (aji)i,j∈J is singular. Hence, there exist numbers vi, i ∈388

J , not all zero, such that389

(3.12)
∑
i∈J

aijvi = 0 ∀ j ∈ J .390

In addition, applying that A is of non-negative type one finds that aij = 0 for all391

i ∈ J and all j ̸∈ J . Using this property, (3.12), and defining the vector ṽ = (ṽi)
M
i=1,392

where ṽi = vi if i ∈ J , and ṽi = 0 otherwise, yields393

M∑
i=1

aij ṽi =
∑
i∈J

aijvi = 0 ,394

for all j ∈ {1, . . . ,M}. This implies that the matrix AI is singular, which contradicts395

the hypothesis. So, (3.11) holds.396

Denoting now397

r = max
i̸∈J

u+i ,398

one obtains with fi ≤ 0 for all i, (3.4), and (3.5)399

sµk =
∑
j∈J

akjuj = fk −
∑
j ̸∈J

akjuj ≤ −
∑
j ̸∈J

akjuj =
∑
j ̸∈J

(−akj)uj ≤ r
∑
j ̸∈J

(−akj)400

= r

 N∑
j=1

(−akj) +
∑
j∈J

akj

 ≤ rµk .401

This implies that s ≤ r, which is a contradiction to the definition of s. Hence,402

J ∩ {M + 1, . . . , N} ̸= ∅ and (3.9) follows.403

The validity of (3.10) easily follows from (3.9). Since (3.6) holds, one can add a404

sufficiently large positive constant q > 0 to every ui in such a way that all components405

of this new vector ũ are positive. Then, the first statement of (3.9) holds for ũ without406

the positive parts, which implies the first statement of (3.10).407

Remark 3.6. If the global DMP (3.9) holds and u ∈ RN is such that uM+1 =408

. . . = uN = 0 and uI := (u1, . . . , uM )T satisfies AIuI = 0, then maxi=1,...,N ui ≤ 0409

and mini=1,...,N ui ≥ 0 so that u = 0. Consequently, the validity of the global DMP410

(3.9) implies that the matrix AI is invertible. Thus, this additional assumption (in411

comparison to the assumptions of Theorem 3.4 for the local DMP) is necessary. □412

Remark 3.7. It is easy to construct a matrix A of non-negative type and a vec-413

tor u = (u1, . . . , uN )T such that the right-hand side of some of the implications in414

Theorem 3.4 holds for all i = 1, . . . ,M but the corresponding right-hand side in The-415

orem 3.5 is not satisfied. Thus, a global DMP cannot be obtained as a consequence of416
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the validity of the corresponding local DMPs. On the other hand, it can also happen417

that the global DMP holds but the local one not since the assumption that A is of418

non-negative type is not necessary for the validity of the global DMP. □419

Remark 3.8. A situation considered sometimes in the literature is the case of ho-420

mogeneous Dirichlet boundary values. In this case, the proof of Theorem 3.5 does not421

require any assumptions on the submatrix AB = (aij)
i=1,...,M
j=M+1,...,N . However, such as-422

sumptions are needed in the general case, and consequently considering homogeneous423

Dirichlet boundary conditions is only a particular situation. □424

Remark 3.9. From the previous theorems, it follows that both the local and global425

DMPs are satisfied if A is of non-negative type and AI is invertible. Since detA =426

detAI, one observes that AI is invertible if and only if A is invertible. Moreover, a427

direct calculation shows that428

(3.13) A =

(
AI AB

O I

)
⇐⇒ A−1 =

(
A−1

I −A−1
I AB

O I

)
.429

In addition, an interesting observation is that the proof of (3.9) allows that AB = O.430

Hence, there is no connection between the degrees of freedom and the prescribed431

values on the boundary. In contrast, (3.6) in combination with the invertibility of AI432

requires that AB ̸= O. □433

As discussed in the previous remark, the invertibility of AI is a necessary and434

sufficient condition for the well-posedness of the discrete problem and is also necessary435

for proving that a method satisfies a global DMP (cf. Remark 3.6). Then, under the436

assumptions of the previous theorems, the matrix AI is of non-negative type (since A437

is) and invertible. It will be shown in Corollary 3.13 that these properties imply that438

the matrix AI belongs to the class of M-matrices defined next.439

Definition 3.10 (M-matrix, monotone matrix). A matrix Q = (qij)
n
i,j=1 is an440

M-matrix if:441

i) The off-diagonal entries are non-positive, i.e., qij ≤ 0, i, j = 1, . . . , n, i ̸= j;442

ii) Q is non-singular; and443

iii) Q−1 ≥ 0.444

A matrix that satisfies conditions ii) and iii) is called monotone matrix.445

In the above definition, the condition Q−1 ≥ 0 means that all entries of the matrix446

Q−1 are non-negative. In the following, an analogous notation will be used also for447

vectors, e.g., v ≥ 0 means that all entries of the vector v are non-negative.448

Remark 3.11. A monotone matrix Q can be equivalently characterized by the449

property that, for any v ∈ Rn, the validity of Qv ≥ 0 implies v ≥ 0. Indeed, if450

this implication holds, then Q is non-singular (since Qv = 0 implies both v ≥ 0451

and −v ≥ 0) and if v is any column of Q−1, one has Qv ≥ 0 and hence v ≥ 0452

so that Q−1 ≥ 0. On the other hand, if Q is monotone, then Qv ≥ 0 implies that453

v = Q−1Qv ≥ 0. □454

Theorem 3.12 (Equivalence of the monotonicity and the global DMP). Let the455

row sums of the matrix A be non-negative. Then the global DMP (3.9) is satisfied if456

and only if A is monotone.457

Proof. If the global DMP holds, then, for any v ∈ RN satisfying Av ≥ 0, one458

has vi ≥ minj=M+1,...,N v−j = 0 for all i = 1, . . . , N so that A is monotone due to459

Remark 3.11. Reciprocally, let A be monotone and let u ∈ RN be the solution of460
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(3.1)-(3.2) with fi ≥ 0, i = 1, . . . ,M . Set c := minj=M+1,...,N u−j and define v ∈ RN
461

by vi = ui − c. Since c ≤ 0 and the row sums of A are non-negative, one has Av ≥ 0.462

Then the monotonicity of A implies that v ≥ 0 and hence ui ≥ c for i = 1, . . . , N .463

Thus the global DMP holds.464

Corollary 3.13 (M-matrix property of A). If the matrix A is invertible and of465

non-negative type, then both A and AI are M-matrices.466

Proof. If A is invertible and of non-negative type, then, according to Theorem 3.5,467

the global DMP (3.9) is satisfied and A is monotone in view of Theorem 3.12. Con-468

sequently, A is an M-matrix. In view of (3.13), AI is an M-matrix as well.469

Remark 3.14. Using (3.13), it follows immediately that if A is an M-matrix470

(monotone matrix) also AI is an M-matrix (monotone matrix). Conversely, if AI471

is an M-matrix (monotone matrix) and AB ≤ 0 (in particular, if A is of non-negative472

type), then A is an M-matrix (monotone matrix). □473

Remark 3.15. The analysis for linear discretizations was performed purely on the474

algebraic level. We like to emphasize that the results concerning the vector u with475

respect to the DMP can be transferred to the corresponding finite element function476

only in special cases, like for the P1 finite element. Finite element spaces where such477

a transfer is not possible are discussed in Section 9. □478

3.2. Nonlinear discretizations. In this section we will deal with two types of479

nonlinear discretizations of (2.1) which will be considered in variational forms with480

the P1 finite element spaces (2.10):481

Type I: Find uh ∈ Vh such that uh|∂Ω = ihg, and482

(3.14) a(uh, vh) + jh(uh; vh) = (f, vh) ∀ vh ∈ Vh,0 ,483

where a(·, ·) is the bilinear form given by (2.3), and jh(·; ·) is a nonlinear stabilizing484

term, linear in the second argument.485

Type II: Find uh ∈ Vh such that uh|∂Ω = ihg, and486

(3.15) a(uh, vh) + dh(uh;uh, vh) = (f, vh) ∀ vh ∈ Vh,0 ,487

where a(·, ·) is the bilinear form given by (2.3), and dh(·; ·, ·) is nonlinear in the488

first argument and linear in the remaining two arguments. We assume that dh(·; ·, ·)489

vanishes if the second argument is constant, i.e.,490

(3.16) dh(wh; 1, vh) = 0 ∀ wh, vh ∈ Vh491

and that, for all wh ∈ Vh, the bilinear form dh(wh; ·, ·) is positive semidefinite, i.e.,492

(3.17) dh(wh; vh, vh) ≥ 0 ∀ wh, vh ∈ Vh .493

Due to the nonlinear character of (3.14) and (3.15) the results presented in the494

last section cannot be applied. We present below two criteria for the satisfaction of the495

DMP. In both cases the criteria are related to the following remark: in order to prove496

the DMP, the only argument used concerns the entries of the row that corresponds497

to a node where an extremum of a discrete solution is encountered. So, to prove the498

DMP, it is not necessary to modify every equation, but only those associated with499

local extrema of a solution uh. Based on this idea, in [28] a criterion was proposed500

in order to prove the DMP for a nonlinear discretization of Type I. Here, we present501

the following two variants of this criterion.502
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Definition 3.16 (Strong and weak DMP properties). The nonlinear form jh(·; ·)503

is said to satisfy the strong DMP property if the following condition holds: If uh attains504

a strict local minimum (maximum) at an interior node xi, then there exist constants505

αF > 0, F ∈ Fi, such that506

a(uh, ϕi) + jh(uh;ϕi) ≤ −
∑

F∈Fi

αF |J∇uhKF | ,507

(resp. ≥
∑

F∈Fi
αF |J∇uhKF |). The form jh(·; ·) is said to satisfy the weak DMP prop-508

erty if the same conclusion holds under the extra assumption that the local minimum509

(maximum) satisfies uh(xi) < 0 (resp. uh(xi) > 0).510

Definition 3.17 (Strong and weak DMP properties for non-strict extrema). The511

nonlinear form jh(·; ·) is said to satisfy the strong or weak DMP property for non-512

strict extrema if the conditions from Definition 3.16 hold not only in case of a strict513

local minimum (maximum) but also in case of a non-strict local minimum (maximum)514

of uh at the node xi.515

Theorem 3.18 (Local and global DMPs for nonlinear discretizations of Type I).516

Let us suppose that jh(·; ·) satisfies the weak DMP property. Then, method (3.14)517

satisfies the local DMP in the following sense:518

(f, ϕi) ≤ 0 =⇒ max
ωi

uh ≤ max
∂ωi

u+h , (f, ϕi) ≥ 0 =⇒ min
ωi

uh ≥ min
∂ωi

u−h ,(3.18)519
520

for all i = 1, . . . ,M . If jh(·; ·) satisfies the strong DMP property, (3.14) satisfies the521

local DMP in the following sense:522

(f, ϕi) ≤ 0 =⇒ max
ωi

uh = max
∂ωi

uh , (f, ϕi) ≥ 0 =⇒ min
ωi

uh = min
∂ωi

uh ,(3.19)523
524

for all i = 1, . . . ,M . In addition, the global DMP is also satisfied in the following525

form526

f ≤ 0 in Ω =⇒ max
Ω

uh ≤ max
∂Ω

u+h , f ≥ 0 in Ω =⇒ min
Ω
uh ≥ min

∂Ω
u−h ,(3.20)527

528

if jh(·; ·) satisfies the weak DMP property for non-strict extrema and in the form529

f ≤ 0 in Ω =⇒ max
Ω

uh = max
∂Ω

uh , f ≥ 0 in Ω =⇒ min
Ω
uh = min

∂Ω
uh ,(3.21)530

531

if jh(·; ·) satisfies the strong DMP property for non-strict extrema.532

Proof. The idea of the proof originates from [28]. Consider any i ∈ {1, . . . ,M}533

and let (f, ϕi) ≤ 0. Since maxωi
uh is attained at a node, one has maxωi

uh =534

max{uh(xi),max∂ωi
uh} ≤ max{uh(xi),max∂ωi

u+h }. Thus, (3.18) trivially holds if535

uh(xi) ≤ 0 and hence it suffices to assume that uh(xi) > 0 or that the strong DMP536

property holds. Let us assume that uh(xi) > max∂ωi
uh. Then uh attains a strict537

local maximum at xi and hence the strong (weak) DMP property implies that538

0 ≥ (f, ϕi) = a(uh, ϕi) + jh(uh;ϕi) ≥
∑

F∈Fi

αF |J∇uhKF | .539

Thus, ∇uh is a constant in ωi and hence uh is a P1 function in ωi, which is a contra-540

diction since uh was assumed to attain a strict local extremum in xi. Consequently,541
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uh(xi) ≤ max∂ωi
uh, which proves (3.19) and also (3.18). If (f, ϕi) ≥ 0, one can542

proceed analogously.543

For the global results (3.20), (3.21), let us suppose that f ≤ 0 in Ω and that544

the solution attains a global maximum at xi with some i ∈ {1, . . . ,M}. If only the545

weak DMP property holds, it is again sufficient to assume that uh(xi) > 0. Then,546

analogously as for the local result, one deduces that uh is a P1 function in ωi. Since uh547

attains an extremum at xi, it has to be constant in ωi, and thus the global maximum548

is attained at a node xj ∈ ∂ωi. If xj ∈ ∂Ω, there is nothing more to prove. Otherwise,549

we proceed as above and conclude that uh is constant in ωj as well. Continuing in550

the same fashion, and using that the mesh is connected, one can conclude that the551

global maximum is reached at a point on the boundary ∂Ω.552

To treat problems of Type II, we introduce the following condition, reminiscent553

of [82] (see also [14]).554

Definition 3.19 (Algebraic DMP property). We will say that dh(·; ·, ·) satisfies555

the algebraic DMP property if the following condition holds: Consider any uh ∈ Vh556

and any i ∈ {1, . . . ,M}. If uh(xi) is a strict local extremum of uh on ωi, i.e.,557

uh(xi) > uh(x) ∀ x ∈ ωi \ {xi} or uh(xi) < uh(x) ∀ x ∈ ωi \ {xi} ,558

then559

(3.22) a(ϕj , ϕi) + dh(uh;ϕj , ϕi) ≤ 0 ∀ j ∈ Si560

and561

(3.23) dh(uh;ϕj , ϕi) = 0 ∀ j ̸∈ Si ∪ {i} .562

One can notice that, in essence, what (3.22) states is that only the ith row in the563

nonlinear system (3.15) behaves like a matrix of non-negative type, and not all the564

rows, in contrast to the case of linear discretizations. The algebraic DMP property565

is sufficient for proving the local DMP. The proof of the global DMP requires a sign566

condition also in case of non-strict extrema.567

Definition 3.20 (Algebraic DMP property for non-strict extrema). We will568

say that dh(·; ·, ·) satisfies the algebraic DMP property for non-strict extrema if the569

following condition holds: Consider any uh ∈ Vh and any i ∈ {1, . . . ,M}. If uh(xi)570

is a local extremum of uh on ωi, i.e.,571

uh(xi) ≥ uh(x) ∀ x ∈ ωi or uh(xi) ≤ uh(x) ∀ x ∈ ωi ,572

then573

(3.24) a(ϕj , ϕi) + dh(uh;ϕj , ϕi) ≤ 0 ∀ j ∈ Si with uh(xj) ̸= uh(xi)574

and (3.23) holds.575

Theorem 3.21 (Local and global DMPs for nonlinear discretizations of Type II).576

Let uh ∈ Vh be a solution of (3.15) and let us suppose that dh(·; ·, ·) satisfies the577

algebraic DMP property. Then the local DMP (3.18) holds for all i = 1, . . . ,M . If,578

in addition, σ = 0, then also the stronger form (3.19) of the local DMP holds for all579

i = 1, . . . ,M .580

If dh(·; ·, ·) satisfies the algebraic DMP property for non-strict extrema, then the581

global DMP (3.20) is satisfied. If, in addition, σ = 0, then also the stronger form582

(3.21) of the global DMP holds.583
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Proof. Denote ui = uh(xi) and ãij = a(ϕj , ϕi)+ dh(uh;ϕj , ϕi) for i, j = 1, . . . , N ,584

and let us prove the local versions of the DMP. Consider any i ∈ {1, . . . ,M} and let585

(f, ϕi) ≤ 0. If σ > 0, it suffices to consider ui > 0 since otherwise (3.18) trivially586

holds (cf. the beginning of the proof of Theorem 3.18). Let us assume that ui > uj587

for all j ∈ Si. If dh(·; ·, ·) satisfies the algebraic DMP property, then it follows from588

(3.15) and (3.23) that589

(3.25) Ai ui +
∑
j∈Si

ãij (uj − ui) = (f, ϕi) ,590

where Ai :=
∑N

j=1 ãij = (σ, ϕi) due to (3.16). Moreover, (3.22) implies that the sum591

in (3.25) is non-negative. If σ = 0, then Ai = 0 and hence there is j ∈ Si such that592

ãij < 0 since ãii ≥ ε |ϕi|
2
1,Ω > 0 (see (3.17)). This implies that the sum in (3.25) is593

positive. If σ > 0, then Ai ui > 0. Thus, in both cases, the left-hand side of (3.25) is594

positive, which is a contradiction. Therefore, there is j ∈ Si such that ui ≤ uj , which595

proves (3.18) and (3.19). If (f, ϕi) ≥ 0, one can proceed analogously.596

The proof of the global DMP can be carried out analogously as for Theorem 3.5,597

see also the proof of Theorem 3 in [14].598

4. Linear discretizations of steady-state problems without convection.599

This first section on linear discretizations is devoted to the special case of (2.1) where600

b = 0. For all linear discretizations, the proofs of the DMP will consist of checking601

the hypotheses of Theorem 3.4. It turns out that the DMP is satisfied only under602

appropriate requirements on the mesh.603

A careful inspection of the statements of the results from Section 3.1 reveals that604

one only needs to show properties for the first M rows of the coefficient matrix of605

system (3.1)-(3.2), that is, one only needs to worry about the equations associated606

with nodes interior to Ω. This observation motivates to define, for A ∈ RN×N , the607

matrix (A)M ∈ RM×N as the matrix containing only the first M rows of A. In fact,608

showing that (A)M is of non-negative type is what is needed to use Theorems 3.4 and609

3.5 due to the expression (3.3) for the matrix associated with the system (3.1)-(3.2).610

4.1. The Poisson problem. In this section we will discuss necessary and suf-611

ficient conditions for the satisfaction of the DMP for the Poisson problem. The ar-612

gument relies on proving that the diffusion matrix (Ad)
M , defined in (2.11), is of613

non-negative type. For the finite element method the first result in this direction614

is given in [32]. Since in that paper the partial differential equation is a reaction-615

diffusion equation, the mesh is supposed to be acute and fine enough (see Section 4.2616

below). Later, for the Poisson problem in 2d, it was noted that it is only needed for617

the mesh to satisfy the Delaunay criterion, see [121, p. 78]. Extensions to three space618

dimensions can be found in [21].619

We start noticing that using (2.15) leads to the first proof of the satisfaction of620

the DMP for the Poisson problem. In fact, if the mesh Th is weakly acute, then,621

using (2.15), one has ℓij =
∑

K⊂ωi∩ωj
ℓKij ≤ 0 for i ̸= j. This observation has been622

widely used in the literature and provides a sufficient condition for the satisfaction623

of the DMP for the Poisson equation. The proof we present next was first given in624

[135, Lemma 2.1] and has the advantage that it presents a necessary and sufficient625

condition on the mesh to guarantee the satisfaction of the local DMP.626

Theorem 4.1 (Sufficient and necessary condition for (Ad)
M to be of non-negative627

type, [135]). A sufficient condition for the matrix (Ad)
M to be of non-negative type is628
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18 G.R. BARRENECHEA, V. JOHN, AND P. KNOBLOCH

that the mesh Th satisfies the XZ-criterion (2.7). If any internal edge of Th has at629

least one endpoint in Ω, then this condition is necessary. In addition, (Ad)
M satisfies630

(3.6).631

Proof. Let xi,xj be two different nodes contained in the same mesh cell K ∈ Th.632

We recall the following formulas for the volume of a simplex633

|K| =
|FK

i ||FK
j |

2
sin θKEij

if d = 2, |K| =
2|FK

i ||FK
j |

3|κKEij
|

sin θKEij
if d = 3 .634

Inserting them in (2.15), and using the convention that |κKEij
| = 1 if d = 2 gives635

(4.1) ℓKij = − 1

d(d− 1)
|κKEij

| cot θKEij
.636

Thus, for i ∈ {1, . . . ,M} and j ∈ Si,637

(4.2) ℓij =
∑

K⊂ωEij

ℓKij = −
∑

K⊂ωEij

|κKEij
| cot θKEij

d(d− 1)
,638

and then (3.4) is satisfied if (2.7) holds. If the set EI consists only of edges Eij with639

i ∈ {1, . . . ,M} and j ∈ Si, then (2.7) is necessary for the validity of (3.4). Finally,640

since the basis functions form a partition of unity, one has641

(4.3)

N∑
j=1

ℓij =

N∑
j=1

(∇ϕj ,∇ϕi) = (∇1,∇ϕi) = 0 .642

So, (3.6) is satisfied, and in particular (3.5).643

Remark 4.2. The statement of Theorem 4.1 implies, in connection with Theo-644

rem 3.4, that the local DMP is satisfied if and only if the mesh is of XZ-type, with645

the slight exception concerning edges whose endpoints are both on ∂Ω. In addition,646

Theorems 4.1 and 3.5 show that the validity of the XZ-criterion implies the global647

DMP. However, in this case, the XZ-criterion is not necessary. Indeed, in [39] a two-648

dimensional example is constructed where the global DMP is satisfied although the649

mesh is not of XZ-type. Nevertheless, in general, if the mesh is not of XZ-type, then650

the global DMP might be violated as an example in [22] demonstrates. □651

Remark 4.3. Let Ad,I ∈ RM×M denote the M ×M submatrix of the diffusion652

matrix only considering the non-Dirichlet nodes, i.e., the analog of AI in (3.3). Then,653

Ad,I is non-singular, since the corresponding bilinear form is elliptic on H1
0 (Ω). □654

Remark 4.4. A Poisson problem with heterogeneous anisotropic diffusion is given655

by656

(4.4)
−∇ · (E(x)∇u) = f in Ω ,

u = g on ∂Ω ,
657

with the symmetric diffusion tensor E(x). The tensor E depends on the spatial vari-658

able x, which makes it heterogeneous, and in addition it is allowed to have different659

eigenvalues at a given x, making it anisotropic. In any case, it will be assumed that660

E is symmetric and strictly positive-definite in Ω. Numerous applications lead to661
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heterogeneous anisotropic diffusion, such as image processing [124] and atmospheric662

modelling [120], just to name a few.663

Problem (4.4) was considered in [101] for P1 finite elements in two and three664

dimensions. The main condition on the mesh is the following: for every element K it665

is assumed that666

(4.5)
(
nK

i

)T
EKnK

j ≤ 0 ∀ xi,xj ∈ K, xi ̸= xj , ∀ K ∈ Th ,667

where EK stands for an approximation of the integral of E in K using quadrature.668

By writing the global matrix as sum of local contributions it is proven that under this669

assumption the system matrix is of non-negative type, from which the validity of the670

DMP can be concluded using the results presented in Section 3.1. It can be readily671

seen that in the special case EK = I, (4.5) reduces to the weakly acute angle condition672

from Definition 2.2. A comprehensive interpretation of (4.5) is provided in [59]. It673

turns out that (4.5) is equivalent to the requirement that the angles are weakly acute674

with respect to an inner product induced by E−1
K . Condition (4.5) can be expressed in675

terms of the map from the reference cell to K. This formulation was utilized in [101]676

for the construction of appropriate meshes on which the numerical solution satisfies677

the global DMP.678

Later, in [59], the analysis from [101] was refined for the two-dimensional situation679

in order to obtain a condition weaker than (4.5). The numerical analysis studies the680

global stiffness matrix, in contrast to the analysis from [101], and in the isotropic case681

EK = I the resulting condition becomes that the mesh has to be Delaunay. □682

4.2. The reaction-diffusion equation and mass lumping. So far the reac-683

tion was set to be zero to show the intrinsic link between the geometry of the mesh684

and the properties of the matrix Ad. If reaction is added, the satisfaction of the DMP685

is in fact harder than for the plain diffusion equation, as the next result shows.686

Lemma 4.5 (Sufficient condition for (εAd + σMc)
M to be of non-negative type).687

Let Mc be the consistent mass matrix defined in (2.13). Then, (εAd + σMc)
M is of688

non-negative type if the mesh family {Th}h>0 is strictly acute and h satisfies689

(4.6) h2 ≤ C
ε

σ
cot
(π
2
− δ
)
= C

ε

σ
tan δ ,690

where δ is the angle from (2.8), C = 12 in 2d, and C depends only on the shape691

regularity of the mesh family {Th}h>0 in 3d.692

Proof. The satisfaction of (3.5) follows from (4.3) and the fact that the row sum693

of the consistent mass matrix is positive, compare (2.21).694

Consider two nodes xi ̸= xj of a mesh cell K ∈ Th. The shape regularity of695

the mesh implies that there is a constant C0 such that |κKEij
| ≥ C0h

d−2
K (note that696

one can set C0 = 1 if d = 2). Since |K| ≤ hdK/(d(d − 1)), one obtains using (4.1),697

the exact formula for the local mass matrix (2.16), and the fact that the cotangent is698

monotonically decreasing699

εℓKij + σmK
ij = −ε

|κKEij
| cot θKEij

d(d− 1)
+ σ

|K|
(d+ 1)(d+ 2)

700

≤ hd−2
K

(d− 2)!

(d+ 2)!

(
−εC0 (d+ 1)(d+ 2) cot(

π

2
− δ) + σh2K

)
.701

702
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Hence, (4.6) with C = C0(d+1)(d+2) leads to εℓij+σmij ≤ 0 for i ̸= j, thus proving703

(3.4).704

The last result shows that the presence of a positive reaction term makes the705

satisfaction of the DMP more difficult than for the Poisson problem. In fact, the706

presence of the reaction imposes a restriction on the size of the mesh (cf. (4.6)) as707

well as a stronger restriction on the geometry. While the need for a strictly acute mesh708

family is clear from the proof, the restriction on the mesh size has been slightly relaxed709

in, e.g., [23], although some size restriction is always present as long as the consistent710

mass matrix is used (see [23] for examples of non-satisfaction of the DMP if the mesh711

is not refined enough). So, we now move onto the presentation of a mass-lumping712

strategy that allows one to remove the size restriction without affecting accuracy.713

The mass-lumped discretization of the reaction-diffusion equation reads as follows:714

Find uh ∈ Vh such that uh|∂Ω = ihg, and715

ε(∇uh,∇vh) + σ(uh, vh)h = (f, vh) ∀ vh ∈ Vh,0 ,716

with (·, ·)h defined in (2.19). The following result shows that the stiffness matrix of717

this modified Galerkin discretization is of non-negative type under the same conditions718

as the stiffness matrix of the pure diffusion problem. Thus, the modification removes719

the restriction on the mesh size from Lemma 4.5.720

Corollary 4.6 (Sufficient and necessary condition for (εAd + σMl)
M to be of721

non-negative type). Let Ml be the lumped mass matrix defined in (2.20). Then, a722

sufficient condition for the matrix (εAd + σMl)
M to be of non-negative type is that723

the mesh Th is of XZ-type. If any internal edge of Th has at least one endpoint in Ω,724

then this condition is necessary.725

Proof. The proof follows by realizing that the lumping process removes the pos-726

itive off-diagonal entries of Mc, and then it becomes a direct application of Theo-727

rem 4.1.728

Remark 4.7. This section is finished with a brief discussion concerning the fact729

that an appropriate stabilized method for the reaction-diffusion equation also helps730

relaxing the mesh conditions for the satisfaction of the DMP, even if it uses the731

consistent mass matrix. This method, known as Unusual Stabilized finite element732

method (USFEM), was introduced in [46] and reads as follows: find uh ∈ Vh such733

that uh|∂Ω = ihg, and734

ε (∇uh,∇vh) + σ (uh, vh)−
∑

K∈Th

h2K

σh2K + ε
(σuh, σvh)K(4.7)735

= (f, vh)−
∑

K∈Th

h2K

σh2K + ε
(f, σvh)K ∀ vh ∈ Vh,0.736

The USFEM improves stability by subtracting a term of reaction type from both sides737

of the finite element equation. As a consequence, the corresponding matrix (A)M has738

the entries739

aij = ε (∇ϕj ,∇ϕi) +
∑

K∈Th

σε

σh2K + ε
(ϕj , ϕi)K .740

Following the same steps as in the proof of Lemma 4.5, one can see that aij ≤ 0741
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requires the mesh family to be strictly acute and742

(4.8)
ε

σh2K + ε
h2K ≤ C

ε

σ
tan δ ∀ K ∈ Th ,743

where δ is the angle from (2.8) and C is the same as in (4.6). In the interesting case744

ε≪ σ, (4.8) is a much milder condition than (4.6). Moreover, (4.8) does not restrict745

hK at all if C tan δ ≥ 1. Likewise important, the sign of the right-hand side of (4.7)746

is not affected, since it can be written for every basis function ϕi as747 ∑
K∈Th

ε

σh2K + ε
(f, ϕi)K .748

Thus, for a uniform mesh with hK = h for any K ∈ Th, the USFEM is equivalent749

to replacing ε by ε+ σh2 in the standard Galerkin discretization so that it just adds750

isotropic linear artificial diffusion of amount σh2, cf. Section 5.2.751

In summary, the USFEM (4.7) preserves the DMP whenever (4.8) is satisfied. □752

5. Linear discretizations of the steady-state problem. In this section the753

main ideas for a linear discretization of the convection-diffusion equation (2.1) are754

given. It should be kept in mind that the presentation of this and the following sections755

focuses on the convection-dominated regime, even if this is not always explicitly stated,756

i.e., ε has to be thought of being (very) small. First, to justify the need for stabilization757

we describe the standard Galerkin method and make it explicit that, unless the mesh is758

acute, and prohibitively refined, the DMP cannot hold. So, we then consider stabilized759

discretizations, where we review linear artificial diffusion, upwind methods, and the760

edge-averaged finite element method.761

5.1. The Galerkin finite element method. The Galerkin finite element762

method reads as follows: Find uh ∈ Vh such that uh = ihg on ∂Ω and763

(5.1) a(uh, vh) = (f, vh) ∀vh ∈ Vh,0 ,764

where a(·, ·) is defined in (2.3). Following classical arguments (see, e.g. [41]) one765

can derive optimal order error estimates, but with a constant that behaves like766

∥b∥0,∞,Ωh/ε, thus making these estimates not useful in practice, and somehow ex-767

plaining why non-localized spurious oscillations appear in the simulations. This fea-768

ture is shared by all central discretizations of the convective term (see, e.g., [116] for769

extensive discussions on this issue).770

To illustrate the restrictions of the Galerkin method with respect to the satisfac-771

tion of the DMP we focus on the special case where d = 2 and σ = 0. Here, the matrix772

associated with (5.1) is (A)M = (εAd + Ac)
M , compare (2.11) and (2.12). Since b is773

solenoidal, Ac satisfies774

(5.2) cij = −cji for all i, j = 1, . . . ,M ,775

i.e., there is a partial antisymmetry.776

The next result states that the Galerkin method satisfies the DMP if the mesh777

family {Th}h>0 is average acute and h is sufficiently small.778

Theorem 5.1 (Conditions on the Galerkin method in 2d to satisfy the DMP).779

Suppose that d = 2, σ = 0, the mesh family {Th}h>0 is average acute, and the data780

and the mesh satisfy: for all E = K ∩K ′ ∈ EI , it holds781

(5.3)
(hK + hK′)∥b∥0,∞,ωE

3 tan δ
2

≤ ε ,782
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where δ is the angle from (2.9). Then, the matrix (εAd + Ac)
M is of non-negative783

type and satisfies (3.6).784

Proof. Since the basis functions ϕ1, . . . , ϕN form a partition of unity, (εAd+Ac)
M

785

satisfies786

(5.4)
N∑
j=1

aij = ε (∇1,∇ϕi) + (b · ∇1, ϕi) = 0 , i = 1, . . . ,M ,787

which proves (3.6). It remains to show (3.4). Let E = K ∩K ′ ∈ EI with endpoints788

xi,xj , i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}. Using (4.2) and |κEij
| = 1 yields789

ℓij = (∇ϕj ,∇ϕi)K + (∇ϕj ,∇ϕi)K′(5.5)790

= −1

2
cot θKE − 1

2
cot θK

′

E = − sin(θKE + θK
′

E )

2 sin θKE sin θK
′

E

.791

792

In addition, since θKE , θ
K

′

E ∈ (0, π), one has793

sin2
(
θKE + θK

′

E

2

)
=

1− cos(θKE + θK
′

E )

2
(5.6)794

=
1− cos θKE cos θK

′

E

2
+

sin θKE sin θK
′

E

2
>

sin θKE sin θK
′

E

2
> 0 .795

796

Observing that the right-hand side of (5.5) is negative, since the mesh family is average797

acute and θKE , θ
K

′

E ∈ (0, π), inserting (5.6) in (5.5), and using the monotonicity of the798

cotangent leads to799

ℓij < − sin(θKE + θK
′

E )

4 sin2
(

θ
K
E +θ

K
′

E

2

) = −1

2
cot

θKE + θK
′

E

2
(5.7)800

≤ −1

2
cot

(
π

2
− δ

2

)
= −1

2
tan

δ

2
< 0 .801

802

Concerning the convective term, a direct calculation using (2.14), Hölder’s in-803

equality, and that the diameter of any facet of K is bounded by hK , gives804

(5.8) (b · ∇ϕj , ϕi)K = −
|FK

j |
2|K|

(b · nK
j , ϕi)K ≤

hK∥b∥0,∞,K

2|K|
|K|
3

≤
hK∥b∥0,∞,K

6
.805

From (5.7) and (5.8), one obtains the following upper bound for the off-diagonal806

matrix entries807

(5.9) aij = εℓij + cij ≤ −ε
2
tan

δ

2
+

(hK + hK′)∥b∥0,∞,ωE

6
808

and hence aij ≤ 0 if (5.3) holds.809

Remark 5.2. The geometrical hypothesis on Th cannot be relaxed. Indeed, sup-810

pose that {Th}h>0 is not average acute and choose an internal edge E = K ∩K ′ ∈ EI811

with endpoints xi,xj , i, j ∈ {1, . . . ,M}, such that θKE + θK
′

E = π. Then, thanks to812

(5.5), it follows that ℓij = ℓji = 0. So, since Ac satisfies (5.2), then for any b such813

that cij ̸= 0, one has cij > 0 or cji > 0, which implies that A does not satisfy (3.4).814

□815
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The discussion in this section shows that the Galerkin method will not satisfy816

the DMP in any practical situation. These observations were made as early as [77].817

On the other hand, supposing the mesh family {Th}h>0 is average acute relaxes the818

hypotheses made by [77, 33, 26], since in those works the results were proven for819

strictly acute mesh families.820

Remark 5.3. The analysis of [101] and [59] for heterogeneous anisotropic diffusion821

problems (cf. Remark 4.4) was extended to convection-diffusion-reaction problems in822

[107]. Since a Galerkin discretization without mass lumping was considered, a condi-823

tion on the fineness of the mesh appears for the satisfaction of the DMP, cf. Lemma 4.5824

and Theorem 5.1. □825

Concentrating for a brief discussion of an error estimate on the impact of dif-826

fusion and convection, i.e., considering σ = 0 and homogeneous Dirichlet boundary827

conditions, one finds under the assumption that u ∈ H2(Ω) that828

(5.10) |u− uh|1,Ω ≤ Ch

(
1 +

∥b∥0,∞,Ω h

ε

)
|u|2,Ω,829

where C comes from interpolation error estimates in the L2(Ω) norm and in the H1(Ω)830

seminorm. The term in the parentheses is very large in the convection-dominated case831

so that, although (5.10) predicts first order error reduction, the error bound is not832

useful as long as h is not very small. In fact, large errors can be observed for the833

Galerkin method on coarse grids if the solution of (2.1) possesses layers.834

5.2. Isotropic linear artificial diffusion. Restriction (5.3) can be circum-835

vented by either refining the mesh or making the diffusion of the discrete problem836

larger. This section will analyze a method that takes the latter approach and adds837

artificial diffusion to the problem. It will turn out that the diffusion added needs to838

be of a size proportional to the mesh size. This method will also be supplemented839

with a mass lumping strategy in order to avoid technical complications due to the840

presence of reaction.841

The following finite element method with added artificial diffusion will be studied:842

Find uh ∈ Vh such that uh|∂Ω = ihg, and843

(5.11) ah(uh, vh) + sh(uh, vh) = (f, vh) ∀ vh ∈ Vh,0 ,844

where the bilinear form ah(·, ·) is given by845

(5.12) ah(u, v) = ε (∇u,∇v) + (b · ∇u, v) + σ (u, v)h ,846

with (·, ·)h being the mass-lumped inner product defined in (2.19), and the added847

linear artificial diffusion term is given by848

sh(uh, vh) =
∑

K∈Th

ε̃K(∇uh,∇vh)K , ε̃K ≥ 0 .849

In this section we consider the following expression for the added diffusion [77]:850

(5.13) ε̃K := max

{
c0
hK∥b∥0,∞,Ω

tan δ
2

− ε, 0

}
,851

where δ is the constant from (2.9) and c0 > 0 is a constant that is only linked to the852

shape regularity of the triangulation, see (5.15) below. One notices the close relation853
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between (5.13) and (5.3). In fact, the added diffusion is built in such a way that once854

the mesh is sufficiently fine, (5.11) reduces to the standard Galerkin method (up to855

the lumping of the reaction term). Later works proposed slightly different versions of856

ε̃K , e.g., see [33, 26].857

The analysis of (5.11) was carried out originally in [77] under the assumption858

that the mesh families are strictly acute. The analysis presented below is detailed for859

d = 2, and relaxes this hypothesis and requires only average acute mesh families (the860

case d = 3 is discussed in Remark 5.6).861

Theorem 5.4 (DMP for isotropic linear artificial diffusion in 2d). Let us suppose862

d = 2, that the mesh family is average acute, ε̃K are defined by (5.13), and c0 is large863

enough (see (5.15)). Then, (5.11) satisfies the DMP.864

Proof. The proof consists in rewriting method (5.11) as follows: Find uh ∈ Vh865

such that uh|∂Ω = ihg, and866 ∑
K∈Th

(ε+ ε̃K)(∇uh,∇vh)K + (b · ∇uh, vh) + σ (uh, vh)h = (f, vh) ∀ vh ∈ Vh,0 .867

Let i ∈ {1, . . . ,M} and i ̸= j ∈ {1, . . . , N}. Since the off-diagonal elements of the868

lumped mass matrix vanish, one gets869

aij =
∑

K∈Th

(ε+ ε̃K)(∇ϕj ,∇ϕi)K + cij .870

Using the notation from the proof of Theorem 5.1 and assuming that (∇ϕj ,∇ϕi)K ≤ 0871

and (∇ϕj ,∇ϕi)K′ ≤ 0, one can use the fact that872

(5.14) ε+ ε̃K ≥ c0
∥b∥0,∞,ΩhK

tan δ
2

≥
∥b∥0,∞,Ω(hK + hK′)

3 tan δ
2

,873

if874

(5.15) c0 ≥ max
K,K

′∈Th:K∩K
′∈EI

hK + hK′

3min{hK , hK′}
,875

which is a constant uniformly bounded thanks to the mesh regularity. Then an ap-876

plication of the techniques used to prove Theorem 5.1 shows that the system ma-877

trix of method (5.11) is of non-negative type. If, e.g., (∇ϕj ,∇ϕi)K′ > 0, then878

(∇ϕj ,∇ϕi)K ≤ 0 since the mesh family is average acute. Moreover, since θK
′

E ≥ π
2 ,879

one has hK′ = hE ≤ hK . Therefore, ε+ ε̃K′ ≤ ε+ ε̃K and hence880

(ε+ ε̃K)(∇ϕj ,∇ϕi)K + (ε+ ε̃K′)(∇ϕj ,∇ϕi)K′ ≤ (ε+ ε̃K) ℓij .881

Now one can apply (5.14) and conclude that aij ≤ 0 analogously as before. For882

σ = 0, the method satisfies (3.6). Finally, the theorem follows from the results of883

Section 3.1.884

Remark 5.5. Once again, the hypothesis on the mesh family being average acute885

is sharp. In fact, analogous considerations as made in Remark 5.2 hold in this case.886

□887

Remark 5.6. We now briefly discuss the case d = 3. For this case one needs to888

assume that the mesh family {Th}h>0 is strictly acute. Let δ > 0 be the angle from889
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(2.8), and let the added diffusion be given by890

ε̃K = max

{
c0
hK∥b∥0,∞,K

tan δ
− ε, 0

}
.891

Then, following the same steps as to reach (5.14) and using that |κKEij
| ≥ ChK (thanks892

to the mesh regularity) one gets893

aij =
∑

K∈Th

(ε+ ε̃K)(∇ϕj ,∇ϕi)K + cij894

≤
∑

K⊂ωi∩ωj

{
−ε+ ε̃K

6
|κKEij

| cot θKEij
+
h2K∥b∥0,∞,K

24

}
895

≤
∑

K⊂ωi∩ωj

{
−C c0

hK∥b∥0,∞,K

6 tan δ
hK tan δ +

h2K∥b∥0,∞,K

24

}
896

=
∑

K⊂ωi∩ωj

h2K∥b∥0,∞,K

{
−C c0

6
+

1

24

}
.897

898

By supposing c0 is large enough one concludes that aij ≤ 0. Thus, in three space899

dimensions the same result holds as in 2d under the assumption of a strictly acute900

mesh family. □901

The last theorem shows that method (5.11) satisfies the DMP under much milder902

assumptions than the Galerkin method.903

We finish this section with a short comment on an error estimate for method904

(5.11). We place ourselves in the same situation as in Section 5.1, i.e., σ = 0, g = 0,905

and u ∈ H2(Ω), and assuming ε̃K = ε̃ for any K ∈ Th, gives the estimate906

|u− uh|1,Ω ≤ Ch

(
1 +

∥b∥0,∞,Ω h

ε+ ε̃

)
|u|2,Ω +

ε̃

ε+ ε̃
|u|1,Ω907

≤ Ch

(
1 +

tan δ

c0

)
|u|2,Ω +

ε̃

ε+ ε̃
|u|1,Ω,908

909

where C is again only linked to interpolation error estimates. In contrast to the error910

estimate (5.10) for the Galerkin method, the factor in front of |u|2,Ω is of order O(1).911

However, due to the consistency error estimated by the term including |u|1,Ω, there912

is no reduction of the bound proportional to some power of the mesh size as long913

as the Péclet number ∥b∥0,∞,Ωh/ε is large. Note that this second term is strictly914

monotonically decreasing as ε̃ tends to zero and eventually it vanishes.915

An extension of the linear isotropic diffusion method has recently been proposed916

in [9]. The interest in this extension by itself is limited, but it opens the door for a917

LPS-based nonlinear discretization, to be presented in Section 6.4.918

5.3. Upwind finite element methods. In this section, one of the earliest919

proposals for satisfying the DMP in the framework of finite element methods for920

convection-diffusion equations is reviewed. The basic idea of this method consists in921

discretizing the convective term in a finite volume manner and utilizing an upwind922

technique. The first method of this type was developed in [122]. An improved method923

is presented in [3] and an extension to non-conforming finite elements in [110], see Sec-924

tion 9.3 for more details. Although the methods from [122, 3] were originally proposed925
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for transient problems, compare Section 8.3, we present here their steady-state ver-926

sions as they contain the main ideas. From the numerical experience reported in the927

literature, it is known that linear upwind methods lead to solutions with smeared928

layers, see also Section 7. This situation might explain that, to the best of our knowl-929

edge, the methods from [122, 3] are rarely used nowadays. So, their presentation will930

be kept brief, with an emphasis on the earlier method from [122].931

In [122], a two-dimensional problem without reactive term is considered. These932

assumptions will be relaxed below. In the first step of this method, one defines for933

an internal node xi a so-called upwind simplex Kup
i : xi is a vertex of Kup

i and the934

straight half-line starting at xi with direction −b(xi) intersects Kup
i . If this line is935

parallel to a face (edge) F , then one chooses one element of ωF at random. For nodes936

at the boundary, the construction is performed analogously. If −b(xi) points outside937

the domain, then xi belongs to the inlet boundary, which means that a Dirichlet938

condition is imposed at it, and, in turn, the test functions vanish at xi. This means939

that the upwind simplex can be chosen at random, as this choice will not affect the940

result. To simplify the presentation, we define the upwind simplex as the empty set in941

this case. If b(xi) = 0, one uses an arbitrary element of ωi as K
up
i . The choice of the942

upwind element is motivated by the following observation. Let xj , j ̸= i, be the other943

vertices of the simplex Kup
i . By construction, it holds that |∢(−b(xi),ni)| < π/2 and944

π/2 ≤ |∢(−b(xi),nj)| < 3π/2 for j ̸= i, where ni and nj are the outer unit normals945

to the facets of Kup
i opposite xi and xj , respectively. From (2.14), it follows that946

(5.16) b(xi) · ∇ϕi|Kup
i

≥ 0 and b(xi) · ∇ϕj |Kup
i

≤ 0 for j ̸= i ,947

which will be of major importance later. With these definitions, the upwind method948

reads as follows: Find uh ∈ Vh such that uh|∂Ω = ihg, and949

(5.17) ε(∇uh,∇vh) +
N∑
j=1

(
b(xj) · ∇uh|Kup

j
ψj ,L vh

)
+ σ (uh, vh)h = (f, vh)h ,950

for all vh ∈ Vh,0, where ψj is the dual basis function defined in (2.17), L the lumping951

operator from (2.18), and (·, ·)h the lumped inner product defined in (2.19). The952

term ∇uh|Kup
j

is defined to be the zero vector if the upwind simplex is the empty set,953

otherwise it is a constant vector on Kup
j .954

The analysis of the method simplifies greatly if one rewrites the convective term.955

Noticing that the dual basis functions ψ1, . . . , ψN are orthogonal in L2(Ω) and using956

(2.21), one can see that for every vh ∈ Vh the following holds957

N∑
j=1

(
b(xj) · ∇uh|Kup

j
ψj ,L vh

)
958

=
N∑

i,j=1

b(xj) · ∇uh|Kup
j
vh(xi)(ψj , ψi) =

N∑
i=1

b(xi) · ∇uh|Kup
i
vh(xi)|Di|959

=
N∑
i=1

b(xi) · ∇uh|Kup
i
vh(xi)(1, ϕi) =

N∑
i=1

(b(xi) · ∇uh|Kup
i
, ϕi) vh(xi) .960

Thus, method (5.17) can be rewritten as follows: Find uh ∈ Vh such that uh|∂Ω = ihg,961
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and962

ε(∇uh,∇vh) +
N∑
i=1

(b(xi) · ∇uh|Kup
i
, ϕi) vh(xi) + σ (uh, vh)h = (f, vh)h ,963

for all vh ∈ Vh,0.964

The result below establishes well-posedness and the satisfaction of the DMP. In965

addition, this result also relaxes the hypotheses made on the mesh family from strictly966

acute to the XZ-criterion.967

Theorem 5.7 (DMP for the upwind finite element method). Let us suppose that968

the mesh satisfies the XZ-criterion. Then, the matrix corresponding to the discrete969

problem (5.17) is of non-negative type and hence the solution satisfies the local DMP.970

In addition, the discrete problem (5.17) is well posed and then also the global DMP971

follows.972

Proof. We will show that (εAd + Âc + σMl)
M , where973

Âc = (ĉij) with ĉij := (b(xi) · ∇ϕj |Kup
i
, ϕi) ,974

is of non-negative type. From Corollary 4.6 it is known that (εAd + σMl)
M is of975

non-negative type if the mesh satisfies the XZ-criterion. Moreover, thanks to (5.16)976

and to the fact that the basis functions form a partition of unity on Kup
i , one has for977

i, j = 1, . . . , N978

ĉii ≥ 0 , ĉij ≤ 0 for i ̸= j , and

N∑
j=1

ĉij = 0 .979

Hence, Âc is also of non-negative type. It follows that (εAd + Âc + σMl)
M is of non-980

negative type and since the diagonal entries of this matrix are positive, the method981

satisfies the local DMP thanks to Theorem 3.4.982

Since ε(ℓij)
M
i,j=1 is of non-negative type and it is invertible (thanks to Remark 4.3),983

and (ĉij)
M
i,j=1, (σm̃ij)

M
i,j=1 are of non-negative type, an application of [81, Theorem 5.1]984

shows that (εℓij + ĉij +σm̃ij)
M
i,j=1 is invertible, which, in turn, implies that (5.17) has985

a unique solution. Finally, an application of Theorem 3.5 leads to the satisfaction of986

the global DMP.987

Alternative versions of the upwind method for P1 finite elements have been pro-988

posed over the years. For example, in [3], also for time-dependent convection-diffusion989

equations, a method was proposed motivated by the fact that the exact solution satis-990

fies a discrete analog of a mass conservation property if a special boundary condition991

is applied, see Section 8.3 for some details. This is an additional feature compared992

with the method from [122]. Domains Ω ⊂ Rd and triangulations of weakly acute type993

are considered in [3]. Again, the barycentric cell Di around a vertex xi is constructed.994

Then, appropriate discrete fluxes βij across the individual parts of ∂Di are defined,995

which is a technique from finite volume methods. The discrete convective term has996

the form997

N∑
i=1

∑
j∈Si

(
β+
ijuh(xi) + β−

ijuh(xj)
)
vh(xi),998
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with Si defined in (2.4). The coefficients βij should satisfy several conditions and999

concrete choices are given in [3]. The off-diagonal entries of the convection matrix are1000

always non-positive and, for a particular choice of the coefficients βij specified in [3],1001

the row sums of this matrix vanish and thus the convection matrix is of non-negative1002

type. Under these assumptions, the statements of Theorem 5.7 can be transferred1003

literally to the method from [3].1004

One further upwind method, based on a slightly different choice of the domains1005

for the dual basis, was presented in [75]. A proposal for partial upwinding can be1006

found in [60]. For a unified presentation of upwind finite element methods and some1007

numerical results we refer to [79].1008

The numerical analysis of several linear finite element upwind schemes can be1009

found in [60], in particular in [60, Section 4.7] for the steady-state convection-diffusion1010

equation (σ = 0) in two dimensions. The error analysis for one of the methods is1011

presented in detail. For weakly acute triangulations, sufficiently small mesh width,1012

and u being regular enough, the estimate1013

∥u− uh∥0,∞,Ω ≤ Ch1014

is proved, with C being independent of ε. It is remarked that the same result holds1015

true for the methods from [3, 122]. The d-dimensional convection-diffusion-reaction1016

equation is studied in [3], where the reaction coefficient is assumed to be constant and1017

mass lumping is used for the reactive term. It is proved that there exists a positive1018

constant C, which does not depend on ε, such that1019

∥ihu− uh∥0,∞,Ω ≤ Ch∥u∥2,p,Ω, p > d,1020

if the reaction constant is sufficiently large.1021

5.4. The edge-averaged finite element method. This section describes the1022

method proposed in [135] and its main properties.1023

A part of the analysis will be performed under the assumption that the matrix1024

Ad,I is irreducible. Let us mention that if the mesh is connected (see Definition 2.2),1025

then the diffusion matrix Ad (including all boundary nodes) is irreducible, compare1026

[39, Rem. 2.3]. As shown in the same paper, this property does not necessarily imply1027

the irreducibility of Ad,I. Despite this, it needs to be considered that the example1028

provided in [39] is rather pathological. In fact, in the same paper it is already noted1029

that refining the mesh once removes the reducibility of Ad,I. Thus, from the available1030

experience, one might state that the reducibility of Ad,I is an exceptional situation that1031

can be cured by mesh refinements (with the resulting mesh being still very coarse).1032

For this reason, assuming that the matrix Ad,I is irreducible does not seem to be a1033

big loss of generality.1034

The following rewriting of the discrete Laplacian matrix Ad, which was at the1035

heart of the proof of Theorem 4.1, will be fundamental for the derivation of the1036

method. Consider any uh, vh ∈ Vh and any K ∈ Th, and denote by IK the index set1037

of nodes contained in K. Since the local diffusion matrices are symmetric and have1038

zero row sums, a direct calculation using δE defined in Section 2.2 yields1039

(∇uh,∇vh)K =
∑

i,j∈IK

ℓKijuivj =
∑

i,j∈IK

ℓKijui(vj − vi)1040

=
∑

i,j∈IK ,i<j

ℓKij (ui − uj)(vj − vi) = −
∑

i,j∈IK ,i<j

ℓKij δEij
uh δEij

vh ,1041
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where we use the notation ui = uh(xi), vi = vh(xi), i = 1, . . . , N . This formula is a1042

sum over the edges of K, where every edge appears exactly once. Hence, denoting1043

λKE =
|κKE | cot θKE
d(d− 1)

,1044

it follows from (4.1) that1045

(∇uh,∇vh)K =
∑

E∈EK

λKE δEuh δEvh .1046

Consider any a ∈ Rd and set uh(x) = a · x. Then uh ∈ Vh, ∇uh = a, and δEuh =1047

hE a · tE for any E ∈ Eh. Thus, the previous identity implies that1048

(5.18) (a,∇vh)K =
∑

E∈EK

hE λ
K
E a · tE δEvh ∀ a ∈ Rd, vh ∈ Vh, K ∈ Th .1049

Another fundamental ingredient in the derivation of the method is the considera-1050

tion of a conservative form of the convective term. We will present, just for simplicity,1051

the case σ = 0, although the case σ > 0 is also treated in [135] using a mass-lumping1052

strategy. Then, applying integration by parts, the bilinear form a(·, ·) defined in (2.3)1053

satisfies1054

(5.19) a(u, v) = (ε∇u− bu,∇v) ∀ u ∈ H1(Ω), v ∈ H1
0 (Ω) .1055

The quantity J(u) = ε∇u− bu is called total flux.1056

A further ingredient is a function χE defined, for each edge E ∈ Eh, by1057

∂χE

∂tE
= −b · tE

ε
,1058

which determines χE uniquely up to an additive constant. This definition implies1059

that, for u ∈ C1(Ω), one has1060

∂(eχEu)

∂tE
=

1

ε
eχE J(u) · tE ,1061

which leads to1062

δE
(
eχEu

)
=

1

ε

∫
E

eχEJ(u) · tE ds .1063

Thus, approximating J(u) onK ⊂ ωE by a constant vector JK(u) leads to the relation1064

(5.20) JK(u) · tE ≈ ε
δE(e

χEu)∫
E
eχEds

.1065

Now, using the approximations JK(u) in (5.19) with v = vh ∈ Vh,0 and applying1066

(5.18) and (5.20) leads to1067

a(u, vh) ≈
∑

K∈Th

(JK(u),∇vh)K =
∑

K∈Th

∑
E∈EK

hE λ
K
E JK(u) · tE δEvh1068

≈
∑

K∈Th

∑
E∈EK

λKE ε̃E(b) δE(e
χEu) δEvh ,1069

1070
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where1071

ε̃E(b) =
ε hE∫

E
eχE ds

1072

is the harmonic average of ε e−χE on the edge E. This suggests to introduce the1073

bilinear form1074

ah(uh, vh) =
∑
E∈Eh

( ∑
K⊂ωE

λKE

)
ε̃E(b) δE(e

χEuh) δEvh ,1075

which leads to the following Xu–Zikatanov, or edge-averaged, finite element method:1076

Find uh ∈ Vh, such that uh|∂Ω = ihg, and1077

(5.21) ah(uh, vh) = (f, vh) ∀ vh ∈ Vh,0 .1078

It is worth stressing that if one replaces χE by χE + c, c ∈ R, then, in exact1079

arithmetic, the bilinear form ah(·, ·) is not affected. Thus, the fact that χE is defined1080

up to an additive constant has no effect in method (5.21). It is observed in [8]1081

that in two dimensions the edge-averaged finite element method is equivalent to the1082

Scharfetter–Gummel finite volume scheme.1083

For analyzing (5.21), first two properties of its system matrix will be proven.1084

More precisely, we define the matrix (A)M = (aij)
i=1,...,M
j=1,...,N given by aij = ah(ϕj , ϕi).1085

Then, the following results hold.1086

Lemma 5.8 (Properties of the system matrix of (5.21)). If the matrix Ad,I is1087

irreducible, then the matrix AI = (aij)
M
i,j=1 is irreducible, too. In addition, if the1088

XZ-condition (2.7) is satisfied, the diagonal entries of AI = (aij)
M
i,j=1 are positive.1089

Proof. Consider any i, j ∈ {1, . . . ,M}, i ̸= j. If xi, xj are not endpoints of the1090

same edge, then aij = 0 = ℓij . Otherwise, in view of (4.2),1091

(5.22) aij = −

( ∑
K⊂ωEij

λKEij

)
ε̃Eij

(b) e
χEij

(xj) = ℓij ε̃Eij
(b) e

χEij
(xj) .1092

The positivity of the last two factors implies that aij = 0 if and only if ℓij = 0, which1093

proves the first part of the lemma. Furthermore, again in view of (4.2),1094

aii =
∑

E∈Eh:xi∈E

( ∑
K⊂ωE

λKE

)
ε̃E(b) e

χE(xi) = −
∑
j∈Si

ℓij ε̃Eij
(b) e

χEij
(xi)

1095

for any i ∈ {1, . . . ,M}. If (2.7) holds, then (4.2) implies that ℓij ≤ 0 for all j ̸= i and1096

since ℓii = |ϕi|
2
1,Ω > 0, it follows from (4.3) that ℓij < 0 for at least one index j ̸= i.1097

Therefore, aii > 0, which finishes the proof.1098

Theorem 5.9 (M-matrix property of the system matrix of the edge-averaged1099

FEM). Let the mesh be of XZ-type and let the matrix Ad,I be irreducible. Then the1100

system matrix of the discretization (5.21) is an M-matrix.1101

Proof. First, note that the matrix AI is irreducible by Lemma 5.8. We extend the1102

matrix (A)M to an N × N matrix by setting aij = ah(ϕj , ϕi) for all i, j = 1, . . . , N .1103

Then the representation (5.22) holds if j ∈ Si, and aij = 0 if j ̸∈ Si ∪ {i}. Since Th1104
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satisfies the XZ-condition (2.7), one observes immediately that aij ≤ 0 if j ̸= i and1105

i ≤M or j ≤M . Moreover, from the definition of δE , it follows directly that1106

N∑
i=1

aij = ah(ϕj , 1) = 0 , j = 1, . . . , N .1107

Since the matrix Ad is irreducible, there is ĩ ∈ {M + 1, . . . , N} and j̃ ∈ {1, . . . ,M}1108

such that aĩj̃ < 0, which implies that at least one column sum of AI is strictly1109

positive (while the remaining ones are at least non-negative). Hence, AT
I is irreducibly1110

diagonally dominant and then, according to [126, Theorem 3.27], AT
I is an M-matrix.1111

Consequently, also AI is an M-matrix and the theorem follows from Remark 3.14.1112

The last result generalizes the result presented in [135, Lemma 6.2] where it is1113

shown that the bilinear form ah(·, ·) from (5.21) satisfies an inf-sup condition for1114

sufficiently small h, and thus showing well-posedness of (5.21) for sufficiently refined1115

meshes (although we should mention that this generalization is already hinted in [135,1116

Remark 6.1]).1117

Remark 5.10. The M-matrix property proved in Theorem 5.9 immediately implies1118

the positivity preservation of the discrete problem (5.21), i.e., if the right-hand side1119

f and the boundary condition g are non-negative, then also the discrete solution uh1120

is non-negative. However, the M-matrix property does not imply the local or global1121

DMP. The validity of the DMPs follows from Theorems 3.4 and 3.5 if the convection1122

field b is constant since then the validity of (3.6) can be shown. However, in general,1123

the validity of the local and global DMPs is open. □1124

The discrete problem (5.21) is well-posed under the assumptions of Theorem 5.91125

since the system matrix is an M-matrix. In more general situations the well-posedness1126

for sufficiently small mesh sizes is shown in [135]. That paper presents also an error1127

estimate of the form1128

∥ihu− uh∥1,Ω ≤ Ch

 ∑
K∈Th

|J(u)|21,p,K +
∑

K∈Th

|σu|21,r,K

1/2

,1129

assuming that the terms on the right-hand side are well defined for sufficiently large1130

values of p and r, where the concrete values depend on the dimension.1131

6. Nonlinear stabilized discretizations of the steady-state problem. One1132

common feature of all the discretizations presented in the previous section is that they1133

add global stabilizing terms, that is, the methods modify the formulation in the whole1134

domain (equivalently, they modify every row in the system matrix). As a consequence,1135

linear stabilized methods that respect the DMP provide, in general, very diffused1136

solutions. Now, as it was mentioned earlier, in order to prove the DMP, one only1137

needs to analyze the rows of the matrix associated with nodes where an extremum is1138

attained. So, ideally, a method should modify only these rows of the matrix in order1139

to have a good performance. The selection of these rows depends on the solution itself,1140

thus such a method is necessarily nonlinear. This is why in this section we present1141

several nonlinear finite element methods for the convection-diffusion equation that1142

respect the DMP. In contrast to linear methods, some of the nonlinear approaches1143

even satisfy the DMP on general meshes, i.e., without any assumptions on the angles1144

in the meshes.1145
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6.1. The Mizukami–Hughes method. The Mizukami–Hughes method is a1146

nonlinear Petrov–Galerkin method proposed in [109] and improved and further devel-1147

oped in [78, 80, 81]. The idea of the method is to create an upwind effect by means1148

of solution-dependent weighting functions which guarantee that the approximate so-1149

lution satisfies a linear system with a matrix of non-negative type. Up to the best1150

of our knowledge, this is the first nonlinear DMP-satisfying method proposed for the1151

numerical solution of (2.1). We shall confine ourselves to the two-dimensional case1152

and to σ = 0. Extensions to σ > 0 and to three space dimensions can be found in1153

[78].1154

For any interior node xi, i ∈ {1, . . . ,M}, we introduce the weighting function1155

ϕ̃i = ϕi +
∑

K⊂ωi

CK
i χK .1156

Here χK denotes the characteristic functions of mesh cells K (i.e., χK = 1 in K1157

and χK = 0 elsewhere) and CK
i are constants which will be determined later. The1158

discretization of the convection-diffusion equation reads as follows: Find uh ∈ Vh such1159

that uh|∂Ω = ihg, and1160

(6.1) ε (∇uh,∇ϕi) + (bh · ∇uh, ϕ̃i) = (f, ϕ̃i) , i = 1, . . . ,M ,1161

where bh is a piecewise constant approximation of b. We shall also use the notation1162

bK := bh|K for K ∈ Th. The simplest choice is to set bK equal to the value of b at1163

the barycenter of K.1164

The definition of the constants CK
i is based on the requirement that the local1165

convection matrix ÂK
c with entries1166

(6.2) ĉKij = (bK · ∇ϕj , ϕ̃i)K , i = 1, . . . ,M , j = 1, . . . , N , xi,xj ∈ K ,1167

is of non-negative type. In [109], it was further required that1168

(6.3) CK
i ≥ − 1

3 ∀ i ∈ {1, . . . , N} , xi ∈ K ,

N∑
i=1

xi∈K

CK
i = 0 .1169

As we will see, the choice of the constants CK
i significantly depends on the direc-1170

tion of the convection vector bK with respect to the edges of K. To characterize the1171

direction of bK , we decompose any triangle K into vertex zones and edge zones by1172

drawing lines parallel to the edges of K which all intersect at the barycenter of K, see1173

Fig. 2. Denoting the vertices of K by x1, x2 and x3, the set containing the vertex xi,1174

i = 1, 2, 3, will be called vertex zone VZi. The remaining three sets are called edge1175

zones and the edge zone opposite the vertex xi will be denoted by EZi. The common1176

part of the boundaries of two adjacent zones is included in the respective vertex zone.1177

The fact that the vector bK points from the barycenter of K into VZi or EZi will be1178

shortly expressed by bK ∈ VZi or bK ∈ EZi, respectively. Without loss of generality,1179

one may assume that the vertices of K are numbered in such a way that bK ∈ VZ11180

or bK ∈ EZ1 as depicted in Fig. 2.1181

Using (2.14), it is easy to see that1182

bK ∈ VZ1 ⇐⇒ bK · ∇ϕ1 > 0 , bK · ∇ϕ2 ≤ 0 , bK · ∇ϕ3 ≤ 0 ,1183

bK ∈ EZ1 ⇐⇒ bK · ∇ϕ1 < 0 , bK · ∇ϕ2 > 0 , bK · ∇ϕ3 > 0 ,11841185
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Fig. 2. Definition of edge zones and vertex zones.

where we write ∇ϕi instead of ∇ϕi|K for simplicity. Note that ÂK
c has always zero1186

row sums, so that one has to assure only that ĉKij ≤ 0 for i ̸= j. Since1187

ĉKij = bK · ∇ϕj |K |K| ( 13 + CK
i ) ,1188

one observes that, if bK ∈ VZ1, this condition on ÂK
c can be easily satisfied by setting1189

(6.4) CK
1 = 2

3 , CK
2 = CK

3 = − 1
3 .1190

However, if bK ∈ EZ1, it is generally not possible to choose the constants CK
1 , C

K
2 , C

K
31191

in such a way that (6.3) holds and ÂK
c is of non-negative type.1192

Nevertheless, Mizukami and Hughes [109] made the important observation that1193

u still solves the equation (2.1) if b is replaced by any function b̃ such that b̃ − b is1194

orthogonal to ∇u. This suggests to define the constants CK
i in such a way that the1195

matrix ÂK
c is of non-negative type for bK replaced by a function b̃K pointing into a1196

vertex zone and preserving the product bK · ∇uh|K . Note that the local convection1197

matrix ÂK
c will be still defined using bK and the vector b̃K is used only for defining the1198

constants CK
i . Since the constants CK

i depend through b̃K on the unknown discrete1199

solution uh, the resulting discrete problem is nonlinear.1200

Let us assume that bK ∈ EZ1 and bK · ∇uh|K ̸= 0 and let w ̸= 0 be a vector1201

orthogonal to ∇uh|K . We introduce the sets1202

Vk = {α ∈ R ; bK + αw ∈ VZk} , k = 2, 3 .1203

The vectors bK + αw play the role of b̃K mentioned above. Is is easy to see that1204

V2∪V3 ̸= ∅. Mizukami and Hughes showed that, depending on V2 and V3, the following1205

values of the constants CK
i should be used:1206

V2 ̸= ∅ & V3 = ∅ =⇒ CK
2 = 2

3 , CK
1 = CK

3 = − 1
3 ,(6.5)1207

V2 = ∅ & V3 ̸= ∅ =⇒ CK
3 = 2

3 , CK
1 = CK

2 = − 1
3 ,(6.6)1208

V2 ̸= ∅ & V3 ̸= ∅ =⇒ CK
1 = − 1

3 , CK
2 + CK

3 = 1
3 ,(6.7)1209

CK
2 > − 1

3 , CK
3 > − 1

3 .1210

This manuscript is for review purposes only.



34 G.R. BARRENECHEA, V. JOHN, AND P. KNOBLOCH

It was observed in [78] that the definition of CK
i ’s proposed in [109] for the case (6.7)1211

depends on the orientation of bK and ∇uh|K in a discontinuous way. This may dete-1212

riorate the quality of the discrete solution and prevent the nonlinear iterative process1213

from converging. Therefore, another definition of these constants was introduced in1214

[78] for which the dependence on the orientation of bK and ∇uh|K is continuous. To1215

avoid technical digressions, we refer to [78] for details.1216

It was also demonstrated in [78] that, in some cases, the solutions of the original1217

Mizukami–Hughes method do not approximate boundary layers in a correct way.1218

Therefore, if bK points into an edge zone, it was proposed to set1219

(6.8) CK
1 = CK

2 = CK
3 = − 1

31220

for any mesh cellK ∈ Th having a node on ∂Ω. Except for cases where these mesh cells1221

form a strip along the boundary of an approximately constant width, the definition1222

(6.8) is used also for mesh cells whose all nodes are connected by edges to nodes on1223

∂Ω. The choice (6.8) suppresses the influence of the Dirichlet boundary condition on1224

the approximate solution inside Ω, which may be important if K lies in the numerical1225

boundary layer.1226

If bK ∈ EZ1, bK · ∇uh|K = 0 and (6.8) is not used, then one sets1227

(6.9) CK
1 = − 1

3 , CK
2 = CK

3 = 1
6 .1228

Finally, one sets CK
1 = CK

2 = CK
3 = 0 if bK = 0.1229

Although the system matrix of (6.1) is in general not of non-negative type, one1230

can prove that, for meshes of XZ-type, the solution vector solves a linear system of1231

the form (3.1)–(3.2) with a non-singular matrix of non-negative type, which implies1232

that the solution of the Mizukami–Hughes method satisfies local and global DMPs.1233

Theorem 6.1 (Matrix of non-negative type for the Mizukami–Hughes method).1234

Let the mesh Th be of XZ-type. Then the solution of the Mizukami–Hughes method1235

(6.1) satisfies a linear system of the type (3.1)–(3.2) with fi = (f, ϕ̃i), i = 1, . . . ,M ,1236

and gi−M = g(xi), i = M + 1, . . . , N , such that the corresponding system matrix A1237

given in (3.3) is of non-negative type and its block AI is invertible.1238

Proof. Let u be the coefficient vector corresponding to the solution of (6.1). We1239

shall show that, for any K ∈ Th, there is a matrix ÃK
c of non-negative type such that1240

(6.10) ÃK
c uK = ÂK

c uK ,1241

where ÂK
c is defined by (6.2) and uK consists of the components of u corresponding1242

to nodes of K. If bK = 0 or CK
i ’s are defined in (6.4) or (6.8), one can take ÃK

c = ÂK
c .1243

In case of (6.9) which is used if bK · ∇uh|K = 0, one can set ÃK
c = 0. It remains to1244

define ÃK
c in cases when the constants CK

i are defined by (6.5)–(6.7), which assumes1245

that bK ∈ EZ1 and bK · ∇uh|K ̸= 0. First, we introduce some auxiliary notation. If,1246

for some k ∈ {2, 3}, the set Vk is non-empty, we choose αk ∈ Vk and define the matrix1247

ÃK,k
c with entries1248

c̃K,k
ij = (bK + αk w) · ∇ϕj |K |K| ( 13 + CK,k

i ) , i, j = 1, 2, 3 (xi ∈ Ω) ,1249

where CK,2
i are defined as in (6.5) and CK,3

i as in (6.6). If Vk = ∅, we set ÃK,k
c = 0.1250

Then the matrices ÃK,2
c and ÃK,3

c are of non-negative type and hence also1251

ÃK
c := ( 13 + CK

2 ) ÃK,2
c + ( 13 + CK

3 ) ÃK,3
c1252

This manuscript is for review purposes only.



DMP-PRESERVING FEM 35

is of non-negative type. Since w · ∇uh|K = 0 and1253

( 13 + CK
2 )( 13 + CK,2

i ) + ( 13 + CK
3 )( 13 + CK,3

i ) = 1
3 + CK

i , i = 1, 2, 3 ,1254

one obtains (6.10).1255

The matrices ÂK
c and ÃK

c are assembled to M × N matrices Âc,MH and Ãc,MH1256

for which Âc,MH u = Ãc,MH u and Ãc,MH is of non-negative type. Since u corresponds1257

to the solution of (6.1), one has (ε (Ad)
M + Âc,MH)u = f with f = (f1, . . . , fM )1258

introduced in the formulation of the theorem. As Th is of XZ-type, the matrix (Ad)
M

1259

is of non-negative type according to Theorem 4.1. Thus u also satisfies the linear1260

system (ε (Ad)
M + Ãc,MH)u = f and the matrix AM := ε (Ad)

M + Ãc,MH is of non-1261

negative type. Since the block Ad,I of Ad is invertible (cf. Remark 4.3), it follows that1262

also AI is invertible (see [81, Theorem 5.1]). This finishes the proof.1263

As discussed in [81], the Mizukami–Hughes method corresponds to the discretiza-1264

tion of the convective term by standard upwind differencing. This is appropriate if1265

the diffusion ε is small in comparison to b. However, if this is not the case, such1266

a discretization leads to a low accuracy since too much artificial diffusion is intro-1267

duced. Therefore, in [81], the constants CK
i were defined in such a way that the1268

matrix ε̃AK
d + ÂK

c is of non-negative type, where AK
d is the local diffusion matrix and1269

ε̃ ∈ (0, ε) is close to ε. This does not change the method much in the convection-1270

dominated case but improves the accuracy if ε is not small.1271

To the best of our knowledge, there are no error estimates available for the1272

Mizukami–Hughes method. Also, the solvability of the nonlinear problem seems to1273

be still an open problem.1274

6.2. Burman–Ern Methods. In this section we will present the finite element1275

method, based on a continuous interior penalty idea, presented in [28]. The analysis1276

of this method requires the mesh to be of XZ-type, so we will assume that throughout1277

this section. In the work [28] the method is presented with two stabilizations, namely,1278

a linear one (e.g., SUPG or CIP), and the nonlinear stabilizing term responsible for the1279

DMP. To keep the discussion brief, we will start discussing the case of the reduced1280

method, that is, the method only adds the nonlinear stabilization to the Galerkin1281

formulation. The proof of the local DMP (cf. Theorem 3.18) is achieved by proving1282

that the nonlinear problem satisfies the weak DMP property (cf. Definition 3.16). So,1283

as a motivation for the definition of the method we will now suppose that uh(xi) < 0,1284

i ∈ {1, . . . ,M}, is a local minimum in ωi and will bound a(uh, ϕi). Thanks to the1285

fact that the mesh is of XZ-type one has ℓij ≤ 0 for all j ̸= i (cf. Theorem 4.1), and1286

consequently1287

(6.11) (∇uh,∇ϕi) =
∑
j∈Si

ℓij(uh(xj)− uh(xi)) ≤ 0 .1288

In addition, if the function uh changes sign inside K ⊂ ωi, using a Taylor expansion1289

at a zero of uh, one gets1290

(uh, ϕi)K ≤ |K|
d+ 1

hK
∣∣∇uh|K∣∣ .1291
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If uh ≤ 0 in K then one just bounds (uh, ϕi)K ≤ 0. The convective term is bounded1292

in a similar way leading to1293

(b · ∇uh + σuh, ϕi) ≤
1

d+ 1

∑
K⊂ωi

(
∥b∥0,∞,K + σ hK

)
|K|

∣∣∇uh|K∣∣ .1294

Next, to bound the gradient of uh in the last inequality one uses that uh(xi) is1295

a local minimum and then the following bound holds (see [28, Lemma 2.7] for the1296

proof):1297

|∇uh|K | ≤
∑

F∈Fi

|J∇uhKF | ∀ K ⊂ ωi ,1298

which leads to1299

a(uh, ϕi) ≤
1

d+ 1

∑
F∈Fi

∑
K⊂ωi

(
∥b∥0,∞,K + σ hK

)
|K| |J∇uhKF |(6.12)1300

≤ 1

d+ 1

∑
F∈Fi

(
∥b∥0,∞,ω̃F

+ ρ σ hF
)
|ωi| |J∇uhKF | ,1301

1302

where we used the fact that, in view of (2.5), one has hK ≤ ρ hF for any K ⊂ ωi and1303

F ∈ Fi. Since |ωi| ≤ Ωd (maxK⊂ωi
hK)d, where Ωd is the measure of the unit ball1304

in Rd, one has |ωi| ≤ Ωd ρ
d hdF for any F ∈ Fi. Using the mesh regularity, one gets1305

|ωi| ≤ C ρd hF |F |, which gives1306

(6.13) a(uh, ϕi) ≤
Cρd

d+ 1

∑
F∈Fi

(
∥b∥0,∞,ω̃F

+ ρ σ hF
)
hF |F | |J∇uhKF | .1307

From the discussion above, one sees that in order to prove the DMP, one needs1308

to control a term related to the jumps of the gradients of the discrete solution across1309

the facets containing the local extrema. Motivated by this observation, in [28] the1310

following method is proposed: Find uh ∈ Vh such that uh|∂Ω = ihg, and1311

(6.14) a(uh, vh) + jh(uh; vh) = (f, vh) ∀ vh ∈ Vh,0 .1312

Here, jh(·; ·) is a stabilizing form given by1313

jh(uh; vh) = cρ
∑

F∈FI

(
∥b∥0,∞,ω̃F

+ ρ σ hF
)
hF (|J∇uhKF | , bF (uh; vh) )F ,(6.15)1314

bF (uh; vh) =
∑

E∈EF

hE sign(∇uh · tE)∇vh · tE .(6.16)1315

1316

The parameter cρ > 0 depends on the mesh regularity through the quantity ρ. Using a1317

regularized problem and Brouwer’s fixed-point theorem in [28] it is proven that (6.14)1318

admits at least one solution. Under the hypothesis that the mesh is of XZ-type, the1319

following result regarding the local DMP can be shown.1320

Theorem 6.2 (Local DMP for the Burman–Ern method). Let us suppose that1321

the mesh is of XZ-type. Then, if cρ is sufficiently large, the nonlinear form jh(·; ·)1322

satisfies the weak DMP property if σ > 0 and the strong DMP property if σ = 0.1323

Consequently, method (6.14) satisfies the local DMP from Theorem 3.18.1324
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Proof. Let us suppose that uh ∈ Vh has a strict local minimum at the interior1325

node xi. Then, for any F ∈ Fi, one has1326

(6.17) bF (uh;ϕi) =
∑

j∈Si:Eij⊂F

sign
(
uh(xj)− uh(xi)

) (
ϕi(xj)− ϕi(xi)

)
= −(d−1) ,1327

since card{j ∈ Si : Eij ⊂ F} = d− 1. This implies that1328

jh(uh;ϕi) ≤ −cρ
∑

F∈Fi

(
∥b∥0,∞,ω̃F

+ ρ σ hF
)
hF |F | |J∇uhKF | .1329

Thus, combining this last bound with (6.13) (which was derived for uh(xi) < 0 but1330

holds also for uh(xi) ≥ 0 if σ = 0) gives1331

a(uh, ϕi) + jh(uh;ϕi) ≤

(
Cρd

d+ 1
− cρ

) ∑
F∈Fi

(
∥b∥0,∞,ω̃F

+ ρ σ hF
)
hF |F | |J∇uhKF | ,1332

and the proof follows choosing cρ large enough provided that ∥b∥0,∞,ω̃F
+ ρ σ hF > 01333

for all F ∈ Fi. If this is not the case, one can employ the fact that the previous1334

inequality holds with the term ε (∇uh,∇ϕi) on the right-hand side. When deriving1335

(6.12), this term was estimated by (6.11). However, since now uh(xi) is a strict1336

local minimum, it follows from (6.11) that (∇uh,∇ϕi) is negative and hence can be1337

estimated by −
∑

F∈Fi
αF |J∇uhKF | with suitable positive constants αF . This finishes1338

the proof.1339

Remark 6.3. The validity of the global DMP seems to be open for method (6.14)1340

since, in general, the stabilizing form jh(·; ·) defined in (6.15) does not allow to prove1341

the strong and weak DMP properties for non-strict extrema formulated in Defini-1342

tion 3.17. To see this, let us consider the patches ωi depicted in Fig. 3. Let us1343

decompose ωi into the sets1344

ω1
i = ∪{K ⊂ ωi : xj ∈ K} , ω2

i = ∪{K ⊂ ωi : xj ̸∈ K} .1345

Let uh ∈ Vh be such that uh(xj) ̸= uh(xi) and uh(xk) = uh(xi) for any vertex1346

xk ∈ ω2
i . Then uh ∈ P1(ω

1
i ), uh is constant in ω2

i , it is not constant in ωi, and1347

attains a local extremum at xi. Consequently, bF (uh; vh) = 0 for any F ⊂ ω2
i and any1348

vh ∈ Vh. On the other hand, for any F ∈ Fi such that xj ∈ F , one has J∇uhKF = 01349

since ∇uh is constant in ω1
i . Thus, jh(uh, ϕi) = 0 which means that the term jh1350

cannot be used to enforce the strong or weak DMP property for non-strict extrema1351

at the node xi. □1352
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An alternative definition, hinted in [28, Theorem 3.5], and developed further in1353

[29, Section 2.4], can be obtained by replacing |J∇uhKF | in (6.15) by1354

mF (uh) = max
F

′∈FI :F
′⊂ωF

|J∇uhKF ′ | .1355

Then1356

(6.18) jh(uh; vh) = cρ
∑

F∈FI

(
ε+ ∥b∥0,∞,ω̃F

hF + ρ σ h2F
)
(mF (uh) , bF (uh; vh) )F .1357

For this stabilizing term, one can prove also the DMP properties for non-strict extrema1358

formulated in Definition 3.17.1359

Theorem 6.4 (DMP for (6.18)). Let us suppose that the mesh is of XZ-type.1360

Then, if cρ is sufficiently large, the nonlinear form jh(·; ·) defined in (6.18) satisfies1361

the weak DMP property for non-strict extrema if σ > 0 and the strong DMP property1362

for non-strict extrema if σ = 0. Consequently, method (6.14) with jh(·; ·) from (6.18)1363

satisfies both the local and the global DMPs from Theorem 3.18.1364

Proof. Let us suppose that uh ∈ Vh has a local minimum at the interior node xi.1365

Then, for any F ∈ Fi, one has1366

bF (uh;ϕi) =
∑

j∈Si:Eij⊂F

sign
(
uh(xj)− uh(xi)

) (
ϕi(xj)− ϕi(xi)

)
≤ 0 .1367

Consider any F ∈ Fi. If J∇uhKF ̸= 0, then there exists a vertex xj ∈ ωF such that1368

uh(xj) ̸= uh(xi). Let F
′′ ⊂ ωF be a facet such that xi,xj ∈ F ′′. Then1369

bF ′′(uh;ϕi) ≤ −sign
(
uh(xj)− uh(xi)

)
= −1 .1370

Since F ⊂ ωF
′′ , one gets1371

|J∇uhKF | ≤ −mF
′′(uh) bF ′′(uh;ϕi) .1372

If J∇uhKF = 0, then this inequality holds with any F ′′ ∈ Fi satisfying F
′′ ⊂ ωF since1373

the right-hand side is nonnegative. Hence one finds that1374 ∑
F∈Fi

|J∇uhKF | ≤ −
∑

F∈Fi

mF
′′(uh) bF ′′(uh;ϕi)(6.19)1375

≤ −(2 d− 1)
∑

F∈Fi

mF (uh) bF (uh;ϕi)1376

1377

as the number of facets F ∈ Fi satisfying F ⊂ ωF
′′ for a given F ′′ ∈ Fi is 2 d − 1.1378

Using this estimate in the first inequality of (6.12) (which was derived for uh(xi) < 01379

but holds also for uh(xi) ≥ 0 if σ = 0) and performing the same manipulations as1380

used to derive (6.13), one obtains1381

a(uh, ϕi) ≤ −C ρd 2 d− 1

d+ 1

∑
F∈Fi

(
∥b∥0,∞,ω̃F

+ ρ σ hF
)
hF (mF (uh) , bF (uh;ϕi) )F ,1382

where C is the same constant as in (6.13). Thus, a(uh, ϕi) + jh(uh;ϕi) ≤ 1
2jh(uh;ϕi)1383

if cρ ≥ 2C ρd (2 d− 1)/(d+ 1). According to (6.19), one has1384

jh(uh;ϕi) ≤ −
cρ

2 d− 1
min
F∈Fi

{(
ε+ ∥b∥0,∞,ω̃F

hF + ρ σ h2F
)
|F |
} ∑

F∈Fi

|J∇uhKF | ,1385
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which completes the proof.1386

Remark 6.5. The methods just analyzed need the mesh to be of XZ-type. To1387

avoid this restriction, in [27] the following method was proposed for the Poisson1388

problem: Find uh ∈ Vh such that uh|∂Ω = ihg, and1389

(6.20) (∇uh,∇vh) + δ
∑

F∈FI

(|J∇uhKF | , bF (uh; vh) )F = (f, vh) ∀ vh ∈ Vh,0 ,1390

where bF is defined as in (6.16) and δ > 0. Then, for δ > 1
d(d−1) , method (6.20)1391

satisfies the strong DMP property for any mesh. In fact, the main argument of the1392

proof is the following observation from [27]: regardless of the mesh,1393

(6.21) (∇uh,∇ϕi) =
∑

F∈Fi

(
J∇uhKF · nF , ϕi)F =

∑
F∈Fi

|F |
d

J∇uhKF · nF ,1394

where nF is the unit normal vector to F in the direction corresponding to the orien-1395

tation of the jump J·KF . So, if uh has a strict local minimum at an interior node xi,1396

it follows from (6.17) that1397

(∇uh,∇ϕi) + δ
∑

F∈FI

(|J∇uhKF | , bF (uh;ϕi) )F ≤
∑

F∈Fi

(
1

d
− δ(d− 1)

)
|F | |J∇uhKF | .1398

Thus, for δ > 1
d(d−1) (6.20) satisfies the strong DMP criterion.1399

The main difference between (6.20) and (6.14) resides on the size of the stabiliza-1400

tion term. In fact, only considering the powers of h involved, the stabilization given1401

in (6.20) is one size larger than the one from (6.14), as (6.20) is designed to match1402

the behavior of the diffusion matrix given by (6.21). So, even if this term is positive1403

(as it would happen if a mesh that is not of XZ-type is used), then the stabilization is1404

large enough to compensate for that. Even if in [27] an extension to the convection-1405

diffusion equation has been studied, this variant does not seem to have been applied1406

to convection-dominated problems in later years. □1407

Method (6.14) is the simplest form of a Burman–Ern method that respects the1408

local DMP. In the presence of dominating convection, sometimes it is recommended to1409

first add a linear stabilization term to stabilize the convection, and only then to add1410

a nonlinear stabilization to ensure the satisfaction of the DMP. With this objective1411

in mind, this approach was pursued in [28] by using a linear stabilization which can1412

be given by the SUPG or CIP stabilization. We now summarize briefly the results1413

proven for the latter option. The CIP stabilizing term is defined as follows (see, e.g.,1414

[29])1415

sh(uh, vh) =
∑

F∈FI

γcip ∥b∥0,∞,Ωh
2
F (J∇uhKF , J∇vhKF )F ,1416

where γcip > 0. Using this stabilizing term, the following stabilized method is pro-1417

posed in [28]: Find uh ∈ Vh such that uh|∂Ω = ihg, and1418

(6.22) a(uh, vh) + sh(uh, vh) + jh(uh; vh) = (f, vh) ∀ vh ∈ Vh,0 ,1419

with jh(·; ·) being a combination of (6.15) and (6.18). The corresponding analogue of1420

Theorem 6.4 was proven for (6.22) in [28, Theorem 3.5]. For the diffusion-dominated1421
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regime, i.e., with the assumption ch ≤ ε for some appropriate constant c, the following1422

error estimate appears as a corollary of [28, Theorem 3.10]:1423

ε
1
2 |u− uh|1,Ω + σ

1
2 ∥u− uh∥0,Ω + ∥h

1
2 b · ∇(u− uh)∥0,Ω(6.23)1424

+ sh(u− uh, u− uh)
1
2 ≤ C

(
ε+ ∥b∥0,∞,Ω h+ σ h2

) 1
2

h ∥u∥2,Ω ,1425
1426

where C > 0 is independent of h and all the physical parameters, provided that the1427

exact solution u belongs to H2(Ω).1428

The combination of linear and nonlinear stabilizations has two main effects in1429

this context. First, the addition of the linear stabilization term sh(·, ·) allows for1430

the extra control on the convective term appearing in (6.14), which is responsible1431

for the estimate (6.23). This control is not possible to achieve if only the nonlinear1432

stabilization jh(·, ·) is used. The second main effect is computational. It can be1433

observed that, while the nonlinear stabilization jh(·, ·) is local (in the sense that it1434

is active mostly in the vicinity of extrema and layers), the linear stabilization term1435

sh(·, ·) is global, and thus it helps dampening oscillations that appear away from the1436

layers.1437

Remark 6.6. Finally, it is worth mentioning that the works reviewed in this sec-1438

tion were not the first effort that was made in this direction by the authors. In1439

fact, in their previous paper [26] the authors proposed a nonlinear diffusion method1440

that, under the assumption of acute meshes, satisfies the global DMP. To improve1441

the convergence of the nonlinear solver, absolute values in the nonlinear terms were1442

regularized, which however leads to a violation of the DMP. Comprehensive numerical1443

tests of three variants of the methods from [26] can be also found in [66, 67]. In par-1444

ticular, in [67], the authors did not succeed to solve the respective nonlinear problems1445

in a number of cases. □1446

6.3. Algebraic Flux Correction methods. Algebraic flux correction (AFC)1447

methods belong to the class of algebraically stabilized schemes which have been inten-1448

sively developed in recent years, see, e.g., [4, 13, 52, 83, 86, 87, 89, 90, 91, 96, 98, 104].1449

In contrast to the methods discussed in the previous sections, the stabilization is not1450

introduced in a variational form but the starting point is the system of linear alge-1451

braic equations corresponding to the Galerkin FEM discretization. Then, a nonlinear1452

algebraic term is added to the linear system in order to enforce a DMP without an1453

excessive smearing of the layers.1454

Let AN be the matrix corresponding to the standard Galerkin FEM (5.1) with1455

Neumann boundary conditions, i.e.,1456

(6.24) AN = εAd + Ac + σMc .1457

We will also consider a lumping of the reaction term in (5.1), which leads to a matrix1458

given by1459

(6.25) AN = εAd + Ac + σMl .1460

The discrete problem is then equivalent to the system (3.1), (3.2), where fi = (f, ϕi)1461

for i = 1, . . . ,M and gi−M = g(xi) for i =M + 1, . . . , N . To derive an AFC scheme,1462

first a symmetric artificial diffusion matrix D = (dij)
N
i,j=1 is introduced by1463

(6.26) dij = −max{0, aij , aji} for i ̸= j, dii = −
N∑

j=1,j ̸=i

dij .1464
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Hence D has zero row and column sums and the matrix AN + D is of non-negative1465

type. Thus, replacing AN by AN + D in (3.1), one obtains the stabilized problem1466

(AN + D)Mu = f1467

satisfying the DMP (with f = (f1, . . . , fM )T ). However, like for the similar linear1468

artificial diffusion method of Section 5.2, the added artificial diffusion is usually too1469

large and leads to an excessive smearing of layers. Therefore, it is necessary to restrict1470

the artificial diffusion to regions where the solution changes abruptly. Since these1471

regions are not known a priori, this will again lead to a nonlinear method.1472

The original derivation of the AFC method, e.g., in [87], is performed in such a1473

way that first the term (Du)i is added to both sides of (3.1) leading to1474

(6.27) (AN + D)Mu = f + DMu ,1475

and then the identity1476

(Du)i =
N∑
j=1

fij with fij = dij (uj − ui)1477

is used. The quantities fij are called fluxes since they can be interpreted as quantities1478

which correspond to the intensity of the flow of u between the nodes xi and xj ,1479

see also the explanation of the concept of fluxes at the beginning of Section 8.4. It1480

turns out that spurious oscillations in the approximate solution can be suppressed by1481

damping the above-introduced fluxes fij appearing on the right-hand side of (6.27).1482

This damping is often called limiting and it is achieved by multiplying the fluxes by1483

solution-dependent correction factors αij ∈ [0, 1] called limiters. This leads to the1484

nonlinear algebraic problem1485

N∑
j=1

aij uj +
N∑
j=1

(1− αij(u)) dij (uj − ui) = fi for i = 1, . . . ,M ,(6.28)1486

ui = gi−M for i =M + 1, . . . , N .(6.29)14871488

It is assumed that1489

(6.30) αij = αji , i, j = 1, . . . , N ,1490

and that, for any i, j ∈ {1, . . . , N}, the function αij(u)(uj−ui) is a continuous function1491

of u ∈ RN . A theoretical analysis of the AFC scheme (6.28), (6.29) concerning the1492

solvability, local DMP and error estimation can be found in [12]; see also [2, 63] for a1493

posteriori error estimators.1494

The symmetry condition (6.30) is particularly important for several reasons. First,1495

it guarantees that the resulting method is conservative. Second, it implies that the1496

matrix corresponding to the term arising from the AFC is positive semidefinite. This1497

shows that this term really enhances the stability of the method and enables to es-1498

timate the error of the approximate solution, see [12]. Finally, it was demonstrated1499

in [11] that, without the symmetry condition (6.30), the nonlinear algebraic problem1500

(6.28), (6.29) is not solvable in general.1501
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Recently, motivated by [4], a generalization of (6.28) was proposed in [83] by1502

introducing the matrix B(u) = (bij(u))
N
i,j=1 given by1503

bij(u) = −max{0, (1− αij(u)) aij , (1− αji(u)) aji} for i ̸= j,(6.31)1504

bii(u) = −
N∑

j=1,j ̸=i

bij(u).(6.32)1505

1506

Then, instead of (6.28), (6.29), the following algebraically stabilized problem is con-1507

sidered1508

N∑
j=1

aij uj +
N∑
j=1

bij(u) (uj − ui) = fi for i = 1, . . . ,M ,(6.33)1509

ui = gi−M for i =M + 1, . . . , N .(6.34)15101511

Under condition (6.30), both algebraic problems, (6.28), (6.29) and (6.33), (6.34), are1512

equivalent. However, the advantage of (6.33), (6.34) is that the symmetry condition1513

(6.30) is no longer necessary. Note that the matrix B(u) is symmetric, has nonpositive1514

off-diagonal entries and has zero row and column sums. These properties imply that1515

N∑
i,j=1

vi bij(u) (vj − vi) = −1

2

N∑
i,j=1

bij(u) (vj − vi)
2 ≥ 0 ∀ u,v ∈ RN .1516

Thus, the matrix B(u) is positive semidefinite for any u ∈ RN .1517

To write the above algebraic problem in a variational form, we denote1518

dh(w; z, v) =

N∑
i,j=1

bij(w) z(xj) v(xi) ∀ w, z, v ∈ C(Ω) ,1519

with bij(w) := bij({w(xi)}
N
i=1). Then1520

(6.35) dh(w;ϕj , ϕi) = bij(w) ∀ w ∈ C(Ω), i, j = 1, . . . , N ,1521

and (6.33), (6.34) is equivalent to problem (3.15), where a(·, ·) is defined by (2.3) in1522

case of AN given by (6.24) and by (5.12) if AN given by (6.25) is considered. The1523

property (6.32) immediately implies the validity of (3.16). Since the matrix B(u) is1524

positive semidefinite, the form dh also satisfies (3.17). Finally, since aij = aji = 0 if1525

j ̸∈ Si ∪ {i}, one has1526

(6.36) dh(w;ϕj , ϕi) = 0 ∀ w ∈ C(Ω), j ̸∈ Si ∪ {i}, i = 1, . . . , N ,1527

so that (3.23) always holds.1528

Of course, the properties of an algebraically stabilized scheme significantly depend1529

on the choice of the limiters αij . Their design principles often originate from the1530

time-dependent case where they should guarantee the positivity preservation, see1531

Section 8.4. In the steady case, a standard limiter is the Kuzmin limiter proposed in1532

[87] which was thoroughly investigated in [12]. To define the limiter of [87], one first1533
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computes, for i = 1, . . . ,M ,1534

P+
i =

∑
j ∈ Si

aji ≤ aij

f+ij , P−
i =

∑
j ∈ Si

aji ≤ aij

f−ij ,(6.37)1535

Q+
i = −

∑
j∈Si

f−ij , Q−
i = −

∑
j∈Si

f+ij ,(6.38)1536

1537

where fij = dij (uj −ui), f
+
ij = max{0, fij}, and f

−
ij = min{0, fij}. We recall that dij1538

is defined in (6.26) using the matrix AN from (6.24) or (6.25). Also the matrix entries1539

appearing in (6.37) are taken from this matrix. Then, one defines1540

(6.39) R+
i = min

{
1,
Q+

i

P+
i

}
, R−

i = min

{
1,
Q−

i

P−
i

}
, i = 1, . . . ,M .1541

If P+
i or P−

i vanishes, one sets R+
i = 1 or R−

i = 1, respectively. At Dirichlet nodes,1542

these quantities are also set to be 1, i.e.,1543

(6.40) R+
i = 1 , R−

i = 1 , i =M + 1, . . . , N .1544

Furthermore, one sets1545

(6.41) α̃ij =

 R+
i if fij > 0 ,
1 if fij = 0 ,

R−
i if fij < 0 ,

i, j = 1, . . . , N .1546

Finally, one defines1547

(6.42) αij = αji = α̃ij if aji ≤ aij , i, j = 1, . . . , N .1548

Theorem 6.7 (DMP for the AFC scheme with Kuzmin limiter). Let1549

(6.43) min{aij , aji} ≤ 0 ∀ i = 1, . . . ,M , j = 1, . . . , N , i ̸= j .1550

Then the AFC scheme (6.28), (6.29) with the Kuzmin limiter defined by (6.37)–(6.42)1551

satisfies the algebraic DMP property formulated in Definition 3.19 and also the alge-1552

braic DMP property for non-strict extrema from Definition 3.20.1553

Proof. Consider any uh ∈ Vh, i ∈ {1, . . . ,M}, and j ∈ Si. Let u be the vector1554

of nodal values of uh and assume that ui is a local extremum of uh on ωi and that1555

ui ̸= uj . We want to prove that1556

(6.44) aij + (1− αij(u)) dij ≤ 0 .1557

If aij ≤ 0, then (6.44) holds since (1−αij(u)) dij ≤ 0. If aij > 0, then aji ≤ 0 due to1558

(6.43) and hence aji < aij and dij = −aij < 0. Thus, if ui ≥ uk for all k ∈ Si, then1559

fij > 0 and fik ≥ 0 for k ∈ Si, so that αij = R+
i = 0. Similarly, if ui ≤ uk for all1560

k ∈ Si, then fij < 0 and fik ≤ 0 for k ∈ Si, so that αij = R−
i = 0. Since aij +dij = 0,1561

one concludes that (6.44) holds.1562

If the matrix (6.25) with lumped reaction term is considered, then the validity1563

of (6.43) is guaranteed if the triangulation Th satisfies the XZ-criterion (2.7). The1564

condition (6.43) may be satisfied also if the XZ-criterion is violated, particularly, in the1565
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convection-dominated case, since the convection matrix is skew-symmetric. However,1566

in general, the validity of a DMP cannot be guaranteed without the XZ-criterion.1567

Moreover, if the matrix (6.25) is replaced by (6.24), then the validity of (6.43) may1568

be lost since some off-diagonal entries of the matrix Mc are positive.1569

It was shown in [82] that the DMP generally does not hold if condition (6.43)1570

is not satisfied. This is due to the condition aji ≤ aij used in (6.42) to symmetrize1571

the factors α̃ij . Therefore, in [83], it was proposed to use the above limiter in the1572

formulation (6.33), (6.34) without the symmetry condition (6.42). To obtain a well1573

defined problem satisfying a continuity assumption on αij(u)(uj − ui), the definition1574

of P±
i was replaced by1575

(6.45) P+
i =

∑
j ∈ Si

aij > 0

aij (ui − uj)
+ , P−

i =
∑

j ∈ Si

aij > 0

aij (ui − uj)
− .1576

Then the DMP is satisfied without any additional condition on the matrix AN, which1577

means that it holds for any triangulation Th and also without the lumping of the1578

matrix Mc in the Galerkin FEM. Note, however, that if the reaction term is dominant,1579

some lumping may be performed by the algebraic flux correction scheme.1580

Theorem 6.8 (DMP for the algebraically stabilized scheme with modified Kuz-1581

min limiter). Let us consider the algebraically stabilized scheme (6.33), (6.34) with1582

αij = α̃ij for i, j = 1, . . . , N , where α̃ij is defined by (6.45) and (6.38)–(6.41). Then1583

the algebraic DMP property and the algebraic DMP property for non-strict extrema1584

are satisfied.1585

Proof. The proof is similar as for Theorem 6.7. Under the assumptions made1586

before (6.44) we now want to prove that1587

(6.46) aij −max{0, (1− α̃ij(u)) aij , (1− α̃ji(u)) aji} ≤ 0 .1588

Since this clearly holds if aij ≤ 0, it suffices to investigate the case aij > 0. If ui ≥ uk1589

for all k ∈ Si, then P
+
i ≥ aij (ui − uj)

+ > 0, fij > 0 and fik ≥ 0 for k ∈ Si, so that1590

α̃ij = R+
i = 0. If ui ≤ uk for all k ∈ Si, then P

−
i ≤ aij (ui − uj)

− < 0, fij < 0 and1591

fik ≤ 0 for k ∈ Si, so that α̃ij = R−
i = 0. This implies (6.46).1592

If condition (6.43) holds, then (6.37) and (6.45) are equivalent, and bij(u) defined1593

using the modified Kuzmin limiter from Theorem 6.8 satisfies bij(u) = (1−αij(u))dij1594

with the Kuzmin limiter αij from (6.42). Thus, under condition (6.43), both ap-1595

proaches described above are equivalent. The modified Kuzmin limiter was further1596

improved and reformulated in [69] leading to the Monotone Upwind-type Algebrai-1597

cally Stabilized (MUAS) method. The paper [69] also contains a detailed analysis1598

of algebraically stabilized methods of the type (6.33), (6.34). Further analytical and1599

numerical studies of these approaches recently inspired the design of the Symmetrized1600

Monotone Upwind-type Algebraically Stabilized (SMUAS) method in [84].1601

Another way how to construct a limiter leading to the DMP on arbitrary meshes1602

and without an explicit lumping of the matrix Mc was proposed in [13], using some1603

ideas of [91]. The definition of this limiter, which we call BJK limiter, is inspired1604

by the Zalesak algorithm that will be derived in Section 8.4 for the time-dependent1605

case. It again relies on local quantities P+
i , P−

i , Q+
i , Q

−
i which are now computed1606
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for i = 1, . . . ,M by1607

P+
i =

∑
j∈Si

f+ij , P−
i =

∑
j∈Si

f−ij ,(6.47)1608

Q+
i = qi (ui − umax

i ) , Q−
i = qi (ui − umin

i ) ,(6.48)16091610

where again fij = dij (uj − ui) and1611

(6.49) umax
i = max

j∈Si∪{i}
uj , umin

i = min
j∈Si∪{i}

uj , qi = γi
∑
j∈Si

dij ,1612

with fixed constants γi > 0. Then one defines the factors α̃ij by (6.39)–(6.41). Finally,1613

the limiters are defined by1614

(6.50) αij = min{α̃ij , α̃ji} , i, j = 1, . . . , N .1615

Theorem 6.9 (DMP for the AFC scheme with BJK limiter). The AFC scheme1616

(6.28), (6.29) with the BJK limiter defined by (6.47)–(6.49), (6.39)–(6.41), and (6.50)1617

satisfies the algebraic DMP property and also the algebraic DMP property for non-1618

strict extrema.1619

Proof. The proof is similar as for Theorem 6.7. Under the assumptions made1620

before (6.44) we now want to prove that1621

(6.51) aij + (1−min{α̃ij(u), α̃ji(u)}) dij ≤ 0 .1622

If dij = 0, then aij ≤ 0 and hence (6.51) holds. Thus, let us assume that dij < 0.1623

If ui ≥ uk for all k ∈ Si, then fij > 0 and umax
i = ui so that P+

i > 0, Q+
i = 0 and1624

α̃ij = R+
i = 0. Since aij + dij ≤ 0, one obtains (6.51). If ui ≤ uk for all k ∈ Si, (6.51)1625

follows analogously.1626

It was proved in [13] that, for1627

γi ≥
max

xj∈∂ωi

|xi − xj |

dist(xi, ∂ω
conv
i )

,1628

where ωconv
i is the convex hull of ωi, the AFC scheme with the BJK limiter is linearity1629

preserving, i.e., B(u) = 0 for u ∈ P1(R
d). This property may lead to improved1630

convergence results, see, e.g., [10, 14]. Note that large values of the constants γi cause1631

that more limiters αij will be equal to 1 and hence less artificial diffusion is added,1632

which makes it possible to obtain sharp approximations of layers. On the other hand,1633

however, large values of γi’s also cause that the numerical solution of the nonlinear1634

algebraic problem becomes more involved.1635

Remark 6.10. The various limiters discussed above are inspired by techniques1636

used in the time-dependent case, where a classical approach is the above-mentioned1637

Zalesak algorithm (cf. Section 8.4). This algorithm cannot be simply applied to the1638

steady-state case since the quantities Q±
i are defined using the mass matrix from1639

the discretization of the time-derivative, and a provisional solution of an explicit1640

low-order scheme. The Kuzmin limiter formulated in (6.37)–(6.42) circumvents this1641

problem by defining Q±
i analogously as P±

i in the Zalesak algorithm. The design1642

of the BJK limiter is formally closer to the Zalesak limiter and relies on a carefully1643
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selected multiplicative factor in the definition of Q±
i . The remaining approaches1644

mentioned above use various modifications of the Kuzmin limiter. As discussed above,1645

the original Kuzmin limiter satisfies the DMP only under the condition (6.43) whereas1646

the other approaches satisfy the DMP without any condition on the stiffness matrix.1647

In addition the BJK limiter and the SMUAS limiter [84] are linearity preserving1648

on arbitrary simplicial meshes. Nevertheless, it is difficult to assess the quality of1649

the resulting schemes from these theoretical properties. Indeed, recent numerical1650

results [64, 65, 71, 84] reveal that depending on considered data and the used criterion1651

(e.g., accuracy, efficiency or experimental convergence rate), one can come to various1652

conclusions concerning the quality of the methods. For example, the BJK limiter1653

often leads to sharp approximations of layers but the nonlinear algebraic problems1654

are difficult to solve and the approximate solutions may be less accurate away from1655

layers than for the Kuzmin limiter. □1656

Finally, let us present another way how to define the matrix B(u) in the algebrai-1657

cally stabilized problem (6.33), (6.34), the so-called BBK method proposed in [10]. It1658

is also referred to as smoothness-based viscosity and has its origin in the finite volume1659

literature (see, e.g., [62] and [61]).1660

Given u ∈ RN , one first defines the function ξu ∈ Vh whose nodal values are1661

given by1662

(6.52) ξu(xi) =


∣∣∣∑j∈Si

(ui − uj)
∣∣∣∑

j∈Si
|ui − uj |

if
∑
j∈Si

|ui − uj | ̸= 0 ,

0 otherwise ,

i = 1, . . . , N .1663

Then, for any i, j ∈ {1, . . . , N} such that there is an edge E ∈ Eh with endpoints1664

xi,xj , one sets1665

(6.53) bij(u) = −γ0 h
d−1
E max

x∈E

[
ξu(x)

]p
, p ∈ [1,+∞) ,1666

where γ0 is a fixed parameter, dependent on the data of (2.1). For other pairs of1667

i ̸= j, one sets bij(u) = 0. Finally, the diagonal entries of the matrix B(u) are again1668

defined by (6.32). Then the corresponding form dh again satisfies (3.16), (3.17), and1669

(6.36).1670

The value of p determines the rate of decay of the numerical diffusion with the1671

distance to the critical points. A value closer to 1 adds more diffusion far away from1672

layers and extrema, while a larger value makes the diffusion vanish faster, but on the1673

other hand, increasing p may make the nonlinear system more difficult to solve. In1674

our experience, values up to p = 20 are considered safe to use (see [10] for a detailed1675

discussion). Note also that, on symmetric meshes, the method is linearity preserving.1676

Theorem 6.11 (DMP for the BBK method). Let the triangulation Th satisfy the1677

XZ-criterion (2.7). Then there exist constants C0 and C1 depending only on the shape1678

regularity of Th such that if γ0 ≥ C0∥b∥0,∞,Ω+C1 σ h, then the algebraically stabilized1679

scheme (6.33), (6.34) with B(u) defined by (6.52), (6.53) satisfies the algebraic DMP1680

property and also the algebraic DMP property for non-strict extrema.1681

Proof. We again start with the assumptions made in the proof of Theorem 6.71682

before (6.44). Then ξu(xi) = 1 and hence bij(u) = −γ0 h
d−1
E . In view of (6.35),1683
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Theorem 4.1, and the shape regularity of the mesh, one obtains1684

a(ϕj , ϕi) + dh(uh;ϕj , ϕi) = ε (∇ϕj ,∇ϕi) + (b · ∇ϕj , ϕi) + σ (ϕj , ϕi)− γ0 h
d
E1685

≤ (C0 ∥b∥0,∞,Ω + C1 σ h− γ0)h
d−1
E16861687

and the result follows.1688

Let us now briefly discuss different approaches to make the BBK method linear-1689

ity preserving on general meshes. The common point to all those alternatives is to1690

introduce positive constants βij for j ∈ Si and modify slightly the definition (6.52) of1691

ξu(xi) as follows1692

ξu(xi) =


∣∣∣∑j∈Si

βij(ui − uj)
∣∣∣∑

j∈Si
βij |ui − uj |

if
∑
j∈Si

|ui − uj | ̸= 0 ,

0 otherwise ,

i = 1, . . . , N .1693

In [10, Remark 1] a process to generate a linearity preserving method is described. It1694

involves solving local minimization problems in each node to determine the value of1695

βij . An alternative approach is presented in [53, Section 4.3]. If the support of the1696

basis functions ϕi is convex, then there exists a set of generalized barycentric coordi-1697

nates (ωij)j∈Si
such that its elements are non-negative functions, form a partition of1698

unity, and x =
∑

j∈Si
ωij(x)xj for all x ∈ ωi. A process to build these coordinates1699

in higher dimensions is proposed in [132] (see also [45] for a comprehensive review on1700

the topic of generalized barycentric coordinates). Then, taking βij = ωij(xi), it can1701

be proven that the resulting method is linearity preserving.1702

We end this section again by discussing the solvability and error estimates. It can1703

be proven by means of Brouwer’s fixed-point theorem that the nonlinear algebraic1704

problem (6.33), (6.34) is solvable provided that the entries of the matrix B(u) are1705

bounded functions of u ∈ RN and, for any i, j ∈ {1, . . . , N}, the functions bij(u)(uj−1706

ui) are continuous, see, e.g., [69]. This is the case for all the methods discussed in1707

this section, cf. [14, 69, 84]. A natural norm for estimating the errors of the solutions1708

to the nonlinear problems considered in this section is the solution-dependent norm1709

proposed in [12] given by1710

∥v∥h :=
(
ε |v|21,Ω + σ ∥v∥20,Ω + dh(uh; v, v)

)1/2
.1711

Then, if u ∈ H2(Ω) and σ > 0, one has (cf., e.g., [12])1712

∥u− uh∥h ≤ C (ε+ σ−1 ∥b∥20,∞,Ω + σ)h ∥u∥2,Ω + (dh(uh; ihu, ihu))
1/2 ,1713

where C is independent of h and the data of the problem (2.1). The term1714

(dh(uh; ihu, ihu))
1/2 represents an estimate of the consistency error induced by the1715

algebraic stabilizations. As its precise definition varies according to the choice of lim-1716

iters, it is to be expected that different convergence orders may be proven for the1717

different choices of limiters. A common feature of the analyses presented in [12, 10] is1718

the following: an O(h1/2) convergence can be proven for meshes of XZ-type. For non-1719

XZ meshes, this convergence order can be proven only in the convection-dominated1720

case in general since certain entries of the diffusion matrix may be positive. In-1721

deed, examples of non-convergence in the diffusion-dominated case are shown for the1722
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Kuzmin limiter in [12]. Moreover, it was proven in [10, 14] that the combination of1723

Lipschitz continuity and linearity preservation leads to an (ε-dependent) improved1724

error estimate of order O(h).1725

6.4. A monotone Local Projection Stabilized (LPS) method. In this1726

section we will review a LPS method that respects the DMP proposed in [9]. Its1727

motivation, already hinted in [16], is to start with an optimal order stabilized method1728

based on facets (e.g. CIP), and to introduce a nonlinear switch that makes the method1729

become a first order linear artificial diffusion method in the vicinity of layers and1730

extrema.1731

The monotone LPS method is given by (3.15) with1732

dh(wh;uh, vh) =
∑

F∈FI

[
τFαF (wh)(∇uh,∇vh)ωF

(6.54)1733

+ γF
(
1− αF (wh)

)
(∇uh −GF∇uh,∇vh −GF∇vh)ωF

]
.1734

1735

Here, for each F ∈ FI , the operator GF provides a local mean value defined by1736

GF q =
(q, 1)ωF

|ωF |
, q ∈ L1(ωF ) ,1737

which is computed component-wise in the case of vector-valued functions, and τF , γF1738

are stabilization parameters given by1739

(6.55) τF = c0∥b∥0,∞,ωF
hF and γF = γ0 min

{
∥b∥0,∞,ωF

hF ,
h2F
ε

}
,1740

with positive constants c0 and γ0. The nonlinear switches αF need to be designed in1741

such a way that they detect regions of extrema and large variations in the gradients,1742

the latter indicating the possible presence of layers. For now, we will just assume that1743

they satisfy the following two basic assumptions:1744

i) αF : Vh → [0, 1] are continuous functions; and1745

ii) αF (uh) = 1 whenever uh attains a local extremum at a node of a mesh cell1746

containing F .1747

In [9] it was proposed to define αF using regularized versions of the Kuzmin limiter1748

(6.42) or the smoothness-based indicator (6.52).1749

The form dh(·; ·, ·) obviously satisfies the assumptions (3.16) and (3.17). In addi-1750

tion, since (q−GF q, 1)ωF
= 0 for any q ∈ L1(ωF ) and F ∈ FI , it can be also written1751

as1752

dh(wh;uh, vh) =
∑

F∈FI

[
τFαF (wh)(∇uh,∇vh)ωF

(6.56)1753

+ γF
(
1− αF (wh)

)
(∇uh −GF∇uh,∇vh)ωF

]
.1754

1755

Remark 6.12. A more natural way of writing (6.56) would be to express the sta-1756

bilizing term as follows1757 ∑
F∈FI

τ̃F (∇uh − βF (uh)GF∇uh,∇vh)ωF
,1758
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where τ̃F is a stabilization parameter, and βF (uh) = 1 − αF (uh). This writing does1759

represent the idea of a method that includes transitions between low-order artifi-1760

cial diffusion and higher order local projection, while at the same time stressing the1761

character of combining linear and nonlinear stabilization terms, as it was made in Sec-1762

tion 6.2 for the method given by (6.22). Unfortunately, numerical experimentation1763

has shown that to obtain accurate results the stabilization parameters for the linear1764

diffusion and local projection parts need to be of significantly different sizes. This has1765

led to the (less natural) writing (6.54) for the stabilization term.1766

It is also worth mentioning that a similar strategy to the above monotone LPS1767

method, although using a local projection related to the Scott–Zhang interpolation1768

operator, was used in [6] to approximate the transport problem. □1769

In [9] it was proven that, under the assumptions i) and ii) on the limiters, the1770

discrete problem has at least one solution. Concerning the satisfaction of the DMP,1771

we now report a proof slightly more specific than the one provided in [9, § 2.3]. To1772

avoid technical complications, we will present this result in two space dimensions and1773

will suppose that σ = 0.1774

Theorem 6.13 (DMP for the monotone LPS method). Let us suppose that d = 2,1775

the mesh family {Th}h>0 is weakly acute and average acute, σ = 0 and the nonlinear1776

switches αF satisfy ii). Then, there exists a constant C > 0 depending only on the1777

shape regularity of the mesh family {Th}h>0 such that, if c0 from (6.55) satisfies1778

(6.57) c0 ≥ C cot
δ

2
,1779

where δ is the angle appearing in (2.9), then the form dh(·; ·, ·) defined in (6.54)1780

satisfies the algebraic DMP property and also the algebraic DMP property for non-1781

strict extrema.1782

Proof. Consider any uh ∈ Vh and let us suppose that uh attains a local extremum1783

at an interior node xi ∈ Ω. Consider any j ∈ {1, . . . , N}. Since αF (uh) = 1 for any1784

F ⊂ ωi and ∇ϕi|ωF
= 0 for any F ̸⊂ ωi, it follows from (6.56) that1785

dh(uh;ϕj , ϕi) =
∑

F∈FI , F⊂ωi

τF (∇ϕj ,∇ϕi)ωF
,1786

which implies (3.23). Now consider any j ∈ Si and let us denote by E = K ∩K ′ the1787

edge connecting xi and xj . Since the mesh is weakly acute, one has (∇ϕj ,∇ϕi)K ≤ 01788

for all K ∈ Th, which leads to dh(uh;ϕj , ϕi) ≤ τE (∇ϕj ,∇ϕi)ωE
= τE ℓij . Thus,1789

applying (5.9), one arrives at1790

a(ϕj , ϕi) + dh(uh;ϕj , ϕi) ≤ τE ℓij + cij = c0 hE ∥b∥0,∞,ωE
ℓij + cij1791

≤ −
c0 hE ∥b∥0,∞,ωE

2
tan

δ

2
+

(hK + hK′)∥b∥0,∞,ωE

6
.1792

1793

Thanks to the mesh regularity, one has hK + hK′ ≤ C̃ hE , where C̃ does not depend1794

on the mesh size h. Hence, if (6.57) holds with C = C̃/3, one obtains (3.22) and1795

(3.24).1796

We finish this section by summarizing the error estimates available for the method1797

discussed in this section. Following standard estimates involving stability and asymp-1798

totic consistency, an O(h1/2) error estimate can be proven. In [9, Section 2.4] a more1799
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refined analysis is carried out assuming that the functions αF decay with an appropri-1800

ate rate away from the layers, in other words, assuming that the nonlinear switch is1801

active in only a small region of the computational domain. More precisely, one starts1802

defining the region1803

Sα :=
⋃{

K ∈ Th : max
F∈FK

αF (uh) > h2
}
,1804

and assumes that |Sα| = C hs with s > 0. In addition, for r > 0 one defines the set1805

Sh,ext :=
{
x ∈ Ω : |∇u(x)| ≤ C hr |u|2,∞,Ω

}
,1806

and requires that1807

sup
x∈Sα

inf
y∈Sh,ext

|x− y| ≤ C hr .1808

Under these assumptions the following error estimate is proven in [9, Lemma 2.6]1809

ε
1
2 |u− uh|1,Ω + σ

1
2 ∥u− uh∥0,Ω + dh(uh;u− uh, u− uh)

1
21810

≤ C
(
ε+ ∥b∥∞,Ωh+ (σ + σ−1 |b|21,∞,Ω)h

2
) 1

2

h |u|2,Ω + C h
1+s
2
(
h+ hr

)
|u|2,∞,Ω .1811

Supposing in addition that r + s/2 ≥ 1 the improved estimate1812

ε
1
2 |u− uh|1,Ω + σ

1
2 ∥u− uh∥0,Ω + dh(uh;u− uh, u− uh)

1
21813

≤ C
(
ε+ ∥b∥∞,Ωh+ (σ + σ−1 |b|21,∞,Ω)h

2
) 1

2

h |u|2,∞,Ω1814

is obtained.1815

7. A numerical illustration. This section presents a brief numerical study1816

that illustrates the behavior of several methods discussed in the previous chapters.1817

In the considered example, a profile defined on the inlet boundary is transported1818

through the domain Ω = (0, 1)2. The data of (2.1) are given by ε = 10−5, b =1819

(−y, x)T , and σ = f = 0. Hence, the problem satisfies the conditions for the weak1820

maximum principle from Theorem 2.1 for σ = 0. The Dirichlet boundary condition1821

at the inlet boundary y = 0 is prescribed by1822

u(x, 0) =



x− 0.375

ξ
+ 1 if x ∈ [0.375− ξ, 0.375),

−0.75
x− 0.5

0.125
+ 0.25 if x ∈ [0.375, 0.5),

0.25
x− 0.625

0.125
+ 0.5 if x ∈ [0.5, 0.625),

−0.5
x− 0.625

ξ
+ 0.5 if x ∈ [0.625, 0.625 + ξ),

32(x− 0.75)(1− x) if x ∈ [0.75, 1],

0 else,

1823

with ξ = 10−3. A homogeneous Dirichlet boundary condition is prescribed at the1824

boundary x = 1 and homogeneous Neumann conditions on the remaining part of1825
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Fig. 4. Numerical approximation of the solution (left) and profile at the inlet boundary (right).
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reference profile at outlet for ε= 10−5

quantity of interest reference value
first maximum value 9.148468e-01
minimum value 2.642484e-01
second maximum value 4.699239e-01
width of the left profile 2.628492e-01
maximum of the bump 4.989947e-01
width of the bump 2.367020e-01
u(0, 1) 1.914778e-02

Fig. 5. Reference solution at the outlet boundary x = 0 and corresponding reference values.

the boundary. Figure 4 presents a numerical approximation of the solution and an1826

illustration of the inlet condition.1827

For assessing the different methods, certain characteristic values of the solution1828

at the outlet boundary x = 0 are monitored. A reference solution was computed1829

with the Q2 Galerkin FEM on a grid consisting of 4096 × 4096 squares (67 125 2491830

degrees of freedom, including Dirichlet nodes). Figure 5 depicts the reference solution1831

at the outlet boundary. For defining the reference values, the outlet boundary was1832

decomposed into 100 000 intervals and the corresponding nodal values were used for1833

computing the maximal and minimal values. The width of the left profile was defined1834

by the condition u(0, y) ≥ 0.1 for y ≤ 0.7. For the width of the bump, also the1835

condition u(0, y) ≥ 0.1 was used for computing the left point. Then, the width is1836

defined by subtracting the y-coordinate of this point from 1. In all simulations, a1837

linear interpolation was used for computing the widths. For the reference values, the1838

above mentioned decomposition of the outlet boundary was used and for the other1839

simulations, an interpolation of the nodal values was applied. The reference values1840

are provided in Figure 5.1841

Simulations were performed for P1 finite elements. Initially, the domain was de-1842

composed into two triangles by using the diagonal from (0, 1) to (1, 0). Then, this de-1843

composition was refined uniformly using red refinements. Linear systems of equations1844

were solved with the sparse direct solver UMFPACK [36] and nonlinear problems1845
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were solved with a simple fixed point iteration, e.g., see [67] or the method fixed point1846

rhs from [64], which has been proven to be the most efficient solver for AFC methods1847

in the numerical studies of those papers. The iterations were stopped if the Euclidean1848

norm of the residual vector was smaller than 10−10. Most of the computational results1849

have been double checked with two codes, one of them ParMooN, cf. [47, 134].1850

From our numerical studies, only results will be presented where the numerical1851

solution does not exhibit spurious oscillations, or more precisely, where the spurious1852

oscillations are at most of the order of round-off errors from floating point arithmetics1853

or the stopping criterion for the iteration of a nonlinear discrete problem. There are1854

many methods that compute solutions with small but still notable spurious oscilla-1855

tions, like some of the spurious oscillations at layers diminishing (SOLD) methods1856

that can be found in the survey [66]. However, such methods are not the topic of this1857

review.1858

The goal of computing oscillation-free numerical solutions could not be achieved1859

for all methods presented in Section 6. The proof of the DMP property for the edge1860

stabilization method of Burman and Ern from [28] requires that the parameter cρ1861

from (6.15) is sufficiently large, compare Theorem 6.2. In the numerical studies in1862

[28], this parameter was set probably to cρ = 5 (this information is provided for an1863

example with smooth solution but not for an example with layers). But even with this1864

parameter, notable spurious oscillations of the method are reported in [28, Table 3] for1865

the case of a comparatively large diffusion coefficient. For the example studied here,1866

we were able to solve the nonlinear problems (with two different codes) for method1867

(6.14)–(6.16) for parameters cρ ≾ 0.005. If a standard SUPG term is included, a1868

numerical solution of the nonlinear problem was possible for cρ ≾ 0.05, which is the1869

parameter choice for this method from [66]. But in both cases and on all grids there1870

are notable undershoots of the computed solutions. This is the reason why we have1871

not reported the results from that method in this survey.1872

The precise definition of the constants CK
i used in the implementation of the1873

Mizukami–Hughes method can be found in [78, Fig. 8] or [81, Fig. 5]. The algebraically1874

stabilized method with BBK limiter was used with the parameters γ0 = 0.75 and1875

p = 10.1876

Figure 6 presents the differences of the reference value and the values computed1877

with the different methods for all quantities of interest. It can be seen that all nonlin-1878

ear methods are much more accurate than the used linear method. The accuracy that1879

is reached for the linear upwind method with about 1 000 000 degrees of freedom is1880

usually achieved with the nonlinear methods already for about 4 000 or 16 000 degrees1881

of freedom. One can also observe that there are some differences in the accuracy1882

of the results computed with the different nonlinear discretizations, in particular on1883

coarser grids. However, a comprehensive comparison of the different nonlinear meth-1884

ods, e.g., at other examples or with respect to the computational costs for solving the1885

nonlinear problem, is outside the scope of this review. Some numerical comparisons1886

of algebraically stabilized schemes can be found already in [14, 64].1887

In summary, the main messages that should be conveyed with this numerical1888

study are that many nonlinear discretizations which satisfy the DMP are much more1889

accurate than linear discretizations with this property and that linear discretizations1890

require prohibitively fine grids for computing accurate results if the solution possesses1891

layers. This message is also supported by the recent paper [71] that contains results of1892

comprehensive numerical studies not only for the methods considered in this section1893

but also for the edge-averaged method from Section 5.4, the MUAS method [68] (see1894

also Section 6.3), and the monolithic convex limiting approach [92].1895
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Fig. 6. Differences of reference value and computed values for the quantities of interest.
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8. Time-dependent problem. This section considers discretizations of time-1896

dependent convection-diffusion-reaction equations, which use one-step θ-schemes in1897

time and finite element methods in space, and which satisfy a DMP. A few linear1898

discretizations in space will be presented briefly and the class of FEM Flux-Corrected-1899

Transport (FCT) schemes, which are usually nonlinear in space, will be discussed in1900

detail.1901

8.1. The continuous problem. A time-dependent or evolutionary convection-1902

diffusion-reaction initial-boundary value problem is given by1903

(8.1)
∂tu− ε∆u+ b · ∇u+ σu = f in (0, T ]× Ω ,

u = g on (0, T ]× ∂Ω ,
u(0, ·) = u0 in Ω ,

1904

where for the data of the problem, the same notations are used as in the steady-state1905

case. For simplicity, we will again suppose that ε > 0 and σ ≥ 0 are constants and1906

that b is solenoidal. In (8.1), T is the final time and u0 = u0(x) is a given initial1907

condition. The velocity field b, the right-hand side f , and the boundary condition1908

g might depend on time and space. For brevity, the notation ΩT = (0, T ] × Ω is1909

introduced and the parabolic boundary is denoted by ΓT = ΩT \ ΩT . Note that if1910

σ < 0, then a change of variable ǔ(t,x) = u(t,x) exp(−κt) leads to an evolutionary1911

convection-diffusion-reaction equation for ǔ with the same terms for diffusion and1912

convection, but the coefficient of the reactive term becomes σ+κ, such that σ+κ ≥ 01913

holds for sufficiently large κ. In this way, many results obtained for σ ≥ 0 can be1914

extended to σ < 0.1915

Consider for the moment a problem with g = 0 on (0, T ]×∂Ω. Then, the definition1916

and the analysis of a weak solution of (8.1) can be found, e.g., in [42, Chapter 7.1]. For1917

b ∈ L∞(0, T ;L∞(Ω)), f ∈ L2(ΩT ), and u0 ∈ L2(Ω), a function u ∈ L2(0, T ;H1
0 (Ω))1918

with ∂tu ∈ L2(0, T ;H−1(Ω)) is a weak solution of the convection-diffusion-reaction1919

initial-boundary value problem if u(0) = u0 and1920

⟨∂tu, v⟩+ ε(∇u,∇v) + (b · ∇u+ σu, v) = (f, v) ∀ v ∈ H1
0 (Ω)1921

almost everywhere in [0, T ], where ⟨·, ·⟩ denotes the duality pairing between H−1(Ω)1922

and H1
0 (Ω). The existence of a weak solution of (8.1) can be proven with the Galerkin1923

method, see also [42]. For proving uniqueness, it suffices to show that the fully1924

homogeneous problem (f = 0, g = 0, u0 = 0) possesses only the trivial solution,1925

because the problem is linear. This statement can be proven using the Gronwall1926

lemma. Note that the condition σ ≥ 0 is not needed for these results. If g does not1927

vanish and it is sufficiently smooth, which will be assumed from now on, a problem1928

with homogeneous boundary conditions can be constructed in the usual way by using1929

a lifting of g into Ω for each time and considering a problem for the difference of u1930

and the lifting.1931

If σ = 0, problem (8.1) can be equivalently written in the form1932

(8.2)
∂tu+∇ · (−ε∇u+ bu) = f in (0, T ]× Ω ,

u = g on (0, T ]× ∂Ω ,
u(0, ·) = u0 in Ω ,

1933

which is called conservative form and results from modeling the conservation of phys-1934

ical quantities. In (8.2), −ε∇u is called diffusive flux and bu convective flux.1935
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8.2. Maximum principle, DMP, and positivity preservation. It will be1936

assumed in this section that b ∈ C(ΩT ), such that this function is in particular1937

bounded. From the practical point of view, the following weak maximum principle1938

is of importance. Its proof can be found in [42, Chapter 7.1.4], where also a strong1939

maximum principle is proven.1940

Theorem 8.1 (Weak maximum principle). Let u ∈ C2(ΩT ) ∩ C(ΩT ). Then1941

∂tu− ε∆u+ b · ∇u+ σu ≤ 0 in ΩT =⇒ max
(t,x)∈ΩT

u(t,x) ≤ max
(t,x)∈ΓT

u+(t,x).

(8.3)

1942

∂tu− ε∆u+ b · ∇u+ σu ≥ 0 in ΩT =⇒ min
(t,x)∈ΩT

u(t,x) ≥ min
(t,x)∈ΓT

u−(t,x).

(8.4)

1943

1944

If σ = 0, then1945

∂tu− ε∆u+ b · ∇u ≤ 0 in ΩT =⇒ max
(t,x)∈ΩT

u(t,x) = max
(t,x)∈ΓT

u(t,x).(8.5)1946

∂tu− ε∆u+ b · ∇u ≥ 0 in ΩT =⇒ min
(t,x)∈ΩT

u(t,x) = min
(t,x)∈ΓT

u(t,x).(8.6)1947

1948

Consider problem (8.1) with σ = 0 and f = 0. For a sufficiently smooth solution,1949

it follows from (8.5) and (8.6) that1950

(8.7) min
(t,x)∈ΓT

u(t,x) ≤ u(t,x) ≤ max
(t,x)∈ΓT

u(t,x) ∀ (t,x) ∈ ΩT .1951

Physical quantities whose behavior is modeled with convection-diffusion-reaction1952

equations are often by definition non-negative, like concentrations or the temperature1953

(in Kelvin). The mathematical formulation of this property is the so-called positivity1954

preservation. Let the data of (8.1) be non-negative, i.e., f ≥ 0 in ΩT (no sinks),1955

g ≥ 0 on (0, T ] × ∂Ω, and u0 ≥ 0 in Ω. Then it follows from (8.4) that u ≥ 0 in1956

ΩT . If σ < 0, then as already explained in Section 8.1, one can transform problem1957

(8.1) to an equivalent problem for ǔ(t,x) = u(t,x) exp(−κt) with non-negative re-1958

action coefficient and non-negative data on the right-hand sides. Then (8.4) implies1959

that ǔ ≥ 0 in ΩT whence also u ≥ 0 in ΩT . Thus, independently of the sign of σ,1960

the non-negativity of the data f , g, u0 is sufficient for obtaining a non-negative solu-1961

tion. Therefore, besides the local and global DMP, also the positivity preservation of1962

discretizations of the time-dependent problem is often studied in the literature.1963

Consider from now on the case that the right-hand side of (8.1) is identically zero.1964

Moreover, for simplicity, we assume that the boundary condition g is independent of1965

time. Let the time interval be decomposed by 0 = t0 < t1 < . . . < tJ = T . After1966

having applied a one-step θ scheme in time and a linear discretization in space to1967

(8.1), one arrives at time instant tn+1 at an algebraic problem of the form1968

(8.8) Bun+1 = Kun,1969

where un+1 is the sought solution vector at tn+1 and un is the solution at time tn.1970

The matrices B and K have the form (3.3) so that the last N −M equations of (8.8)1971

set the Dirichlet boundary conditions for un+1; we recall that the last N −M entries1972

of un and un+1 contain the boundary values. We assume that the matrices B and1973

K possess the typical sparsity pattern corresponding to discretizations with P1 finite1974

elements, i.e.,1975

(8.9) bij = kij = 0 ∀ j ̸∈ Si ∪ {i} , 1 ≤ i ≤M ,1976
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where Si is defined by (2.4).1977

Since the right-hand side of (8.1) is identically zero, all cases of the maximum1978

principle from Theorem 8.1 apply. Now, conditions on the matrices B and K will be1979

derived such that a discrete version of (8.7) holds.1980

Lemma 8.2 (Local DMP). Consider any n ∈ {0, . . . , J − 1} and denote1981

umin
i = min

{
min

j∈Si∪{i}
unj ,min

j∈Si

un+1
j

}
, umax

i = max

{
max

j∈Si∪{i}
unj ,max

j∈Si

un+1
j

}
1982

for i = 1, . . . ,M . Assume that (8.8) holds with (8.9) and1983

(8.10) bii > 0, kii ≥ 0, bij ≤ 0, kij ≥ 0 ∀ j ∈ Si , 1 ≤ i ≤M .1984

If1985 ∑
j∈Si∪{i}

bij =
∑

j∈Si∪{i}

kij , 1 ≤ i ≤M ,1986

then it follows that1987

umin
i ≤ un+1

i ≤ umax
i , 1 ≤ i ≤M .1988

Proof. The proof will be given for the upper bound, the statement for the lower1989

bound can be derived analogously. Consider any i ∈ {1, . . . ,M}. Let wj = un+1
j −1990

umax
i and vj = unj − umax

i for j = 1, . . . , N . Then wj ≤ 0 for all j ∈ Si and vj ≤ 01991

for all j ∈ Si ∪ {i}. A direct calculation, utilizing the assumption on the row sums,1992

reveals that1993

biiwi = kiivi +
∑
j∈Si

(
kijvj − bijwj

)
.1994

By construction and assumption (8.10), the coefficient on the left-hand side is positive1995

and the right-hand side is non-positive. Hence, one obtains wi ≤ 0, which is equivalent1996

to un+1
i ≤ umax

i .1997

For studying global properties, it is convenient to write (8.8) without the (trivial)1998

equations for the values on the Dirichlet boundary:1999

(8.11) (BI|BB)

(
un+1
I

un+1
B

)
= (KI|KB)

(
un
I

un
B

)
,2000

with BI,KI ∈ RM×M , BB,KB ∈ RM×(N−M), un+1
I ,un

I ∈ RM , and un+1
B ,un

B ∈ RN−M .2001

It will be assumed that BI is invertible. Note that from setting the Dirichlet boundary2002

conditions, un+1
B = un

B, but for the following considerations, these vectors might be2003

even different.2004

Definition 8.3 (Positivity preservation). Method (8.11) is said to be positivity2005

preserving if the inequality un+1
I ≥ 0 is valid for all non-negative vectors un+1

B , un
I ,2006

un
B.2007

Theorem 8.4 (Necessary and sufficient conditions for positivity preservation).2008

Method (8.11) is positivity preserving if and only if the two conditions2009

B−1
I (KI|KB) ≥ 0,(8.12)2010

−B−1
I BB ≥ 0,(8.13)2011

hold.2012
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Proof. The statement of the theorem follows immediately from the following rep-2013

resentation2014

un+1
I = B−1

I (KI|KB)

(
un
I

un
B

)
− B−1

I BBu
n+1
B ,2015

which is obtained from (8.11).2016

Definition 8.5 (Global DMP). Method (8.11) is said to satisfy the (global)2017

DMP if2018

(8.14) min
{
un+1
B ,un

I ,u
n
B

}
≤ un+1

i ≤ max
{
un+1
B ,un

I ,u
n
B

}
, 1 ≤ i ≤M,2019

for each choice un+1
B ,un

I ,u
n
B, where (un+1

i )Mi=1 = un+1
I .2020

In the following, a vector of length k ∈ N where all entries are 1 is denoted by 1k.2021

Theorem 8.6 (Necessary and sufficient conditions for the global DMP). Method2022

(8.11) satisfies the global DMP if and only if (8.12), (8.13), and2023

(8.15) (BI|BB)1N = (KI|KB)1N2024

hold, i.e., the ith row sums of (BI|BB) and (KI|KB) are identical, i = 1, . . . ,M .2025

Proof. The proof follows [43].2026

i) DMP =⇒ (8.12), (8.13), (8.15). If un+1
B , un

I , and un
B are arbitrary non-negative2027

vectors, then the left-hand inequality of (8.14) states that un+1
I is also non-negative.2028

Hence, the method is positivity preserving and it follows from Theorem 8.4 that (8.12)2029

and (8.13) are satisfied.2030

Choosing in (8.14) un+1
B = 1N−M , un

I = 1M , and un
B = 1N−M yields un+1

I = 1M .2031

Inserting these vectors in (8.11) shows that (8.15) is satisfied.2032

ii) (8.12), (8.13), (8.15) =⇒ DMP. Denoting unmax = max{un+1
B ,un

I ,u
n
B} and2033

using (8.12), (8.15), and (8.13), gives2034

un+1
I = −B−1

I BBu
n+1
B + B−1

I (KI|KB)

(
un
I

un
B

)
2035

≤ −B−1
I BBu

n+1
B + unmaxB

−1
I (KI|KB)1N2036

= −B−1
I BBu

n+1
B + unmaxB

−1
I (BI|BB)1N2037

= −B−1
I BB(u

n+1
B − unmax1N−M ) + unmax1M ≤ unmax1M ,2038

which is equivalent to the right-hand inequality in (8.14). The left-hand inequality is2039

proven similarly.2040

The concepts of positivity preservation and of the global DMP can be extended2041

to non-vanishing right-hand sides, see [43]. The necessary and sufficient requirements2042

on the matrices for the satisfaction of these properties are the same as given in The-2043

orems 8.4 and 8.6.2044

Corollary 8.7 (Positivity preservation and global DMP for monotone matri-2045

ces). Let the matrix2046

B =

(
BI BB

O I

)
2047

be monotone and let K ≥ 0. Then method (8.11) is positivity preserving. If, in2048

addition, the ith row sums of B and K are identical, i = 1, . . . ,M , then method (8.11)2049

satisfies the global DMP.2050

This manuscript is for review purposes only.



58 G.R. BARRENECHEA, V. JOHN, AND P. KNOBLOCH

Proof. From computing the inverse of B, compare (3.13), it follows that B−1
I ≥ 02051

and −B−1
I BB ≥ 0. Since K ≥ 0, the conditions (8.12) and (8.13) are satisfied. Thus,2052

the corollary follows from Theorems 8.4 and 8.6.2053

Remark 8.8. Note that if B is a monotone matrix, K ≥ 0, and un ≥ 0, then it2054

immediately follows that the solution of (8.8) satisfies un+1 ≥ 0. □2055

Another property that is often studied for discretizations of scalar evolutionary2056

transport problems is the local extremum diminishing (LED) property. Considering2057

a method that is only semi-discrete in space, the LED condition is as follows: if ui2058

is a local maximum in space, then dui/dt ≤ 0 and if ui is a local minimum in space,2059

then dui/dt ≥ 0, i.e., a local maximum does not increase and a local minimum does2060

not decrease. For a fully discrete method, discretized with a one-step θ-scheme, the2061

LED property states that if un+θ
i = θun+1

i + (1− θ)uni is a local maximum in space,2062

then un+1
i ≤ uni and similarly for a local minimum, e.g., see [5].2063

Section 8.4 will discuss a class of nonlinear discretizations in some detail. A2064

motivation for considering such discretizations for the convection-dominated regime2065

is provided by a study of the limit case of (8.1) with respect to small diffusion, i.e., the2066

transport equation where ε = 0. Consider this case with constant convection b ̸= 02067

and σ = f = 0 in one dimension on the infinite domain Ω = (−∞,∞). The domain2068

is decomposed using an equidistant grid with mesh width h and the nodes xi, i ∈ Z.2069

Then, the application of an explicit one-step θ-scheme leads to a problem of the form2070

(8.16) un+1
j =

S∑
i=−S

γiu
n
j+i, j ∈ Z ,2071

where S is determined by the width of the stencil. For this kind of problem there2072

exists the notion of a monotonicity preserving scheme: for all monotone discrete initial2073

conditions u0, the solution un possesses the same monotonicity for all n ≥ 1. It can2074

be shown that the scheme is monotonicity preserving if and only if γi ≥ 0 for all2075

i ∈ {−S, . . . , S}. Then, Godunov’s order barrier theorem [50] states that if CCFL =2076

|b|τ/h ̸∈ N, a linear monotonicity preserving method of form (8.16) cannot compute2077

solutions exactly that are polynomials of degree 2. Hence, a linear monotonicity2078

preserving method has to be of low order. For a more recent presentation of this topic2079

see [133]. Using an implicit one-step scheme or a linear multi-step scheme instead of2080

an explicit one-step scheme does not solve this issue, see [133, Thm. 9.2.4].2081

The condition on the non-negativity of γi resembles condition (8.12), which is2082

necessary for the positivity preservation and the satisfaction of the DMP. Thus, one2083

can expect that for (8.1), in the convection-dominated regime, a linear discretization2084

that possesses these properties will be only of low-order. There is no mathematical2085

proof of this expectation but computational evidence. This issue motivates the con-2086

struction of nonlinear discretizations to obtain accurate schemes for (8.1) that are2087

positivity preserving and satisfy the DMP.2088

8.3. Linear methods. Utilizing a one-step θ-scheme in combination with the2089

Galerkin or some stabilized finite element method for the discretization of (8.1) with2090

f = 0 leads to an algebraic system of the form2091

(8.17) (Mc + θτA1)
M

un+1 = (Mc − (1− θ)τA2)
M

un, un+1
i = gn+1

i−M ,2092

i = M + 1, . . . , N , where Mc is the consistent mass matrix defined in (2.13), A1,2093

A2 are stiffness matrices, and τ = tn+1 − tn is the current time step. Consider a2094
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uniform spatial grid with mesh width h. Then, for standard Lagrangian finite element2095

spaces, Mc possesses positive off-diagonal entries of order O(hd), compare (2.16) for2096

P1 finite elements. Consequently, Mc is not an M-matrix and as can be checked easily,2097

e.g., for a one-dimensional problem, Mc is not a monotone matrix. The off-diagonal2098

entries of τA1 are of order O(τhd−2) for the diffusive term and O(τhd−1) for the2099

convective term. Hence, if τ is sufficiently small, the system matrix of (8.17) cannot2100

be an M-matrix. In particular, any finite element analysis that considers the so-called2101

continuous-in-time situation, i.e., only a semi-discretization in space, cannot apply2102

the concept of M-matrices. It is shown in [123] that a standard continuous-in-time2103

finite element discretization of the heat equation cannot be positivity preserving and2104

it cannot satisfy the global DMP. One can only hope for non-positive off-diagonal2105

entries of the system matrix of (8.17) if τ is of order max{h, h2}. In fact, for the2106

heat equation, discretized with a one-step θ-scheme and the Galerkin FEM, sufficient2107

conditions for the satisfaction of the DMP were derived in [43] that include a lower2108

and an upper bound for the length of the time step, which are both of order O(h2).2109

Note that this issue does not appear for finite volume and finite difference meth-2110

ods, where the temporal discretization leads to a diagonal matrix with positive di-2111

agonal entries. Studying positivity preservation and the DMP with the concept of2112

M-matrices for finite element methods, the common way consists in applying mass2113

lumping, which is presented in Section 2.3. Utilizing a lumped mass matrix, the pos-2114

itivity preservation can be proven for the heat equation in two dimensions, P1 finite2115

elements, and under certain additional assumptions, see [118]. An extension of this2116

result to three dimensions is also possible.2117

In [44] a class of problems was studied which includes the linear convection-2118

diffusion-reaction equation as a special case. The considered discretization was a2119

one-step θ-scheme combined with the Galerkin FEM. The DMP is proven under a2120

number of assumptions. Because of using the Galerkin FEM, the mesh width has to2121

be sufficiently small, compare [44, Thm. 5.2 (ii)], in particular the bound for the mesh2122

width tends to zero as ε → 0. For a sufficiently small mesh width, there is a lower2123

bound for the time step of order O(h2).2124

As already mentioned in Section 5.3, the upwind finite element method proposed2125

in [122] was formulated and studied for a two-dimensional time-dependent equation.2126

The analysis is performed for the forward Euler scheme, where a lumped mass matrix2127

is utilized, so that the discretization of the time derivative corresponds to a finite2128

difference or finite volume one. The key ingredient of this method is the discretization2129

of the convective term, which is described in Section 5.3. From the proof presented2130

in [122], it can be seen that the assumptions of Corollary 8.7 are satisfied under an2131

appropriate CFL condition, hence the method satisfies the DMP. In the final part2132

of [122], it is mentioned that the analysis can be extended to the (mass lumped)2133

backward Euler scheme and to time-dependent convection fields.2134

The upwind method proposed and analyzed in [3] was also already presented in2135

Section 5.3. In [3], it was studied for the conservative form (8.2) of the convection-2136

diffusion equation. In contrast with the method from [122], it satisfies a discrete analog2137

of a mass conservation property if (8.2) is equipped with so-called free boundary2138

condition2139

ε
∂u

∂n
− b · nu = 0 on (0, T ]× ∂Ω.2140

The upwind method is analyzed for this boundary condition, steady-state convection2141

fields, and the mass lumped forward Euler scheme so that an appropriate CFL condi-2142

tion becomes necessary throughout the analysis. A brief description of the discretiza-2143
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tion of the convective term, leading to a convection matrix Ãc, is already provided2144

in Section 5.3. Thus, the discretization of (8.2) with f = 0 and the free boundary2145

condition is of the form2146

(Ml)
Mun+1 = (Ml)

Mun − τ(εAd + Ãc)
Mun.2147

The construction of Ãc assures that its row sums vanish. The row sums of Ad also2148

vanish, see (4.3), and hence the positivity preservation and the satisfaction of the2149

global DMP for this upwind method can be inferred from Corollary 8.7.2150

Remark 8.9. The techniques of [101, 59] developed for problems with heteroge-2151

neous anisotropic diffusion, see Remark 4.4, were applied to study also the DMP for2152

the heat equation in [102]. The P1 finite element in space is combined with a one-step2153

θ-method in time. Concerning the spatial mesh, the same conditions apply as for the2154

steady-state diffusion problem. Using a lumped mass matrix, one obtains a restriction2155

for the length of the time step, which is of the form2156

τ ≤ C min
K∈Th

min
F∈FK

h2K,F

λmax(ĒK)
,2157

where hK,F is the height from the facet F ⊂ K to the vertex of K opposite F and2158

ĒK is defined to be the integral mean of the diffusion tensor E on K. □2159

8.4. FEM Flux-Corrected-Transport (FCT) schemes. A physical quantity2160

is called extensive if it scales with the size of the physical problem. Examples are2161

mass, momentum, or energy. Fluxes are quantities of an extensive variable that2162

moves from one location in space to another one. That means, the amount of the2163

variable that is removed from the first location is added at the second location. If2164

numerical methods are formulated in terms of fluxes, they are called conservative if2165

the same principle is applied as mentioned above: what is removed from one degree2166

of freedom is added to another one. The conservation of physical quantities in a2167

numerical method contributes to the physical consistency of this method and thus, it2168

helps that the method becomes accepted by practitioners.2169

The usual starting point for the construction of numerical methods based on2170

fluxes is the conservative form (8.2) of the convection-diffusion equation. Natural2171

discretizations for this form are finite difference and finite volume methods.2172

For illustrating the concept of numerical fluxes, consider a finite difference method2173

for the one-dimensional analog of (8.2)2174

(8.18)
∂tu+ ∂x (−ε∂xu+ bu) = 0 in (0, T ]× Ω ,

u = 0 on (0, T ]× ∂Ω ,
u(·, 0) = u0 in Ω ,

2175

with Ω = (ξl, ξr), ξl < ξr. Let Ω be triangulated using an equidistant grid with mesh2176

width h and nodes {xi}
N
i=1, x1 = ξl, xN = ξr, xi < xi+1. Consider the step from2177

time instant tn to tn+1. A finite difference approximation of (8.18) is said to be of2178

conservative form, if it can be written for inner nodes in the form2179

un+1
i = uni +

τ
1
2 (xi+1 − xi−1)

(
fi−1/2 − fi+1/2

)
,2180

where fi+1/2 and fi−1/2 are numerical fluxes depending on diffusion and convection2181

at one or several time levels. Utilizing the explicit Euler scheme for discretizing (8.18)2182
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in time, the standard 3 point stencil for the discretization of the second derivative and2183

a central finite difference defined on the points xi+1/2 = (xi+1 + xi)/2 and xi−1/2 =2184

(xi + xi−1)/2 for the convective term yields2185

un+1
i = uni + τ

[
ε
uni+1 − 2uni + uni−1

h2
−
bni+1/2u

n
i+1/2 − bni−1/2u

n
i−1/2

h

]
2186

= uni +
τ

h

[
−εu

n
i − uni−1

h
+ bni−1/2u

n
i−1/2 −

(
−εu

n
i+1 − uni
h

+ bni+1/2u
n
i+1/2

)]
.2187

Hence, the numerical analog of the fluxes of the continuous problem, see the end of2188

Section 8.1, is given by2189

fi+1/2 = −εu
n
i+1 − uni
h

+ bni+1/2u
n
i+1/2 ,2190

where the first term on the right-hand side is the numerical diffusive flux and the2191

second term the numerical convective flux. Usually, the values uni±1/2 at xi±1/2 are2192

approximated using the values at the neighboring nodes with the aim to obtain a2193

stable discretization. A classical example is the one-sided upwind approximation.2194

The first development and implementation of a FCT scheme was performed for a2195

finite difference method in one dimension in [18]. Consider the step from one discrete2196

time level to the next one, then the basic approach is as follows:2197

1. A (linear) scheme is needed that guarantees that no nonphysical values are com-2198

puted. Such a scheme has to utilize low-order fluxes, which possess a large amount2199

of numerical diffusion.2200

2. A second (linear) scheme with high-order fluxes is used, which is highly accurate for2201

smooth regions of the solution. This scheme has only a small amount of numerical2202

diffusion and its solution has spurious oscillations in a vicinity of layers or shocks.2203

3. So-called antidiffusive fluxes are defined by the difference of the high and low-order2204

fluxes from the two schemes.2205

4. The solution at the new time level is obtained by adding appropriately weighted2206

(limited) antidiffusive fluxes to the solution of the low-order scheme. The limiting2207

process has to ensure that no unphysical values are created in this step. For smooth2208

parts of the solution, the high-order scheme should be recovered.2209

FCT schemes were then transferred to one-dimensional finite volume methods. It2210

turned out that the limiter for one-dimensional problems proposed in [18] does not2211

work properly in multiple dimensions. Thus, the next milestone in the development2212

of FCT schemes was the proposal of a new limiter that works in multiple dimensions2213

in [136], the nowadays so-called Zalesak limiter. This limiter will be described within2214

the presentation of the FEM-FCT methods. A good survey of the motivations for2215

deriving FCT schemes and their main design principles can be found in the paper2216

[137], which concentrates on finite volume schemes on structured grids.2217

The development of FCT schemes for finite element methods was driven by the2218

goal to apply the FCT methodology on unstructured grids. To this end, a concept2219

that resembles fluxes was introduced in finite element methods, the so-called algebraic2220

fluxes. Algebraic fluxes are quantities fij between adjacent degrees of freedom i2221

and j that are derived from algebraic quantities like matrices and vectors and for2222

which fij = −fji (the flux property) holds. The vast majority of FEM-FCT methods2223

have been developed for P1 and Q1 finite elements, where the degrees of freedom2224

are function values at the vertices of the mesh cells. The first FEM-FCT schemes2225

were proposed in [105, 111]. Since then, FEM-FCT schemes have been improved and2226
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further developed, e.g., in [97, 86, 89, 91, 104], see also the surveys in [90] and [95,2227

Chapters 6.3, 7.5, 7.6]. Nevertheless, theoretical results on FEM-FCT schemes for2228

time-dependent convection-diffusion-reaction problems are far less developed than for2229

the related algebraically stabilized methods proposed for the steady-state problem2230

and discussed in Section 6.3. In particular, we are not aware of any error estimates.2231

Whereas the FCT methodology is used in finite difference and finite volume2232

schemes directly to define a discretization of the convection and diffusion operators2233

with the goal to satisfy the DMP locally, its application in the FEM is more indirect.2234

There, the Galerkin FEM discretization is reformulated equivalently such that the2235

system matrix becomes an M-matrix and then the FCT methodology is utilized to2236

modify the right-hand side such that the M-matrix property of the system matrix2237

allows to satisfy the global DMP and the positivity preservation.2238

In the following, a FEM-FCT scheme will be presented in detail, thereby explain-2239

ing the derivation and application of the Zalesak limiter. The starting point is now2240

problem (8.1) and it is again assumed that the right-hand side vanishes. Moreover,2241

for simplicity, we assume that the velocity field b does not depend on time.2242

The high-order method from Step 2 of the basic FCT approach is the standard2243

Galerkin FEM. Using a one-step θ-scheme as temporal discretization, θ ∈ (0, 1], leads2244

to the linear algebraic system2245

(8.19) (Mc + θτAN)
M

un+1 = (Mc − (1− θ)τAN)
M

un,2246

where the matrix AN is defined by (6.24). The system (8.19) has to be supplemented2247

by Dirichlet boundary conditions for un+1. Like for the algebraic flux correction in2248

the steady case, we define the matrix D = (dij)
N
i,j=1 by (6.26) using the entries of AN.2249

In addition, we introduce the matrix L = (lij)
N
i,j=1 defined by2250

L = AN + D.2251

As discussed in Section 6.3, the matrix L is of non-negative type and D is positive2252

semidefinite.2253

Next, the low-order scheme from Step 1 of the basic FCT algorithm is given by2254

(8.20) (Ml + θτL)M ũ = (Ml − (1− θ)τL)M un, ũi = gn+1
i−M , i =M + 1, . . . , N,2255

where the lumped mass matrix Ml is defined in (2.20). Due to the assumptions on2256

the data of (8.1), the matrix (AN)I is positive definite and hence also the matrix2257

(Ml + θτL)I is positive definite. Consequently, the system matrix of (8.20), defined2258

by extending the matrix (Ml + θτL)M by the lower blocks of (3.3), is invertible. Since2259

it is of non-negative type, Corollary 3.13 implies that the system matrix of (8.20) is2260

an M-matrix. Thus, in view of Corollary 8.7, method (8.20) is positivity preserving if2261

(8.21) (Ml − (1− θ)τL)M ≥ 0.2262

To simplify the presentation, we denote the diagonal entries of Ml by mi instead of2263

m̃ii considered in (2.20). Since L is of non-negative type and LI is positive definite,2264

one has lii > 0 and lij ≤ 0 for j ̸= i, i = 1, . . . ,M . Hence (8.21) holds if and only if2265

(1− θ)τ lii ≤ mi for all i = 1, . . . ,M , which is satisfied if θ = 1 or if2266

(8.22) τ ≤ mi

(1− θ)lii
, i = 1, . . . ,M .2267
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This is a CFL condition which can be checked easily in simulations.2268

Although the solution of (8.20) does not possess unphysical values under the2269

CFL condition (8.22), it is usually very inaccurate. In the FEM-FCT methodology, a2270

correction term τf is added, which leads to a method of the form2271

(8.23) (Ml + θτL)M un+1 = (Ml − (1− θ)τL)M un + τf .2272

If the solution is smooth in the whole domain, then (8.23) should recover the high-2273

order method. A direct calculation, subtracting (8.19) from (8.23), shows that in this2274

case2275

τf = (Ml −Mc)
M (

un+1 − un)+ τ (D)M
(
θun+1 + (1− θ)un)

2276

is the appropriate correction. The expression on the right-hand side can be written2277

in terms of algebraic fluxes. Using the definition (2.20) of the lumped mass matrix2278

and that the row sums of D are zero, one obtains by a straightforward calculation2279

τ
(
f
)
i

=
N∑
j=1

[
−mij

(
un+1
j − un+1

i

)
+mij

(
unj − uni

)]
2280

+τ
N∑
j=1

[
θdij

(
un+1
j − un+1

i

)
+ (1− θ)dij

(
unj − uni

)]
.2281

For computing the right-hand side, again the matrices without having imposed Dirich-2282

let boundary conditions are used. Thus, the antidiffusive fluxes from Step 3 of the2283

basic FCT algorithm are given by2284

fij =
1

τ

[
−mij

(
un+1
j − un+1

i

)
+mij

(
unj − uni

)]
(8.24)2285

+
[
θdij

(
un+1
j − un+1

i

)
+ (1− θ)dij

(
unj − uni

)]
, i, j = 1, . . . , N.2286

Because Mc and D are symmetric matrices, one has fij = −fji. Note that the fluxes2287

depend on (unknown) values of the numerical solution at time level tn+1.2288

Now, following Step 4 of the basic FCT algorithm, the solution for the inner nodes2289

at the next time level is defined by2290

(8.25) (Ml + θτL)M un+1 = (Ml − (1− θ)τL)M un + τ

 N∑
j=1

αijfij

M

i=1

,2291

where the limiters αij = αji ∈ [0, 1] have to be chosen appropriately.2292

In order to apply the framework presented in Section 8.2, the nonlinear problem2293

(8.25) is written in the following way:2294

(Ml)
M

u = (Ml − (1− θ)τL)M un,(8.26)2295

(Ml)
M

ũ = (Ml)
M

u+ τ

 N∑
j=1

(
αijfij

)[n+1]

M

i=1

,(8.27)2296

(Ml + θτL)M un+1 = (Ml)
M

ũ,(8.28)2297
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where the superscript [n + 1] indicates that the fluxes and limiters depend on the2298

solution at time instant tn+1. The function u, which is equipped with the boundary2299

conditions at tn+1−θ, has to be computed only in the first step. This function is2300

needed because it enters the definition of a lower and an upper bound in the limiting2301

process, see (8.29) below. Then, solving (8.27)–(8.28) has to be performed with an2302

iterative process, where the boundary conditions at tn+1 are utilized in (8.28).2303

First, positivity preservation will be discussed. Let un ≥ 0. Assuming the validity2304

of the CFL condition (8.22), one has (8.21) and hence u ≥ 0 since Ml is a diagonal2305

matrix with positive diagonal entries. In the next step, umin
i ≥ 0, i = 1, . . . ,M ,2306

are chosen and the limiters are determined such that ũi ≥ umin
i , i = 1, . . . ,M , in2307

(8.27). Finally, since Ml ≥ 0 and the system matrix of (8.28) equipped with Dirichlet2308

boundary conditions (which are assumed to be non-negative) is an M-matrix, it follows2309

from Corollary 8.7 that un+1 ≥ 0.2310

For studying the satisfaction of the global DMP (cf. Definition 8.5), the compu-2311

tation of the limiters has to be explained in detail. Let u(m) be an approximation2312

of un+1 after the mth iteration for solving (8.27)–(8.28). Then, the algebraic fluxes2313

defined in (8.24) are approximated using u(m) instead of un+1, leading to fluxes f
(m)
ij .2314

Consider any i ∈ {1, . . . ,M} and define2315

(8.29) umin
i = min

j∈Si∪{i}
uj , umax

i = max
j∈Si∪{i}

uj ,2316

with Si given by (2.4). Then the limiters α
(m)
ij , where the superscript indicates that2317

they depend on f
(m)
ij , are computed such that2318

(8.30) umin
i ≤ ũi ≤ umax

i ,2319

where ũ is the solution of (8.27) with the fluxes f
(m)
ij and the limiters α

(m)
ij . Consider2320

the upper bound and introduce non-negative numbers R+
i such that α

(m)
ij ≤ R+

i if2321

f
(m)
ij > 0. Then2322

ũi = ui +
τ

mi

N∑
j=1

α
(m)
ij f

(m)
ij ≤ ui +

τ

mi

N∑
j=1

α
(m)
ij

(
f
(m)
ij

)+
2323

≤ ui +
τ

mi

R+
i

N∑
j=1

(
f
(m)
ij

)+
.2324

Thus, to satisfy the upper bound in (8.30), it suffices to require that2325

(8.31) R+
i ≤ mi

τ
(umax

i − ui)

 N∑
j=1

(
f
(m)
ij

)+−1

,2326

where the right-hand side is non-negative thanks to the definition (8.29) of umax
i . Note2327

that if
(
f
(m)
ij

)+
= 0 for all j = 1, . . . , N , then the upper bound in (8.30) always holds2328

and R+
i can be defined arbitrarily. Similarly, to satisfy the lower bound in (8.30), it2329

suffices to require that α
(m)
ij ≤ R−

i if f
(m)
ij < 0 with2330

(8.32) R−
i ≤ mi

τ

(
umin
i − ui

) N∑
j=1

(
f
(m)
ij

)−−1

.2331
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Like in the previous case, if
(
f
(m)
ij

)−
= 0 for all j = 1, . . . , N , then the lower bound2332

in (8.30) always holds and R−
i can be defined arbitrarily. Since the limiters need2333

to belong to [0, 1] by definition, one has to require R+
i ≤ 1 and R−

i ≤ 1 besides2334

the conditions (8.31) and (8.32). In addition, one has to take into account that2335

the flux property is maintained after having applied the limiters, i.e., α
(m)
ij f

(m)
ij =2336

−α(m)
ji f

(m)
ji , which requires α

(m)
ij = α

(m)
ji since f

(m)
ij = −f (m)

ji . Thus, one has to take2337

the smaller value of the above-derived bounds for α
(m)
ij and α

(m)
ji . Summarizing all2338

these considerations leads to the algorithm for the Zalesak limiter from [136], where2339

for the sake of clarity the iteration index is neglected in its presentation:2340

1. Compute2341

P+
i =

N∑
j=1,j ̸=i

f+ij , P−
i =

N∑
j=1,j ̸=i

f−ij .2342

2. Compute2343

Q+
i =

mi

τ
(umax

i − ui) , Q−
i =

mi

τ

(
umin
i − ui

)
.2344

3. Compute2345

R+
i = min

{
1,
Q+

i

P+
i

}
, R−

i = min

{
1,
Q−

i

P−
i

}
.2346

If the denominator is zero, set the value equal to 1. In addition, both values are2347

set to be 1 at Dirichlet nodes.2348

4. Compute2349

αij =


min{R+

i , R
−
j } if fij > 0,

1 if fij = 0,

min{R−
i , R

+
j } if fij < 0.

2350

Note that the value for fij = 0 does not possess any impact.2351

It should be emphasized that, like in the steady-state case, the fluxes and limiters are2352

computed on the basis of the matrices for Neumann boundary conditions.2353

The nonlinear discretization (8.25), or equivalently (8.26)–(8.28), together with a2354

limiter of the form of Zalesak’s limiter and fluxes depending on un+1 is called nonlinear2355

FEM-FCT scheme. The standard approach for computing an approximation to the2356

solution, which is already sketched above, is summarized in Algorithm 8.1. The2357

following theorem shows that, under appropriate conditions, all iterates satisfy the2358

global DMP.2359

Theorem 8.10 (Global DMP for the iterates of Algorithm 8.1). Denote2360

umin = min
{
un1 , . . . , u

n
N , g

n+1−θ
1 , . . . , gn+1−θ

N−M , gn+1
1 , . . . , gn+1

N−M

}
,(8.33)2361

umax = max
{
un1 , . . . , u

n
N , g

n+1−θ
1 , . . . , gn+1−θ

N−M , gn+1
1 , . . . , gn+1

N−M

}
.(8.34)2362

Let θ = 1 or the CFL condition (8.22) be satisfied and let u(0) = un in Algorithm 8.1.2363

Let all row sums of (L)M vanish and let the Zalesak algorithm be applied to compute2364

the flux limiters. Then all iterates u(m), m = 0, 1, . . ., satisfy umin ≤ u
(m)
i ≤ umax,2365

i = 1, . . . , N .2366

Proof. Note that the boundary values of u are gn+1−θ
1 , . . . , gn+1−θ

N−M . The CFL2367

condition implies that (8.21) holds. Thus, if all row sums of (L)M vanish, then the2368
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Algorithm 8.1 Iterative scheme for computing an approximation of the solution of

the nonlinear FEM-FCT problem. Let u(0) = un and let tol > 0 and a damping
factor ρ ∈ (0, 1] be given.

1: Solve (8.26).
2: for m = 0, 1, . . . do

3: Compute the algebraic fluxes f
(m)
ij as in (8.24) with un+1 replaced by u(m) and

the corresponding limiters α
(m)
ij by Zalesak’s algorithm, such that (Ml)

M ũ can
be computed from (8.27).

4: if
∣∣∣(Ml + θτL)M u(m) − (Ml)

M ũ
∣∣∣ ≤ tol then

5: Set un+1 := u(m), break.
6: end if
7: Solve (8.28) with the right-hand side (Ml)

M ũ and Dirichlet boundary conditions

at tn+1. Denote the solution û and set u(m+1) = u(m) + ρ
(
û − u(m)) for the

inner nodes and u(m+1) = û for the boundary nodes.
8: end for

matrices of equation (8.26) satisfy the assumptions of Corollary 8.7. Hence it follows2369

that umin ≤ ui ≤ umax, i = 1, . . . , N . Since the Zalesak limiter is constructed in such2370

a way that the solution of (8.27) satisfies (8.30), one also has2371

umin ≤ ũi ≤ umax, i = 1, . . . ,M.2372

As already mentioned above, the matrix on the left-hand side of (8.28), extended by2373

the rows for the Dirichlet conditions, is an M-matrix. Since the row sums of (L)M2374

vanish, the matrices in (8.28) satisfy the assumptions of Corollary 8.7 and hence2375

umin ≤ min
{
ũ1, . . . , ũM , g

n+1
1 , . . . , gn+1

N−M

}
≤ ûi ,2376

ûi ≤ max
{
ũ1, . . . , ũM , g

n+1
1 , . . . , gn+1

N−M

}
≤ umax ,2377

2378

for i = 1, . . . , N . Finally, from u(m+1) = (1− ρ)u(m) + ρû for the inner nodes, it can2379

be inferred that umin ≤ u
(m+1)
i ≤ umax, i = 1, . . . , N .2380

Note that the statement of Theorem 8.10 does not depend on the form of the2381

algebraic fluxes.2382

Now, one has to study under which conditions the row sums of (L)M vanish.2383

Since the row sums of D are zero by construction, the row sums of (L)M vanish if and2384

only if the row sums of the matrix (AN)
M vanish. In view of (5.4), this is the case2385

if and only if σ = 0. The assumption that σ = 0 has to be expected since it appears2386

already for the continuous version (8.7) of the maximum principle.2387

Remark 8.11. The group finite element method is an alternative assembling rou-2388

tine of the convective term for P1 and Q1 finite elements that is based on matrix-vector2389

multiplications instead on numerical quadrature. It introduces a consistency error,2390

see [15] for a numerical analysis of the method, but it is usually considerably more2391

efficient than the standard discretization, see [74]. The ith row sum of the matrix for2392
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the convective term reads as follows [15, 74] for i = 1, . . . ,M2393

N∑
j=1

(
d∑

k=1

(
∂kϕj , ϕi

)
bk(xj)

)
,2394

where bk(xj) is the value of the kth component of b at the node xj . With the same2395

argument as for the standard discretization, one finds that this row sum vanishes if2396

b is constant with respect to space, i.e., bk(xj) = bk. But for general convection2397

fields, the row sums do not vanish and hence, for the group finite element method,2398

the satisfaction of the global DMP can be inferred from Theorem 8.10 only for very2399

special (academic) convection fields. □2400

Lemma 8.12 (Local DMP for both substeps of the FEM-FCT scheme). Let the2401

assumptions of Theorem 8.10 be satisfied, then the substeps of the FEM-FCT scheme2402

satisfy the following local DMPs:2403

i) The solution u of (8.26) satisfies2404

(8.35) min
j∈Si∪{i}

unj ≤ ui ≤ max
j∈Si∪{i}

unj , 1 ≤ i ≤M .2405

ii) The solution un+1 of (8.28) satisfies2406

(8.36) min

{
umin
i ,min

j∈Si

un+1
j

}
≤ un+1

i ≤ max

{
umax
i ,max

j∈Si

un+1
j

}
, 1 ≤ i ≤M .2407

Proof. Consider any i ∈ {1, . . . ,M}. We will prove only the upper bounds in2408

(8.35) and (8.36) since the proofs of the lower bounds proceed along the same lines.2409

Denote by umax
i the right-hand side of (8.35) and set K = Ml − (1− θ)τL. Then2410

(K)M ≥ 0 due to (8.21). Using the notation K = (kij)
N
i,j=1 and the row sum property2411

of (L)M , the solution of (8.26) satisfies2412

miui =
∑

j∈Si∪{i}

kij
(
unj − umax

i

)
+mi u

max
i ≤ mi u

max
i ,2413

which implies the upper bound in (8.35).2414

Now denote by umax
i the right-hand side of (8.36). Then the ith row of (8.28)2415

can be written in the form2416

(8.37) (mi + θτ lii)
(
un+1
i − umax

i

)
= mi

(
ũi − umax

i

)
− θτ

∑
j∈Si

lij
(
un+1
j − umax

i

)
.2417

Since lij ≤ 0 for j ∈ Si and the Zalesak limiter is constructed in such a way that ũ2418

satisfies (8.30), the right-hand side of (8.37) is non-positive. As discussed above, the2419

matrix LI is positive definite and hence lii > 0. Thus, (8.37) implies the upper bound2420

in (8.36).2421

Summarizing the statements of Lemma 8.12, one finds that the solution of the2422

nonlinear problem (8.25) satisfies2423

un+1
i ≤ max

{
ui,max

j∈Si

uj ,max
j∈Si

un+1
j

}
≤ max

{
max

j∈Si∪{i}
unj ,max

j∈Si

uj ,max
j∈Si

un+1
j

}
.2424

Consequently, one cannot conclude that a local DMP of the form formulated in2425

Lemma 8.2 is satisfied for (8.25) since the values of the intermediate solution u might2426
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determine the maximum on the right-hand side of the above estimate. Likewise, one2427

cannot prove the LED property for the fully discrete problem, but only for both sub-2428

steps individually. For instance, if uni is a local maximum, it cannot be excluded2429

that uj > ui for some j ∈ Si. In this case, it is umax
i ̸= ui and the LED property2430

of the second substep does not provide information on the value of un+1
i . That the2431

local DMP and the LED property, which are usually stated in the literature for the2432

semi-discrete problem, cannot be transferred to the fully discrete problem is already2433

mentioned in [103, Ex. 4.56].2434

In [68], the existence of a solution of (8.26)–(8.28) is proven for arbitrary time2435

steps. The existence and uniqueness of a solution for sufficiently small time steps is2436

shown in [70].2437

We like to mention that there are in practice a couple of algorithmic issues and2438

variations of the FEM-FCT scheme, like prelimiting. Since this topic is outside the2439

scope of this survey, we refer to [90] or [95, Chapters 7.5, 7.6] for detailed presentations.2440

Note that the global DMP is still satisfied as long as the fluxes are modified before2441

the application of the Zalesak limiter.2442

Method (8.26)–(8.28) with the fluxes (8.24) and the bounds for the limiter (8.29) is2443

a nonlinear scheme. As shown in Theorem 8.10, an accurate solution of the nonlinear2444

problem is not necessary in order to satisfy the global DMP, since it is satisfied for2445

each iterate, but the accuracy of the numerical solution depends on how accurately the2446

nonlinear problems are solved. However, in practice, it might be of advantage to use a2447

linear version of a FEM-FCT scheme for the sake of high efficiency, thereby accepting2448

some loss of accuracy. Note that already the first FEM-FCT scheme proposed in [111]2449

is a linear scheme. Linear FEM-FCT schemes are systematically derived in [89].2450

The source of nonlinearity of a nonlinear FEM-FCT scheme is the definition (8.24)2451

of the algebraic fluxes. A linear FEM-FCT scheme can be also considered in the form2452

(8.25), however, the fluxes fij are independent of the solution un+1 at the new time2453

level. To define these fluxes, the values of un+1 in the formula (8.24) are approximated2454

by the solution of an appropriate problem, e.g., the high-order method (8.19) or the2455

low-order method (8.20), or by extrapolating the solution u of the explicit scheme2456

(8.26) to the time level tn+1. For θ = 1/2, such extrapolation was considered in [74],2457

leading to the approximation of un+1 by 2u− un. Then the fluxes are given by2458

(8.38) fij = −mij

(
ûj − ûi

)
+ dij

(
uj − ui

)
2459

with û = 2(u− un)/τ . Note that2460

(8.39) (Ml)
M û = −(L)Mun ,2461

i.e., û is an approximation of the time derivative of u corresponding to the low-order2462

scheme (8.20) with θ = 0. Independently of how the algebraic fluxes are defined,2463

the limiting procedure remains the same as for the nonlinear FEM-FCT scheme. In2464

particular, the bounds (8.29) for the limiter are defined using the solution of (8.26).2465

Thus, one obtains the following analog of Theorem 8.10.2466

Corollary 8.13 (Global DMP for the linear FEM-FCT scheme with Zalesak2467

limiter). Let the algebraic fluxes be defined by (8.24) with un+1 approximated using2468

the solution of a problem depending on un such that the fluxes are independent of2469

un+1. Let θ = 1 or the CFL condition (8.22) be satisfied, and let the bounds of the2470

limiter be defined by (8.29) with u from (8.26). Let all row sums of (L)M vanish and2471

let the Zalesak algorithm be applied for computing the flux limiters. Then the solution2472
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of the linear scheme (8.25) satisfies umin ≤ un+1
i ≤ umax, i = 1, . . . , N , where umin

2473

and umax are defined by (8.33) and (8.34), respectively.2474

Proof. The proof proceeds along the lines of the corresponding proof for the non-2475

linear FEM-FCT scheme. It was already noted that the concrete form of the fluxes2476

does not play any role.2477

Another linearization strategy proposed in [89] is a predictor-corrector approach2478

directly based on the basic FCT algorithm. In the first step, an intermediate solution2479

u at time level tn+1 is computed, e.g., by solving a problem of form (8.20). In this2480

step, one has to ensure that u satisfies a global DMP, which will give rise to a CFL2481

condition, like (8.22). The solution u is used for computing the algebraic fluxes and2482

the bounds (8.29) for the limiter. Then the flux limiters are computed in the same2483

way as for the nonlinear FEM-FCT method and a corrected solution is defined by2484

(8.40) (Ml)
Mun+1 = (Ml)

Mu+ τ

 N∑
j=1

αijfij

M

i=1

2485

and Dirichlet boundary conditions at tn+1. The algebraic fluxes can be defined by the2486

formula (8.24) with un+1 replaced by u, as considered in [103]. In [89], the formula2487

(8.24) is considered with θ = 1, leading to (8.38), where û is again an approximation2488

of the discrete time derivative (un+1 − un)/τ which can be defined by (8.39), see2489

[89, 90] for alternative proposals.2490

Theorem 8.14 (Global DMP for the predictor-corrector FEM-FCT scheme with2491

Zalesak limiter). Let u be the solution of (8.20) and let the bounds of the limiter be de-2492

fined by (8.29) using this u. Let the algebraic fluxes be defined by an approximation of2493

(8.24) such that they are independent of un+1 and let the Zalesak algorithm be applied2494

for computing the flux limiters. Let θ = 1 or the CFL condition (8.22) be satisfied, and2495

let all row sums of (L)M vanish. Then the corrected solution defined by (8.40) satisfies2496

umin ≤ un+1
i ≤ umax, i = 1, . . . , N , where umin = min{un1 , . . . , u

n
N , g

n+1
1 , . . . , gn+1

N−M}2497

and umax = max{un1 , . . . , u
n
N , g

n+1
1 , . . . , gn+1

N−M}.2498

Proof. Since the matrices in (8.20) satisfy all the assumptions of Corollary 8.7,2499

the solution u of (8.20) satisfies umin ≤ ui ≤ umax, i = 1, . . . , N . The Zalesak limiter2500

is constructed in such a way that the corrected solution satisfies umin
i ≤ un+1

i ≤ umax
i ,2501

i = 1, . . . ,M , which implies the theorem.2502

For a comprehensive evaluation of the gain of efficiency and loss of accuracy in2503

using a linear scheme for several academic problems, we refer to the numerical studies2504

in [74]. In that paper, one can find also comparisons with a linear upwind finite2505

element method and an example where some shortcomings of the FEM-FCT method2506

are presented.2507

9. Other types of finite elements. This section discusses results concern-2508

ing the DMP and corresponding methods for finite elements other than continuous2509

piecewise linears. It turns out that the results are often negative, at least in dimen-2510

sions higher than one, and that there are only few methods for which a DMP can2511

be proven. This situation justifies the concentration on the P1 finite element in the2512

previous sections.2513

9.1. Q1 finite element. Triangulations made of quadrilaterals in two dimen-2514

sions or hexahedra in three dimensions are widely used for problems from fluid dy-2515
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namics. The lowest order continuous finite element space on such triangulations is2516

the space Q1 consisting of piecewise d-linear functions. Strictly speaking, one has2517

to distinguish between two types of such spaces, namely mapped and unmapped Q12518

finite elements. For the mapped version the local space is defined on a reference cell2519

K̂, e.g., K̂ = [−1, 1]d. Then, the finite element space on a physical mesh cell K is2520

given by the reference map from K̂ to K. For the unmapped version the local func-2521

tions are defined directly on the physical mesh cells. Both definitions coincide if the2522

reference map is affine, i.e., if K is a parallelepiped. If this is not the case, the image2523

of a d-linear function defined on K̂ will not be a d-linear function on K.2524

Concerning Q1 finite elements, investigations of the DMP have been concentrated2525

so far on meshes whose cells are Cartesian products of intervals, sometimes called2526

blocks in the literature. For the Poisson equation in two dimensions, it had been2527

observed already in [30] that the DMP is violated if the aspect ratio, i.e., the ratio of2528

the lengths of the longest edge and the shortest edge of the cell, becomes too large.2529

Based on the tensor-product representation of the basis functions by one-dimensional2530

basis functions, one can derive with a straightforward calculation a formula for the2531

local entries ℓKij of the diffusion matrix, compare [128, Sec. 4.6]. If the corresponding2532

nodes xi and xj share a common edge E1, then one finds in particular that2533

ℓKij = − |K|
3d−1

(
1

h2E1

−
d∑

k=2

1

2h2Ek

)
,2534

where E1, . . . , Ed are mutually orthogonal edges of K. Thus, for d = 2, one obtains2535

a non-positive entry, which is condition (3.4) for a matrix of non-negative type, if2536

the aspect ratio is lower than or equal to
√
2. For d = 3, the mentioned entries are2537

non-negative only for cubes, namely ℓKij = 0, see also [76]. Considering the relaxed2538

requirement that the diffusion matrix should be monotone, then numerical studies in2539

[85] reveal that the aspect ratios might be larger, at least on sufficiently fine grids,2540

about 2.16 for d = 2 and 1.05 for d = 3. An extension of the analysis to reaction-2541

diffusion equations can be found in [128, Sec. 4.6].2542

9.2. Higher order H1-conforming finite elements. Concerning the inves-2543

tigation of the DMP, a major difference between higher order H1-conforming finite2544

element functions and P1 functions is as follows. Whereas local extrema are attained2545

for P1 functions only in the degrees of freedom, i.e., geometrically at the vertices of2546

the mesh cells, this is not the case for higher order finite element functions. As simple2547

example, a one-dimensional standard P2 basis function is depicted in Figure 7, which2548

takes its minimum between the locations of the degrees of freedom.2549

A local DMP whose definition is restricted to the degrees of freedom has been2550

studied for the Poisson equation in two dimensions already in [106, 57]. It is shown in2551

[57] that such a DMP is satisfied for P2 finite elements only in special situations: on2552

triangulations with equilateral triangles and on meshes consisting of squares in which2553

the squares are divided by arbitrary diagonals. Note that these special triangulations2554

impose severe restrictions on admissible forms of the domain. A more recent numerical2555

study in [127] shows that for P2 elements also triangulations with ‘nearly’ equilateral2556

triangles lead to a satisfaction of the DMP with respect to the degrees of freedom and2557

that such a DMP is not satisfied for finite elements of degree three and higher. In2558

addition, it is discussed in [57] that even on special grids a DMP for the degrees of2559

freedom is not valid for P3 finite elements.2560

A proposal for extending an algebraically stabilized scheme to P2 finite elements2561
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Fig. 7. Basis function for P2 in the interval [x1, x2]. The degrees of freedom are indicated with
black crosses. The function is non-negative at the degrees of freedom, but takes negative values in
the interval.

such that the DMP for the nodal values is satisfied can be found in [88].2562

Already in [57], an example is given that the DMP for the degrees of freedom2563

does not imply a DMP for the finite element function. This issue might be crucial in2564

coupled problems, when the P2 finite element solution is a coefficient in other equations2565

and sufficiently accurate quadrature rules have to be utilized for assembling the finite2566

element terms of the other equations. Usually, the nodes of such quadrature rules do2567

not coincide with the geometric positions of the degrees of freedom of the P2 finite2568

element function.2569

In [106], the special case of a triangulation consisting of squares that are divided by2570

diagonals which have all the same direction is studied. The proof of the DMP relies on2571

a sufficient condition for the system matrix to be monotone. This condition is based,2572

interestingly, on an additive decomposition of the system matrix, in its diagonal,2573

a term that contains all positive off-diagonal entries, and a term that contains all2574

negative off-diagonal entries. Then, it is assumed that the last term admits another2575

additive decomposition that satisfies appropriate properties. A way that might be2576

successful for deriving such a decomposition is provided. For details, it is referred to2577

[106, 100].2578

At least for one-dimensional problems, some progress concerning the validation2579

of the DMP has been achieved, e.g., in [129, 130]. These results will not be discussed2580

here since they do not generalize to higher dimensions. Another direction of research,2581

inspired by [117], consists in proving a so-called weak DMP, i.e., in showing that2582

∥uh∥∞,Ω ≤ C∥uh∥∞,∂Ω, where C is independent of the mesh width, e.g., see [99]2583

for a recent contribution. Although mathematically certainly of interest, the weak2584

DMP does not ensure the physical consistency of the numerical solution, even for2585

C = 1, e.g., if the solution is a concentration that should take values in [0, 1] in Ω and2586

equals 1 at some part of ∂Ω, then negative values can still appear in a corresponding2587

numerical solution. A further direction of research consists in applying finite difference2588

techniques for deriving a discrete problem for Q2 finite elements, e.g., see [100] for2589

a recent paper, which studies reaction-diffusion equations in two dimensions. Such2590

methods possess the usual restriction of finite difference methods to simple domains.2591

Results presented in [100] include the satisfaction of the global DMP on uniform2592

meshes for the Poisson equation. If the uniform mesh is sufficiently fine, then the2593
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global DMP is also satisfied for the reaction-diffusion equation.2594

Remark 9.1. Bernstein finite element methods. The presentation of the FCT2595

schemes in Section 8.4 is completely algebraic, it did not exploit any special property2596

of P1 finite elements. Only some general properties were used, like that the finite2597

element basis forms a partition of unity and that the off-diagonal entries of Mc are non-2598

negative in order to obtain a well-defined lumped mass matrix. These two properties2599

are also satisfied if the finite element basis consists of local Bernstein polynomials of2600

some degree. The finite element solution can be represented as a linear combination2601

of these basis functions, which are non-negative, with so-called Bernstein coefficients.2602

However, even in points that are degrees of freedom, the value of the solution usually2603

does not coincide with one of the Bernstein coefficients, in contrast to Lagrangian2604

basis functions. All statements proved in Section 8.4 can be transferred to a FEM-2605

FCT scheme with Bernstein polynomials, where everywhere the solution u has to be2606

replaced by the Bernstein coefficients, because they appear in the algebraic problems.2607

Such a scheme for scalar transport equations is studied in [104]. □2608

9.3. Non-conforming finite elements of Crouzeix–Raviart type. Con-2609

sider a simplicial triangulation Th of Ω. Then, the lowest order non-conforming finite2610

element space of Crouzeix–Raviart-type, proposed in [32], is defined by2611

Pnc
1 =

{
vh ∈ L2(Ω) : vh|K ∈ P1(K) ∀ K ∈ Th, vh is continuous at the2612

barycenters of all facets
}
.2613

Functions from Pnc
1 are usually discontinuous across facets, so Pnc

1 ̸⊂ H1(Ω). The2614

degrees of freedom are assigned to the facets. Consequently, the support of each nodal2615

basis function consists of not more than two mesh cells. This property results in a2616

small communication overhead in simulations on parallel computers. Furthermore,2617

the localized support leads to quite sparse matrices for many discretizations.2618

An upwind method for Pnc
1 was proposed in [110]. To this end, a dual domain2619

or lumping domain for each degree of freedom is considered. Since the degrees of2620

freedom are assigned to the facets, the construction of the dual domain is much easier2621

than for P1. For each degree of freedom, it is the polytope whose vertices are the2622

vertices of the corresponding facet and the barycenter(s) of the mesh cell(s) where2623

the facet belongs to. Integration by parts on the dual grid is applied to the convective2624

term and then the fluxes across the facets of the dual mesh cells are approximated by2625

an upwind technique. The construction of the upwind fluxes leads on triangulations2626

of acute type to a convection matrix that is of non-negative type. Also the diffusion2627

matrix for Pnc
1 is of non-negative type on acute grids. Its restriction to the degrees of2628

freedom that are not on the Dirichlet boundary is invertible, since the corresponding2629

bilinear form is coercive with respect to a piecewise defined H1(Ω) seminorm, which is2630

a norm in the subspace of Pnc
1 consisting of functions vanishing at barycenters of facets2631

contained in the Dirichlet boundary. Thus, from [81, Theorem 5.1] one can conclude2632

the existence of a unique solution of the discrete problem and from Theorems 3.42633

and 3.5 the satisfaction of the local and global DMP for the degrees of freedom,2634

respectively, on acute triangulations.2635

To the best of our knowledge, this upwind method is nowadays rarely used for the2636

numerical solution of convection-diffusion-reaction equations. However, it gained some2637

usefulness in the construction of multigrid methods for incompressible flow problems.2638

For such problems, the pair Pnc
1 /P0 satisfies a discrete inf-sup condition and applying2639

the upwind technique from [110] leads to a convection-stabilized discretization of2640
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the incompressible Navier–Stokes equations. It was proposed in [72] to utilize this2641

discretization on lower levels of a multigrid method, leading to the so-called multiple2642

discretization multilevel (MDML) method. A more recent comparison of solvers for2643

the incompressible Navier–Stokes equations that includes the MDML method can be2644

found in [1].2645

The upwind technique from [110] can be extended in a straightforward way to2646

non-conforming rotated bilinear finite elements of lowest order for quadrilaterals and2647

hexahedra proposed in [113], see [125].2648

9.4. Discontinuous Galerkin finite element methods. Discontinuous Ga-2649

lerkin (DG) methods were already proposed in [114] for first order hyperbolic prob-2650

lems. They started to become also popular for discretizing second order elliptic2651

equations in the 1990s. Meanwhile, a number of monographs are available, e.g.,2652

[115, 37, 38].2653

In DG methods, the finite element space consists of piecewise polynomials that2654

are completely discontinuous across facets of the mesh cells. Thus, a DG finite element2655

function is usually not contained in H1(Ω).2656

For DG methods, the notion of ‘satisfying a DMP’ has to be revisited. In several2657

papers on time-dependent transport and convection-diffusion equations, e.g., [138,2658

140], the fact that DG allows to use the cell averages in natural way has been used2659

to restrict the DMP to these quantities, and then the following criterion has been2660

proposed: let the cell-wise averages of the DG solution un at time instant tn be in2661

[umin, umax], then the DG method satisfies a DMP if the averages of un+1 at tn+1 are2662

also contained in this interval. For a detailed discussion of such methods, it is referred2663

to the respective literature, e.g., [119]. An alternative approach, more algebraic and2664

based in the concept of invariant sets and domains for hyperbolic problems, is followed2665

in [54, 56, 112].2666

In here, we will detail an approach proposed for the convection-diffusion equation2667

in [7]. We start by defining the first order discontinuous space on a simplicial grid,2668

that is12669

Pdisc
1 =

{
vh ∈ L2(Ω) : vh|K ∈ P1(K) ∀ K ∈ Th

}
.2670

This space is equipped with the basis {ϕKi }, where for a mesh cell K and a node i2671

such that xi is a vertex of K, the function ϕKi is defined as follows: ϕKi is linear in2672

K, ϕKi |K(xi) = 1, ϕKi |K = 0 at all other vertices of K, and ϕKi vanishes outside of2673

K. The restriction of vh ∈ Pdisc
1 to a mesh cell K is denoted by vKh .2674

The first observation is that even the notion of a local extremum is not clear2675

for functions from Pdisc
1 , compare Fig. 8, where the values at xi are both a strict2676

local minimum and a strict local maximum. To this end, the following definition was2677

introduced in [7].2678

Definition 9.2 (Local discrete extremum for Pdisc
1 ). The function uh ∈ Pdisc

1 has2679

a local discrete minimum (resp. maximum) at the vertex xi in K if uKh (xi) ≤ uh(x)2680

(resp. uKh (xi) ≥ uh(x)) for all x ∈ ωi.2681

Then, a definition of a DMP for methods using Pdisc
1 is given in [7], which is2682

inspired by Definition 3.17 for nonlinear forms with P1 functions.2683

1
Strictly speaking, the functions of Pdisc

1 are well-defined only on the interiors of the mesh cells,
since the limits to the same point at the boundaries of mesh cells, approached from different mesh
cells, are usually different. To simplify the presentation, we will nevertheless speak of values on facets
or at vertices and mean always the limit from the corresponding mesh cell.
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xi

Fig. 8. Pdisc
1 function (in red) with local minimum and local maximum at xi.

Definition 9.3 (DMP for Pdisc
1 ). Let ah : Pdisc

1 × Pdisc
1 → R be a bilinear form.2684

This bilinear form is said to possess the DMP property if for all uh ∈ Pdisc
1 and for2685

all interior vertices xi where uh is locally minimal (resp. maximal) at xi in K, there2686

exist constants αF > 0 and ζK > 0 such that2687

(9.1) ah

(
uh, ϕ

K
i

)
≤ −

∑
F∈Fi∩FK

αF

hF

∫
F

|JuhKF | ds− ζK
hK

∫
K

∣∣∣∇uKh ∣∣∣ dx,2688

(resp. ah

(
uh, ϕ

K
i

)
≥
∑

F∈Fi∩FK

αF

hF

∫
F
|JuhKF | ds+ ζK

hK

∫
K

∣∣∣∇uKh ∣∣∣ dx).2689

Next, the consistency of the preceding definitions will be shown.2690

Lemma 9.4 (Consequences of the satisfaction of the DMP). Let ah : Pdisc
1 ×2691

Pdisc
1 → R be a bilinear form that satisfies the DMP property from Definition 9.3 and2692

consider the problem to find uh ∈ Pdisc
1 such that ah(uh, vh) = (f, vh) for all vh ∈ Pdisc

1 .2693

i) If f ≥ 0 (resp. f ≤ 0), then uh does not possess a strict local discrete minimum2694

(resp. maximum), see Definition 9.2, at any interior point.2695

ii) If f ≥ 0 (resp. f ≤ 0), then uh attains its global minimum (resp. maximum) at2696

the boundary ∂Ω.2697

Proof. i) Assume that uh has a strict local discrete minimum at the interior node2698

xi in the mesh cell K. Since ah(·, ·) satisfies the DMP property, it follows from (9.1)2699

that ah(uh, ϕ
K
i ) ≤ 0. On the other hand, one has (f, ϕK

i ) ≥ 0 and then ah(uh, ϕ
K
i ) = 02700

holds. From (9.1), one infers that then ∇uKh = 0 and hence uKh is constant so that2701

the minimum is not strict.2702

ii) If uKh (xi) is a global minimum for some mesh cell K and some interior node2703

xi ∈ K, then it is also a local minimum and from the proof of i), one gets that2704

uKh is constant. Moreover, it follows from the DMP property that JuhKF = 0 for all2705

F ∈ Fi ∩ FK . Let K ′ ⊂ ωi be a mesh cell that shares a common facet F with K.2706

As the jump JuhKF vanishes, then uKh (x) = uK
′

h (x) for all x ∈ F , and in particular2707

uKh (xi) = uK
′

h (xi). Thus, u
K

′

h (xi) also is a global minimum and it follows that uK
′

h is2708

constant. By induction, one finds that uh|ωi
= uKh (xi) is a constant. Then, again by2709

induction, it follows that uh is constant in Ω and in particular that uh|∂Ω = uKh (xi).2710

Hence, the global minimum is attained at the boundary of Ω.2711

One type of equations studied in [7] is a steady-state convection-diffusion equation2712

with conservative form of the convective term and solenoidal convection field. For the2713

DG discretization of the diffusive term, the standard incomplete interior penalty (IIP)2714

method is used. This choice is motivated by the analysis of one-dimensional diffusion2715
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problems that are discretized with DG methods, see [58]. The convective term is2716

integrated by parts and then an upwind discretization at interior facets is utilized.2717

In addition, and this is the major algorithmic proposal of [7], a nonlinear, locally2718

defined artificial diffusion term built with the help of a shock detector is added. For a2719

one-dimensional problem, the DMP, according to Definition 9.3, is proven. There are2720

no analytic results for multiple dimensions. The main obstacle for such results is that2721

a DMP is not available already for the usual interior penalty discretizations of the2722

diffusion term. In the numerical studies presented in [7], small violations of the DMP2723

can be observed for a simulation performed on an acute mesh in two dimensions.2724

A method that addresses the above mentioned issue of the DMP for interior2725

penalty discretizations of the diffusive term is proposed in [5]. This method augments2726

the symmetric interior penalty method with a nonlinear discrete diffusion operator2727

related to the AFC/FCT schemes described in previous sections. Then, it is shown2728

in [5] that the proposed scheme for the steady-state convection-diffusion problem2729

satisfies a local DMP if the right-hand side of the equation vanishes identically. This2730

statement holds for arbitrary admissible grids and Pdisc
1 finite elements on simplices2731

and discontinuous piecewise d-linear elements on quadrilaterals or hexahedra. For the2732

time-dependent case, a semi-discrete problem in space is considered and it is shown2733

that the discrete scheme is LED, again in case that the right-hand side of the problem2734

is identically zero.2735

High-order DG schemes based on algebraic flux correction were recently developed2736

in [56, 112] for hyperbolic conservation laws. While in [56] monolithic convex limiting2737

with subcell flux limiters is used, in [112] an FCT-type predictor-corrector algorithm is2738

advocated. The bound preserving DG scheme of [56] employs Bernstein polynomials2739

to facilitate the use of very high order spatial approximations. The limiting strategy of2740

[112] is tailor-made for Legendre-Gauss-Lobatto DG bases, and makes use of a novel2741

sparse low-order invariant domain preserving method whose stencil does not grow2742

with the polynomial degree of the corresponding high-order method. The invariant2743

domain preservation is proved under a CFL condition.2744

10. Brief comments on hyperbolic conservation laws. The aim of this2745

section is to discuss briefly results on the satisfaction of the DMP for transport equa-2746

tions and nonlinear hyperbolic conservation laws. Presenting in detail the amount2747

and variety of works devoted to hyperbolic problems requires a review on its own and2748

it is clearly outside the scope of the present survey. In particular, in this section we2749

will only focus on continuous finite element methods, since for discontinuous Galerkin2750

approaches there exist several well documented reviews (e.g., [139, 119]). In addition,2751

in recent years there has been an increasing interest in seeking suitable conforming ap-2752

proximations for hyperbolic problems, since conforming approximations do not have2753

a built-in stability, and hence the challenge of finding structure-preserving stabilizing2754

terms is different from the discontinuous counterparts.2755

The model problem considered in this section is the extreme case ε = 0, this is,2756

the transport equation, or, more generally, conservation equations of the form2757

(10.1) ∂tu+ divf(u) = 0 in Ω ,2758

where f(u) is the flux function, provided with appropriate (inlet) boundary and initial2759

conditions. If f(u) = bu, then (10.1) reduces to the linear transport equation.2760

Remark 10.1. It is worth mentioning that the case ε = 0 allows to propose meth-2761

ods that respect the DMP on general meshes in a more natural way. In fact, the2762

added viscosity methods only need to deal with compensating for the wrong signed2763
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terms in the convection matrix, and not with the possibly positive terms in the dif-2764

fusion matrix, which are of a different order in terms of the mesh size. For example,2765

in [25] an appropriate combination of upwinding and FCT-related techniques is used2766

to propose a nonlinear stabilized scheme that preserves the DMP for the linear trans-2767

port equation. In addition, the time discretization is based on an explicit method, so2768

the overhead of using a nonlinear discretization is minimal. On the other hand, it is2769

important to mention that the discrete maximum principle is not, in general, enough2770

to prove the convergence of a numerical scheme to the entropy solution of (10.1), as2771

it has been mentioned in, e.g., [53], where the authors show that, in order to converge2772

to the entropy solution, the scheme needs also to control the maximum wave speed.2773

More precisely, in Lemma 4.6 in that reference, it is shown that the FCT algorithm,2774

equipped with a limiter related to the Zalesak one, might not converge for certain2775

nonlinear fluxes, which is then confirmed in the numerical experiments for Burgers’2776

equation. □2777

We start by mentioning that most of the references quoted in Section 8.4 were,2778

in fact, works developed for the transport, or Euler, equations. So, this section will2779

be devoted to describing some of the more recent developments of DMP-preserving2780

schemes for this problem. In [92], using the framework of algebraic flux correction2781

and invariant domain preserving schemes, a monolithic approach to convex limiting2782

is introduced for hyperbolic conservation laws. The convex limiting is thoroughly2783

discussed for both scalar conservation laws (including the transport equation) and2784

hyperbolic systems. In the context of the enriched finite element method (proposed2785

originally in [17]), a FCT scheme for the transport equation is proposed in [94] where2786

the DMP is proven (under appropriate CFL conditions) for both the continuous and2787

discontinuous parts of the solution.2788

In [51] a first order added diffusion/viscosity method with an explicit time dis-2789

cretization is proposed for (10.1). The DMP for the resulting scheme is proven under2790

a CFL condition. On uniform meshes, the bilinear form of the first order diffusion2791

used in [51] corresponds to the matrix MC − ML used in [105]. Later, in [55] the2792

authors show that it is impossible to propose an explicit continuous finite element2793

method that is stabilized with artificial viscosity and satisfies the DMP if the time2794

derivative is approximated using the consistent mass matrix. In the paper [52] the2795

authors propose a different technique: first, a higher order added viscosity (defined2796

as the minimum between the first order viscosity and the entropy residual) is added.2797

The DMP cannot be proven for the resulting scheme, so they use a technique related2798

to the FCT method (linked to the graph-Laplacian writing of the added viscosity),2799

supplied with flux limiters related to those described in Section 8.4 (based on the2800

Zalesak algorithm), and an approximation of the inverse of the consistent mass ma-2801

trix to correct the scheme. The combination of these techniques allows for the proof2802

of the DMP. Later, in [53] a method, again related to the FCT family, is proposed,2803

equipped with three different limiters, namely the Zalesak limiter, the smoothness-2804

based indicator, and a greedy viscosity algorithm. In addition, the satisfaction of the2805

DMP and the convergence to the entropy solution are shown. Some comparisons in2806

terms of robustness and reliability are also carried out in [53]. Another work devoted2807

to stabilization by the nonlinear diffusion operator (also referred to as graph Lapla-2808

cian in some papers) is the work [4], where a regularization of the definition of the2809

limiters is proposed in order to obtain twice differentiable limiters and to make the2810

discretization amenable to the use of Newton’s method to solve the algebraic system.2811

In the context of the Burgers equation, in [24] numerical viscosity is added to2812
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satisfy the DMP and prove convergence to the entropy solution of the hyperbolic2813

equation. In one space dimension the method consists of adding a numerical diffusion2814

of the form (ε(uh)∂xuh, ∂xvh) where ε(uh) is designed to satisfy several hypotheses.2815

These conditions imply the Lipschitz continuity of the stabilization and the fact that2816

the problem satisfies the strong DMP property (similar to those in Section 3.2). Under2817

these assumptions, the finite element method is proven to converge to the entropy2818

solution of Burgers’ equation. Later, in [6], essentially the same assumptions are2819

imposed on the coefficient of the added diffusion, with the difference that in this case2820

the diffusion is of the form of a local projection stabilization method. The method is2821

proven to be LED and to converge to the entropy solution.2822

We next comment on the possibility of using both linear and nonlinear stabilizing2823

terms in conservation laws. In fact, as it was mentioned in previous sections, it2824

has been observed in several works that the use of a nonlinear stabilization (e.g.,2825

FCT) alone does not suffice to build a convergent method. For example, in [53] it2826

is shown that using nonlinear stabilization alone leads, in certain cases, to failure in2827

convergence of the scheme. So, the authors take a different approach by first adding2828

an entropy viscosity to a method by using the consistent mass matrix, thus violating2829

the DMP, and then applying a FCT technique as a post-processing to produce a2830

DMP-preserving approximate solution. In addition, in the work [40] a combined use2831

of linear (edge-based) stabilization and a nonlinear entropy viscosity is advocated. It2832

is shown in that reference that the addition of linear stabilization, if not weighted2833

properly, can actually hinder the satisfaction of the DMP and increase the entropy2834

violations, and even in some extreme cases, make a convergent method converge to2835

the wrong weak solution. So, a nonlinear weight is introduced to balance the influence2836

of the stabilizing terms and secure convergence to the entropy solution. We should,2837

nevertheless, mention that even if the entropy viscosity method is claimed to satisfy2838

a weakened maximum principle, there is no proof of DMP-satisfaction (or weakened2839

DMP) available, although the authors show numerical evidence supporting the claim2840

that the weighted method does satisfy a weakened DMP.2841

We finish this short section by mentioning two relatively recent works where2842

DMP-preserving methods are introduced and that use LPS-related methods as linear2843

stabilization. In [93] a linear stabilizing term is first introduced. This term penalizes2844

the fluctuations between the discrete solution and its local average (thus inspired2845

by the LPS idea, but departing from the classical LPS approaches). This method2846

preserves the DMP but provides inaccurate results, so the target function, that is, the2847

function with respect to which the fluctuation is computed, is modified by adding to2848

it an approximation of its gradient. This approximation is then limited using limiters2849

that guarantee the LED property and linearity preservation (on general meshes) of the2850

resulting scheme. The authors claim that the linearity preserving limiter introduced2851

in [93, Section 7] can also be applied in different contexts, e.g., the AFC and FCT2852

schemes. The resulting method is tested in steady-state and time-dependent schemes2853

showing that the combination of the gradient approximation as high order stabilization2854

with the LED limiter localizes the stabilization enough as to reduce the oscillations2855

around the shocks without smearing the profiles in excess. Finally, in [108] the authors2856

present a nonlinear stabilization through discrete artificial diffusion supplemented by2857

a monotone local projection operator based on limiting at the semi-discrete level. The2858

resulting method respects the DMP and is linearity preserving. The impact of the2859

local projection operator is studied in the numerical experiments where it is shown2860

that its addition (that acts as a high order background dissipation) helps to reduce2861

the terracing (and even eliminates it in some cases).2862
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11. Summary. For convection-dominated convection-diffusion problems it is a2863

challenging task to construct discretizations that at the same time satisfy the DMP2864

and compute accurate solutions. Enormous efforts have been spent since the 1980s in2865

the development of schemes that enrich traditional stabilized finite element methods2866

with extra terms to reduce the size of spurious oscillations, leading to the class of2867

SOLD methods. However, this development turned out to be only little successful2868

with respect to designing methods for which the DMP can be proven rigorously, since2869

only the Mizukami–Hughes method satisfies this property. In the 2000s, a different2870

class of methods was started to be developed, namely algebraically stabilized finite2871

element methods. In that decade, FEM-FCT schemes for the time-dependent problem2872

were proposed and at the end of that decade, the first AFC method for the steady-state2873

problem. Then, in recent years, the analysis for AFC methods have been developed2874

and further methods for the steady-state problem, like modifications and extensions of2875

algebraic stabilizations, have been developed. For all of these schemes, the DMP can2876

be proven, sometimes under conditions on the data or the mesh. In summary, there2877

are meanwhile several, but still surprisingly few, finite element methods available that2878

satisfy the DMP and compute simultaneously quite accurate results.2879

For the steady-state problem, all DMP-respecting finite element schemes with2880

accurate solutions are nonlinear. It can be seen in the numerical example from Sec-2881

tion 7 that, on the one hand, there are differences concerning the accuracy of the2882

computed solutions, but on the other hand, the differences are not large. For the2883

practical use of these methods, also aspects like the efficiency for solving the non-2884

linear problems and the efforts for implementing the methods in three dimensions2885

are important. Concerning the first issue, whose investigation is outside the scope of2886

this survey, a comprehensive comparison of two algebraically stabilized schemes can2887

be found in [64]. Simulations of three-dimensional problems with various algebraic2888

stabilizations can be found in [14, 64]. Note the many algebraic stabilizations do work2889

only with the matrices and vectors such that their implementation can be carried out2890

independently of the dimension of the problem.2891

There is a similar situation for the time-dependent problem: algebraically stabi-2892

lized schemes are the currently best available finite element methods that satisfy the2893

global DMP and compute accurate solutions. Here, also a linear variant is available2894

which showed in several applications a good balance of accuracy and efficiency.2895
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[58] T. L. Horváth and M. E. Mincsovics, Discrete maximum principle for interior penalty3066
discontinuous Galerkin methods, Cent. Eur. J. Math., 11 (2013), pp. 664–679, https:3067
//doi.org/10.2478/s11533-012-0154-z.3068

[59] W. Huang, Discrete maximum principle and a Delaunay-type mesh condition for linear fi-3069
nite element approximations of two-dimensional anisotropic diffusion problems, Numer.3070
Math. Theory Methods Appl., 4 (2011), pp. 319–334, https://doi.org/10.4208/nmtma.3071
2011.m1024.3072

[60] T. Ikeda, Maximum principle in finite element models for convection-diffusion phenomena,3073
North-Holland, Amsterdam, 1983.3074

[61] A. Jameson, Origins and further development of the Jameson-Schmidt-Turkel scheme, AIAA3075
J., 55 (2017), pp. 1487–1510, https://doi.org/10.2514/1.J055493.3076

[62] A. Jameson, W. Schmidt, and E. Turkel, Numerical solution of the Euler equations by3077
finite volume methods using Runge-Kutta time-stepping schemes, in 14th AIAA Fluid3078
and Plasma Dynamics Conference, Palo Alto, CA (USA), 23-25 Jun 1981, AIAA meeting3079
paper 1981-1259, 1981, https://doi.org/10.2514/6.1981-1259.3080

[63] A. Jha, A residual based a posteriori error estimators for AFC schemes for convection-3081
diffusion equations, Comput. Math. Appl., 97 (2021), pp. 86–99, https://doi.org/10.1016/3082
j.camwa.2021.05.031.3083

[64] A. Jha and V. John, A study of solvers for nonlinear AFC discretizations of convection-3084
diffusion equations, Comput. Math. Appl., 78 (2019), pp. 3117–3138, https://doi.org/10.3085
1016/j.camwa.2019.04.020.3086

[65] A. Jha, V. John, and P. Knobloch, Adaptive grids in the context of algebraic stabilizations3087
for convection–diffusion–reaction equations, 2022, https://arxiv.org/abs/2007.08405.3088

[66] V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods3089
for convection–diffusion equations: Part I – A review, Comput. Methods Appl. Mech.3090
Engrg., 196 (2007), pp. 2197–2215, https://doi.org/10.1016/j.cma.2006.11.013.3091

[67] V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods3092
for convection–diffusion equations: Part II – Analysis for P1 and Q1 finite elements,3093
Comput. Methods Appl. Mech. Engrg., 197 (2008), pp. 1997–2014, https://doi.org/10.3094
1016/j.cma.2007.12.019.3095

[68] V. John and P. Knobloch, Existence of solutions of a finite element flux-corrected-transport3096

This manuscript is for review purposes only.

https://doi.org/10.1109/HiPCW.2016.023
https://doi.org/10.1109/HiPCW.2016.023
https://doi.org/10.1109/HiPCW.2016.023
https://doi.org/10.1002/zamm.19300100409
https://doi.org/10.1002/zamm.19300100409
https://doi.org/10.1002/zamm.19300100409
https://doi.org/10.1007/978-3-642-61798-0
https://doi.org/10.1016/j.cma.2013.12.015
https://doi.org/10.1137/130950240
https://doi.org/10.1137/16M1106560
https://doi.org/10.1016/j.cma.2018.11.036
https://doi.org/10.1007/s10915-016-0285-7
https://doi.org/10.1016/j.camwa.2021.02.012
https://doi.org/10.1016/j.camwa.2021.02.012
https://doi.org/10.1016/j.camwa.2021.02.012
https://doi.org/10.1007/BF02243548
https://doi.org/10.1007/BF02243548
https://doi.org/10.1007/BF02243548
https://doi.org/10.2478/s11533-012-0154-z
https://doi.org/10.2478/s11533-012-0154-z
https://doi.org/10.2478/s11533-012-0154-z
https://doi.org/10.4208/nmtma.2011.m1024
https://doi.org/10.4208/nmtma.2011.m1024
https://doi.org/10.4208/nmtma.2011.m1024
https://doi.org/10.2514/1.J055493
https://doi.org/10.2514/6.1981-1259
https://doi.org/10.1016/j.camwa.2021.05.031
https://doi.org/10.1016/j.camwa.2021.05.031
https://doi.org/10.1016/j.camwa.2021.05.031
https://doi.org/10.1016/j.camwa.2019.04.020
https://doi.org/10.1016/j.camwa.2019.04.020
https://doi.org/10.1016/j.camwa.2019.04.020
https://arxiv.org/abs/2007.08405
https://doi.org/10.1016/j.cma.2006.11.013
https://doi.org/10.1016/j.cma.2007.12.019
https://doi.org/10.1016/j.cma.2007.12.019
https://doi.org/10.1016/j.cma.2007.12.019


82 G.R. BARRENECHEA, V. JOHN, AND P. KNOBLOCH

scheme, Appl. Math. Lett., 115 (2021), p. Paper No. 106932, https://doi.org/10.1016/j.3097
aml.2020.106932.3098

[69] V. John and P. Knobloch, On algebraically stabilized schemes for convection–diffusion–3099
reaction problems, Numer. Math., 152 (2022), pp. 553–585, https://doi.org/10.1007/3100
s00211-022-01325-9.3101

[70] V. John, P. Knobloch, and P. Korsmeier, On the solvability of the nonlinear problems3102
in an algebraically stabilized finite element method for evolutionary transport-dominated3103
equations, Math. Comp., 90 (2021), pp. 595–611, https://doi.org/10.1090/mcom/3576.3104
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