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Abstract. We present a correlated and gate which may be used to prop-
agate uncertainty and dependence through Boolean functions, since any
Boolean function may be expressed as a combination of and and not op-
erations. We argue that the and gate is a bivariate copula family, which
has the interpretation of constructing bivariate Bernoulli random vari-
ables following a given Pearson correlation coefficient and marginal prob-
abilities. We show how this copula family may be used to propagate un-
certainty in the form of probabilities of events, probability intervals, and
probability boxes, with only partial or no knowledge of the dependency
between events, expressed as an interval for the correlation coefficient.
These results generalise previous results by Fréchet on the conjunction
of two events with unknown dependencies. We show an application prop-
agating uncertainty through a fault tree for a pressure tank. This paper
comes with an open-source Julia library for performing uncertainty logic.

Keywords: imprecise probability · uncertainty logic · Boolean functions
· uncertainty propagation · copula

1 Introduction

The logical conjunction (∧) is a function f : {0, 1}2 → {0, 1} that returns a value
of 1 if and only if both of the inputs are 1. The logical values assigned to the
inputs represent the truth value of certain propositions or events, and in Boolean
algebra it is required absolute certainty about these truth values (i.e. they are
either true (1) or false (0)). That is, variables take the form p ∈ {0, 1}. However,
this requirement is often too restrictive to be used in practical applications where
truth values have some degree of uncertainty, and therefore an extension of
classical Booleans to uncertain Booleans would be desirable. We define uncertain
Booleans as probabilities p ∈ [0, 1] defining a precise Bernoulli distribution (an
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event), interval probabilities p ⊆ [0, 1] defining a set of Bernoulli distributions
(a credal set), and probability boxes with range(p) ⊆ [0, 1]. This paper presents
a method to perform uncertainty logic with these structures.

Note that it is possible to build any binary Boolean operation from two
primitive operations, for example from and and not. Table 1 shows the 16 (24)
possible binary and unary Boolean operations, written in terms of two primitives
operations ∧ and ¬. Note that some of these operations (e.g. Identity and Zero)
are trivial, and with the other operations being written in terms of previously
derived operations for brevity. Since all of these operations may be written in
terms of an ∧ and a ¬ operation, and since the not operation is not(A) = ¬A =
1−A, it follows that we therefore only need to describe a correlated and operator,
and all other binary operators, and further more complicated Boolean functions,
may be calculated in terms of these two operators.

Table 1: Summary of the 16 possible binary and unary Boolean operations writ-
ten in terms of two primitive operations ∧ and ¬.

A 1100 Adopted Name Adopted Symbol Expansion
B 1010

w1 1100 Identity A trivial
w2 1010 Identity B trivial
w3 0000 Zero 0 trivial
w4 1111 One 1 trivial
w5 1000 And A ∧B primitive
w6 0011 Not ¬A 1−A
w7 0101 Not ¬B 1−B
w8 1110 Or A ∨ B ¬((¬A) ∧ (¬B))
w9 0111 Nand A nand B ¬(A ∧B)
w10 0001 Nor A nor B ¬(A ∨ B)
w11 0110 Exclusive Or A xor B (A ∨ B) ∧ (A nand B)
w12 1001 Equivalence A ≡ B ¬(A xor B)
w13 1011 Implication A =⇒ B ¬A ∨ B
w14 1101 Implication B =⇒ A A ∨ ¬B
w15 0100 Inhibition A Z=⇒ B ¬(A =⇒ B)
w16 0010 Inhibition B Z=⇒ A ¬(B =⇒ A)

When events A and B are independent, their logical conjunction is calcu-
lated as P(A ∧ B) = P(A)P(B). However, the assumption of independence has
a significant consequence quantitatively, as shown in [3]. Therefore, after ex-
tending the mathematical structures to describe events A and B from classical
Booleans to uncertain Booleans, the next desirable extension would be on this
assumption of independence between their probabilities. For example, consider
the two following random bit-vectors each with the same marginal probabilities
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P (A) = P (B) = 0.5 (a sequence of two fair coin tosses)

A = {0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1},
B = {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1}. (1)

Although the individual coin tosses is fair (the sample mean for these 12 tosses
is ∼ 0.6 for each vector), the vectors are corrected, that is, the outcome of one
throw can influence the other, with ρAB = 0.3 (sample correlation is ∼ 0.35).

In [9], it is derived a model for the conjunction employing the Pearson corre-
lation coefficient to capture dependence (referred to as the Lucas model). Unlike
for continuous distributions, two marginals and a correlation coefficient is suffi-
cient to completely define a bivariate Bernoulli random variable [7]. The Lucas
model is defined as

P(A ∧B) = P(A)P(B) + ρAB
√
P(A)P(¬A)P(B)P(¬B) , (2)

where ρAB is the Pearson correlation coefficient of A and B.
However, this model can return misleading results when certain combinations

of probabilities of events and correlations are employed. For example, considering
P(A) = 0.3 and P(B) = 0.2 with ρAB = −1 (opposite dependence), the Lucas
model returns P(A ∧ B) = −0.123, which is obviously erroneous. The fact that
Equation 2 is returning a negative probability is simply because the probability
assigned for events A and B cannot have a correlation of -1. This means that,
for some probabilities of events, the Pearson correlation coefficient cannot take
any value in [-1, 1], but in some subset S ⊆ [−1, 1].

This subset S can be found through the Fréchet inequalities, which define
the lower and upper bounds of the logical conjunction given the probability of
its events [5], and are written as

P(A ∧B) ∈ [max(P(A) + P(B)− 1, 0),min(P(A),P(B))] . (3)

Substituting the bounds in Equation 2, and rearranging for ρAB , the subset
S = [ρ

AB
, ρAB ] ⊆ [−1, 1] can be found as

ρ
AB

= max(P(A)+P(B)−1,0)−P(A)P(B)√
P(A)P(¬A)P(B)P(¬B)

ρAB = min(P(A),P(B))−P(A)P(B)√
P(A)P(¬A)P(B)P(¬B)

.

(4)

With these definitions for the lower and upper bound of the Pearson correlation
coefficient, the subset S for the previous example with P(A) = 0.3 and P(B) =
0.2 is [-0.327, 0.763], and not [-1,1] as previously guessed.

The proposed correlated and operation combines the Lucas model and the
Fréchet inequalities to restrict the former to return probabilities in [0,1] for any
specified Pearson correlation. If the introduced correlation is greater than ρ,
then the upper Fréchet bound is returned. On the other hand, if it is lower than
ρ, then the model gives the lower Fréchet bound. Lastly, when the introduced
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correlation is in S, then the probability is calculated following the Lucas model.
Therefore, the correlated and operator is written as

P(A∧B) =


max(P(A) + P(B)− 1, 0) if ρAB ≤ ρAB
min(P(A),P(B)) if ρAB ≥ ρAB
P(A)P(B) + ρ(A,B)

√
P(A)P(¬A)P(B)P(¬B) otherwise .

(5)

We present an extension for the Boolean operators allowing for uncertainty
not only in the inputs, but also in the dependence, which now can be specified
for any interval correlation ρ ⊆ [−1, 1], having the Fréchet bounds as a special
case when ρ = [−1, 1]. Functions of Bernoulli random variables with uncertainty
in dependence generally yield interval probabilities, we thus show how intervals
may also be propagated through the derived operations.

2 Correlated and as a Copula

In this section we argue that the above derived correlated and is a bivariate
copula (2-copula) family, parameterised by a correlation coefficient ρ. Rewritten
in a more standard copula notation:

Cρ(u, v) =


W (u, v) if ρ ≤ ρ

uv

M(u, v) if ρ ≥ ρuv
uv + ρ

√
u(1− u)v(1− v) otherwise ,

where W (u, v) = max(u + v − 1, 0) and M(u, v) = min(u, v) are the Fréchet-
Hoeffding copula bounds. A 2-copula C is any function C : [0, 1]2 → [0, 1] with
the following properties:

1. Grounded: C(0, v) = C(u, 0) = 0,
2. Uniform margins: C(u, 1) = u; C(1, v) = v,
3. 2-increasing:
C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0
for all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1.

It is easy to see that the first two properties hold. The third property is harder
to demonstrate, and in this work we provide no proof, despite the Lucas model
uv+ ρ

√
u(1− u)v(1− v) is non-decreasing in u and v. However, non-decreasing

is a necessary but not sufficient criteria for 2-increasing [12]. Yet Durante and
Jaworski [2] prove that C is a copula iff it satisfies criteria 1. and 2. and if the
partial derivatives are increasing (Corollary 2.4). That is, for every u ∈ [0, 1],

v 7→ δC(u, v)

δu

is increasing on [0, 1]. The partial derivatives of the above and gate is
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Fig. 1: Cρ(u, v) for ρ = {−1,−0.8,−0.4, 0.4, 0.8, 1}

δCρ(u, v)

δu
=


0 if ρuv ≤ ρuv
1 if ρuv ≥ ρuv
v + ρ v(1−u)(1−v)−uv(1−v)

2
√
uv(1−u)(1−v)

otherwise

which from observation Cρ follows. Figure 1 shows Cρ(u, v) for various values
of ρ. If Cρ(u, v) is a copula family, then it is a complete copula family, as it
includes the two Fréchet-Hoeffding bounds W and M , corresponding to minimal
(when ρ = −1) and maximal (when ρ = 1) correlation respectively, and the
independence copula Π(u, v) = uv when ρ = 0.

For the main results of this paper it is not required that the presented operator
is a copula, only that it is non-decreasing. However it is interesting since t-
norms, which are similar functions to copulas, are widely used in fuzzy logic to
model and operations [8]. The interpretation of t-norms in fuzzy logic is often
unclear, whilst the presented Cρ has a clear probabilistic interpretation. Given
two marginal Bernoulli random variables with P(A) and P(B), and Pearson
correlation coefficient ρ, Cρ(P(A),P(B)) returns the joint probability of events
A and B occurring, i.e. P(A = 1, B = 1), which is one element of the joint
probability of the bivariate Bernoulli distribution, with the other elements being
P(A = 1, B = 0), P(A = 0, B = 1), and P(A = 0, B = 0).
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3 Interval probabilities

Since Cρ(u, v) is non-decreasing in u and v, interval values for u and v can be
simply evaluated with endpoints. Moreover, in Cρ(u, v) the correlation ρ only has
a single occurrence, and so it can be evaluated exactly with interval arithmetic.
However, a useful observation is that Cρ(u, v) is also non-decreasing in ρ, and
an interval value for ρ induces an imprecise copula. The concept of imprecise
copulas, which are a bounded set of copulas, has been discussed in [10]. From
Figure 1 it can be seen that increasing ρ yields larger or equal values of joint
probabilities, i.e. Cρ1 ≤ Cρ2 for ρ1 ≤ ρ2, and therefore interval uncertainty in ρ
may also be evaluated with endpoints. Therefore, given two events with interval
probabilities u = [u, u] and v = [v, v], and partially known correlation ρ = [ρ, ρ],
the interval probability of their conjunction can be evaluated as

P(u = 1, v = 1) = Cρ(u, v),

P(u = 1, v = 1) = Cρ(u, v).

As an example, for u = [0.2, 0.3], v = [0.45, 0.5] and ρ = [−0.2, 0.4], rig-
orous bounds on their conjunction can be calculated as P(u = 1, v = 1) =
[0.0502, 0.2417].

The full joint probability distribution of the bivariate Bernoulli can also be
found by noticing that, for example, P(u = 1, v = 0) = P(u ∧ ¬v), with the
not operator defined as ¬v = 1− v, which may be evaluated with Cρ. However,
some careful consideration is required regarding the correlation coefficient. If
probabilities u and v have correlation ρuv, then u and 1 − v will have ρu¬v =
−1∗ρuv [11], i.e. when complementing an event, the correlation must be reversed.
The other elements of the joint distribution of the bivariate Bernoulli can be
calculated as

P(u = 1, v = 0) = C−1∗ρ(u, 1− v),

P(u = 0, v = 1) = C−1∗ρ(1− u, v),

P(u = 0, v = 0) = Cρ(1− u, 1− v).

Notice that when the probabilities are complemented twice, the correlation stays
the same, since it has been negated twice: ρ¬u,¬v = −(−ρuv) = ρuv. Table
2 shows the computed joint distribution using the previous example of u =
[0.2, 0.3], v = [0.45, 0.5] and ρ = [−0.2, 0.4].

3.1 Other Boolean operations

Once a correlated and operation has been constructed, other correlated Boolean
operations can be defined in terms of this operation and a not, shown in Table
1. For example, or can be defined as

A or B = P(A ∨B) = 1− P((1−A) ∧ (1−B)),

Correlated Boolean operators for uncertainty logic
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Table 2: Interval bounds on the joint probability of a bivariate Bernoulli with
marginals P(u = 1) = [0.2, 0.3] , P(v = 1) = [0.45, 0.5] and interval correlation
ρ = [−0.2, 0.4].

P(u, v) 0 1 P(u)

0 [0.304, 0.52] [0.223, 0.44] [0.7, 0.8]
1 [0.02, 0.2106] [0.0502, 0.2417] [0.2, 0.3]

P(v) [0.5, 0.55] [0.45, 0.5]

which may be written in terms of Cρ is

A ∨B = 1− Cρ(1−A, 1−B). (6)

The other operations can be similarly expanded, taking care to negate ρ appro-
priately.

4 Probability Boxes

The previous section describes a method to perform logical operations on un-
certain Booleans characterised by interval probabilities p ⊆ [0, 1], which define
a bounded set of Bernoulli distributions. A possible generalisation of this is to
have a distributional or imprecise distributional (p-box) characterisation, e.g.,
any p-box p whose range is a subset of the unit interval range(p) ⊆ [0, 1]. The
binary events involved with Boolean operations can be expressed in the form
of Bernoullis (precise), set of Bernoullis (interval), or distributional Bernoullis
(p-box). Note that here we are not describing the arithmetic of real functions
(f : Rm → Rn), but are describing an extension of Boolean functions with p-
box inputs, i.e., events or uncertain Booleans with uncertainty characterised by
p-boxes. This is particularly relevant for c-boxes [4], which are p-box shaped
confidence distributions for binomial inference with limited data. That is, they
are a confidence characterisation of an uncertain Boolean given some sample set,
e.g., the data for A in Equation 1.

Since Cρ is a non-decreasing binary operator, it can also be readily evaluated
with the convolutions used in p-box arithmetic. Given two random variables with
distribution functions FX and FY , correlated by copula CXY , a binary operation
Z = f(X,Y ) can be evaluated with the following Lebesgue-Stieltjes integral

FZ(z) =

∫
f{z}

dCXY (FX(x), FY (y)),

where the integration domain is the set f{z} = {(x, y)|x, y ∈ R, f(x, y) < z}
(the set of all x and y for which f(x, y) < z). Note that the copula CXY is
not the same copula used to define the correlated and operation Cρ, where CXY
defines the dependence between the random variables X and Y (which defines the
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Fig. 2: (Left) Show logical and between the two K-out-of-N c-boxes X ∼
KN(5, 6), Y ∼ KN(16, 20) for different values of precise correlation. (Right)
shows logical and with the interval correlation ρ = [0.5, 1], and is the enve-
lope of the orange and purple c-boxes. Independence is used in the upper level
throughout CXY = Π.

uncertainty we have about the events), and Cρ defines the correlation between
the events themselves. We elaborate on this difference in Section 4.1.

Inserting f = Cρ into the above equation, and since the operation is non-
decreasing we have

FZ(z) =

∫
Cρ

dCXY (FX(x), F Y (y)) , (7)

FZ(z) =

∫
Cρ

dCXY
(
FX(x), FY (y)

)
. (8)

for two p-boxes X = [FX , FX ], Y = [FY , FY ], and interval correlation ρ =
[ρ, ρ]. Software for performing rigorous correlated p-box arithmetic is readily
available for bounding the above integrals efficiently [6]. The above integrals are
those usually used in p-box arithmetic, except that the binary operation Cρ is
parameterised by ρ, which could be an interval. In the interval case, the envelope
of the two end points yields the bounds on the output p-box. Figure 2 shows
Equations 7 and 8 evaluated for two K-out-of-N c-boxes [4] X ∼ KN(5, 6), Y ∼
KN(16, 20) for different values of event correlations, shown in different colours.
The right figure shows logical and with an interval correlation ρ = [0.5, 1], which
is the envelope of the purple and orange c-boxes. Note in Figure 2 independence
was used for the upper level CXY , but independence is not necessarily the only
choice for CXY . In fact, any copula CXY can be used in Equations (7) and (8),
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Fig. 3: Shows the conjunction of two p-boxes with varying upper-level depen-
dence. (Left) Show logical and between the two K-out-of-N c-boxes X ∼
KN(5, 6), Y ∼ KN(16, 20) for constant independent event correlation ρ, but
different values of upper-level dependence. Φr is the Gaussian copula with pa-
rameter value r. (Right) shows logical and with independence for the lower-level
ρ, but unknown dependence in the upper-level.

which can greatly influence results, as much as the choice of correlation ρ does.
We explore this difference in the next section.

4.1 Two levels of dependence

The copula CXY in the and operation (7) and (8) plays a different role to the
correlation ρ. The correlation ρ is the dependence between the events P(A) = a
and P(B) = b, i.e., the correlation between the two random bit-vectors (1), and
is the only dependence that plays a role when two uncertain Booleans are char-
acterised by precise probabilities as real values. When considering two interval
probabilities, two distributions, or two p-boxes, ρ still correlates the events as
before, however one could worry that the uncertainty characterising the marginal
probabilities might share some bivariate information. That is, the p-boxes have
a dependence which the copula CXY characterises, distinctly from the event cor-
relation ρ. We call the event correlation ρ as “lower-level dependence” and the
copula CXY as the “upper-level dependence”. This upper-level dependence can
have a profound impact on the conjunction of two uncertain Booleans. The left
of Figure 3 shows the variation in the same two c-boxes as Figure 2, but with a
constant lower-level independence and a varying upper-level CXY . The copula
Φr is a Gaussian copula with parameter r. Note that the green p-box, showing
independence on both levels, is the same in both Figures 2 and 3.
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As for the lower-level, the dependence on the upper-level could be imprecisely
known, that is, it may not be possible to know CXY . Using p-box arithmetic,
unknown dependence can be propagated through a non-decreasing binary op-
eration using the following convolutions [3] which has been adapted using the
imprecise probabilistic conjunction Cρ

FZ(z) = inf
Cρ(x,y)=z

[W (FX(x), F Y (y))] , (9)

FZ(z) = sup
Cρ(x,y)=z

[
W d

(
FX(x), FY (y)

)]
, (10)

where Cd is the dual copula of C: Cd(u, v) = u + v − C(u, v). The right of
Figure 3 shows the result of the p-box conjunction with unknown upper-level
dependence and with lower-level independence.

The p-box bounds from unknown upper-level dependence are not only rigor-
ous but are also best-possible in the sense that they cannot be made tighter with-
out introducing additional dependence assumptions. One may find the breath
(grey shaded area) of this p-box surprising, and how strong the independence
assumption is. One may also wonder why the p-box on the right is not a simple
envelope of the p-boxes on the left. This is because the left p-boxes only con-
sider Gaussian dependencies, whilst the right p-box considers all possible copulas
CXY , of which there are an infinite number.

Risk analysts tell us that for a fault tree analysis to be probabilistic the event
probabilities should be characterised by distributions [1]. If so, then the issue of
the two levels of dependence immediately arises. As far as we are aware, this
issue has not been widely addressed. Generally, the upper-level independence is
assumed. This section has shown that this assumption has a strong effect on the
results of logical operations involving uncertainty.

5 Application

In fault tree analysis, Boolean operators are employed to calculate a system’s
probability of failure. These are useful to, for example, understand what are the
most likely routes of failure, show compliance with the reliability requirements,
or designing monitoring strategies. To carry out these analyses it is required
to define an event tree, where the connections between events are made with
Boolean operators, with their respective event probabilities and dependencies.
Then, the Boolean operators are calculated backwards from the top event to find
its probability of failure.

Figure 4 represents a fault tree for a pressure tank system, derived in [13,3].
It displays the Boolean operators ∧ (AND) and ∨ (OR) connecting the failure
events Ei (with E1 being the top event), and the system components tank (T),
relay (K2), pressure switch (S), on-switch (S1), timer relay (R), and relay (K1).
For the sake of brevity, the function of these components will not be explained
in this paper.

Correlated Boolean operators for uncertainty logic
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Fig. 4: Fault tree diagram for the pressure tank system.

To measure the probability of failure of the system (event E1), it is necessary
to estimate the failure rates for its components T, K2, S, S1, R and K1, and the
dependence of the events in the Boolean operations. The most common method
of calculation, as in [13], is to calculate the probability of failure assuming inde-
pendence and known rates of failure for the components. In [3], the assumption
of lower-level independence was relaxed including some known/unknown de-
pendence, and extending the point probabilities to intervals, showing that the
assumptions in [13] underestimate the probability of failure. To demonstrate the
capabilities of the method derived in this paper, two scenarios on the compo-
nents probability of failure will be calculated, with three lower-level dependence
cases for each (independence, mixed dependence, and unknown dependence):

1. An interval scenario, where the probability of failure of the components is
modeled as intervals.

2. A p-box scenario, which generalises [3] combining p-boxes and intervals. The
probabilities of failure of the relays (K1, K2, and R) have been extended to
follow a K-out-of-N c-box [4].

The specific values for each scenario and dependence are indicated in Tables 3
and 4 respectively.

Table 3: Probability of failure for the tank pressure system components. In the
interval scenario, all probabilities are modeled in the form of intervals. In the
p-box scenario, tank and switches have an interval probability, whilst the relays
follow a K-out-of-N c-box.

Component Interval scenario P-box scenario

T [4.5× 10−6, 5.5× 10−6] [4.5× 10−6, 5.5× 10−6]

K2 [2.5× 10−5, 3.5× 10−5] KN(3, 105)

S [0.5× 10−4, 1.5× 10−4] [0.5× 10−4, 1.5× 10−4]

K1 [2.5× 10−5, 3.5× 10−5] KN(3, 105)

R [0.5× 10−4, 1.5× 10−4] KN(1, 104)

S1 [2.5× 10−5, 3.5× 10−5] [2.5× 10−5, 3.5× 10−5]

Correlated Boolean operators for uncertainty logic
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Table 4: Dependence in the system’s events for the three different cases: inde-
pendence, mixed dependence, and unknown dependence.

Event Independence Mixed Dependence Unknown Dependence

E1 ρ = 0 ρ = 0 ρ = [−1, 1]

E2 ρ = 0 ρ = [−1, 1] ρ = [−1, 1]

E3 ρ = 0 ρ = 0.15 ρ = [−1, 1]

E4 ρ = 0 ρ = [−0.2, 0.2] ρ = [−1, 1]

E5 ρ = 0 ρ = 1 ρ = [−1, 1]

5.1 Interval scenario

On the left of Figure 5 it is shown the probability of failure E1 for the interval
scenario, where the red area belongs to the independence case, blue to the mixed
dependence case, and green to the unknown dependence. It is possible to see how
the uncertainty increases as the dependence assumptions are removed from the
Boolean operations. Intervals for the probability of E1 are indicated in Table 5.

Table 5: Probability of E1 in the interval scenario.
Case P(E1)

Independence [2.950× 10−5, 4.053× 10−5]

Mixed Dependence [2.949× 10−5, 6.551× 10−5]

Unknown Dependence [2.499× 10−5, 1.905× 10−4]

5.2 P-box scenario

The results in the P-box scenario are more complicated to interpret since the
calculations are probabilities of the probability of the event E1. However, mean-
ingful analyses can be drawn from them. For example, assuming the required
failure probability of the tank system is no more than 10−4, a possible question
could be what is the probability of it being lower or equal than 10−4, or how
likely is the system to comply with that requirement. Table 6 includes the results
of such inquiry. In the case of all the events being independent, the probability of
fulfilling the requirements goes from 0.969 to 1, so one can infer the tank pressure
system is likely to fulfil the requirements. When the independence assumption
is removed, and the mixed dependence scenario is adopted, it is possible to see
how the uncertainty on the assessment increases. Finally, if all the dependence
assumptions are relaxed, the probability goes from 0 to 1, meaning that no guar-
antees can be given on the reliability of the tank pressure system. These results
are illustrated in Figure 5 (right), which depicts how dramatic the consequences
can be when assuming certain dependencies for the events.

Correlated Boolean operators for uncertainty logic
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Table 6: Probability of P(E1) <= 10−4 in the P-box scenario.
Case P(E1) <= 10−4

Independence [0.969, 1]

Mixed Dependence [0.88, 1]

Unknown Dependence [0, 1]
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Fig. 5: (Left) Interval of P(E1) for different dependence assumptions. (Right)
Probability box of P(E1) for different dependence assumptions.

6 Conclusion

In this paper, classical Boolean functions have been generalised to be able to
operate with precise probabilities, intervals, p-boxes, and with any input cor-
relation. We show an application of the generalisation of Boolean operations
calculating the probability of failure of a pressure tank system. The uncertainty
is propagated through the fault tree with different combinations of probabilities
of the events, intervals, and p-boxes, under different dependence assumptions.
The results suggest that assumptions on the probability or dependence of the
events have a strong impact on the outcome of the analysis, and these should be
carefully addressed in any serious assessment.

Also, the issue of the two levels of dependence has been introduced, and
shown that it can have a dramatic effect on the results of a probabilistic risk
assessment.

The computational resources to perform correlated Boolean operations are
available in the following open-source Julia package: https://github.com/Institute-for-Risk-and-Uncertainty/
UncLogic.jl

Correlated Boolean operators for uncertainty logic
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