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Abstract 

Homogeneous fine-grained patterns of urban form represent identifiable areas in cities and 
allow their classification. Urban morphology uses the concepts of “morphological period,” 
“urban tissue,” or “character areas” to link fine-grained homogeneity of form to historical 
origins and the social and economic characters associated with them. However, identifying 
such fine-grained spatial patterns is a labor-intensive, specialist operation, thus limiting 
replicability and scalability. Therefore, comprehensive urban form classification has rarely 
been conducted at a very large scale, hindering our understanding of how form contributes 
to social, economic, and environmental urban dynamics.  
 
With expanding capacity in geo-computation, urban analytics, and Earth Observation (EO) 
technology, new numerical approaches to the large-scale and detailed description of urban 
form have recently emerged. However, limitations due to availability, quality, and 
consistency of data still apply. We present an integrated approach to extra-large-scale 
urban form analysis that combines a novel Urban MorphoMetrics (UMM) method for the 
generation of rich and unsupervised urban form taxonomies with advanced EO feature-
extraction techniques.  
 
UMM utilizes extremely parsimonious input information to generate a comprehensive set 
of urban form characters for three morphometric elements (buildings, streets, and plots), 
over six categories (dimension, shape, spatial distribution, intensity, connectivity, and 
diversity) and three scales (small, medium, and large). All characters are measured at the 
building level and clustered into distinct homogeneous urban types, thus creating a 
comprehensive taxonomy of urban form. UMM is applicable across cases, allowing 
individual type profiling and cross-case comparison. We illustrate UMM outputs across a 
range of case studies covering formal and informal urban areas in sharply different 



geographical and cultural contexts worldwide. The results demonstrate an encouraging 
ability to map urban form in cities in ways that relate to historical origins, land uses, and 
other validating geographies. 
 
The method also shows a pathway to address varying degrees of availability, quality, and 
consistency of input data, which is commonly poor, for example, in informal settlements. 
Explorations of ways to resolve this issue include integrating UMM with EO. The latter 
offers a way to generate globally consistent input data from freely accessible repositories, 
hence ensuring full control of quality and consistency. Thus, we show that our first efforts 
to combine UMM and EO data into an integrated UMM+EO process are suitable for use at a 
global scale. 

Introduction 

Origins, nature, and context of Urban MorphoMetrics 

Urban MorphoMetrics (UMM) is a method of urban morphology analysis aimed at 
extracting the inner spatial patterns that distinctively characterize urban places in a 
numerical form. The method is specifically designed to bring together richness of 
description with extra-large-scale coverage for the generation of a systematic hierarchical 
taxonomy of urban form. This is achieved via advanced geo-data processing techniques 
paired with an analytical architecture that is purposefully designed for scalability. 

Early ideas at the root of UMM were proposed by one of the authors of this paper in the 
years 2005–2006 to students of the Polytechnic of Milan. The aim was to teach urban 
designers how to identify fundamental spatial patterns that have proved adaptable over 
time from existing urban structures. It also aims to allow them to use the same information 
in their design proposals for new areas of urban expansion or regeneration projects. Those 
early attempts were based on students’ labor-intensive surveys at the scale of the urban 
block, rooted in both the Conzenian and Muratorian traditions of urban morphology 
((n.d.a); (n.d.b)). The term “urban morphometrics” appeared about five years later ((n.d.c); 
(n.d.d)) after the re-establishment of the leading research team at the University of 
Strathclyde in Glasgow. Since the very beginning, pivotal elements have been 1) connecting 
analysis and design; 2) comprehensive, numerical description; and 3) an evolutionary 
approach to urban change. 

A first attempt at developing a truly systematic and scalable turn to this approach started 
in 2013 and made an early appearance in 2015–16 ((n.d.e)), with a more mature one three 
years later ((n.d.f)). In the meantime, further developments had started ((n.d.g); (n.d.h), 
(n.d.i); (n.d.j)), leading to a comprehensive prototype. As recently acknowledged in the 
twenty-eighth International Seminar of Urban Form conference, a wide and diverse area of 
urban morphometric studies is now rapidly emerging, including the UMM method 
presented in this paper. 



Urban MorphoMetrics (UMM) 

The UMM methodology illustrated in this work was developed in Venerandi et al. ((n.d.k)) 
and derived from Fleischmann et al. ((n.d.l)). In this section, we present its main features 
and refer the reader to these two works for more detailed explanations. UMM is based on 
combining 300+ spatial characters of urban form in six main categories: dimension, shape, 
distribution, intensity, connectivity, and diversity. The rationale behind the selection of 
characters is comprehensiveness: aiming at the largest possible set of characters proposed 
in literature and technically viable in this specific research framework. This is preferred to 
selecting a limited number according to predetermined theories or criteria. All characters 
are generated from only two input data layers: buildings (with heights) and the street 
network. The computation of the characters is unsupervised and replicable for the 
purposes of scalability and rigor. The spatial unit of analysis is the morphological cell, a 
geometric derivative of the Voronoi tessellation generated from the building footprint 
((n.d.m)), a proxy of the plot or cadastral parcel. 

UMM generates 74 primary characters and 296 (74x4) contextual characters. The former 
describe streets, cells, and buildings, as well as their relationships at three different scales: 
S (the element itself), M (the element and immediate neighboring elements), and L (the 
element and neighboring elements within k-th order of contiguity) ((n.d.n)). Examples of 
primary characters are the meshedness of the street network, the coverage area ratio, and 
the building elongation. We refer the reader to Table 1 in the Appendix for the full list. To 
account for the context around each morphological element, four contextual characters are 
derived from each primary character: the interquartile mean, the interquartile range, the 
interdecile Theil index, and Simpson’s index. The first is the average computed on the 
values between the first and third quartile of the distribution. The second is the range in 
values of the same values. The third is a measure of local inequality. The fourth is an index 
of the values’ heterogeneity ((n.d.o)). 

The taxonomy is then generated by applying agglomerative hierarchical clustering (AHC) 
((n.d.p)) to the contextual characters. AHC is a hierarchical method of cluster analysis, 
which constructs a tree (dendrogram) of clusters, here named “urban types” (UTs), starting 
from single morphological cells up to a main branch. A connectivity constraint is used to 
avoid inhomogeneous classification of individual outliers in areas overwhelmingly 
characterized by one UT. The optimal number of UTs is identified using a silhouette 
diagram, a heuristic method for the interpretation and validation of consistency in cluster 
analysis ((n.d.q)). Postprocessing workflows of consecutive rounds of clustering and 
silhouette can be implemented on the values pertaining to specific UTs to better 
differentiate subpatterns using local knowledge. A final dendrogram, fundamental for 
assessing levels of similarity between UTs, is built by recomputing the tree starting from 
the cluster centroids of each UT. The same technique of dendrogram merging can be 
utilized to compare UTs across multiple cities, hence achieving a systematic and rigorous 
account of morphological similarities and uniqueness of urban fabrics across a potentially 
unlimited geographical extent. An example of cross-case dendrogram merging can be found 
in ((n.d.r)). 



In the following sections, we first illustrate the individual application of UMM to two 
European case studies, Amsterdam (NL) and Bologna (IT), with optimal data. Second, we 
illustrate how it can be applied to Kochi (IN), where there is limited data availability. Third, 
we show the potential of EO to support UMM in regions with no data availability, by 
applying an integrated EO+UMM approach to a sample area in Nairobi (KE), which is 
characterized by an urban divide between formal and informal areas as well as a range of 
types of informal settlements. Fourth, we provide a discussion on the potential and 
limitations of UMM and the integrated EO and UMM workflow. 

Applications of UMM  

In this section, we present the outcomes of the application of UMM onto Amsterdam, 
Bologna, Kochi, and a sample area in Nairobi. These four case studies belong to very 
distinct geographical/cultural contexts, they grew by following different design paradigms, 
and they currently have different levels of data availability. To help orient the reader, Table 
1 presents a summary of their main features. 

Case study 

General info 
(country, metro 
population) Data used Interest 

Amsterdam The Netherlands, 
2,480,394 

Buildings with heights, 
street network (official 
data sets) 

Medieval origin, mixing 
different planning styles 

Bologna Italy, 

1,017,196 

Buildings with heights, 
street network (official 
data sets) 

Pre-Roman origin, 
mixing wide range of 
planning styles 

Kochi India, 

2,119,724 

Buildings (manually 
extracted) 

Generalized informal 
urban development 

Nairobi 
(sample area) 

Kenya, 

10,400,676 

Buildings (automatically 
extracted) 

Relatively recent 
foundation, presence of 
informal settlements 

Table 1. Case studies, general information, data availability and particular points of interest for the application of UMM. 

Amsterdam (NL) 

Amsterdam was originally a fishing village, dating roughly to the twelfth century. In the 
seventeenth century, it became one of the most influential port cities in the world due to its 
excellence in finance and trade. In this same period, an extensive reshaping of the city took 
place through the construction of four concentric half-circles of canals, deemed necessary 
for defense, water management, and transport purposes. In the nineteenth and twentieth 
centuries, several new expansion plans were proposed and developed, in particular, the 
Plan Zuid and West, designed by H. P. Berlage in the nineteenth-century tradition, and 



modernist expansions located in the western, southeastern, and northern fringes. These 
latter developments purposely depart from any historical reference, featuring large stand-
alone housing complexes surrounded by extensive open areas. Amsterdam’s layered 
morpho-historical complexity makes the city an interesting case study for the application 
of UMM. 

AHC was recursively applied to the full set of 296 contextual characters previously 
computed in Fleischmann et al. ((n.d.s)): out of 30 possible UTs, 14 were optimal, 
combining the best silhouette score with the highest level of detail. In Figure 1, we present 
the numerical taxonomy of Amsterdam, where building/cell colors uniquely identify the 
UTs. Notably, similarity of color hues expresses similarity of detected patterns of urban 
form, as in the accompanying dendrogram (Figure 2). 

 

Morphometric taxonomy of Amsterdam (14 UTs): building/cells’ colors identify UTs. 
Similarity of colors reflect similarity of form patterns. Source: Authors' own elaboration 
based on data from Dukai, Balázs. 2018. “3D Registration of Buildings and Addresses (BAG) 
/ 3D Basisregistratie Adressen en Gebouwen (BAG).” 4TU.ResearchData. Available at: 
https://data.4tu.nl/collections/_/5065523/1 (accessed 3 November 2021). 



 

Dendrogram of the 14 UTs of Amsterdam: similarity between UTs is expressed by both the 
y-value of their point of conjunction (the lower the value, the higher the similarity) and the 
similarity of their color. Source: Authors’ elaboration. 

The most noticeable aspect of the taxonomy of Amsterdam is the stark split between 
modernist/industrial urban fabrics, at the extremes of the dendrogram (UT3, UT12, UT1, 
UT5, UT9 in Figure 2), and the most historical ones, in the middle of it (UT13, UT10, UT0, 
UT7). By inspecting the values of the cluster centroids of the contextual characters 
diverging the most from the average across UTs, we observe that the former group is 
mainly characterized by remarkably coarse and incoherent patterns, large morphological 
elements up to 6.5 standard deviations more than the average for Amsterdam, isolated, 
compact, bulky buildings, low local street network connectivity, and diversity of cell areas 
and building–cell alignments. Bullewijk, located southeast of the main center, classified 
UT12, is an example of this type of urban fabric. As for the latter group (UT13, UT10, UT0, 
UT7), the taxonomy distinctively captures different stages of Amsterdam’s historical 
development. UT13, for example, corresponds to the innermost historical core (up to 1850) 
characterized by an organic, compact, diverse and dense urban fabric, large range of 
height-to-width ratios, high and large range of built-up densities, high local street network 
connectivity, high coverage ratios, and low building footprint complexity, with elongated 
shapes and oblique corners with different degrees. UT0 partly corresponds to the 1851–
1950 city development and, while it shares some of the features of UT13, such as high and 
large range of built-up densities, high coverage ratios, and more elongated buildings, it also 
shows differences that are typical of late-nineteenth-century urban planning, such as large 
proportions of four-way intersections and higher local accessibility. Amsterdam is an 
example of a data-rich city for which UMM shows a good capacity to capture the inherent 



correspondence between historicity and morphological similarity embedded in the city’s 
built form. 

Bologna (IT)  

Bologna has two features that make it particularly interesting for UMM. The first is the 
presence of two markedly different urban forms: 1) the ancient historical core, which dates 
to the Etruscan and Roman settlements of the sixth and seventh and centuries B.C., is 
encircled by a ring road that follows the path of the former medieval city wall erected in the 
eighth century and demolished in the early twentieth century A.D., and features a mix of 
midrise medieval and renaissance buildings, small courtyards and squares, and narrow 
roads flanked by public arcades and 2) a large suburban expansion completely surrounding 
the historical core, most of which was built in successive waves starting in the early 
twentieth century. This vast area can be roughly subdivided into two subparts: 1) the inner 
suburb, built in the first half of the 1900s, characterized by a regular, gridded pattern and 
street-facing buildings of gradually declining densities, and 2) the outer periphery, 
featuring specialist districts (i.e., commercial, industrial or large transportation hubs) as 
well as isolated large-scale social housing estates comprehensively planned and built 
between the mid-1950s and the 1960s, with high-rise buildings and large traffic roads. 

The second feature is its geomorphology. Due to its location between the Po Valley and the 
Apennines, Bologna’s topography changes considerably, from the northern part built on a 
largely flat piece of land that belongs to the high Po river valley to the southern part on the 
steep lower slopes of the Apennines, where urbanization was strongly constrained by the 
local orohydrography. 

Data on building footprints and the street network were downloaded for free from the 
official Geo-Portal of the Emilia Romagna Region.1 We computed the 296 contextual 
characters from this data and recursively applied AHC on them to determine the optimal 
number for solutions of up to 20 UTs. After checking the silhouette score and the level of 
detail, we identified 11 as the optimal number of UTs. Both the spatial distribution of the 
UTs (Figure 3) and the dendrogram (Figure 4) appear to accurately capture the main 
phases of the morphological history of this ancient city. 

 

1 https://geoportale.regione.emilia-romagna.it/ 

https://geoportale.regione.emilia-romagna.it/


 

Numerical taxonomy of Bologna (11 UTs): building/cell colors identify UTs. Similarity of 
colors reflect similarity of form patterns. Source: Authors’ own elaboration based on data 
from Database Topografico Regionale (Regional Topographic Database) of Regione Emilia-
Romagna (Emilia-Romagna Region) (2021). 



 

Dendrogram of the 11 UTs of Bologna: similarity between UTs is expressed by both the y-
value of their point of conjunction (the lower the value, the higher the similarity) and the 
similarity of their color. Source: Authors’ elaboration. 

For example, the subbranch of the dendrogram formed by UT7 and UT8 corresponds to the 
ancient city core and expresses the concentric nature of its development. More specifically, 
UT8 closely follows the boundaries of the inner fortification wall, the eleventh-century 
Cerchia del Torresotti, which is now largely demolished. This innermost ring features the 
densest and most ancient urban core originally established in Roman and Etruscan times 
(Figure 5, top left). In turn, UT7 overlaps with the thirteenth-century circular wall (this, 
too, now demolished) and matches the later medieval expansion of the city: this is a 
compact but more porous urban fabric characterized by private and public gardens and 
small courtyards (Figure 5). Notably, the northwest part of this “rounder” historical core is 
correctly classified distinctly from UT7 and U8 and, in fact, belongs to UT11. This nicely 
captures the massive historical alteration of the original medieval pattern implemented 
after the wider XIX century post-national unification rehabilitation plan (Figure 5, top 
right). Furthermore, the same area was heavily bombed during World War II and almost 
entirely redeveloped in the postwar years. Therefore, its urban form is more similar—
though not entirely identical—to that of the first suburban ring developed in the same 
years (e.g., UT9 and UT10). 

UT2 and UT6 also validate the taxonomy. Both are found in peripheral portions of the city 
and were mostly developed in the second half of the twentieth century. In particular 
(Figure 5, bottom), UT2 captures most of Bologna’s specialist hubs, such as large 
warehouse complexes (e.g., Bologna International Exhibition Area), airports, military 
zones, large commercial and productive areas (e.g., Lame Commercial District and 



Bargellino Industrial District), regional tertiary hubs (e.g., CNR Bologna Research Area), 
and metropolitan hospitals (e.g., Maggiore Hospital). Analogously, UT6 captures most 
large-scale social housing estates planned and built according to modernist principles 
typical of the 1950s and 1960s (Figure 5), such as Villaggio INA Borgo Panigale, Villaggio 
INA Due Madonne, Barca, Pilastro, Beverara, and Corticella. Interestingly, though 
remarkably different in terms of function, these two UTs appear to share important 
similarities in terms of urban form, such as peripheral location, large building footprints, 
proximity to first-tier road infrastructure, campus-like layout, and extensive (rather than 
intensive) use of land. Remarkably, however, the taxonomy nicely captures that the two 
UTs both differ from the more consolidated parts of the city, originating after WWII. 

Finally, UT4, UT1, and UT2 all capture a different type of progressively low-density 
peripheral development, one characterized by small building footprint and, particularly in 
the case of UT1 and UT4, a more organic pattern that follows the sloping landscape of the 
Bologna hills. 

 

Top left: evolution of Bologna’s city walls up medieval times. Top right: first planned 
expansion of Bologna (1889) outside the XII Century walls (right). Source: website Regione 
Emilia Romagna. Bottom: planned urban residential and industrial interventions in the 
periphery of Bologna 1950–1970. Source: Baldeschi, Paolo, and Luciano Anceschi. 1970. 
Paesaggio e struttura urbana: aspetti della realtà urbana bolognese. Bologna, IT: Renana. 

The case of Bologna shows that, in urban areas for which quality building and street 
network data layers are available, UMM is capable of generating a taxonomy rich enough to 
capture the subtleties of an urban region’s history and functionality that are reflected in the 
distinctive characters of urban form and that, in this case, were validated against expert, 
locally produced historic-functional evidence. 

What happens when we work in contexts where the quality of the input data is suboptimal? 
Even when working solely with two widely available data layers, such as buildings and 
street networks, data consistency and reliability may drop remarkably when the scale of 
coverage goes beyond the national scale. This is particularly the case when analyzing areas 



in the Global South in urban contexts characterized by informality, poverty, or unusual 
environmental conditions. This remains a largely unresolved issue for scientific research, 
one that prevents implementation of the analysis of urban morphology at extra-large scale 
unless at enormous cost and/or through a radical reduction of information and/or 
sampling ((n.d.t); (n.d.u); (n.d.v)). This problem can be tackled in two ways: 1) by 
developing the capacity to generate satisfactory results from largely suboptimal input data 
and 2) by integrating into the workflow the generation of the input data itself, which 
necessarily involves EO technologies. 

These two options are explored in the following section in the city of Kochi, IN, and in the 
city of Nairobi, KE. 

Kochi (IN)  

Kochi started as a port city and a key node in the spice and silk trade route. Today, it is a 
cluster of islands connected to mainland Ernakulam ((n.d.w)). The Mattancherry area, 
where the spice trade originated, has grown informally and organically, with small compact 
residential buildings and warehouses along the waterfront. To its west is Fort Kochi, more 
regular, with European influences dating from 1498 onward. Both are culturally and 
architecturally rich, dotted with historic warehouses, palaces, and civic buildings. The post-
independence period (1947 onward) saw the development of dense markets and the 
expansion of residential neighborhoods inland, in the Ernakulam area. Here, the houses 
have larger footprints and the urban fabric is less compact, a result of a 1968 Kerala 
Building Regulation ((n.d.x)) and planned low-income housing. Economic liberalization in 
the 1990s and large-scale infrastructure development saw the expansion of Kochi further 
inland and to neighboring islands and villages with commercial and retail developments of 
high-rises with large footprints on large blocks and the infill of all areas in between as well 
as ecologically sensitive floodplains around most of the waterfront, which explains the 
location of fisheries, warehouses, and large undeveloped land. 

UMM was applied in Kochi on a largely suboptimal data provision. With no official 
geographic information available, we explored a database manually created by students of 
the Masters in Urban Design at the University of Cardiff, UK, between October 2020 and 
January 2021, including building footprints and the street network. However, we discarded 
the latter due to inconsistencies in data coverage across the case study area. A common 
problem in cities in the Global South is that they are dominated by informal urban 
development, and the street network is very complex. Data repositories (e.g., 
OpenStreetMap) have very patchy street network data, and in general, the definition of 
what constitutes a street in the context of an informal area is anything but straightforward 
(e.g., whether to include internal footpaths or unassigned spaces between buildings). The 
taxonomy was ultimately generated solely from the building footprint information 
((n.d.y)). Thus, rather than the entire set of 74 primary characters, only 26 were computed 
(those quantifying dimensions and spatial relations between buildings and cells), resulting 
in 104 contextual characters. We applied AHC recursively to the latter and identified 24 
UTs as optimal. 



The resulting taxonomy (Figure 6) proved to be surprisingly significant and still capable of 
reaching an appreciable degree of accuracy in reflecting morphological periods in the 
development of the city as embedded in patterns of current urban form. Further 
explorations conducted in contexts characterized by other kinds of suboptimal data 
confirmed that, despite the extreme complexity of the factors at play informing the 
evolution of urban form in time, buildings and streets alone, or even a very partial 
representation of them, seem sufficient to approximate, to some appreciable degree, the 
essential patterns of places’ distinct identities. 

 

Numerical taxonomy of Kochi (24 UTs), extract centered on the historical Ernakulam 
market (UT22, red): building/cells’ colors identify UTs. Similarity of colors reflect similarity 
of form patterns. Source: Authors' own elaboration based on data collected from the 
architecture students at Cardiff University (UK), between October 2020 and January 2021. 

Venerandi et al. ((n.d.z)) explored one further advantage of the UMM method (i.e., the 
extraction of morphometric profiles for specific UTs: (UT7, UT18 and UT1, subsequent 
generation of form-based design codes, and potential spinoffs in the area of generative 
design. 

Design Codes (DCs, 2004) are a traditional feature of urban design practice ((n.d.aa)) that 
have known a surge of interest as part of the place-making agenda in the last three decades 



((n.d.ab); (n.d.ac)) and are currently the core of a major reformation of the planning system 
in the United Kingdom, the National Model Design Code initiative ((n.d.ad)). Along these 
lines, UMM opens the way to basing DCs on large-scale evidence extracted from existing 
UTs in a numerical form. The case of Kochi adds a further dimension of interest to this, 
since DCs have never been applied in a city developed largely in an informal manner. This 
section summarizes the rationale of extracting DCs from UMM and using them to generate 
design proposals in one sample area within UT22, roughly corresponding to the area of the 
historical Ernakulam market. 

While the 24 UTs of Kochi are identified from 26 primary characters, after a review of a 
range of DC sources and applications, including the UK government’s NMDC, we narrowed 
down the characters to only six: 1) plot size, 2) coverage ratio, 3) building footprint area, 4) 
building elongation, 5) alignment to surrounding buildings, and 6) distance between 
buildings (see Table 2 in the Appendix). The selected characters are easy to communicate 
to designers and stakeholders and, despite the significant reduction of complexity, provide 
enough indications to inform a preliminary skeleton of figure-grounds. 

Starting from the morphometric profile of UT22, we tested the ability of the six characters 
to inform the (re)generation of a sample area within this UT. As part of the UNICITI “Third 
Way of Building Asian Cities” 2021 initiative,2 we engaged a group of professional 
architects and urban designers to act as final users of the UMM outputs. The designers were 
instructed to repopulate a sample area in UT22 with newly generated building footprints as 
if it were completely undeveloped, guided by the intervals of the six selected primary 
characters included in the morphometric profile (Table 2 in the Appendix). The outputs of 
such design experiments (Figure 7) seem aligned with the pre-existing “urban character” of 
UT22, while not being replicas. 

In short, the ambition of UMM is to capture numerically the essential spatial structure that 
brings consistent identity and characters to endless local variations. With this abstract 
exercise—not to be confused with an actual master plan—we wanted to check to what 
degree figure-grounds generated by different designers could replicate a pre-existing 
“urban character” without ever replicating identically its visible form and, importantly, 
without ever ending up with identical proposals. 

Our experiment suggests that UMM-informed DCs—even in the limited version applied in 
Kochi—have the potential to bring both unity and diversity to the design of places. They 
have the capacity to inform the generation of a range of design proposals similar in 
character to the original UT but also somehow different from it as well as from each other 
in their final layout. This allows professional/user interpretation, adaptation, 
accommodation of specific requirements or regulations, and all the complexities of an 
actual professional process of master planning to unfold, without losing the unique 
intangible character of a place. 

 

2 https://doha2020.isocarp.org/paper-platform/abstract/public/209/building-unique-
cities-a-paradigm-shift-in-the-global-south 

https://doha2020.isocarp.org/paper-platform/abstract/public/209/building-unique-cities-a-paradigm-shift-in-the-global-south
https://doha2020.isocarp.org/paper-platform/abstract/public/209/building-unique-cities-a-paradigm-shift-in-the-global-south


 

Design proposals for a portion of UT22, corresponding to the area of the historical 
Ernakulam Market in Kochi. The black dashed line identifies the sample area. Source: 
Authors' own elaboration based on data collected from the architecture students at Cardiff 
University (UK), between October 2020 and January 2021. 

Since morphometric profiles are provided in ranges of values for each primary descriptor, 
the potential variations of design outputs are countless, allowing for calibration, personal 
and collective creativity, adjustment, and co-creation of alternative and appropriate 
solutions. 

The integrated EO perspective and the case of Nairobi (KE) 

The two European cases show that UMM can provide accurate quantitative descriptions of 
urban form in data-rich regions. As we have just seen, UMM also has the potential to be 
used in urban environments with limited data availability (e.g., Kochi) but requires, at least, 
a consistent building layer. However, in many regions of the world, even building footprint 
data is not available or, if it is available, it may not cover informal settlements. In this 
section, we delve deeper into the limitations of current EO techniques for extracting 
building footprints from satellite imagery, our proposal to tackle such limitations, and its 
application to the city of Nairobi (KE). 

Limitations of current EO techniques 

A major obstacle to deriving generalized knowledge of cities through the application of 
UMM at large scale is the limited availability of consistent building footprint geometry. 
Although several studies have shown the feasibility of mapping buildings through EO 
((n.d.ae); (n.d.af)), they tend to focus on parts of cities rather than entire metropolitan 



areas, thus having limited scientific validity in terms of reproducibility and generalizability. 
Google’s recently published Open Buildings data set,3 despite its continental coverage, 
largely relies on costly high resolution Maxar satellite imagery4 (i.e., commercial images 
costing $10,000–20,000 for a large city), which renders its reproducibility extremely 
expensive ((n.d.ag)). 

Looking at existing workflows of building mapping, limited reproducibility and 
generalizability are magnified by issues of model and data unavailability and inconsistency. 
Many models claim to provide good performance (e.g., the Maxar building footprints); 
however, they are either insufficiently described or not openly accessible, leading to 
replicability and accessibility issues. Other models have only been tested with data sets not 
accessible to the public (e.g., the Microsoft Building Footprints),5 also limiting 
reproducibility. 

Although convolutional neural networks (CNNs), state-of-the-art artificial intelligence (AI) 
algorithms, are capable of extracting buildings from imagery by automatically learning a 
set of representative image features, these learned features vary across cities, or even 
between places within the same city, due to distinctively different physical patterns of 
buildings. For instance, a CNN trained with images of formally built areas may be unable to 
capture building patterns in informally built areas, and a CNN trained with images of 
specific informal areas is not necessarily able to capture all informal areas, even within the 
same city ((n.d.ah)). Thus, experiments validated only on small study areas with desirable 
but costly imagery data can hardly be generalized to produce consistent building 
information at large scale. 

The proposed EO workflow 

To tackle the above limitations, we aim to overcome consistency and availability issues for 
both data and models. There are many types of free EO based imagery data sets available 
worldwide (e.g., via the Copernicus Program of ESA); however, requiring consistency with 
the UMM method narrows the available data sets significantly. Google Earth images and 
Bing Satellite Maps seem the only options fit for purpose, as they meet the requirement of 
worldwide coverage. However, we acknowledge that their resolution (0.6–1.2m) is 
suboptimal for building extraction. We argue that this is a typical trade-off in open science: 
less desirable but widely available data sets. In this study, we decided to use Google Earth 
imagery data, as it is more frequently updated than Bing Satellite Maps in urban areas 
((n.d.ai)). 

 

3 https://sites.research.google/open-buildings/ 

4 Maxar Building Footprints: https://blog.maxar.com/earth-intelligence/2018/gis-ready-
building-footprint-shapefiles-for-accelerated-analysis 

5 Microsoft Building Footprints: https://www.microsoft.com/en-us/maps/building-
footprints 

https://sites.research.google/open-buildings/
https://blog.maxar.com/earth-intelligence/2018/gis-ready-building-footprint-shapefiles-for-accelerated-analysis
https://blog.maxar.com/earth-intelligence/2018/gis-ready-building-footprint-shapefiles-for-accelerated-analysis
https://www.microsoft.com/en-us/maps/building-footprints
https://www.microsoft.com/en-us/maps/building-footprints


The technical workflow to extract buildings from Google Earth images is straightforward: 
acquiring Google Earth image data for a specific city and extracting building footprints. 
Google Earth imagery data can be downloaded in multiple ways. Google Earth Pro6 
provides direct image download at the highest resolution. A possible alternative is to use 
third-party open tools, such as SAS.PLANET, to acquire data from the Google Earth portal.7 
Since our research largely focuses on urban areas, downloading imagery data from Google 
is not classified as a “mass data download” and thus does not violate any of the data usage 
guidelines.8 There are already several studies on the extraction of building footprints or 
roof outlines from Google Earth images; however, they provided limited discussion on their 
accuracy or results in informal areas ((n.d.aj)). Thus, the technical challenge of our research 
is to improve the accuracy of building footprint mapping in not only formal areas but also 
informal ones, by using freely available Google Earth images. Recent advancements in CNN 
architectures for building footprint mapping ((n.d.ak)) build on encoder-decoder 
structured CNN architectures, such as the U-Net, and variation in the more detailed 
structure of the encoder or decoder (allowing diversity in model construction). Therefore, 
we adopted the U-Net architecture ((n.d.al)) and fine-tuned the detailed structure by 
replacing the encoder part of the model. The rationale of experimenting with the encoder 
structure is that representational features at different levels of detail are extracted from 
this part of the U-Net, which determines its capability to capture the targets. We use part of 
the pretrained, renowned ResNet-50 as our encoder, as the residual network is good at 
handling overfitting and vanishing gradient ((n.d.am)). The reason for not using the entire 
ResNet-50 is that we only wanted to take advantage of the pretrained model to extract 
lower-level features, so that higher-level features, such as building edges and corners, can 
be properly captured from the input images. Thus, once the pretrained part is integrated 
into the U-Net, the learned low-level features are transferred into the U-Net, and the model 
must be trained only to learn high-level abstract features, such as rectangular shapes of 
buildings. Apart from using the freely available Google Earth images, we also relied on an 
open data repository (the global building data set provided by Wuhan University)9 to train 
our model. In general, the availability of training data is a big challenge for urban EO, as 
training data are often not openly accessible and, when they are, they quickly become 
obsolete in fast-growing cities. In general, the proposed model works as follows: 1) load 
Google Earth data; 2) prepare training and test sets; 3) set up the experiment, including 
model configuration and training; and 4) predict the probability of building presence. For 
more details, we refer the reader to the full model accessible at 
https://www.kaggle.com/jonwang4/buildingenome-gpu. The extracted building footprints 
are raster data showing the probability of pixels belonging to a building footprint. Two 
further steps, building identification and polygonization, are necessary to extract the 

 

6 https://www.google.com/earth/versions/ 

7 http://www.sasgis.org/sasplaneta/ 

8 https://www.google.com/permissions/geoguidelines/ 

9 http://gpcv.whu.edu.cn/data/building_dataset.html 

https://www.kaggle.com/jonwang4/buildingenome-gpu
https://www.google.com/earth/versions/
http://www.sasgis.org/sasplaneta/
https://www.google.com/permissions/geoguidelines/
http://gpcv.whu.edu.cn/data/building_dataset.html


buildings and to produce georeferenced vector polygons needed for UMM. The first step 
produces a binary image, representing buildings and non-buildings. The second step 
automatically generates building footprints by vectorizing the raster shapes from the 
previous step. An “orthogonalize” procedure is finally applied to avoid overly irregular 
shapes 

Nairobi (KE) 

Nairobi, the capital of Kenya, was founded in the late nineteenth century in conjunction 
with the railroad development by the British colonial power. The city shows a stark urban 
divide between well-serviced urban areas and informal settlements. It is estimated that 
around 60% of its 4.3 million inhabitants live in informal settlements on around 6% of the 
built-up areas (leading to very high built-up densities) ((n.d.an)). The city is strongly 
divided between well-serviced urban areas and informal settlements. This urban divide 
goes back to the British colonial history and the long-standing effects of residential racial 
zoning. More recently, the city was divided into European and Asian zones ((n.d.ao)). The 
former is characterized by low coverage area ratio (around 50%) and is located in higher 
and thus less flood-prone lands, in the northwest of the city. The latter is located around 
the CBD and the industrial areas in the northeast. The low-lying eastern region and areas 
alongside main infrastructures (e.g., railroads) have been rapidly developing, in particular 
after independence in 1963. The rapid increase of Nairobi’s population combined with the 
low supply of low-income housing has led to the massive growth of informal areas 
((n.d.ap)). 

By applying the EO workflow presented above to the Google Earth images covering the 
entire city (roughly 20 GB of data), we obtained 506,435 building footprints (Figure 8). 
Through visual inspection, we observe a considerable morphological heterogeneity, with 
dense areas intermingled with more dispersed ones. By zooming in further (Figure 9), 
results show that buildings in very dense parts can be captured (Figure 9, right frame), 
including those in extremely dense informal areas (Figure 8, middle frame). Outputs seem 
to hold also in more dispersed/rural contexts (Figure 9, left frame). However, several 
incorrect predictions can be found in the northwestern corner of the study area (Figure 9, 
right frame), where rectangular bare crop parcels are predicted as buildings. These are 
very similar to building roofs in terms of shape, color, and texture; thus, our method, which 
uses RGB images as input, struggles to differentiate them from buildings. 



 

Building footprints of Nairobi, Kenya, extracted through the proposed EO workflow. 
Source: Authors’ elaboration. 

 

Map extracts of building footprints in Nairobi. Left: dispersed/rural setting. Middle: dense 
informal area. Right: dense area with bare crop parcels. Source: Author(s)’s elaboration 
and Google Earth. 

To validate results, we focus on a heterogeneous area of Nairobi (mixing industrial, 
informal and formal fabrics) and visually compare the satellite Google Earth image (Figure 
10a) and manually drawn buildings (Figure 10b) with Google AI Open Buildings using paid 
Maxar Technologies (CNES/Airbus) ((n.d.aq)) (Figure 10c), OSM buildings10 (Figure 10d), 

 

10 https://wiki.openstreetmap.org/wiki/Buildings 

https://wiki.openstreetmap.org/wiki/Buildings


and buildings extracted from free images through our proposed EO workflow (Figure 10e). 
We observe the following: 

• In terms of data coverage, both Google’s (c) and our (e) extracted footprints cover a 
significant part of the existing buildings, as portrayed in the satellite image (a) and 
the manually drawn buildings (b). On the other hand, OSM’s coverage is very 
limited. 

• In terms of footprint shape, both our and Google’s automatically extracted outlines 
generally underestimate the size of building footprints. 

• In terms of granularity, our extraction seems to better reflect the actual condition on 
the ground, as represented in both satellite (a) and manually drawn representations 
(b). Google’s buildings, in some instances, tend to be larger than they should, as 
several small adjacent buildings are not accounted for. For comparison, see the 
bottom left of (c) and (e). 

 

Validation of the building footprints extracted through the proposed EO workflow. (a) 
Original Google Earth image. Source: Google Earth. (b) Manually drawn building footprints. 
Source: Author(s)’s elaboration and Google Earth. (c) The Google AI Open Buildings from 
paid Maxar Technologies, CNES/Airbus. Source: Sirko et al . (2021) and Google Earth. (d) 
The OSM building layer. Source: OSM contributors and Google Earth. (e) Polygonized 
building footprints with further orthogonal corrections. Source: Author(s)’s elaboration 
and Google Earth. 

Although the building footprints extracted through the proposed EO workflow are 
suboptimal, we nevertheless used them as input for the UMM method to understand to 
what extent the latter tolerates inaccuracies as a compromise of using an open data source. 
To do so, we applied the UMM method to both the manually drawn and automatically 
extracted data presented above. As in Kochi, only 26 of the original 74 primary characters 



are computed, and thus only 104 of the original 296 contextual characters are derived for 
both data sets. AHC is then recursively applied to the 104 contextual characters to test 
solutions drawn from 2–10 UTs. The silhouette score is then used to identify the optimal 
number for each data set (see Figure 12, in the Appendix). Figure 11 shows the results of 
the clustering for both manually drawn (left) and automatically extracted (right) building 
footprints. The optimal numbers of UTs were found to be five in the manually drawn and 
seven in the automatically extracted. It is possible to remark that, even with suboptimal 
data, the observed morphological patterns appear similar for the two data sources. In both 
cases, buildings belonging to the informal part in the center of the sample area are properly 
classified in a dedicated UT (i.e., UT0). A minor issue concerns the UT0 computed from the 
automatically extracted buildings, as it also incorporates the southwestern part of the 
sample area, which might not be fully informal. The noise obtained from the suboptimal 
data is largely classified in a distinct cluster (UT3 in Figure 11, right), thus not significantly 
impacting the classification of the existing urban form. 

In this section, we illustrated how the proposed EO workflow can extract building 
footprints from available satellite imagery (i.e., Google Earth). Although the extracted data 
is found to be suboptimal, preliminary results show that it can still be used in UMM to 
obtain morphologically significant descriptions. 

 

Numerical taxonomy of a sample area in Nairobi, KE; UTs generated through the UMM 
method from manually drawn (left) and automatically extracted (right) building footprints. 
Source: Author(s)’s elaboration. 



Discussion 

Illustrated on two European cases (Amsterdam and Bologna), we showed that the UMM 
method allows the identification of UTs that meaningfully reflect the urban morphology of 
the cities under examination. In general, UMM requires consistent building footprints and 
street network data that are typically available in the Global North but are often lacking in 
the Global South. Therefore, we used an example from the Global South (Kochi) to test 
whether building footprints were sufficient for UMM. The results presented in this work 
confirmed that they were. However, in most cities of the Global South, access to consistent 
and up-to-date spatial data on buildings is a challenge. We thus created a composite 
EO/machine learning technique able to automatically extract building footprints from 
openly accessible satellite imagery. The application of the UMM method to building 
footprints extracted for a sample area in Nairobi confirms the potential of combining EO 
and UMM in an integrated and replicable workflow able to identify distinctive 
morphological patterns. 

This new avenue solves a significant challenge that has hindered global morphometric 
analysis, allowing the generation of a geography of urban form that is unprecedented in 
terms of scale of extent and richness of information. From the point of view of fundamental 
research, this new geography paves the way for the initiation of a proper, systematic 
science of urban form evolution, which departs from traditional analogies between cities 
and living organisms to approach this relation at an ontological level, recognizing biological 
and urban form systems as both complex and adaptive. From the point of view of the 
potential of this new geography in terms of its immediate application, four areas are 
considered, which currently are under exploration. (1) Urban policy support: this is the 
extent to which urban form contributes to the socioeconomic and environmental 
performance of cities and communities has always been built on qualitative information 
often generated from limited scale case studies or personal observations. By providing a 
comprehensive numerical description of urban form, UMM allows the integration of 
morphological analysis into the wider area of urban analytics. This, in turn, opens up a 
systematic and replicable large-scale observation of the relationship between urban form 
and virtually any available data on urban life, such as deprivation, health, prosperity, 
mobility, or carbon footprint. (2) Urban design regulation and codes: UMM paves the way 
for evidence-based coding policies, in which specifications proposed for new interventions 
(new developments as well as regeneration) are based on numerical urban form identities 
detected from existing urban places. (3) Effecting urban engagement strategies: large-
scale/rich numerical information on urban form supports innovative tools for generative 
design approaches aimed at the engagement of industry, stakeholders, and local 
communities in co-creating solutions for cities. Morphometric dashboards may enact 
gaming routines based on actual urban data, including urban form, in the framework of 
multiactorial modeling interactions. (4) Morphological indicators on the diversity of urban 
form link to urban sustainability: for example, the urban SDG indicator 11.1.1 mainly uses a 
binary classification of slum/non-slum areas, while the results of the integrated approach 
shown here suggest the physical diversity of such areas, which can be related to other 
sustainability indicators (e.g., health, hazards, climate change). Furthermore, such an 



analysis is also relevant for low-income housing areas that might not be reported under 
SDG 11.1.1 and can guide the identification of local actions and interventions. 

In this paper, we illustrated how the UTs observed in the case studies show resemblances 
to existing city patterns and stages of urban development. However, further systematic 
validations are needed. These may include, for example, correlational studies with various 
socioeconomic, environmental, land use, and well-being data. These will not only ensure 
more robust grounding to UMM but also provide further insights on cities and overall 
urbanization patterns. Further investigations should also focus on comparing UMM outputs 
obtained with optimal (buildings with heights and street network) and suboptimal 
(buildings-only) data. While the latter scenario is, to a certain extent, disadvantageous for 
the generation of DCs, as street features cannot be included, it could, nevertheless, be 
relevant for generating taxonomies in a faster manner and with less input data. Finally, we 
note that UMM is not designed to output a fixed/optimal number of UTs. Since one of the 
main aims of the methodology is scalability, having a fixed number of UTs over extra-large 
spatial extents would make the description at the local scale too coarse for planning and 
urban design purposes. In this paper, the silhouette diagram is used to identify the number 
of UTs at the city scale, but future work will investigate methods to interactively “scroll up 
and down” the complete dendrogram at users’ discretion, to obtain visualizations of 
different numbers of UTs according to scale, while keeping the dendrogram’s structure and 
the quality of the resulting taxonomies unaltered. 
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Appendix 
character element scale context category 

area building S building dimension 

height building S building dimension 



character element scale context category 

volume building S building dimension 

perimeter building S building dimension 

courtyard area building S building dimension 

form factor building S building shape 

volume to façade ratio building S building shape 

circular compactness building S building shape 

corners building S building shape 

squareness building S building shape 

equivalent rectangular 
index 

building S building shape 

elongation building S building shape 

Centroid—corner 
distance deviation 

building S building shape 

Centroid—corner mean 
distance 

building S building shape 

solar orientation building S building distribution 

street alignment building S building distribution 

cell alignment building S building distribution 

longest axis length tessellation cell S tessellation cell dimension 

area tessellation cell S tessellation cell dimension 

circular compactness tessellation cell S tessellation cell shape 

equivalent rectangular 
index 

tessellation cell S tessellation cell shape 

solar orientation tessellation cell S tessellation cell distribution 

street alignment tessellation cell S tessellation cell distribution 

coverage area ratio tessellation cell S tessellation cell intensity 

floor area ratio tessellation cell S tessellation cell intensity 



character element scale context category 

length street segment S street segment dimension 

width street profile S street segment dimension 

height street profile S street segment dimension 

Height-to-width ratio street profile S street segment shape 

openness street profile S street segment distribution 

width deviation street profile S street segment diversity 

height deviation street profile S street segment diversity 

linearity street segment S street segment shape 

area covered street segment S street segment dimension 

buildings per meter street segment S street segment intensity 

area covered street node S street node dimension 

shared walls ratio adjacent buildings M adjacent buildings distribution 

alignment neighboring 
buildings 

M neighboring cells 
(queen) 

distribution 

mean distance neighboring 
buildings 

M neighboring cells 
(queen) 

distribution 

weighted neighbors tessellation cell M neighboring cells 
(queen) 

distribution 

area covered neighboring cells M neighboring cells 
(queen) 

dimension 

reached cells neighboring 
segments 

M neighboring 
segments 

intensity 

reached area neighboring 
segments 

M neighboring 
segments 

dimension 

degree street node M neighboring nodes distribution 

mean distance to 
neighboring nodes 

street node M neighboring nodes dimension 

reached cells neighboring nodes M neighboring nodes intensity 



character element scale context category 

reached area neighboring nodes M neighboring nodes dimension 

number of courtyards adjacent buildings L joined buildings intensity 

perimeter wall length adjacent buildings L joined buildings dimension 

mean interbuilding 
distance 

neighboring 
buildings 

L cell queen 
neighbors 3 

distribution 

building adjacency neighboring 
buildings 

L cell queen 
neighbors 3 

distribution 

gross floor area ratio neighboring 
tessellation cells 

L cell queen 
neighbors 3 

intensity 

weighted reached blocks neighboring 
tessellation cells 

L cell queen 
neighbors 3 

intensity 

area block L block dimension 

perimeter block L block dimension 

circular compactness block L block shape 

equivalent rectangular 
index 

block L block shape 

compactness-weighted 
axis 

block L block shape 

solar orientation block L block distribution 

weighted neighbors block L block distribution 

weighted cells block L block intensity 

local meshedness street network L nodes 5 steps connectivity 

mean segment length street network L segment 3 steps dimension 

cul-de-sac length street network L nodes 3 steps dimension 

reached cells street network L segment 3 steps dimension 

node density street network L nodes 5 steps intensity 

reached cells street network L nodes 3 steps dimension 

reached area street network L nodes 3 steps dimension 



character element scale context category 

proportion of cul-de-sacs street network L nodes 5 steps connectivity 

proportion of three-way 
intersections 

street network L nodes 5 steps connectivity 

proportion of four-way 
intersections 

street network L nodes 5 steps connectivity 

weighted node density street network L node intensity 

local closeness centrality street network L nodes 5 steps connectivity 

square clustering street network L nodes within 
network 

connectivity 

Table 1. List of the 74 primary characters, alongside spatial element, scale, spatial context and conceptual category. Formulas can be 

found in (Fleischmann et al. 2021b) 

 

Interval 
plot size % plot size 

Interval 
coverage 
ratio 

% coverage 
ratio 

Interval 
building 
footprint 

% building 
footprint 

Interval 
building 
elongation 

(36.59, 
336.09) 

58.0693816 (0.03, 
0.06) 

0.1508295626 (5.11, 
78.95) 

16.44042232 (0.07, 0.20) 

(336.09, 
650.88) 

28.05429864 (0.06, 
0.11) 

0.1508295626 (78.95, 
145.13) 

29.26093514 (0.20, 0.31) 

(650.88, 
1080.39) 

10.25641026 (0.11, 
0.16) 

0.9049773756 (145.13, 
234.55) 

23.52941176 (0.31, 0.39) 

(1,080.39, 
1677.60) 

2.564102564 (0.16, 
0.20) 

0.9049773756 (234.55, 
371.63) 

15.98793363 (0.39, 0.46) 

(1,677.60, 
2515.36) 

0.754147813 (0.20, 
0.25) 

1.357466063 (371.63, 
585.08) 

9.049773756 (0.46, 0.52) 

(2,515.36, 
3689.55) 

0.1508295626 (0.25, 
0.29) 

1.055806938 (585.08, 
910.02) 

4.07239819 (0.52, 0.57) 

(3,689.55, 
5266.39) 

0.1508295626 (0.29, 
0.33) 

3.167420814 (910.02, 
1430.61) 

1.055806938 (0.57, 0.62) 

(5,266.39, 0 (0.33, 4.07239819 (1,430.61, 0.4524886878 (0.62, 0.66) 



Interval 
plot size % plot size 

Interval 
coverage 
ratio 

% coverage 
ratio 

Interval 
building 
footprint 

% building 
footprint 

Interval 
building 
elongation 

7385.03) 0.38) 2212.47) 

(7,385.03, 
10,282.65) 

0 (0.38, 
0.42) 

4.07239819 (2,212.47, 
3423.68) 

0 (0.66, 0.71) 

(10,282.65, 
14,106.60) 

0 (0.42, 
0.47) 

7.088989442 (3,423.68, 
5308.78) 

0.1508295626 (0.71, 0.75) 

(14,106.60, 
19,523.60) 

0 (0.47, 
0.51) 

7.692307692 (5,308.78, 
7792.22) 

0 (0.75, 0.80) 

(19,523.60, 
26,922.44) 

0 (0.51, 
0.56) 

12.21719457 (7,792.22, 
10,715.89) 

0 (0.80, 0.85) 

(26,922.44, 
35,608.03) 

0 (0.56, 
0.63) 

16.59125189 (10,715.89, 
14,611.60) 

0 (0.85, 0.90) 

(35,608.03, 
48,659.49) 

0 (0.63, 
0.71) 

20.51282051 (14,611.60, 
26,037.39) 

0 (0.90, 0.95) 

(48,659.49, 
67,909.16) 

0 (0.71, 
1.34) 

20.06033183 (26,037.39, 
34,898.16) 

0 (0.95, 1.00) 

Table 2. Morphometric profile of UT22 
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Figure 12: Silhouette diagrams for the case studies under examination: (a) Amsterdam; 
(b.) Bologna; (c.) Kochi;  (d.) sample area in Nairobi. 
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