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This paper presents a multi-fidelity meta-modelling and model management
framework designed to efficiently incorporate increased levels of simulation
fidelity from multiple, competing sources into early-stage multidisciplinary design
optimisation scenarios. Phase specific/invariant low-fidelity physics-based
subsystem models are adaptively corrected via iterative sampling of high(er)-
fidelity simulators. The correction process is decomposed into several distinct
parametric/non-parametric stages, each leveraging alternate aspects of the
available model responses. Globally approximating surrogates are constructed at
each degree of fidelity (low, mid, and high) via an automated hyper-parameter
selection and training procedure. The resulting hierarchy drives the optimisation
process, with local refinement managed according to a confidence-based multi-
response adaptive sampling procedure, with bias given to global parameter
sensitivities. An application of this approach is demonstrated via the aerodynamic
response prediction of a parametrized re-entry vehicle, subjected to a static/
dynamic parameter optimisation for three separate single-objective problems. It
is found that the proposed data correction process facilitates increased efficiency in
attaining a desired approximation accuracy relative to a single-fidelity equivalent
model. When applied within the proposed multi-fidelity management framework,
clear convergence to the objective optimum is observed for each examined design
optimisation scenario, outperforming an equivalent single-fidelity approach in terms
of computational efficiency and solution variability.
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1 Introduction

The usability of systems-based multidisciplinary design optimisation is often dependant on
the extent to which complex interdisciplinary interactions can be represented. Practical
boundaries on computational resource naturally limit subsystem modelling towards
inexpensive, less accurate and/or flexible numerical/empirical methods. Performance
predictions may thus be misleading, failing to represent significant design behaviour or
interdisciplinary coupling (Christensen and Willcox, 2012; Robinson, 2012; Bryson et al.,
2019). This can ultimately lead to sub-optimal designs and/or increased development costs as a
result of later stage alteration (Allaire and Willcox, 2014).
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Multi-fidelity1 (MF) meta-modelling has become a popular means
of efficiently distributing computational resource across various levels
of simulation accuracy. In this manner, one may obtain numerically
accurate predictions of an expensive function response whilst
minimising the associated cost penalty (Fernandez et al., 2017;
Park et al., 2017; Liu et al., 2018). Such methods have found wide
application, particularly within the field of surrogate based
optimisation (SBO). Approaches include utilising low-fidelity (LF)
models to accelerate the search for the global optimum (Booker et al.,
1999; Keane, 2003; Forrester and Keane, 2009), leveraging an
adaptively corrected LF model within a trust region model
management scheme (Alexandrov et al., 1997; 2001; Booker et al.,
1999; March and Willcox, 2012b), or directly optimising a MF
approximation of the objective function. A well known example of
the latter is efficient global optimisation (EGO), which optimises a
Kriging approximation constructed from evaluations of the “true”
objective function (Jones et al., 1998).

Techniques for MF model management (including methods for
general model enhancement, out-with any overriding outer-loop
application) may be described according to the following
classifications (Peherstorfer et al., 2018); adaptation, fusion and
filtering. Adaptation refers to directly correcting or enhancing an
existing LF model (or set of models) using selective samples of a
correlated, high(er)-fidelity model. Common forms of adaptive
correction include bridge functions (additive, multiplicative or
comprehensive) (Gano et al., 2005; Han et al., 2013; Fischer
et al., 2018), model calibration (Kennedy and O’Hagan, 2001;
March and Willcox, 2012a) and space mapping (Bandler et al.,
1994; Koziel et al., 2008). Fusion instead involves the combination
of separate levels of fidelity into a single surrogate (Forrester et al.,
2007; Zhou et al., 2019). For example, the work presented by Allaire
and Willcox (2014) approximates each level of fidelity via a
separate kriging surrogate, before the technique presented by
Winkler (1981) is used to combine the random variables
associated with each kriging approximation, thus producing a
single fused model. Furthermore, this method may also be
applied by averaging the response of an ensemble of meta-
models, such as in the work Goel et al. (2007), where model
weights are derived from their respective error profiles. Filtering
refers to a hierarchical management of models, or surrogates
thereof. For example, evaluating the HF function only when the
LF counterpart falls outwith a certain acceptable accuracy, or when
some specific criteria are met (Fernández-Godino et al., 2016). This
classification also includes multilevel methods (inc. multigird
methods, multilevel pre-conditioners and multilevel function
representations). The reader is referred to the following reviews
for in-depth analyses and examples of MF modelling applications
(Huang et al., 2013; Fernández-Godino et al., 2016; Koziel and
Leifsson, 2016; Peherstorfer et al., 2018).

Multi-stage approaches to adaptive model correction have
received some attention in the literature. In most cases, one or
more correction methods are implemented as pre-processing stages
to improve the prediction quality of the final surrogate. Park et al.
(2018) report that the use of scaling coefficients to reduce the
“bumpiness” (an integral of the square of the second derivative) of

the discrepancy function can increase the prediction accuracy of
the final stage surrogate. Koziel and Leifsson (2012) present a
multi-point space mapping method, a generalised update to Output
Space Mapping (OSM), as a multi-stage corrective procedure using
a constant linear scaling function as a precursor to a direct
correction via additive discrepancy, calculated using the first
stage output.

This work presents a simple exploration of this concept, and
incorporates the resultingmethodology into amultidisciplinary design
optimisation process. In the proposed approach, phase specific/
invariant LF physics-based subsystem models are adaptively and
iteratively corrected via several distinct parametric/non-parametric
stages. Globally approximating surrogates are constructed at each
degree of fidelity (low, mid, and high) via an automated hyper-
parameter selection and training procedure. The resulting hierarchy
drives the optimisation process, with local refinement managed
according to a confidence-based multi-response adaptive sampling
procedure, with bias given to global parameter sensitivities.

The overarching goal of this work is to contribute in part to a
generalised framework supporting MF optimisation and optimal
control problems. Surrogate generation and data correction
methods are implemented within a modular outer-level structure.
Each subroutine is designed to be applicable in a general sense, to
enhance the flexibility and applicability of the framework. For
example, multiple alternative/competing models may be specified
for a particular subsystem. Models themselves may have non-equal
(or overlapping) input domains, and may be time-phase specific or
shared across multiple phases. Sample points at whichmodels are to be
initially evaluated may be supplied, or autonomously selected via the
proposed surrogate generation procedure. Additionally, existing data
may be supplied to augment the model generation process as sets of
corresponding input/output arrays.

The remainder of this paper is organised as follows. Section 2
briefly details the surrogate generation technique employed. Section 3
details the series of response correction stages, then Sections 4, 5
demonstrate their application to an isolated engineering test case. The
completed framework, including surrogate generation and adaptation
processes, is then used to solve a set of single-objective optimisation
problems (Sections 6, 7). Section 8 presents the associated cost savings,
and finally, Section 9 presents the author’s conclusions and
recommendations.

2 Surrogate generation

Considering the generation of surrogate models (SM) for use
within optimisation and optimal control problems, the goal is often
to provide a global representation of the HF response meeting the
requirements of zero- and first-order consistency (Alexandrov
et al., 2001) to an acceptable degree within a reduced
computational budget. The latter point is as compared with
constructing a surrogate of similar accuracy using exclusive HF
sampling. First order consistency is desirable (though not always
achievable) in this context given that, in conventional mathematics,
if a surrogate and its derivative matches the target function,
convergence to the same solution can be guaranteed
(Alexandrov et al., 2001). Specifically considering continuous
optimal control problems, it is highly desirable that system
models are continuously differentiable given that a continuous/1 also referred to as variable-fidelity.
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smooth representation of the dynamic system state is often
required to reach feasible solutions.

Common methods of generating continuously differentiable
SMs suited to MF applications are Kriging (Sacks et al., 1989) and
Response Surface Modelling (Myers and Montgomery, 1995).
However, these methods often require the user-specification of
hyperparameters such as (in the case of Kriging) regression and
correlation functions (including an initial guess of the correlation
function parameters), which may require a priori knowledge of the
function under consideration. Whilst for physics-based subsystem
models a certain degree of domain specific knowledge may be
assumed, the most appropriate choice of hyperparameters may not
necessarily remain constant across separate subsystems. This work
aims to implement a more generalised methodology, suitable for
multiple models of unknown functional form within multiple
subsystems.

Artificial Neural Networks (ANN) (McCulloch and Pitts, 1943)
for non-linear regression are an appealing non-parametric alternative.
An ANN is a multi-layered construction comprising one or more
hidden layers of different processing units (neurons) that are
connected to form a network. Each connection is characterised by
a corresponding weight, iteratively adjusted by the training procedure,
that defines the effect of each unit on the overall surrogate model.
Whilst a typical multi-layer network may contain any number of
hidden layers, it has been widely reported that an ANN with only one
sigmoidal hidden layer (chosen due to being easily differentiable) and
a linear output layer (to allow a non-bounded output) is capable of
approximating any linear/non-linear function with a finite number of
discontinuities to an arbitrary accuracy, provided that associated
conditions are satisfied (Razavi et al., 2012; Beale et al., 2017;
Rumelhart et al., 1994). Indeed, the work by Razavi et al. (2012)
found that the use of more than one hidden layer in an ANN-based
meta-modelling study was in itself extremely rare. An additional
implication here is that one may employ an ANN based meta-
modelling scheme without any prior knowledge of the underlying
function to be approximated (Minisci and Vasile, 2013).

Throughout this work, continuously differentiable meta-models of
single and multi-fidelity datasets are constructed by employing a
generalised training methodology for multi-layer feed-forward
ANN. This approach, largely adapted from the recommendations
of Heath (2020), aims to programmatically determine the optimal
hyperparameters of a standard Multi-Layer Perceptron (MLP)
architecture as implied by the Kolmogorov theorem (Kolmogorov,
1957). This approach utilises both Bayesian Regularisation and an
early-stopping criteria implemented using the MATLABⓇ Neural
Network Toolbox (Beale et al., 2017). Designed analogous to a
black-box function, sample sets are provided as input with the
corresponding surrogate model(s) produced as output.

In this work, initial sample sets are generated using Latin
Hypercube Sampling (LHS) to ensure that space-filling criteria can
be met across the entire input domain for any sample size ns. Within
the proposed procedure, the input data is subsequently distributed
amongst training, validation and testing sets, where the number of
samples in each, ntrn, nval and ntst respectively, conforms to the
following ratios:

ntrn
nval
ntst

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � ns

ϕtrn

ϕval

ϕtst

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � ns

0.7
0.15
0.15

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (1)

The number of samples ns for an input vector of dimension din is
chosen such that:

10din ≤ ntrn ≤ 30din (2)
The number of unknown network parameters (e.g., weights and

biases) Nw is given by:

Nw � H din + 1( ) + dout H + 1( ) (3)
where H is the number of neurons in the single hidden layer. The
number of training equations required for a given training set is
given by:

Ntrneq � ntrnpdout (4)
where ntrn is consistent with Eq. 1. To avoid over-fitting,

Nw ≤Ntrneq (5)
From Eqs 3, 4 it is clear that Eq. 5 will always be true provided the
number of neurons H is less than or equal to an upper bound Hub:

Hub � dout ntrn − 1( )
din + dout + 1

⌈ ⌉ (6)

To determine the appropriate network parameter values, an outer
loop varies the number of neurons in the hidden layer, H, in 10 near-
equally spaced divisions between a lower bound of 0 (representing a
linear response) and the upper bound Hub. A nested inner loop then
performs 10 random initialisations of the network weights, biases and
data divisions2, before sequentially training each network to
convergence. In each case, the objective is to determine the
network parameters that yield an acceptable ratio of mean-square-
error to mean-target-variance for random subsets of non-training data
(Heath, 2020). Training performance is tracked via the network errors
recorded for the independent testing set of size ntst (Eq. 1). A
normalised performance criteria relating Nt predictions α and
targets t facilitates network selection:

R2 � 1 −
1
Nt
∑Nt

i�1 ti − αi( )2
1
Nt
∑Nt

i�1 ti − �t( )2 (7)

To reduce the risk of a poor generalisation (overfitting), it is of
interest to minimise the number of neurons used within the hidden
layer. A minimum performance criteria is defined as the successful
modelling of 99% of the target subset variance (R2 ≥ 0.99). Therefore,
the network that achieves this criteria for a minimum number of
hidden layer neurons is selected.

3 Methods

This section recalls the general formulation of the proposed multi-
stage model correction process, originally presented in Parsonage and
Maddock (2020), the initial surrogate generation process and the

2 Whilst the random division of input data in Eq. 1 means that the resulting
subsets cannot be thus assumed space filling themselves, the variation of
subset assignment within the inner-level loop is intended to minimise any
resulting bias.
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adaptive sampling procedure incorporated within the overall
management framework.

3.1 Formulation

A generic model is defined as a function f: X→ Y that for a given
input x ∈ X produces an output y ∈ Y where X ⊆ Rdin is the input
domain with dimension din ⊂ N and Y ⊂ Rdout is the output domain
with dimension dout ⊂ N:

x i( ) ↦ y i( ) � f x i( )( ), i � 1, 2, . . . , ns (8)
In this context, f(x) may represent the direct evaluation of a subsystem
model or the evaluation of an appropriate surrogate approximation.
Thus HF and LF models are notated simply as fH: X→ Y and fL: X→
Y, and a generic surrogate model as fS: X → Y. Let x(i), i = 1, . . ., M
denote the set of M design points. Directly collocated samples are
assumed, although such a correspondence may be obtained via
surrogate estimation (Forrester et al., 2007). A nested set of N HF
samples may thus be defined as x(j)H , j = 1, . . ., N where xH ∈ x.

3.2 Parameter extraction

An approximate relationship between two competing responses, fL
and fH, (both of dimension dout) can be defined as a quantifiable set of
scaling parameters of the linear form (Koziel and Leifsson, 2016):

fS x, p( ) � afL x( ) + b (9)
where a and b are vectors of dout unbounded scaling coefficients, and p(a,
b) is found by formulating Eq. 9 into a parameter extraction sub-problem:

p � argmin
q

1
σ


1
N

∑N
k�1

fS x k( )
H , q( ) − fH x k( )

H( )[ ]2√√
(10)

where σ is the standard deviation of the samples x(k)H . This method is
referred to throughout this work as the Parametric (P) stage.

3.3 Response mapping

An alternate approach is to quantify the relative change in fL
between each pair-wise combination of M design points x and N
samples xH. The resulting translation matrix T is notated as:

Ti,j � fL x i( )( ) − fL x
j( )

H( ) i � 1, . . . ,M
j � 1, . . . , N

{ (11)

The HF response at each design point x(i) is predicted according to:

fS x i( )( ) � ∑ fH x
j( )

H( ) + Ti,j( )pwi,j[ ]
j�1,...,N∑ wi,j[ ]

j�1,...,N
(12)

The weight factor wi,j is dependant on the pairwise euclidean norms
between x and xH:

wi,j � 1 −

∑din
k�1

x̂ i,k( ) − x̂
j,k( )

H[ ]2√√
(13)

where x̂ denotes the scaled form of input x conforming to x̂(i,k) ∈ [0, 1]
for all k = 1, . . ., din. Similarly, ŵi,j ∈ [0, 1]. This method is referred to
as the Relative (R) stage throughout the remainder of this paper.

3.4 Neural network bridge function

The final stage constructs a continuous ANN surrogate of the
additive discrepancy between responses, defined as a set of translation
vectors t:

tj � fL x
j( )

H( ) − fH x
j( )

H( ), j � 1, . . . , N (14)

To mitigate the effects of an insufficient input data on training
performance, an augmented set of translation vectors ~t may be
defined as:

~t � t, a[ ], aj � bj + wθj, j � 1, . . . , naug (15)
where b ⊂ t, w is a scalar weighting factor (default 1%), θ is a vector of
random values θ ∈ [−1, 1] and the number of augments naug = ndesired −
N. The minimum input set size ndesired = 30din/ϕtrn, where ϕtrn is
consistent with Eq. 1. The resulting set of translation vectors is
mapped to a continuous function via the training procedure
detailed in Section 2. Performance is additionally examined by
evaluating the prediction accuracy obtained by applying the
translation network across the original response data. The network
exhibiting the strongest correction quality and training accuracy is
selected. This method is referred to as the Additive (A) stage
throughout the remainder of this work.

3.5 Initial surrogate generation

To begin, the above correction techniques are successively applied to a
LF sample set selected using LHS and supplemented with a minimum of
two samples of the expensive HF function (such that an output gradient
may be observed, required for the MF correction procedure to operate),
taken at the boundary values of the input vector. Boundary values are
chosen with the assumption of a lower resulting likelihood of undesirable
extrapolation, given limited/no prior knowledge of the function response.
During each subsequent iteration, “current” meta-models are generated/
updated using the resultant datasets. To adaptively select new points for
HF evaluation, the sensitivity of the current MF approximation is
considered. The total sensitivity STi represents the contribution of each
input element xi to the output variance V(Y) (Guenther et al., 2015):

STi � EX−i VXi Y|X−i( )( )/V Y( ) (16)
where VXi(Y|X−i) is the variance of the function f(x) = y, over all
values of Xi = x with all other variables X−i = (x1, . . ., xi−1, xi+1, . . ., xk)
held constant; and EX−i(VXi(Y|X−i)) is the expectation of that
variance over all values of X−i = (x1, . . ., xi−1, xi+1, . . ., xk).

Taking matrices A and B as independent draws of P random
samples from the input domain, matrix AB is defined as:

A i( )
B � A , 1[ ], . . . ,A , i − 1[ ],B , i[ ],A , i + 1[ ], . . . ,A , k[ ][ ] (17)

where k is the number of independent variables xi, A[, j] with j = (1,
. . ., i − 1, i + 1, . . ., k) represents the jth column of matrix A, and B[, i]
represents the ith column of matrix B. The total sensitivity is evaluated
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using the Monte Carlo approximation presented by Jansen (1999);
Saltelli et al. (2010):

STi ≈
1
2P

∑P
j�1

f A( )j − f A i( )
B( )

j
( )2⎡⎢⎢⎣ ⎤⎥⎥⎦/V Y( ) (18)

V Y( ) � 1
P
∑P
j�1

Yj − �Y( )2 (19)

Global exploration is promoted by defining the following
proximity-based relationship, with bias determined by the model
sensitivity relative to each input element:

d �

∑k
i�1

S i( )
T x i( )

H − x i( )
c( )2√√

(20)

where c refers to a candidate point. Eq. 20 is incorporated into the
following optimisation problem:

argmax
xc

d

s.t. x ∈ −1, 1[ ]k
(21)

Thus at each iteration, a new sample may be selected from within the
input domain at the location furthest from each existing HF sample,
with bias given to input vector elements exhibiting a higher influence
on the output response.

Particularly in problems where model evaluations are
computationally expensive, stopping criteria for preliminary
sampling procedures are often defined by a specific budget of
function evaluations (Liu et al., 2018). A more reliable method is
to measure the successive relative improvement (SRI) in model
approximation via some error criteria [e.g., cross-validation error,
jackknifing variance, relative absolute error (Kim et al., 2009) etc]. In
this study, the convergence of the initial MF surrogate is indicated by a
series of behavioural tests, adapted from the work of Guenther et al.
(2015).

• Indicator 1: Convergence is suggested by the stabilisation of
sensitivity variability and trend. If the difference between the
mean sensitivities of the preceding iterations and the average of
the mean sensitivities of the current iteration is within 3 times
the value of averaged standard error, variability has converged.
Trend convergence is achieved when the gradient term of a
linear regression shows a change below a predefined tolerance
over a certain number of iterations, with an absolute value
greater than 0.003.

• Indicator 2: To suggest that models of previous iterations are
similar to the current approximation, the average mean standard
deviation should be greater than or equal to a multiple (in this
case, 3) of the standard deviation of the standard deviations.

• Indicator 3: Accurate representation of the desired function is
suggested by the mean absolute error of adaptively sampled
points falling below a specified tolerance, in this case < 10%, of
the observed output range.

• Indicator 4: Convergence is suggested if 98.5% of the
standardised errors of the adaptively sampled points over
previous iterations are within [‒3,3].

3.6 Adaptive sampling

Following the successful generation of initial MF/HF
surrogates, the optimisation process begins. The problem
solution at each iteration determines the subsequent point to be
sampled, with the aim to maximise the improvement in surrogate
prediction quality while minimising the necessary number of
samples (and thus cost).

The proposed methodology is functionally similar to a
homogeneous Query-by-Committee formulation (Seung et al.,
1992), in that sampling is driven by response variances estimated
by alternative (competing) meta-models as a representation of
prediction error. A symmetric multi-response classification is
adopted for the handling of multiple outputs from a single function.

At each iteration, the state profile of the current solution is used to
deconstruct the MF input domain into a series of discretised element
specific hypercubes, focusing the input-space towards the current
solution. Each region is populated with a set of candidate points
selected via LHS [thus ensuring candidates are well-spaced, helping to
avoid excessive local exploitation (Gramacy and Lee, 2009)]. As in the
work of Han et al. (2010), it is assumed that competing surrogates will
eventually converge to the same result given a sufficient number of
samples. Thus relative discrepancy is chosen as the primary driver.
Each candidate point is evaluated using the available meta-models and
ranked according to:

x̂ ← max
1
k
∑nm
k�1

y k( ) − �y( )2
s.t. di ≥ βp�d
di � xi − x| |

(22)

where nm is the number of alternative models and the additional
distance penalty coefficient β = 0.2 [as in Zhou et al. (2016)], is
imposed to further reduce the risk of sample clustering.

3.7 Model management framework

A graphical representation of the complete framework is shown in
Figure 1. The framework consists of an outer-level management loop
which successively calls a hierarchy of generalised subroutines for
surrogate model generation and MF correction.

An advantage of this arrangement is the flexibility allowed
during problem formulation. For example, with generalised
surrogate generation and correction subroutines, any number of
alternative/competing models may be specified for a particular
subsystem. Models themselves may have non-equal (or
overlapping) input domains, and may be time-phase specific or
invariant. Sample points at which models are to be initially
evaluated may be supplied, or autonomously selected during the
presented surrogate generation procedure. Additionally, existing
data may be supplied to augment the model generation process as
sets of corresponding input/output arrays. The framework itself is
designed to be modular where appropriate, such that alternative
surrogate generation techniques and MF correction methods may
be easily substituted.
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4 Modelling

The proposed model correction and management framework is
applied to a series of test cases involving a parameterised
Unmanned Space Vehicle (USV). USVs, such as the Boeing X-
37B Orbital Test Vehicle (OTV), have been used to return
experiments from Low Earth Orbit (LEO) and are often
considered as a test bed for the development of future re-usable
launchers, with particular emphasis on the key technologies
enabling atmospheric re-entry. The USV examined in this study
is based on an idealised unpowered waverider (Starkey and Lewis,
2000; Minisci and Vasile, 2013), with the goal of defining the
technical specifications for a small, relatively inexpensive
technological demonstrator vehicle. Of particular interest is the
range of geometric configurations (and corresponding re-entry
trajectories) enabling the return of certain types of payload (e.g.,
delicate or time sensitive) owing to the management of
aerodynamic and/or thermal loads. The practicality of such a
vehicle is thus inherently dependant on the interaction between
geometric configuration and aerodynamic/aerothermal
subsystems. Simulating the latter to facilitate numerical design
optimisation is traditionally more heavily limited by available
computational resource. This problem, therefore, is well suited
for examining via a MF approach. This section thus details the
modelling strategies employed to represent the vehicle geometry
and aerodynamics, the latter via two alternative, competing levels
of simulation fidelity.

4.1 Geometry parameterisation

A waverider may be parameterised according to the 2D power law
equations presented by Starkey and Lewis (2000). The curvatures of
the planform p and the upper surface u are given by:

yp � Axn (23)

yu � B zu( )n → zu � yu

B
( )1

n

(24)

where the exponent n ∈ [0, 1] and the positive scaling coefficients A
and B are given by:

A � w/2Ln (25)
B � A/tann β( ) (26)

where L and w are the vehicle length and width respectively and β is
the shock angle. The curvature of the lower surface with an attached
shock is given by:

zl � x tan θ + y/A( )1/n tan β − tan θ( ) (27)
where θ is the wedge angle. Vehicle height h and the surface areas of
the planform and base sections Sp and Sb are given by:

h � L tan β (28)
Sp � wL/ n + 1( ) (29)
Sb � Sp tan θ (30)

FIGURE 1
The complete integrated MF model management framework. The left-most section represents the outer-loop, including an initial pre-processing step
where surrogates are adaptively constructed tomeet an acceptable accuracy criteria, and the optimisation loop, where surrogates are iteravely updated as the
optimisation process progresses. The middle section represents the MF surrogate generation subroutine, where the create/update action is itself a generic
subroutine that accepts only lists of correlated input/output data. Finally, the right-most section represents the MF correction procedure, where in this
case the 3-stage approach is implemented. The framework is designed to be modular such that alternative surrogate generation techniques and MF
correction methods may be easily substituted.
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The geometric design vector d is defined according to the
following variable bounds (Minisci and Vasile, 2013); vehicle
length L ∈ [2.9, 4.2]m, width w ∈ [1, 2]m, exponent n ∈ [0.2, 0.7],

wedge angle θw ∈ [7, 11] deg and leading-edge radius rN ∈ [0.04, 0.06]
m. The shock angle β is held fixed at 12 deg. By parameterising in this
manner, small variations in d can correspond to significant change in
the resulting geometry (Starkey and Lewis, 2000). Three examples,
representing the maximum, mean and minimum values of d, are
shown in Figure 2.

4.2 Aerodynamics

Two distinct levels of fidelity are considered for the evaluation
of the aerodynamic forces acting on the vehicle during re-entry.
Each is referred to respectively as “high” and “low” fidelity in
primarily a relative sense, in that there exists a significant disparity
across both numerical complexity and computational cost between
the two. Given this study is more concerned with the inherent
disagreement between alternative models rather than their absolute
accuracy, extended validation was considered outwith the scope of
this work.

4.2.1 Low-fidelity aerodynamics
LF aerodynamics are computed using the Free Open Source

Tool for Re-Entry of Asteroids and Debris (FOSTRAD) under
development at the University of Strathclyde (Mehta et al., 2015;
Falchi et al., 2017b). FOSTRAD discretises solid geometry into
surface meshes of triangular elements (panels), to which Local-
Surface-Inclination (LSI) based methods are applied. Modified
Newtonian Theory and the Schaaf and Chambre analytic model
are used to approximate continuum and free-molecular
aerodynamic coefficients respectively (Mehta et al., 2015; Falchi
et al., 2017a). Transitional regime aerodynamics, defined in Mehta
et al. (2015) as 10–4 < Kn < 100, are approximated using a sigmoid
(base 10) bridging function.

4.2.2 High-fidelity aerodynamics
HF aerodynamics are computed using the Stanford University

Unstructured Code (SU2) (Palacios et al., 2013). The 3-dimensional
RANS equations are employed with a standard SST turbulence
model and a finite volume method (FVM) discretisation. The JST
scheme is used in conjunction with a second-order scalar upwind
discretisation and Venkatakrishnan’s limiter to model convective
fluxes. The gradients of the spatial flow variables, required to
evaluate viscous fluxes, are calculated using the Green-Gauss
method with a CFL number of 1. The linear system is solved
using the GMRES method with an error tolerance of 10–10 and
the steady state solution is achieved using the Euler implicit method
for time integration. A Cauchy convergence criteria is applied to the
Drag function after iteration 10. Convergence is defined as the

FIGURE 2
Example geometric configurations of a waverider-based USV
defined by Eqs 23–30 (Starkey and Lewis, 2000). Orthogonal cross
sections are shown aligning with the vehicle’s (A) longitudinal x-axis, (B)
lateral y-axis and (C) vertical Z-axis. The three examples included in
each subfigure represent the lower, middle and upper values of the
vehicle design vector d(L, w, n, θ, rN).

TABLE 1 Numerical accuracy of the low-fidelity (LF) model relative to the high-
fidelity (HF) counterpart.

Property Value [CL, CD]

RRMSE 1.075, 1.331

RMAE 2.872, 3.074

R2 43.45%, 42.00%

r2 85.53%, 96.67%
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reduction of the residuals by five orders of magnitude with respect
to their initial values, within a maximum number of iterations fixed
at 5,000.

4.2.3 Correlation
Table 1 summarises the general numerical correlation between

both models, where the coefficients of lift and drag, CL and CD, of the
vehicle defined by design vector d(L, w, n, θ, rN) (Section 4.1) are
estimated for the operational range defined by Mach numberMa and
angle of attack α:

2≤Ma≤ 30
0o ≤ α≤ 20o

(31)

Of particular note, the values of Pearson’s correlation coefficient r2

is significantly higher relative to R2. This suggests the two models
share similar functional form but are more significantly displaced
in output space. This is in line with expectation, as despite
differing levels of simulation complexity, both aim to represent
the same physical process and thus an appreciable level of
similarity would be expected.

An example of this can be seen in Figure 4, which shows the
response surface of the coefficients of lift and drag, CL and CD, for
the vehicle configuration: L = 3.55m, w = 1.5m, n = 0.45, θ = 9deg
and rN = 0.05m for the operational range given by Eq. 31. In this

case, the LFM can be seen to generally over-predict the
aerodynamic response, particularly at higher angles of attack.
Furthermore, as the LFM includes no specific flow modelling,
the functional form (predominantly of CL) as Mach number
increases is notably simpler than that of the HFM.
Regardless, the general agreement in form is seen to be
quite good, thus conforming to the overall metrics presented in
Table 1.

4.3 2D/3D geometry meshing

The open source meshing tool GMSH (v4.6.0) (Geuzaine and
Remacle, 2009) incorporating the OpenCascade geometry kernel
is selected for mesh generation. Eqs 23, 24, 27 are used to define the
base section and leading edge profile according to the user input
vector d. A solid surface (.stl)mesh may then be generated and
exported.

To produce a volume mesh suitable for CFD analyses, a half-
cylindrical far-field with semi-spherical input/output caps is created
around the surface mesh, with the y-symmetry plane bisecting the
vehicle geometry along the longitudinal axis, see Figure 3. A single
volume mesh is thus created via Boolean subtraction. A simplified
boundary mesh definition is incorporated by specifying a vehicle-
centered bounding box with internal and external mesh element sizes
of 0.025 m, and 10 m respectively, with a transition gradient layer of
thickness t = 20m. The vehicle surface mesh is comprised of between
3,500 and 8,000 vertices and between 7,500 and 17000 triangular
elements. Likewise, the CFD volume mesh of between 60,000 and
200,000 nodes and 400,000 and 1,400,000 elements. Input, output, far-
field and vehicle surfaces are labelled accordingly. The complete
volume mesh is exported in the native SU2 format.

5 Multi-fidelity data correction

Parsonage and Maddock (2020) originally presented an isolated
test of the proposed response correction functions for a series of fixed
geometric designs as well as the complete input domain. This section
presents a similar demonstration, though extends the range of HF
sampling and focuses on more comparative continuous metrics,
including consideration of the variance exhibited by each approach.
The coefficients of lift and drag, CL and CD, for the vehicle defined by
design vector d(L, w, n, θ, rN) (Section 4.1) are predicted for the
operational range defined by Mach number 2 ≤ Ma ≤ 30 and angle of
attack 0o ≤ α ≤ 20o.

Sample sets of M LF points and N HF points are selected
according to Section 3.1, where M = 30din (given that the cost of
the LF model is relatively low) and N is increased in regular
increments from 2 to 40. All samples sets are generated via LHS.
For each value of N, the corrected predictions of CL and CD are
evaluated against an independent testing set of M HF responses.
Several variants are considered, where the corrective
stages—Parametric (P), Relative (R) and Additive (A)—are
applied individually and in sequential combinations. Figure 5;
Figure 6 show the values of Relative Maximum Absolute Error
(RMAE), Relative Root Mean Square Error (RRMSE) and R2 across
all values of N for both responses, averaged over 100 separate
analyses. Included for reference are the corresponding values of

FIGURE 3
An example of the far-field volumetric mesh used for CFD (high-
fidelity) simulation, where (A) gives the dimensions relative to vehicle
length L (Leifsson et al., 2016) and (B) shows the resulting unstructured
mesh, concentrated around the vehicle body surface.
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the LF model, and of a simple surrogate model trained only on the
set of N HF responses available at the current iteration. This high-
fidelity surrogate (HFS) thus represents the baseline above which
the multi-fidelity surrogate must perform.

Considering the responses of both CD and CL, a clear hierarchy can
be observed between method variants. Single stage methods (P, R and
A) exhibit significant limitations in attainable correction quality. The
P-stage, for example, is limited by the simplistic nature of the defining
parametric operation, and thus while initially offering a strong
correction (due to the relatively high model correlation), the
effectiveness of successive samples exponentially decreases. In a
similar manner, the R-stage is limited by the complexity of the LF
model. Given that the LF model by definition can only approximate
the true function, even if represented in sufficient resolution it may be
expected that the R-stage will result in a comparable limit in quality.
Only the A-stage aims to fully eliminate sample point discrepancy in a
non-destructive manner. It is reasonable to assume then that
correction quality will increase proportional to N, which indeed
matches the observed behaviour. However, the converse is
naturally seen to be true at lower values of N. Applying stages
instead in selected sequential combination (PR, RA, and PA) can
be seen to alleviate some of these limitations. For example,
preconditioning with the P-stage both improves the converged
value of the R-stage and the correction quality/stability for the
A-stage at lower values of N. In a similar manner, the RA method
both reduces correction instability of the A-stage and the premature
convergence of the R-stage. Of note here is that unlike the others, the
R-stage does not explicitly aim to reduce sample point discrepancy,
and thus is effective as a pre-conditioner to the A-stage. Furthermore,
the sequential combination of the P-stage and A-stage is perhaps
inefficient, as both are driven by sample point discrepancy. Thus in
any combination, the elimination of sample point error renders the
other obsolete, largely undesirable when the true response is not yet
fully represented. The most appropriate sequence thus includes all
three stages, arranged PRA, which can indeed be seen to offer the
strongest correction quality for both cases.

The approximate HFS offers the poorest prediction at lower values
of N. However, conforming to the conjecture that a suitably trained
neural network may represent any non-linear function given sufficient
training data (Rumelhart et al., 1994), it can be seen that for each
response there exists a value of N after which the HFS is superior. This
behaviour is in line with expectation. The MF model by definition
always incorporates some less accurate, lower-fidelity data, therefore
ultimately cannot reach the same level of accuracy as a pure HF model
assuming the latter has sufficient samples and that LF data is not being
actively discarded3. This “critical point”, can be seen in this case to be
around 38 and 18 samples for CL and CD respectively. The significant
difference between responses is perhaps surprising given the similar
level of correlation between models (see Section 4.2.3). Regardless, the
critical point is likely dependant on factors such as problem
dimensionality, model correlation and the sampling strategy
employed. Concerning the latter, an adaptive sampling strategy
that refines the MF approximation by exploiting areas of high
predicted improvement and/or maximum discrepancy to improve
local accuracy may further increase the attainable prediction quality
relative to the overall number of samples. Thus the decline in cost
advantage relative to pure HF meta-modelling may be tempered.

FIGURE 4
Correlation between the coefficients of (A) lift CL and (B) drag CD,
for (C) the vehicle defined by d(L, w, n, θ, rN) = [3.55, 1.5, 0.45, 9, 0.05]
relative to Mach number Ma and Angle of Attack α.

3 Which indeed is the premise behind methods such as Trust Region Model
Management (Alexandrov et al., 2001).
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FIGURE 6
Performancemetrics of the Parametric (P), Relative (R) and Additive
(A) corrective stages applied individually and in sequential combinations
for the USV Coefficient of Drag CD relative to the number of HF
evaluations, where (A) is the Relative Max. Absolute Error (RMAE) (B)
is the Relative Root Mean Square Error (RRMSE) and (C) is the Coefficient
of Determination R2. Included for reference are the error values of the LF
model, and a SF surrogate trained only on the available HF samples at
each iteration.

FIGURE 5
Performancemetrics of the Parametric (P), Relative (R) and Additive
(A) corrective stages applied individually and in sequential combinations
for the USV Coefficient of Lift CL relative to the number of HF
evaluations, where (A) is the Relative Max. Absolute Error (RMAE) (B)
is the Relative Root Mean Square Error (RRMSE) and (C) is the Coefficient
of Determination R2. Included for reference are the error values of the LF
model, and a SF surrogate trained only on the available HF samples at
each iteration.
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FIGURE 7
Variance in Relative Root Mean Square Error (RRMSE) of the Parametric (P), Relative (R) and Additive (A) corrective stages applied individually and in
sequential combinations for the USVCoefficient of DragCL relative to the number of HF evaluations. Included for reference is the corresponding performance
of the SF surrogate trained only on the available HF samples at each iteration.

FIGURE 8
Variance in Relative Root Mean Square Error (RRMSE) of the Parametric (P), Relative (R) and Additive (A) corrective stages applied individually and in
sequential combinations for the USV Coefficient of Drag CD relative to the number of HF evaluations. Included for reference is the corresponding
performance of the SF surrogate trained only on the available HF samples at each iteration.
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The variance in corrective quality was additionally examined
as a further extension to the work presented in Parsonage and
Maddock (2020). Trained neural networks are highly sensitive to
the initial weights, biases and available training data (of a
generally low quantity for pure HF modelling). Thus it may be
expected that in addition to an exponentially poorer prediction
mean at lower values of N, similar behaviour will be observed for
prediction variance. This can be seen in Figure 7; Figure 8, which
shows the variance in RRMSE observed for each correction stage
configuration for CL and CD respectively. Indeed, increased
variance is observed for each method utilising a neural
network (i.e., non-deterministic) stage. Whilst the collaborative
effects of each method on prediction quality variance seem to
follow the same general behaviour as previously discussed. Of
particular interest is that even after the critical point has been
reached, there still exists notable variation in the prediction
quality of the HFS, likely due to the combination of limited
available samples and a lack of any deterministic pre-
processing stage(s).

6 Optimisation

An application of the proposed framework is demonstrated via
a static/dynamic parameter optimisation of the vehicle described in
Section 4. This section briefly describes the system dependant
processes, problem formulation and settings for the numerical
solver.

6.1 System models

The following system models are incorporated into the
optimisation problem formulation, in addition to the geometric
and aerodynamic model definitions given in Section 4.

6.1.1 Environment
The Earth is modelled as an oblate spheroid based on the WSG-84

model. The gravitational field is modelled using fourth order spherical
harmonics (accounting for J2, J3 and J4 terms) for accelerations in the
radial gr and transverse gt directions. Atmospheric conditions
(temperature Tatm, pressure Patm, density ρatm and speed of sound
c) are modelled using the Standard US76 global static atmospheric
model.

6.1.2 Configuration
Geometric characteristics of the vehicle are taken as presented in

Section 4. The total mass of the vehicle is comprised of the structural
massmstructure, the mass of the thermal protection systemmTPS and the
mass of the payload (e.g., avionics and power systems) mpayload:

mtotal � mstructure +mTPS +mpayload (32)
The structural mass is given by:

mstructure � ρbody 2Sp + Sb( )ptshell (33)

assuming a titanium frame of density ρbody = 4400 kg/m3 and shell
thickness tshell of 5mm. The mass of the TPS, chosen as 3mm thick
Zirconium Diboride, ρTPS = 6000 kg/m3, is taken as:

mTPS � mnose +mskin (34)
where the mass of the nose mnose is:

mnose � ρTPSVnose (35)
and the mass of the TPS skin covering the remainder of the vehicle
mskin:

mskin � ρTPSSTPStTPS (36)
where STPS is the surface area of the vehicle excluding the nose section,
approximated by:

STPS � 2Sp + Sb − 2Sn (37)
The payload mass mpayload is assumed 40% of the structural mass:

mpayload � 0.4mstructure (38)

The vehicle “nose” section length is defined as 0.1L, with a
corresponding volume Vn approximated as:

Vn � wnL
2
n tan θ

n + 1( ) n + 2( ) (39)

6.1.3 Aerodynamics
Aerodynamic evaluation may be performed using either LF or HF

solvers introduced in Section 4.

6.1.4 Aerothermodynamics
For this simplified analysis it is assumed that the peak heat flux

exists at the vehicle nose section (Minisci et al., 2011). The convective

TABLE 2 Optimisation parameters.

Parameter Bounds Initial Final

Altitude [m] [15000, 100000] 100000 [15000, 25000]

Velocity [m/s] [100, 10000] 7,700 [900, 1100]

Flight path angle [deg] [‒80, 10] −0.3 [‒80, 10]

Heading angle [deg] [0, 225] 145 [0, 225]

Latitude [deg] [‒90, 90] 68 [‒90, 90]

Longitude [deg] [‒180, 180] 21 [‒180, 180]

Angle of attack [deg] [0, 20] 0 [0, 20]

Length [m] [2.9, 4.2] 3.5 –

Width [m] [1, 2] 1.5 –

Exponent [0.2, 0.7] 0.45 –

Wedge angle [deg] [7, 11] 9 –

Nose radius [m] [0.04, 0.06] 0.05 –

Peak heat flux [W/cm2] [0, 500] 200 –

Peak acceleration [m/s2] [0, 19.6] 19.6 –

Peak dynamic pressure [kg/m2] [0, 20000] 20000 –

Control rate zα/zt [deg/s] [‒0.1, 0.1] 0 –

Time [s] [0, 6500] 0 [500,6500]
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heat flux is evaluated using the analytical formula as given by
Anderson Jr (2006):

_qconv � Ke


ρ∞
rN

√
v3 (40)

where Ke = 1.742e−4 for _qconv[W/m2].

6.1.5 Dynamics
A 3-DOF dynamic model expressed in an Earth-Centred-Earth-

Fixed (ECEF) reference frame is used. The state vector is comprised of
the spherical coordinates for position r = [r, λ, θ] and velocity v = [], γ,
χ], where r is the radial distance, (λ, θ) are the latitude and longitude, ]
is the magnitude of the relative velocity vector directed by the flight
path angle γ and the flight heading angle χ.

_r � ] sin γ (41)
_λ � ] cos γ cos χ

r
(42)

_θ � ] cos γ sin χ
r cos λ

(43)

_] � FT τ( )cos α −D α( )
m

− gr sin γ + gt cos γ cos χ

+ω2
Er cos λ sin γ cos λ − cos γ cos χ sin λ( ) (44)

_γ � 1
]

FT τ( )sin α + L α( )
m

cos β − gr cos γ − gt sin γ cos χ( ) + ]
r
cos γ

+ω
2
Er

]
cos λ sin γ cos χ sin λ + cos γ cos λ( ) + 2ωE sin χ cos λ

(45)
_χ � 1

] cos γ
FT τ( )sin α + L α( )

m
sin β − gt sin χ( ) + v

r
cos γ sin χ tan λ

+ω2
Er

sin χ sin λ cos λ
] cos γ

+ 2ωE sin λ − tan γ cos χ cos λ( )
(46)

_α � zα

zt
(47)

In this case, the thrust force FT = 0 and angle τ = 0 deg. No out-of-
plane movement is considered, thus bank angle β = 0 deg.

6.2 Problem formulation

A generic optimal control problem may be formulated as follows
(Ricciardi et al., 2019):

TABLE 3 High/Low fidelity solutions.

Level Objective L [m] w [m] n θn [deg ] rN [m] m [kg] J

HF min ( _qconv)max 3.3517 2.0 0.4506 11.0 0.06 515.10 1.79292e6 W/m2

min tf 2.9 2.0 0.2 11.0 0.06 553.49 1215.4 s

min qmax 3.0785 1.885 0.2507 10.9802 0.0564 528.84 16006.2 kg/m2

LF min ( _qconv)max 2.9 2.0 0.2 10.5720 0.06 549.79 1.36021e6 W/m2

min tf 2.9 2.0 0.2 7.0 0.06 519.33 1724.65 s

min qmax 2.9311 1.968 0.2144 7.4468 0.0598 513.56 16006.2 kg/m2

FIGURE 9
Geometric design solutions obtained using only HF aerodynamic
model. The single objective in each case is the minimisation of (A) peak
convective heat flux at the vehicle nose ( _qconv )max (B) the total time taken
to reach terminal conditions tf and (C) the peak dynamic pressure
experience during re-entry qmax.
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min
u∈U, b∈B

J

s.t. _x � F x, u, b, t( )
g x, u, b, t( )≥ 0

ψ x0, xf, t0, tf, b( )≥ 0
t ∈ t0, tf[ ]

(48)

where J � [J1, . . . , Jm]T is a vector of objectives Ji each a function
of the state vector x: [t0, tf] → Rn, control variables
u ∈ L∞U ⊆ Rnu , static parameters b ∈ B ⊆ Rnb and time t. The
functions x(t) belong to the Sobolev space W1,∞ while the
other objective functions are Ji: R

3n+2 × Rnu × Rnb → R. The
objective vector is subject to a set of dynamic constraints with
F: Rn × Rnu × Rnb × [t0, tf] → Rn, algebraic constraints
g: Rn × Rnu × Rnb × [t0, tf] → Rng and boundary conditions
ψ: R2n+2 × Rnb → Rψ . This work considers Mayer’s type of
optimal control problem, each objective function therefore
being represented by a scalar function of the boundary
conditions, boundary times and static parameters:

Ji � ϕ x0, xf, t0, tf, b( ) (49)

The problem is solved using an in-house, open source multi-
objective optimal control solver, MODHOC (Ricciardi and Vasile,
2018), integrated with the presented MF management framework.
MODHOC transcribes the optimisation problem into a non-
linear programming (NLP) problem via the Direct Finite
Elements in Time (DFET) method (Vasile, 2010).

Static design parameters and the open-loop control of the
vehicle are optimised according to the parameters given in
Table 2. Three problem objectives are considered, each
requiring a distinct degree of aerodynamic performance; the
minimisation of peak convective heat flux experienced during
re-entry _qconv, the minimisation of total time required to reach
terminal conditions tf, and the minimisation of the peak dynamic
pressure q. Each problem is subject to path constraints on
convective heat flux _qconv ≤ ( _qconv)max, dynamic pressure q ≤

FIGURE 10
Dynamic state solutions obtained using only the HF aerodynamic model. The objective functions considered are the minimisation of peak convective
heat flux at the vehicle nose ( _qconv)max, the total time taken to reach terminal conditions tf and the peak dynamic pressure experience during re-entry qmax.
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qmax and axial acceleration [ax, az] ≤ amax. The computational
resource required to converge in each case is examined using
both the MF model management framework and an equivalent
single-fidelity (SF) approach.

6.3 Numerical settings

Each problem is considered as a single time phase, with boundary
conditions given in Table 2 and discretised into six finite elements.

FIGURE 11
Objective function convergence when using the MF surrogate
management framework, where the objective functions considered are
theminimisation of (A) peak convective heat flux ( _qconv)max, (B) total time
taken to reach terminal conditions tf and (C) the peak dynamic
pressure experienced during re-entry qmax.

FIGURE 12
Objective function convergence when using a SF aerodynamic
surrogate trained only on the available HF samples. The objective
functions considered are the minimisation of (A) peak convective heat
flux ( _qconv )max, (B) total time taken to reach terminal conditions tf
and (C) the peak dynamic pressure experienced during re-entry qmax.
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States and controls are represented by element specific ninth order
Bernstein polynomials, giving 496 total optimisation parameters
(60 control, 427 state and nine static). Single objective
optimisation was completed using the gradient based solver

fmincon with a SQP algorithm. Limits of 1000 objective function
evaluations and 100 outer level iterations were imposed for each run.
The maximum function, constraint violation and step tolerances are
set at 1e-9, 1e-12 and 1e-12 respectively.

FIGURE 13
Averaged values of vehicle design vector d(l, w, n, θ, rN) relative to the number of available HF samples during the optimisation process, where the
objective function considered is the minimisation of peak convective heat flux ( _qconv)max. The black line represents the results obtained using the MF
management framework. The red line represents those obtained using only a SF aerodynamic surrogate trained on the available HF samples. Included for
reference are the values obtained when solving the prescribed problem using only the LF and HF aerodynamic models respectively.
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7 Results

7.1 High/low fidelity solutions

As a reference, the problem was first solved for each objective
using pre-constructed well-fit4 surrogate approximations of the HF

and LF aerodynamic models. The optimal designs for each single-
objective problem, relative to fidelity level, are given in Table 3. Figures
9, 10 show the geometry and state trajectories for each problem solved
using the HF aerodynamic model.

As a general theme, the optimiser favours shorter, wider vehicles with
larger values of leading edge radius (the latter likely due to the significant
effect on peak heating). The primary difference between solutions is then
the resulting mass of each vehicle, driven by the shape exponent value n.
This is possibly a result of an attempt to maximise effective lifting surface
whilst incurring minimal mass penalty. The effects may be seen in the HF
trajectory solutions, where the lighter vehicles utilise greater proportions
of high altitude gliding to dissipate excess energy, ultimately allowing a
gentler descent through the denser regions of the atmosphere. In contrast,
the heavier solution (minimum tf) exhibits a rapid descent through the
upper regions of the atmosphere before utilising larger drag forces to
decelerate as air density increases.

Similar contrasts can be seen in the angle of attack profiles. The
minimum tf solutionmaintains close to 0deg during the initial descent,
before flaring to 10deg at around 60 km in order to decelerate within
the aerodynamic loading constraints. The minimum ( _qconv)max

solution displays an almost constant saturation at the maximum
allowable value of 20deg, suggesting that this bound is imposing a
significant constraint on the available solution.While at this incidence,
the stagnation point for convective heat transfer is likely located at the
vehicle nose (Minisci et al., 2011), allowing the vehicle to reach more
realistic values (40–45deg) would possibly shift this point further
down the lower surface, and thus require more sophisticated aero-
thermodynamic modelling. In the case where aerodynamic heating is
less of a constraint, the optimiser appears to correlate a smaller leading
edge radius with improved hypersonic aerodynamic performance.

7.2 Multi-fidelity solutions

The proposed framework is used to solve each single-objective
problem. Each analysis is terminated upon reaching a designated
maximum number of allowable HF evaluations, Nmax = 40. Figures 11,
12 show the convergence of each problem solution relative to the
number of samples, where the latter utilises only a SF surrogate. In this
case, the model is generated using direct non-adaptive sample sets of
size N. The solutions obtained when using only the LF and HF models
respectively are included for reference.

FIGURE 14
Distribution values of the vehicle exponent n relative to the number
of HF evaluations when solving for the minimum peak convective heat
flux ( _qconv)max using (A) the MF management framework and (B) the
equivalent SF surrogate.

TABLE 4 Sensitivity of each output to each input variable, for both the low-
fidelity (LF) and high-fidelity (HF) models.

Input variable LF HF

CL CD CL CD

M 5.3888e-3 2.3532e-4 2.7087e-2 1.7647e-2

α 9.2970e-1 9.7720e-1 7.5710e-1 1.0033e+0

L 8.4105e-4 1.2123e-3 6.2428e-2 8.5176e-6

w 5.7850e-4 2.4473e-3 1.5648e-2 1.0919e-2

n 5.5241e-4 1.2094e-2 5.6943e-2 3.4117e-3

θ 8.7433e-2 8.2103e-2 1.1736e-1 9.5044e-2

rN 2.6852e-3 1.1889e-3 5.2829e-3 8.4463e-4

4 i.e., using LHS selected sampling sets of size ns = 30ninput, trained using the
procedure described in Section 2 to R2 > 99.5.
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In each case, the MF optimisation demonstrates convergence to
the HF optimum. The SF method achieves reasonable convergence for
the min peak _qconv and min qmax cases, though fails to show similar
performance for the min tf case. While it is possible that outwith the
limited number of HF model evaluations considered the SF surrogate
would indeed allow convergence to the “true” solution, it can non-
etheless be seen that the model management framework does so within
a reduced computational cost. Furthermore, the MF solution is seen to
offer a reduced measure of uncertainty compared with the SF
alternative. Disproportionate variation relative to the expected
surrogate accuracy (see Section 5) is likely the result of a cascading
effect driven by the inherent randomisation within the model training
procedure i.e., slight differences in approximation encourage the
optimiser to converge on a significantly altered solution. Intuitively,
this issue would appear to be more prevalent for the surrogates built on
limited datasets (and thus altogether less reliably representative of
global trends), as is the case for the single-fidelty surrogate. The MF
surrogate however, whilst incorporating the same amount of HF data,
is trained using a comparatively larger dataset of unique points given
the inclusion of supplemental LF data during the information
correction process. Thus it would be expected that the MF
surrogate would exhibit proportionally less variation between
successive updates. A consequential implication is that although a
given iteration above such a “critical value” of N (see Section 5) may
generate a SF surrogate of higher measurable accuracy than the MF
counterpart, it is use within an iterative refinement scheme may still
yet be misleading given the remaining probabilistic uncertainty in
current and future iterations.

Less definite convergence is seen when examining the
progression of the vehicle design vector d(L, w, n, θ, rN). For
example, Figure 13 shows the average component values of d(L, w,
n, θ, rN) relative to the number of HF samples N for both the
model management approach and the SF approach. It can be seen
that the vehicle width w, wedge angle θ and leading edge radius rN
design parameters tend to reasonably adherence to the HF
solution within the prescribed budget, with length L and
exponent n values showing only weak convergence trends at
best. Nonetheless, it is observed that in all cases, the model
management framework can be said to facilitate convergence
upon the “true” solution in less HF evaluations than the
equivalent SF approach, if indeed the latter converges at all
within the allotted budget.

In all cases however, the probability of variation in each design
variable is much higher than observed for the corresponding
objective function. Particularly in cases that exhibit a strong

FIGURE 15
K-fold cross validation errors recorded for the MF surrogates of (A)
Coefficient of Lift CL and (B) Coefficient of Drag CD when solving for
each prescribed objective function using the MF model management
framework.

TABLE 5 Average execution times for the primary stages of the multi-fidelity (MF) optimisation process. Included for reference are the corresponding values for the
single-fidelity (SF) process. Standard deviations for each are included in brackets.

Mode Objective init. SM gen.* [s] init. guess gen. [s] optimisation [s] SM update* [s]

MF min ( _qconv)max 355.5 (111.6) 245.1 (997.3) 78.8 (217.4) 54.5 (8.9)

min tf 383.5 (125.0) 218.7 (833.1) 41.7 (158.5) 56.1 (11.1)

min qmax 438.3 (139.8) 234.4 (938.5) 15.1 (135.7) 56.1 (10.8)

SF min ( _qconv)max 18.5 (4.4) 2396 (1954) 334.3 (636.6) ‒

min tf 18.8 (5.6) 2383 (2036) 694.0 (1154.8) ‒

min qmax 19.2 (4.7) 2410 (2019) 201.6 (584.8) ‒

*Not including HF/LF model execution time.
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objective convergence with respect to N, the disparity across the
design vector d suggests that the sensitivity (or lack thereof) of the
problem objective function to a particular design variable has a
significant impact on the correction procedure. For example,
Figure 14 shows the distribution of vehicle exponent n relative

to N for both MF and SF approaches. Though the average value
tends to converge on the “true” value in less HF samples than the
equivalent SF method, at the final iteration there still exists a
significant interquartile range, and may indeed still saturate
almost to either minimum or maximum bound. This is
supported via a closer examination of the sensitivities of the LF
and HF models. Table 4 shows the sensitivities of each output with
respect to each input for both the LF and HF models. A clear
dominance of the angle of attack α on the function responses
compared to the remaining input variables is seen, supporting the
conjecture that design vector sampling has been largely
overshadowed by the predominance of the angle of attack on
aerodynamic response. This then raises the question that, despite
the cost savings achievable via a sensitivity-biased sampling
approach, if the “less important” variables are more relevant to
design/mission performance via a different subsystem, there then
may exist a functional disconnect within the optimisation process,
potentially compromising the obtained results.

7.3 K-fold cross validation error

To briefly demonstrate the surrogate quality achieved via the
proposed methodology during the optimisation process, Figure 15
shows the K-fold Cross Validation Error (K-CVE) recorded for each
MF aerodynamic surrogate, relative to each test case. Of note is that
the relative improvement in K-CVE is largely independent of the
particular objective function considered.

8 Cost

With regards to the presented application, the goal was to
demonstrate the cost savings offered by the proposed MF
approach. This section presents a brief cost report considering the
framework as a whole. The presented results were obtained over
100 independent runs using a 2.5 GHz Intel(R) Core(TM) i5-7200
CPU with 8 GB RAM.

The average execution times (with standard deviations
included in brackets) recorded for a single run of the
aerodynamic solvers FOSTRAD and SU2 were 17.21s (4.96s)
and 6165s (4077s) respectively. Geometry generation using
GMSH accounted for an additional 12.24s (4.1s) for a 2D
surface mesh and 34.43s (11.19s) for a 3D volume mesh. The
average run-time of a trained ANN surrogate was found to be
1.0388e-4s (4.7078e-04s).

Table 5 presents the execution times required by each stage of
the optimisation process. Included where appropriate are the
corresponding values for the SF process using only HF function
evaluations. A number of significant disparities can be seen.
Firstly, the generation of initial surrogates takes much longer
for the MF managed approach due to the iterative initial
sampling procedure, terminating only when the surrogates have
reached acceptable quality. The SF approach in contrast simply
generates surrogates following simple one-shot sampling.
Furthermore, this procedure is performed only once during the
MF process, wheres the SF results are representative of the time
taken each iteration. Secondly, the MF managed procedure is an
order of magnitude faster when generating the initial guess to be

FIGURE 16
Total execution times of the MF management framework and the
SF optimisation process for the (A) minimum peak heat flux ( _qconv)max,
(B)minimum time tf and (C)minimum dynamic pressure qmax test cases.

Frontiers in Aerospace Engineering frontiersin.org19

Parsonage and Maddock 10.3389/fpace.2023.1046177

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2023.1046177


supplied to the optimiser and subsequently converging on an
optimal solution. This is in part due to the higher quality of
the MF surrogate models given the extended sampling and
training procedures in operation, but also likely given the
stability in variation as a result of the proposed correction
process, discussed previously in Section 5. Finally, the reported
times for SM update are representative of the time taken to
adaptively select new sample points for MF correction, and the
subsequent update of the current set of surrogates.

Considering the complete process, Figure 16 shows the total
execution time of the MF management framework and the SF
optimisation process for each of the examined test cases. In each
case, the MF management framework is seen to facilitate convergence
to the HF solution at a increased rate relative to the SF approach.

9 Conclusion

This paper demonstrates an approach to incorporate increased
levels of simulation fidelity into multi-objective design optimisation
problem within a minimised cost budget. Alternative aspects of LF
data are used to facilitate an information correction process, with
configurable alternatives compared in terms of available accuracy and
computational cost. It is found that the sequential application of
corrective stages allows a greater attainable approximation accuracy
relative to a SF equivalent model for a set number of HF samples up to
some critical value. The effectiveness of such correction is generally
found to be proportional to the ratio Ncrit/Nlocal. An application of this
approach is demonstrated via the aerodynamic response prediction of
a parametrised waverider subject to a static/dynamic parameter
optimisation. Correction quality is found to be consistent across
the input domain, though naturally decreasing with dimensionality.
Clear convergence to the optimum is observed via the MF
management framework for each of the three examined single-
objective formulations, in two cases significantly outperforming the
equivalent SF solution in terms of number of required HF samples.
Convergence of the static design solution is less consistent, likely a
result of the sensitivity based adaptive sampling approach, which tends
to favour variables exhibiting a larger influence on the surrogate
output parameters. A cascading effect due to unstable surrogate
quality is observed, in which slight differences in zero- and first-
order surrogate approximation results in significantly different
problem solutions. This effect is seen to be much more prevalent
for surrogates trained on limited datasets, as is primarily the case for
the SF equivalent networks.

Fundamentally, a primary disadvantages of this approach may
then stem from the attempted generalisation, in that the
assumption of no a priori knowledge is perhaps unfounded for
most real-world applications. In this case, MF approaches more
tailored to the concerned physical process(es) may achieve higher
performance. However, the proposed framework and/or
methodology may still be incorporated into further early-phase
multidisciplinary optimisation processes to aid the rapid
validation of design trade-offs and determine interdisciplinary
coupling/sensitivities.
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