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The cross-slot stagnation point flow is one of the benchmark problems in fluid mechanics as it allows large strains to
develop and can therefore be used in extensional rheometry. In such a flow, for purely-elastic cases in creeping flow
regimes, elasticity can break symmetry which is perhaps an unwanted phenomenon if used as a rheometer and will
limit the maximum deformation rate in which these tests can be performed, or beneficial once used as mixing device.
Here, this instability will be investigated inmore detail using a combination of numerical, experimental and analytical
analysis and a series ofmethods will be proposed that can potentially be used to delay and control the start point of the
instability.
The first part of this presentation focuses on the effect of elongational dominated flow on the onset criteria of
symmetry-breaking purely-elastic instability in the cross-slot geometry by applying a fundamental change on the kine-
matics of the flowfield in this region. Here, the standard geometry is modified by adding a cylinder at the geometric
centre and replacing the free stagnation point by pinned stagnation points at the cylinder walls.
Next, two-phase flows of Newtonian and/or viscoelastic fluids in a “cross-slot” geometry will be investigated in the
creeping-flow limit. In this part, the effect of injecting two fluids with different elastic properties from each inlet
arm, and effects of interfacial tension and the viscosity ratio of these flow streams will be investigated.
Videos to this article can be found online at https://doi.org/10.1016/
j.sctalk.2022.100054.
er Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.sctalk.2022.100054
https://doi.org/10.1016/j.sctalk.2022.100054
http://dx.doi.org/10.1016/j.sctalk.2022.100054
mailto:MDavoodi@slb.com
http://dx.doi.org/10.1016/j.sctalk.2022.100054
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.es/sctalk


M. Davoodi et al. Science Talks 3 (2022) 100054
Figures and tables
Fig. 1. The experimental shear viscosity data of Boger viscoelastic and Newtonian fluids.

Fig. 2. Effect of viscoelasticity on the 2-D steady symmetry-breaking instability and the flow type parameter.

Fig. 3.Dye advection patterns for a cross-channel flowwith two inputs and two outputs for (a) Newtonian fluid, and (b) PAAflexible polymer solution. Figure taken from [1].
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Fig. 4. Streamline patterns superimposed onto contour plots of (τxx − τyy)/(ηU/D) for (left) Newtonian fluid, (right) viscoelastic fluids. Figure taken from [2].

Fig. 5.Velocity profiles along horizontal centerline and along y
x ¼ � 1line (i.e., cross-slot diagonal) for Re=0 and De=0.3, and 0.5 (symmetry-imposed). Inset: A snapshot

of the streamlines for a transient simulation for a rounded corner case (De= 2). Figure taken from [2].

Fig. 6. Effect of geometry modification on streamlines superimposed onto contour plots of non-dimensional first normal-stress difference. Figure taken from [3].
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Fig. 7. Effect of Weissenberg number on the symmetry-breaking Instability and different blockage ratios. Figure taken from [3].

Fig. 8. Boundary between the symmetric and asymmetric flow for different Wi and blockage ratio. Figure taken from [3].

Fig. 9. Velocity distribution along the radial direction at θ = 0 for both the analytical and numerical simulations for standard cross-slot geometry, Newtonian fluid.
Figure taken from [3].
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Fig. 10. Variation of critical values of Weissenberg number against the blockage ratio parameter. Figure taken from [3].

Fig. 11. Effect of blockage ratio parameter on the flow strain rate before the start of instability for α= 0.02 and β = 1/9 along horizontal line. Figure taken from [3].

Fig. 12. Effect of slip boundary condition at the cylinder on flow strain rate along (a) horizontal line. Figure taken from [3].
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Fig. 13. Effect of (a) geometrymodification and (b) slip boundary condition on the magnitude of the velocity field for creeping Newtonian fluid flows. Figure taken from [3].

Fig. 14. Variation of the height of the interface between two fluids with viscosity ratio for Newtonian fluids. Figure taken from [4].

Fig. 15.Visualization of the interface between two Newtonian fluids in the fully developed region of the outlet armwith Ca→∞ and viscosity ratios (a)K=1, (b)K=0.16,
(c) K=0.03 (where the fluid shown in dark grey is the most viscous one) using Λ= 0.83 (i) in the experiment and (ii–iii) in numerical simulations. Figures (i) and (ii) are
presented in (x, y) plane centred at z = 0 for 1.5 < y < 2 while (iii) show a cross-sectional view of the channel ((x,z) plane) at y = 1. Figure taken from [4].
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Fig. 16. Effect of viscosity ratio with Ca=∞ and (a) K=1, (b) K=0.03 for Λ=0.83 in (i) the experiment and (ii) in numerical simulations, where the most viscous fluid
(fluid-1) is on the left-hand side. Figure taken from [4].

Fig. 17. Streamlines obtained using (i) numerical method superimposed on the magnitude of the non-dimensional velocity gradient with Λ = 0.83 and Ca = ∞ and (ii)
experimental results with Λ = 0.83 for (a) K = 1, (b) K = 0.16, where the most viscous fluid enters through inlet-1 (on the left-hand side). Figure taken from [4].
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Fig. 18. The variation of r.m.s. of the asymmetry parameter for the time-dependent symmetry-breaking instability with K= 0.001 and Ca= 0.005 using an increasingWii
ramp (open) and decreasing ramp (closed symbols). Figure taken from [4].

Fig. 19. (a) The stability diagram for symmetry-breaking instability and (b) the variation of criticalWeissenberg numberwith the ratio ofWeissenberg numbers for two-phase
flow problems with Ca= ∞ and K = 1. Figure taken from [4].

Fig. 20. The local distribution of theM parameter before the onset of the instability at (left)Wi1=0.51 and (right)Wi1=1.18 for (left)Wi2/Wi1=1, and (right)Wi2/Wi1=
0.25 with Ca = ∞ and K = 1. The white circles indicate the location where M reaches a critical value of≈1 in fluid 2. Figure taken from [4].
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Fig. 21. Effect ofWii with i = {1,2} on the steady symmetry-breaking instability for K = 1 and different capillary numbers. Figure taken from [4].
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