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Abstract: The elastic core concept developed from the Bree problem can be used for structural 
integrity evaluation of high temperature components, such as creep ratcheting and creep fatigue. 
The simplified inelastic analysis method of the ASME 2013 III-1 NH Code adopts the idea of core 
stress, which protects against creep rupture and collapse of the structure by limiting the accumulated 
inelastic strain. Currently, the formulas of core stress and evaluation diagram of effective creep 
stress parameter for Tests B-1 and B-3 adopted by the APPENDIX NH-T are developed from the 
classical loading Bree problem, however, the related concepts and evaluation diagrams of modified 
Bree problems considering generalized loading conditions have not been reported. This paper first 
reviews the development history of the elastic core concept and its corresponding analysis methods. 
Based on the modified Bree problems considering in-phase and out-of-phase loading developed by 
Bradford, the corresponding formulas of the core stress in the non-plastic ratcheting zone are 
completely proposed, and the corresponding evaluation diagrams of effective creep stress 
parameters are constructed for the first time. By comparing the core stress formulas and effective 
creep stress parameter diagrams under three loading cases, the conservatism and applicability of the 
classical core stress method are discussed. In addition, the differences and relations between two 
creep ratcheting assessment methods applicable to transient and sustained thermal load conditions 
respectively are clarified. The new results and conclusions presented in this paper can deepen the 
understanding of structural response under complex loading conditions, and provide guidance for 
shakedown analysis and creep ratcheting assessment of high-temperature components. 
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1  Introduction 

The concept of elastic core refers to the portion of the wall section that remains elastic state 
during the whole cyclic thermal-mechanical loading history of the structure. The core stress in 
elastic core can be used for creep ratcheting assessment, which is a very effective simplified analysis 
method for structural design and integrity evaluation in engineering[1-3]. At present, the core stress 
method has been adopted in the international mainstream design codes for high-temperature 
structures, such as the ASME III NH code[4] and the assessment method for cyclically enhanced 
creep in the R5 procedure[5].The elastic core concept originates from the Bree problem that is 
usually applicable to axisymmetric thin-walled cylindrical shell structures, however, the core stress 
method can be applied to any type of structure and loading cases. Therefore, this method is of great 
significance to the shakedown analysis and structural integrity evaluation of high-temperature 
structures. 

In the 1970s, O 'Donnell and Porowski[2] proposed the concept of elastic core and derived the 
core stress formulas, and presented a modified Bree diagram containing equal core stress lines (i.e. 
effective creep stress parameter diagram) in the non-plastic ratcheting region. Combined with the 
isochronous stress-strain curve, the equal core stress lines are actually the equal life lines at a given 
upper bound of accumulated inelastic strain[2]. Therefore, the simplified inelastic analysis method 
based on effective creep stress parameter diagram and isochronous stress-strain curve diagram can 
greatly reduce the high cost of detailed inelastic analysis of creep ratcheting effects. In 1979, the 
concept of elastic core was extended from the non-plastic ratcheting region (E, S1, S2, P) to the 
ratcheting region (R1, R2) of the Bree diagram to include the plastic ratcheting regime[3]. The 
extended generalized core stress graph was adopted by the ASME code and is still in use till now. 
The extended elastic core concept can consider the effects of strain hardening, temperature 
dependence of yield stress, and the effects of severe cycles resulting in plastic ratcheting[3]. Later, 
the generalized core stress graph was extended to determine the upper bound of inelastic strain range 
for fatigue damage and the upper bound of maximum residual stress for creep rupture damage[6]. 
In 1981, the core stress graph derived from the uniaxial model was extended to consider the arbitrary 
biaxiality of primary membrane and thermal bending respectively[7]. However, the biaxial model 
was not widely used in engineering. The effective creep stress parameter diagram developed by O 
'Donnell and Porowski was used in Tests B-1 and B-3 of the ASME III NH-T code, where Test B-1 
is applicable to structures with negligible peak stress, and Test B-3 applies to axisymmetric structure 
and loading[8]. In 1989, Sartory[9] proposed another effective creep stress parameter diagram 
considering the effect of peak strain. The new revised diagram is more conservative and can be 
applied to any structure and loading. The modified diagram given by Sartory has also been adopted 
by the ASME code and has been used ever since, which is applicable to Test B-2. However, the code 
does not explicitly give the effective creep stress parameter formula of Sartory's diagram.  

In 2006, McGreevy [10] studied the influence of temperature-dependent yield strength on the 
evolution of core stress. The core stress, primary and secondary stresses were normalized by the 
yield strength at the hot end, which is different from the dimensionless treatment with the cold end 
yield strength commonly used in ASME codes and literatures. In 2014, Bradford[11] completely 
derived the modified Bree problems with different yield stresses during on-load and off-load under 
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the conditions of classical Bree loading and in-phase loading. Based on the derived creep ratchet 
strain and the creep ductility of the material, Bradford proposed another creep ratcheting assessment 
method (creep ductility exhaustion approach) different from the core stress method. The classical 
core stress method assumes that the cyclic thermal gradient on the wall thickness is a transient 
condition, and the core stress usually corresponds to the steady operation phase after the removal of 
the transient temperature gradient. However, Bradford's new assessment method is applicable to the 
situation where there is a sustained thermal gradient during the steady on-load operation.  

In addition to the simplified inelastic analysis method for high temperature components, the 
elastic core is also an elastic-plastic ratcheting assessment method as adopted by ASME VIII-2[12]. 
For the Bree problem, the existence of elastic core means that plastic ratcheting will not occur. 
According to the research of Kalnins[13, 14], the elastic core criterion used as ratcheting assessment 
applicable to any geometry and loading. For the classical Bree problem, the elastic core remains 
unchanged after the first cycle. However, for practical structural problems, the elastic core may 
shrink as the number of cycles increases. Usually, the elastic core still exists after the agreed number 
of cycles is a practical ratcheting check method[14]. For the shakedown problem of actual complex 
structures, it is possible that ratcheting has occurred but there is still an elastic core at the corners or 
junctions[1]. Therefore, the elastic core criterion needs to check the primary-load-bearing boundary.  

Although the elastic core method has wide applicability, it still has many limitations. Firstly, 
the core stress is derived from the uniaxial beam model, and the application to arbitrary structures 
inevitably leads to conservative or non-conservative problems. Generally, the code method is 
conservative, but it may be too conservative. In some special cases, the code method may also be 
non-conservative, which requires continuous investigation and revision by scholars and engineers. 
Secondly, the effective creep stress parameter diagram developed by O'Donnell and Porowski [2,3] 
is based on the classical Bree loading. Although the modified diagram given by Sartory[9] can be 
applied to any loading, this extended application is actually established based on the verification of 
typical cases. Sartory's modified diagram is more conservative than O'Donnell-Porowski method, 
and Sartory only modified the temperature profile compared to the O'Donnell-Porowski method, 
but did not modify the loading condition. In fact, the modified Bree problem considering the 
influence of different loading conditions has gained wide developments in the past decades, such as 
the in-phase loading problem [15], out-of-phase loading problem [16], and generalized loading 
problem [17]. However, to the best of the authors' knowledge, the effective creep stress parameter 
diagrams similar to O'Donnell-Porowski method corresponding to these modified Bree problems 
have not been established. Thirdly, the two effective creep stress parameter diagrams given in the 
code are both obtained based on the uniaxial two-stress parameters Bree problem. However, the 
shakedown analysis and design method based on stress classification usually considers multiple 
stress parameters. In fact, the code extends the meaning of the coordinate axes of the O'Donnell-
Porowski and Sartory assessment diagrams. Therefore, the code method actually extends the two-
stress parameters problem to the multi-stress parameters problem, and uses the uniaxial problem to 
approximate the multi-axis problem. The mismatch between the simplified assessment method and 
the actual situation will lead to conservative or non-conservative problems. Currently, some 
progress has been made in the modified Bree problems considering the effects of multiple stress 
parameters, such as the work of Reinhardt[18], Adibi-Asl[19], Shen[20], Bao[21,22], etc. The 
development of a multi-dimensional effective creep stress parameter diagram is worthy of further 
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study. 
The aim of this paper is to propose the effective creep stress parameter diagrams and core stress 

formulas of the modified loading Bree problems based on O'Donnell and Porowski method and 
Bradford's research, and to reveal two creep ratcheting assessment methods under different thermal 
load conditions. Section 2 reviews the elastic core concept of classical Bree problem, so as to 
compare with the elastic core characteristics of modified loading Bree problems. In Section 3 and 
Section 4, the elastic core concepts for modified loading Bree problems are discussed, and the 
corresponding core stress formulas and effective creep stress parameter diagrams are established 
respectively. In Section 5, the effective creep stress parameter diagrams for three types of loading 
conditions are compared and discussed, and the similarities and differences of two kinds of creep 
ratcheting assessment methods under different thermal load conditions are clarified. Section 6 
summarizes the conclusions of this paper.  

2.  Elastic core concept of classical Bree problem 

The classical Bree problem is a uniaxial ratcheting problem, which is a simplified analytical 
model of axisymmetric thin-walled cylindrical shell structure subjected to constant internal pressure 
and cyclic linear temperature gradient on the wall thickness. The core stress is actually a 
characteristic stress of the steady-state stress cycle of the Bree problem, so all the basic assumptions 
adopted by the Bree problem are followed, such as the plane section assumption, the elastic-
perfectly plastic material assumption, without strain hardening assumption, and temperature 
independence assumption of material parameters, etc. In the start-up and shutdown initial stages of 
pressure vessels, transient thermal gradients can cause thermal bending stress. In the steady-state of 
equipment operation and a period of time after shutdown, the temperature on the structure wall 
thickness reaches uniform, that is, the temperature gradient is removed and the thermal bending 
stress disappears. The core stress corresponds to the high-temperature steady operation stage after 
the temperature gradient has been removed. When the stress tends to relax, the creep strain gradually 
accumulates. The creep strain is assumed to be negligible at the low-temperature shutdown stage. 
Therefore, the core stress is the key information for bounding the inelastic strain caused by creep. 
By limiting the maximum inelastic strain in the whole elastic core, the creep ratcheting strain at any 
point on the section during the whole cyclic loading process can be bounded, that is, the maximum 
core stress corresponds to the lowest upper bound of the accumulated creep ratcheting strain. 

The effective creep stress parameter diagram of the classical Bree problem is shown in Fig.1, 
which is used for Test B-1 in the ASME III NH-T code. The abscissa in Fig.1 is the dimensionless 
constant primary membrane stress X=σp/SyL, the ordinate is the dimensionless cyclic thermal 
bending stress range Y=△σb/SyL, Z=σc/SyL is the dimensionless core stress, also known as the 
effective creep stress parameter. SyL denotes the yield strength at mean temperature of cold end. In 
Fig.1, Zone E (pure elasticity), Zone S1 and S2 (elastic shakedown), and Zone P (plastic shakedown) 
represent different elastic-plastic behaviors under different stress combinations. The border lines 
between regions and equal Z-value lines are derived through the uniaxial rectangular section beam. 
The characteristic stress distributions of different elastic-plastic behaviors under steady-state cycle 
are shown in Fig.2. 
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Fig.1. Effective creep stress parameter diagram of classical Bree problem (adopted by ASME III NH) 

 
Fig.2. Steady-state cyclic stress distribution of Bree problem 

The stepwise derivation of the Bree problem utilizes two basic principles, namely the 
equilibrium condition of force (Eq.(1)) and the additive decomposition of strain (Eq.(2)), as shown 
below. t is the section thickness in Eq.(1). The total strain  in Eq.(2) is composed of elastic strain 

e , plastic strain p , and the thermal strain th . E is the modulus of elasticity. T is the linear 

temperature gradient between the inner and outer walls of the section, and cycles between a 
maximum value and zero with the startup and shutdown of the equipment. 
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The two types of stresses considered in the Bree problem correspond to the hoop direction of 
the axisymmetric shell, and the total strain  on the section is independent of  , that is, the uniaxial 
beam model cannot rotate, so the characteristics of the stress distributions can be determined 

according to the stress-strain relationship Eq.(2). For example, when maxT T   , then 
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 , the slope of  with respect to   is zero, and vice versa. Combined with the equilibrium 

condition on the whole section of each cycle, the coordinates of the elastic-plastic interface (a, b, c, 
d) under various stress distributions can be obtained as follows: 
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The blue dotted lines in Fig. 2 show the stress distributions with maximum transient 
temperature gradients △Tmax and constant mechanical loads under steady-state cycles, and 
corresponding to the initial stages of equipment startup and shutdown. The solid green lines show 
the stress distributions when the temperatures are uniform across the wall thickness, i.e. the 
temperature gradient △T is zero, such as during the steady operation stage and after a period 
following shutdown. According to the definition of elastic core, the width marked by the two-way 
arrows in Fig. 2 is the the elastic core under various elastic-plastic behaviors. For example, for pure 
elastic behavior (E), the entire wall thickness is elastic core. When △T =0, the maximum stress in 
the elastic core is the core stress σc. For Bree problem, the core stress is a plateau value. The core 
stress can be derived from elastoplastic interface coordinates and equilibrium conditions under 
different behaviors. According to the literature [2], the dimensionless core stress formulas can be 
given by Eqs.(7) - (9), which are also the effective creep stress parameters given by the ASME III 
NH code. Among them, Eq.(7) is applicable to S2 and P zones, Eq.(8) is applicable to S1 zone, and 
Eq. (9) is applicable to E zone. 
 Z XY ,  for S2 and P regimes  (7) 

 1 2 (1 )Z Y X Y    , for S1 regime (8) 

 Z X , for E regime (9) 
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3.  Elastic core concept of modified Bree problem considering in-phase loading 

The in-phase loading condition refers to the proportional variation of mechanical load and 
thermal load. Moreton and Ng [23-25] published a series of articles in the 1980s on the modified 
Bree problems considering in-phase and out-of-phase loading conditions, and had given the 
corresponding ratchet boundaries and plastic strains for the two types of problems. However, there 
were some oversights in the derivation of their original paper, and the subsequent correcting papers 
did not receive much attention[26]. In recent years, Bradford[15,16] independently rederived the in-
phase and out-of-phase loading Bree problems, and gave complete solutions to the two types of 
problems (including shakedown and ratcheting boundaries, stress and strain distributions, and 
geometric parameters, etc.). Considering that Bree problem has been the basis of ratcheting 
assessment in many codes for decades, Bradford's extension work has important theoretical value 
and engineering significance. In this section, the effective creep stress parameter diagram similar to 
O 'Donnell and Porowski method is developed on the basis of the modified Bree problem 
considering in-phase loading condition, so as to provide reference and guidance for shakedown 
design and creep ratcheting evaluation of elevated temperature structures. 

The modified Bree diagram under in-phase loading condition given by NG [24] and Bradford 
[15] is shown in Fig.3, where E represents pure elastic behavior, S1 and S2 represent two types of 
elastic shakedown, and P1, P2 , P3 represent different plastic shakedown behaviors. Note that the 

abscissa of Fig. 3 is the dimensionless primary membrane stress range /p yLX S   , which is 

different from that of Fig. 1. For the in-phase loading modified Bree problem, the force equilibrium 
conditions are different with and without temperature gradients, as shown in Eq. (10), and the 
principle of additive decomposition of strain and the assumption of no bending of section remain 
the same as for the original Bree problem. 
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Fig. 4 shows the steady-state stress cycles for different elastoplastic behaviors of the in-phase 
loading modified Bree problem. The black dotted lines represent the stress distributions when the 
primary load and temperature gradient are simultaneously applied, and the red solid lines represent 
the stress distributions after the primary load and temperature gradient are simultaneously removed. 
Note that the temperature gradient here is still assumed to be a transient condition, and the 
temperature dependence of yield strength is not considered.  

Similar to the elastic core concept of the classic Bree problem, the width marked by the 
bidirectional arrows in Fig. 4 is the elastic core, the stress in the red solid line platform in the elastic 
core area is the core stress σc. According to stress distribution characteristics and force equilibrium 
condition, the coordinates of the elastic-plastic interfaces in Fig. 4 can be obtained, as shown in Eqs 
(11)-(16), where Eqs (11) to (13) have the same form as Eqs (3) to (5), but X needs to be replaced 
by X .  
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Fig.3. Modified Bree diagram under in-phase loading 
 

 

Fig.4. Steady-state stress cycle of in-phase loading Bree problem 
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The effective creep stress parameters for different regimes can also be obtained according to 
the elastic-plastic interface coordinates and equilibrium conditions, as shown in Eqs. (17)-(22). Eqs. 
(18) - (22) are some characteristic stresses of the in-phase loading Bree problem obtained in 
literature[15], however, the concept of effective creep stress has not been difined. In fact, 
literature[15] also marked the elastic core of the in-phase loading Bree problem. However, the 
elastic core marked in literature[15] is different from the concept of elastic core defined in this paper.  
For example, for the P2 regime in Fig. 4, the elastic core marked in the literature[15] is fiii, while the 
elastic core marked in this paper is gihi. The elastic core given in the literature[15] corresponds to 
the section width that remains elastic cycling after the first half-cycle. (The cycle here refers to the 
steady-state stress cycle, that is, the third half-cycle is consistent with the first half-cycle, and so on. 
The black dotted line in Fig.4 corresponds to the first half-cycle, the red solid line corresponds to 
the second half-cycle.) However, the elastic core definition given in this paper corresponds to the 
section width that has always been in the elastic state throughout the cyclic loading history, that is, 
the stress has never reached yield and the plastic strain remains zero. The inelastic strain in the 
elastic core only includes the creep strain. By comparison, the elastic core definition in this paper is 
consistent with O'Donnell and Porowski method and the definition in the literature [1, 26]. Therefore, 
this section defines the elastic core concept and effective creep stress of the in-phase loading Bree 
problem based on the classical concept of elastic core and Bradford's results. 
 0Z  ,  for E regime (17) 

 2( 1 )Z Y X   ,  for S1 regime (18) 

 ( 1)Z X Y   ,  for S2 regime (19) 

 2 ( (2 ) (1 )) 1Z Y X X     ,  for P1 regime (20) 

 
2
XZ Y

 ,  for P2 regime (21) 

 2 (2 ) (1 ) 2Z Y X Y X     ,  for P3 regime (22) 
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According to Eqs. (17) to (22), the effective creep stress parameter diagram of the in-phase 
loading Bree problem can be constructed, as shown in Fig. 5. It can be seen that the distributions of 
equal Z-value lines are significantly different from that of the original Bree problem. For zone E 
with pure elastic behavior, when the thermal gradient is removed, the mechanical load is removed 
simultaneously, so the whole thickness is the elastic core, and the core stress in the E zone is zero.  
For Eq. (18), when Z=0, the boundary 1X Y   between zone E and zone S1 can be obtained. For 
the two types of elastic shakedown behaviors (S1 and S2), although the steady-state stress 
distributions and the elastic-plastic interface coordinates of the in-phase loading Bree problem are 
similar to those of the classical Bree problem, the effective creep stresses are different due to the 
different equilibrium conditions after temperature gradient removal under the two types of loading. 
From Eqs. (18) to (22), it can be seen that the core stress formulas of plastic shakedown zones are 
different from those of elastic shakedown zones, while for classical Bree problem, the core stress 
formulas of S2 zone and P zone are the same. When Z=1, that is, when the core stress is equal to the 
yield strength SyL, Eqs. (20) to (22) are exactly equivalent to the ratcheting boundary in Fig. 3. Z=1 
means that the elastic core on the section disappears, and the whole section will reach yield during 
the load cycle.  

 

Fig.5. Effective creep stress parameter diagram for in-phase loading modified Bree problem  
 

In order to verify the elastic-plastic interface coordinates given by Eqs. (11-16) and the 
effective creep stress parameters given by Eqs. (18-22), the above theoretical solutions and 
numerical solutions based on the finite element step-by-step analysis are compared. The common 
two-plane model proposed by the authors[22] for uniaxial Bree-type problems is adopted for 
numerical analysis, as shown in Fig.6. The upper plane and lower plane are rigidly coupled in 
direction-2, and the stress sections are not allowed to rotate. Only in-phase mechanical membrane 
stress (controlled by F) and thermal bending stress (controlled by the temperature gradient 2T) are 
applied to the model. The element type is CPS8 in ABAQUS and the material property is ideal 
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elastoplastic. The material parameters are: Young’s modulus E=200Gpa, Poisson’s ratio =0.3, 
Yield stress SyL=300Mpa, Coefficient of thermal expansion α=1E-5 ◦C−1. The strain hardening and 
temperature-dependent effect are not considered. The von-Mises yield condition and associated 
plasticity rule are adopted, as well as the small displacement theory. A uniform and fine mesh is 
used to accurately obtain the stress distribution on the entire section.  

 

Fig.6. Two-plane model used for the determination of elastic core 

 

Fig.7. Comparison of numerical and theoretical solutions for elastic core of the in-phase loading Bree 
problem 

 
In Fig. 7, some typical load combinations are selected to compare the corresponding numerical 

and theoretical solutions of elastic cores. The solid lines of various colors correspond to the stress 
distributions after the removal of the temperature gradients (△T=0) obtained by numerical analysis. 
The dotted lines in Fig. 7 are the stress distributions directly constructed according to Eqs. (11) to 
(22), corresponding to the state of red lines in Fig. 4. For all elastoplastic behaviors, the numerical 
and theoretical solutions of the elastic core agree well, which proves the correctness of the 
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coordinates of the elastoplastic interface and the effective creep stress parameters given above. 

4.  Elastic core concept of Bree problem considering out-of-phase loading 

The out-of-phase loading Bree problem refers to the cyclic mechanical and thermal loads are 
not synchronous and with a phase shift. When the mechanical and thermal loads stagger exactly a 
complete phase cycle, it is also called anti-phase loading. The problem analyzed in this section is 
based on the out-of-phase loading Bree problem derived by Bradford[16], using the so-called 
“positive-phase load sequence”, that is, a complete loading cycle consists of four load states. The 
first load state has both the maximum thermal gradient and mechanical load; The second load state 
only applies mechanical load, and the thermal gradient is removed; The mechanical load and thermal 
gradient at the third load state are both removed, and the thermal gradient at the fourth load state is 
reapplied; The mechanical load is reapplied at the fifth load state, returning to the first load state, 
and then the repeated load cycles continue. The modified Bree diagram under out-of-phase loading 
is shown in Fig. 8. Note that the boundaries indicated by arrows are obtained by numerical solution 
based on complex parametric equations. 

 

Fig.8. Modified Bree diagram under positive out-of-phase loading condition 
 

For the out-of-phase loading modified Bree problem, the principle of additive decomposition 
of strain is still given by Eq. (2), while the force equilibrium can be given by Eq. (23). 
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Fig. 9 shows the steady-state stress distributions of five different elastic-plastic behaviors of 
the out-of-phase loading modified Bree problem. The coordinates of the elastic-plastic interface can 
still be derived from Eq.(2) and Eq.(23). For elastic shakedown behaviors S1 and S2, according to 
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the literature[16], the coordinates are given by Eqs. (24-26).  
 

 

Fig.9. Steady-state stress cycle for the out-of-phase loading Bree problem  
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For the two types of plastic shakedown behaviors P1 and P2, based on the equilibrium 
conditions of a complete cycle and the slope characteristics of the stress distributions, a series of 
simultaneous equations can be obtained, and then two sets of complex parametric equations can be 
derived to give their respective elastoplastic interface coordinates. The interface coordinates of P1 
regime are given by Eqs. (27-30), and those of P2 regime are given by Eqs. (31-35). Eqs. (27-35) 

are derived for the first time in this paper. In Eqs. (27-35), /o od d t ， /oog g t ， /o oh h t ， 

/oop p t ， /ooq q t , /oof f t , /o ok k t 。  
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The black dotted line in Fig. 9 corresponds to state 1 in Fig. 8, where the primary load Pmax and 

the maximum temperature gradient △Tmax act simultaneously; The red solid line corresponds to state 
2 in Fig. 8, where △Tmax is removed; The black solid line corresponds to state 3 in Fig. 8, where 
Pmax is removed; The green dotted line corresponds to state 4 in Fig. 8, and the △Tmax is reapplied. 
States 1 to 4 constitute a complete cycle and then repeats continuously. Note that the temperature 
gradient is still considered to be a transient condition and the temperature dependence of yield 
strength is not considered. In Fig. 9, the widths marked by the bidirectional arrows under various 
elastic-plastic behaviors are the corresponding elastic cores, and σc is the core stress. The core stress 
can be obtained according to the basic principles introduced above, as shown in Eqs. (36-40). It can 
be seen that Eqs. (36-37) are consistent with Eqs. (8-9) of the classical Bree problem, but it is need 
to replace X with △X.  
 Z X  ,  for E regime (36) 

     1 2 (1 )Z Y Y X     ,  for S1 regime (37) 

 
2 2
X XZ Y

X
 

 


,  for S2 regime (38) 
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 1 2 ( )o oZ Y f g   ,  for P1 regime (39) 

 1 2 ( )o oZ Y k h   , for P2 regime (40) 

 

Fig.10. Effective creep stress parameter diagram for positive out-of-phase loading Bree problem 

 

The effective creep stress parameter diagram under out-of-phase loading can be constructed 
according to formulas (36) to (40), as shown in Fig. 10. Note that the equal Z-value lines of P1 and 
P2 regions are obtained by numerical solutions of simultaneous parametric equations. For example, 

in P1 region, when a set of coordinate values (△X,Y) are given, the parameter og can be obtained 

according to formula (30), and then parameters od  and of can be obtained according to formulas 

(27) and (29), and then the corresponding core stress can be obtained based on formula (39). When 
Z=1, it can be verified that the equal Z-value line is consistent with the ratcheting boundary given 
in Fig. 8. The effective creep stress parameter diagram under out-of-phase loading is similar to that 
of the classical loading Bree problem, but significantly different from that of the in-phase loading 
Bree problem. Therefore, it is necessary to compare the effective creep stress parameter diagrams 
under three types of loading conditions, which will be discussed in the next section.  

The numerical and theoretical solutions of elastic core under typical load combinations for the 
out-of-phase loading modified Bree problem are compared, as show in Fig. 11 and Fig. 12. The 
numerical solution is still obtained by the finite element step-by-step analysis of the two-plane 
model, and the analysis method is the same as that in the previous section. Fig. 11 shows that the 
numerical solutions of elastic core for S1, S2 and P1 regimes agree well with the theoretical solutions, 
which proves the correctness of the proposed elastic-plastic interface coordinates and effective creep 
stress parameters. Fig. 12 shows that for P2 regime, the numerical solution of the elastic core and 

Elastic core concept for modified Bree problems considering in-phase and out-of-phase loading conditions



 

16 

 

the theoretical solution can not be completely consistent, which is mainly due to the error of the 
numerical solution. The green and purple solid lines in Fig. 12 correspond to the 17th and 18th half 
cycles of the numerical solution, and the steady-state stress cycle has been reached at this time. The 
stress distribution characteristic of purple solid line shows that the numerical solution has obvious 
deviation in this situation. For P2 regime, the numerical solution of the core stress is higher than the 
theoretical solution obtained from the above parametric equations.  

 

 
Fig.11. Comparison of numerical and theoretical solutions for elastic core of the out-of-phase loading 

Bree problem (S1, S2, P1 regions) 

 
Fig.12. Comparison of numerical and theoretical solutions for elastic core of the out-of-phase loading 

Bree problem (P2 region) 
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5.  Discussion on creep ratcheting analysis method under different loading cases 

The effective creep stress parameter diagrams (Figs 1, 5 and 10) given in the above three 
sections assume that the thermal load is a transient condition, that is, the thermal bending stress is 
caused by the transient temperature gradient during the startup and shutdown of the equipment. In 
this section, the effective creep stress parameter diagrams under the three types of loading cases are 
compared, and the conservatism and limitations of the Test B-1 given in ASME NH code are 
discussed. Then, based on the results in the literature [11], the similarities and differences between 
the core stress method and another creep ratcheting assessment method which is suitable for 
sustained thermal load are discussed.  

5.1. Discussion on effective creep stress parameter diagram considering different load 
sequences under transient thermal load condition 

Typical Z values are selected in Fig. 13 to compare the equal Z-value lines under classical Bree 
loading condition and in-phase loading condition. The black line ZBree=1 is the classical Bree 
ratcheting boundary, and the dotted line with black dots is the equal Z-value line under Bree loading 
condition; The green solid line Zin-phase=1 is the Bradford ratcheting boundary, and the green dotted 
line with red rectangles is the equal Z-value line under in-phase loading condition. Note that the 
abscissa is△X for the in-phase loading condition and X for the classical Bree loading. It can be seen 
that the distribution forms of equal Z-value lines under the two types of loading conditions are the 
most different in the elastic region and the elastic shakedown region. For the in-phase loading case, 
there is no core stress in the elastic region, while for the classical Bree loading, the core stress is 
controlled by primary stress. The ratcheting boundary and equal Z-value lines under the in-phase 
loading condition are more benign than those under classical Bree loading. Since the equal Z-value 
line is actually the equal creep life line, the Zin-phase line encloses a larger safety area compared with 
the ZBree line under the same creep life, which means a stronger creep ratcheting resistance. Under 
the same secondary stress range, the ratcheting boundary and equal Z-value line of the in-phase 
loading condition have a wider range of primary stress. For example, Zin-phase=0.5 under the in-phase 
loading condition actually overlaps with a part of the classical Bree ratcheting boundary ZBree=1.  

Fig. 14 selects typical Z values to compare the effective creep stress parameter diagrams under 
the classical Bree loading and the out-of-phase loading conditions. The black solid lines and the 
dotted lines with black dots are the results of the classical Bree loading condition, and the blue solid 
lines and the dotted lines with blue rhombuses correspond to the out-of-phase loading condition. It 
can be seen that the distribution form of the equal Z-value line under the out-of-phase loading 
condition is similar to that of the classical Bree loading condition. In the elastic zone E, the equal Z 
value lines under the two loading conditions are coincident, but the abscissas are actually different. 
For the elastic shakedown behavior S1, the equal Z-value lines under the two loading conditions are 
also coincident, but the S1 region is smaller for the out-of-phase loading case, as shown in Fig. 1 
and Fig.10. In other non-plastic ratcheting regions, the equal Z-value line of classical Bree loading 
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is more conservative than the corresponding curve of out-of-phase loading case, and the gap 
between them becomes larger with the increase of Z value. 

 

Fig.13. Comparison of effective creep stress parameter diagrams under Bree loading and in-phase 
loading conditions 

The comparison of effective creep stress parameter diagrams under the three loading cases is 
shown in Fig. 15. It can be concluded that under the same Z-value, the classical Bree loading 
condition has the most conservative equal Z-value line, followed by the out-of-phase loading 
condition and the most relaxed in the in-phase loading condition. Therefore, it can be proved that 
the effective creep stress parameter diagram developed by O 'Donnell and Porowski, although 
derived from the classical Bree loading, can also be applied to strict in-phase loading and positive 
out-of-phase loading conditions, i.e., the constant value X can be replaced by the range value△X. As 
can be seen from Fig. 15, it is actually over conservative to use the equal Z-value line under classical 
Bree loading to approximate the condition of strict in-phase loading. However, strict in-phase 
loading condition is improbable in actual industrial operation. Compared with the classical Bree 
loading in which the primary load keeps constant, the out-of-phase loading condition is more 
common and reasonable considering the cycling of primary load and phase shift between primary 
and secondary loads. Although it is still conservative to use the equal Z-value line under Bree 
loading to approximate the corresponding line of out-of-phase loading case, this approximation is 
convenient and feasible in engineering considering the complexity of the formula of effective creep 
stress parameters under out-of-phase loading case. The comparison and discussion in this section 
reveal the conservatism and applicability of the elastic core method under different loading 
conditions, and provide an important theoretical basis for guiding engineering application and 
interpreting the code method. 
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Fig.14. Comparison of effective creep stress parameter diagrams under Bree loading and out-of-
phase loading conditions 

 

Fig.15. Comparison of effective creep stress parameter diagrams under three loading conditions 
 

5.2. Comparison of creep ratcheting assessment methods under transient thermal load and 
sustained thermal load conditions 

In this section, the elastic core method applicable for transient thermal gradient and another 
creep ratcheting assessment method applicable for sustained thermal gradient are compared and 
analyzed under classical Bree loading and in-phase loading conditions. The elastic core method 
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under the three types of loading conditions discussed above does not actually consider the variation 
of yield strength with temperature during load cycle, so it is usually suitable for transient thermal 
load condition. Bradford[11] proposed another creep ratcheting assessment method different from 
the elastic core method, assuming that the on-load and off-load stages of the Bree problem have 
different yield strengths. This creep ratcheting assessment method can consider the effect of average 
temperature during hot end of the cycle on yield stress and applicable to the situation with sustained 
thermal gradient during steady operation stage. Define the yield strength at the average temperature 
of the hot end as SyH, and α=SyH/SyL. Then, α=1 for the elastic core method based on transient 
thermal gradient, and α≤1 for Bradford's method based on sustained thermal gradient. Bree 
considered the influence of average temperature on yield stress in his classic paper[27], but only 
confined to Bree loading. Bradford[11] reinterpreted the on-load yield stress with creep related 
physical meaning, and established the creep ratcheting boundaries in detail under the Bree loading 
and the in-phase loading conditions. The creep ratcheting boundaries under Bree loading are shown 
in Eqs. (41-43), and the creep ratcheting boundaries under the in-phase loading condition are shown 
in Eqs. (44-46). 
 ,XY Y    (41) 

 2( 1 ) ,1 1Y X X Y           (42) 

 ,0 1X Y      (43) 

 ( 1),X Y Y         (44) 

 
2( 1) ,1 1 2

4
YX Y

Y
 


       (45) 

 ,0 1X Y     (46) 
By comparing Eqs. (41-43) and (7-9), it can be found that α in Eqs. (41-43) is equivalent to Z 

in Eqs. (7-9). For Bree loading, when ZBree=αBree, the equal core stress line applicable to the transient 
thermal load condition and the creep ratcheting boundary applicable to the sustained thermal load 
condition coincide. As shown by the green dotted lines in Fig.16. Therefore, the elastic core method 
under the classical Bree loading condition can be applied to both transient and sustained thermal 
load conditions. When ZBree=αBree, the core stress σc without the consideration of temperature 
dependence of yield strength is equivalent to the hot end yield strength SyH with the consideration 
of temperature dependence of yield strength. Therefore, it can also be considered that the elastic 
core method of classical Bree problem actually considers the influence of average temperature in 
high temperature segment on yield strength. The core stress in the non-plastic ratcheting region of 
the classical Bree diagram must be greater than the constant primary membrane stress σp and less 
than the hot end yield strength SyH, that is, σp≤σc≤SyH. Fig. 16 also shows the creep ratcheting 
boundaries under in-phase loading condition (red dotted lines) for comparison. Under the same α 
value, the creep ratcheting boundaries of the two loading conditions are completely coincident in 
the elastic region. The creep ratcheting boundary under the in-phase loading condition encloses a 
larger non-creep ratcheting zone than Bree loading condition under the same α value. 

Elastic core concept for modified Bree problems considering in-phase and out-of-phase loading conditions



 

21 

 

 

Fig.16. Comparison between equal core stress line and temperature dependent creep ratcheting 
boundary under Bree loading 

 

Fig.17. Comparison between equal core stress line and temperature dependent creep ratcheting 
boundary under in-phase loading 

 

By comparing the formulas (17-22) and (44-46), it can be found that Z and  are not 
equivalent under the in-phase loading condition. Fig. 17 shows the comparison of the typical equal 
core stress lines (bule dashed lines marked with Z) and the creep ratcheting boundaries (red dashed 
lines marked with α) under the in-phase loading condition. It can be seen that there are obvious 
differences between the core stress line and the creep ratcheting boundary, especially in the elastic 
shakedown region. Under in-phase loading, the core stress in the elastic zone remains zero, while 
the creep ratcheting boundary is controlled by the hot end yield strength. When Z =α, the creep 
ratcheting boundary is more conservative due to the consideration of temperature-dependent yield 
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strength and sustained thermal load. Therefore, for the in-phase loading condition, it is necessary to 
distinguish whether the thermal load condition (temperature gradient) is transient or sustained. 

If the loading sequence of the pressure vessel is divided into four states, namely, startup 
transient, steady operation, shutdown transient and a period after shutdown, then the loading 
conditions (Bree loading and in-phase loading) corresponding to the elastic core method and the 
creep ratcheting boundary are shown in Tables 1-4, where ‘1’ means the load is applied and ‘0’ 
means the load is removed.  
 

Table 1  Bree loading applicable to elastic core method under transient thermal load  

 Startup Steady operation Shutdown After shutdown 

Pmax 1 1 1 1 

△Tmax 1 0 1 0 

Table 2  In-phase loading applicable to elastic core method under transient thermal load  

 Startup Steady operation Shutdown After shutdown 

△Pmax 1 0 1 0 

△Tmax 1 0 1 0 

Table 3  Bree loading applicable to creep ratcheting boundary under sustained thermal load  

 Startup Steady operation Shutdown After shutdown 

Pmax 1 1 1 1 

△Tmax 1 1 1 0 

Table 4  In-phase loading applicable to creep ratcheting boundary under sustained thermal load  

 Startup Steady operation Shutdown After shutdown 

△Pmax 1 1 1 0 

△Tmax 1 1 1 0 

6.  Conclusions 

In this paper, the elastic core concept and effective creep stress parameter diagram of the 
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modified Bree problems considering in-phase and out-of-phase loading conditions are 
systematically studied, and two types of creep ratcheting assessment methods under transient and 
sustained thermal load conditions are discussed. In summary, the key conclusions are as follows: 

Compared with the classical Bree loading condition in which the primary stress remains 
constant, the effective creep stress parameter diagrams considering the cycling of primary stress 
under the in-phase and positive out-of-phase loading conditions are more benign, that is, the equal 
core stress line encompasses a wider range of stress parameters. The effective creep stress parameter 
diagram under strict in-phase loading condition is the most benign, while that under classical Bree 
loading is the most conservative. Therefore, the Test B-1 of simplified inelastic analysis method in 
ASME III-1 NH code can be extended directly to the strict in-phase loading condition and positive 
out-of-phase loading condition, but the constant primary stress X needs to be replaced by the primary 
stress range △X.  

For the classical Bree loading condition, the equal core stress line under transient thermal load 
is equivalent to the creep ratcheting boundary under sustained thermal load. Therefore, the elastic 
core method is also applicable to the sustained thermal load condition under Bree loading. For the 
strict in-phase loading case, the equal core stress line is different from the creep ratcheting boundary, 
and the latter is more conservative.  

The results presented in this paper can deepen the understanding of the elastic core concept 
under generalized loading conditions, and provide guidance for shakedown design and creep 
ratcheting evaluation of high-temperature components. The new effective creep stress parameter 
diagrams and formulas have important theoretical significance and engineering value, and can 
provide reference for the revision and supplement of the integrity design code for components in 
elevated temperature service.  
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