
Internet of Things 22 (2023) 100706

A
2
(

a

P
b

c

d

e

h
R

Contents lists available at ScienceDirect

Internet of Things

journal homepage: www.elsevier.com/locate/iot

Research article

Specialized path-based technique to test Internet of Things system
functionality under limited network connectivity
Matej Klima a, Miroslav Bures a,∗, Bestoun S. Ahmed b,a, Xavier Bellekens c,
Robert Atkinson d, Christos Tachtatzis d, Pavel Herout e
System Testing IntelLigent Lab (STILL), Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in
rague, Karlovo namesti 13, Prague, 121 35, Czechia
Department of Mathematics and Computer Science, Karlstad University, Universitetsgatan 2, Karlstad, 651 88, Sweden
Lupovis.io, 204 George Street,, Glasgow, G1 1XW, Scotland, UK
Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street,, Glasgow, G1 1XW, Scotland, UK
Department of Computer Science and Engineering, University of West Bohemia, Univerzitni 2732/8, Pilsen, 301 00, Czechia

A R T I C L E I N F O

Keywords:
Internet of Things
Reliability
Path-based testing
Model-based testing
Test automation
Limited network connectivity
Test case generation

A B S T R A C T

Contemporary Internet-of-Things (IoT) systems are hindered by several reliability-related issues,
especially, the dynamic behavior of IoT systems caused by limited and often unstable network
connectivity. Several intuitive ad-hoc approaches can be employed to test this behavior;
however, the effectiveness of these approaches in detecting defects and their overall testing
costs remain questionable. Therefore, we present a new specialized path-based technique to
test the processes of an IoT system in scenarios wherein parts of these processes are influenced
by limited or disrupted network connectivity. The proposed technique can be scaled using
two levels of test coverage criteria to determine the strengths of the test cases. For this
purpose, we propose two algorithms for generating test cases to implement the technique:
an ant colony optimization-based search and a graph-traversal-based test case composition.
We compared the efficiency of the proposed approach with possible solutions obtained using
a standard path-based testing approach based on prime paths computed by a set-covering
algorithm. We consider the total number of test case steps as the main proxy for test effort
in experiments employing 150 problem models. For the less intensive of the two used test-
coverage criteria, EachBorderOnce, an ant colony optimization-based algorithm, produced test
sets with the same averaged number of steps as the graph traversal-based test-case composition;
however, this algorithm performed with averaged number of steps 10% lower than a prime
paths-based algorithm. For the more intensive test coverage criterion, AllBorderCombinations,
these differences favoring the ant colony optimization-based algorithm were 18% and 25%,
respectively. For these two types of defined test coverage criteria, the ant colony optimization-
based search, graph-traversal-based algorithm, and standard path-based testing approach based
on prime paths achieved the best results for 93 and 78, 14 and 24, and 13 and 17 models for
AllBorderCombinations and EachBorderOnce criterion, respectively. Therefore, to guarantee the
best test set, all compared algorithms are combined in a portfolio strategy that yields the best
results based on the potential of the produced test sets to detect simulated defects caused by

∗ Corresponding author.
E-mail address: miroslav.bures@fel.cvut.cz (M. Bures).
vailable online 3 February 2023
542-6605/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

ttps://doi.org/10.1016/j.iot.2023.100706
eceived 13 October 2022; Received in revised form 18 December 2022; Accepted 24 January 2023

https://www.elsevier.com/locate/iot
http://www.elsevier.com/locate/iot
mailto:miroslav.bures@fel.cvut.cz
https://doi.org/10.1016/j.iot.2023.100706
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iot.2023.100706&domain=pdf
https://doi.org/10.1016/j.iot.2023.100706
http://creativecommons.org/licenses/by-nc-nd/4.0/

Internet of Things 22 (2023) 100706M. Klima et al.

h
h
t
n
i
a

f
n
t
a
c
s
l
l

o
d
m
b
t
t

l
i

S
f
a

t

limited network connectivity. Additionally, this portfolio strategy also yields test sets, implying
the lowest test effort for experimental problem instances.

1. Introduction

Internet-of-Things (IoT) systems have progressed significantly over the last decade; these systems have evolved from an initial
ype to everyday technological realities that are integrated into people’s work processes and lives [1,2]. This growth in IoT systems
as introduced new significant challenges in terms of quality, usability, security, and reliability [3–5]. In this regard, ensuring
he reliable behavior of a dynamic IoT system when parts of the system or its processes need to operate with limited or unstable
etwork connectivity [3,4] is a critical issue. In this study, limited connectivity refers to a complete network connectivity outage,
ntermittent connectivity, significantly low bandwidth, high network-error rate, or any state that negatively influences the reliability
nd functionality of an IoT system.
Generally, the server side (back-end) is spatially static and connected to a stable network in a web-based client–server architecture

or information systems. In contrast, the client side can move physically and are subject to limited network connectivity or temporary
etwork outages. This scenario is typically observed in rural or maritime areas with weak or no wireless network coverage or for
unnels in urban areas. In such applications, users are prepared to endure network connectivity issues and interact with the system
ccordingly. However, in the case of dynamic IoT systems, connected devices, such as sensors, actuators, or back-end infrastructure,
an move spatially. Therefore, they are relatively more sensitive to limited or disrupted network connectivity. Certain types of IoT
ystems are affected by limited or disrupted network connectivity. Examples of dynamic sensor networks wherein the geographical
ocation of devices changes during system operation include smart farming, intelligent transportation, smart cars, and military and
ogistic systems [6,7].
The reliability of a service provided by a system to its users must be maintained if the network connectivity of particular parts

f an IoT system is limited or disrupted. In such a scenario, the functionality of the system should not be disrupted by an explicit
efect caused by a network-connectivity outage. In such a case, users can accept the restricted system functionality; however, they
ust be notified in adequate time. The system cannot interrupt actual transactions, lose data, revert to an unexpected state, crash, or
ecome unresponsive. In dynamic IoT systems subjected to network connectivity limitations, system behavior must be tested under
hese conditions. Moreover, testing must be performed optimally to ensure the effective detection of relevant defects and reduce
he costs associated with such testing [3,8], which is the main motivation driving our proposal.
Currently, established path-based testing techniques [9,10] can be applied only partially to test a System Under Test (SUT) under

imited network connectivity. By analyzing all the path-based testing and data-flow algorithms mentioned in this paper, could not
dentify any algorithm that directly addressed the problem described in Section 3 and formally defined further in Section 4.
As we further explain in Section 2.1, the only type of algorithms that can be utilized in this scenario are those that accept the

UT model or its variant based on a directed graph and a set of test requirements. Certain examples are reported by Li et al. [9]
or prime paths, namely brute force, prefix-graph-based, and set-covering algorithms. In our proposal, we utilized the set-covering
lgorithm and augmented with a special procedure to prepare the test requirements, as presented in Section 7.3. This algorithm
serves as a baseline for evaluating original algorithms designed directly to solve the limited network connectivity problem, presented
in this paper.

Therefore, this study proposes a limited network connectivity test (LNCT) technique, which is a new and specialized technique
for generating test cases to test the behavior of an IoT system under limited network connectivity. The contributions of this study
are as follows:

1. Three algorithms are presented to generate test cases for the path-based testing approach to limited connectivity testing in
IoT systems. These algorithms include two novel algorithms designed specifically for the discussed problem in a way that has
not been employed in the previous literature. These two algorithms are based on the shortest-path composition principle and
a novel application of the ACO principle. The third algorithm is the baseline formulated by extending a previous algorithm
that uses the established concept of test requirements.

2. An approach based on the concept of the test requirements is compared with specific algorithms designed for the discussed
case.

3. An evaluation study is conducted with experimental data wherein the proprieties of the generated test cases are discussed
comparatively. The cost of testing measured in the number of test steps and the potential of test cases to detect defects present
in an SUT are investigated.

4. A portfolio strategy employing all related algorithms is presented to achieve the optimal result for various possible SUT
models in industrial settings, which is an approach not previously reported in the literature for this specific type of problem.

The remainder of this paper is organized as follows. Section 2 analyzes the related work and motivation behind the proposed
technique. Section 3 presents the principle of the proposed technique, and Section 4 defines the SUT model utilized in the technique.
Sections 5 and 6 present the test coverage and evaluation criteria, respectively. Section 7 presents the three algorithms that generate
2

est sets from the SUT model. Section 8 describes the experimental design and presents the results of individual algorithms. Section 9

Internet of Things 22 (2023) 100706M. Klima et al.

a

T

1
H
t

details a portfolio strategy combining the algorithms and summarizes the results. Section 10 discusses the experimental results.
Section 11 analyzes the threats to validity and presents steps for minimizing their possible effects. Finally, in the last section,
conclusions are drawn based on the findings of this study.

2. Related work

There are three primary directions of related work that must be analyzed considering our proposal: (1) existing path-based testing
techniques and algorithms, (2) existing data-flow testing techniques that overlap with path-based testing techniques, (3) ant colony
optimization and nature-inspired algorithms, and (4) alternative approaches for reliability testing of IoT systems under conditions
of weak network coverage.

2.1. Path-based testing

Starting with the state-of-the-art path-based testing, an established model of an SUT is available in the literature, and a number
of algorithms that generate test cases for various coverage criteria have been published [9,11–14]. The typical notation of an SUT
model in path-based testing is based on a directed graph = (𝑁,𝐸, 𝑛𝑠, 𝑁𝑒), where 𝑁 is a nonempty finite set of nodes, 𝐸 ⊆ 𝑁 ×𝑁 is
finite set of edges, 𝑛𝑠 denotes the start node of with no incoming edges, and 𝑁𝑒 denotes a set of end nodes of with no outgoing

edges [9,10,12]. The nodes model decision points, actions, or function calls in an SUT workflow or process, and the edges model
transitions between them.

A test case is defined as the path from 𝑛𝑠 to any node from 𝑁𝑒. The set of test cases must satisfy a defined test-coverage criterion.
he edge, edge pair, and prime path coverage are the most common criteria [10,12].
Individual algorithms differ in their ability to provide a near-to-optimum solution satisfying the given test coverage criteria [9,11–

4]. Therefore, combining them with a portfolio strategy is a practical alternative from the perspective of a testing practitioner [12].
owever, these common algorithms fail to address the goal of our study directly because they are designed for common path-based
esting problems, which are different from the specific goal of limited network connectivity testing.
The reasons for this are as follows: Considering the goal and principle of the proposed technique, as explained in Section 3, the

existing concepts that allow the touring of the defined sequences of two non-adjacent edges in a path need to be analyzed; here,
the main established concept is a set of test requirements. The test requirements are paths in 𝐺 that must be presented as subpaths
in the test cases generated for the SUT model [10].

If not explicitly designed to satisfy a particular test-coverage criterion, algorithms that create test cases usually accept test
requirements as an input, such as those reported by Li et al. [9]. The test requirements are a partially applicable concept for solving
defined problems.

We define 𝑅 = {𝑟𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑 , 𝑟𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑} to model our problem using test requirements, and assume only one subprocess exists for
the tested process (a subgraph of) wherein the network connection can be interrupted and restored. Herein, 𝑟𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑 and 𝑟𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑
are one edge long; 𝑟𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑 models an SUT function wherein the network connectivity is interrupted, and 𝑟𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 models an SUT
function therein the network connectivity is restored. In this example, 𝑟𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑 must be followed by 𝑟𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 in the test case, and
the path from 𝑛𝑠 to any node from 𝑁𝑒 must be minimal.

However, algorithms that accept 𝑅 as the input optimize the final set of test cases for their minimal length, and no factor
guarantees that 𝑟𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑 will be followed by 𝑟𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 . To the best of our knowledge, no algorithm accepts additional constraints
that define the required order of the input test requirements. Furthermore, no motivation exists for achieving such functionality
in standard path-based testing, and the algorithm that generates such a test set becomes unnecessarily complex. However, in our
problem described in Section 3, such functionality is essential. Thus, our proposal is an original contribution to the field of limited
network connectivity testing.

The concept of test requirements can be partially utilized when, in the discussed example, 𝑅 = {a path from 𝑟𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑 to 𝑟𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑}.
Certain algorithms that accept 𝑅 can be employed [9] and must be accompanied by an additional algorithm that can prepare a set
of test requirements. Furthermore, in this study, we employed such an algorithm, EPP, as a baseline for the experimental evaluation
of the proposed algorithms.

It cannot be validated if such an approach would guarantee the best solution because a greater number of pairs of ‘‘𝑟𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑
and 𝑟𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 ’’ may exist in the model. This aspect motivated us to explore new alternative algorithms, aiming to derive an optimal
solution to the limited network connectivity testing problem, as considered in this study.

2.2. Data-flow testing

Another field that may provide relevant work is that of data-flow testing (DFT) [15], which overlaps with general path-based
testing. Dynamic DFT is relevant to this study based on the available DFT subtypes. As the main working principle driving DFT,
the SUT variables are verified by inspecting their definitions and uses, which is achieved by extracting definition-use (def-use) pairs
from the code. Each pair is examined with respect to the selected coverage criteria [15]. Although several coverage criteria are
available for utilization, research suggests that the all-uses criterion, which requires covering every definition at least once and
using an association in the program, is the most effective approach for detecting defects [16]. The dynamic data-flow testing process
includes (1) construction of the program’s control flow graph (CFG), (2) identification of relevant paths in the CFG that satisfy the
3

given coverage criterion, and (3) test data generation to execute the set of paths.

Internet of Things 22 (2023) 100706M. Klima et al.

s
s

o

Generally, the construction of path-based test cases that contain defined def-use pairs is a potentially applicable concept for
olving the problem of limited network connectivity testing as discussed in this study. However, DFT techniques potentially fail to
olve the problem entirely owing to the following reasons presented in this section.
Although the CFG (constructed from the source code of the SUT) is used as the underlying model of the problem, it differs from

ur problem model specified in Section 4, rendering this problem definition and solution an original contribution to testing research
and praxis. The idea of determining paths containing specific pairs of nodes in the CFG and subsequently ensuring their presence
in the test cases is similar to sequencing 𝑟𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑 and 𝑟𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 SUT-model elements.

However, for the coverage criteria specified in Section 5, it is important to restrict the path between 𝑟𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑 and 𝑟𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 to lead
inside the SUT model part affected by limited network connectivity. Specifically, the path should not leave it from any other node
than those present in 𝑟𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 . This requirement can be theoretically satisfied by the definition of adequate def-use pairs in an SUT
model. An algorithm, defining these def-use pairs to satisfy the test coverage criteria defined in our proposal, must be formulated
as the first stage of the computation. However, such a solution is unlikely to yield near-optimum results from the viewpoints of
complexity and path construction principle. The test paths should be kept minimal while satisfying the test coverage criteria, which
is the reason underlying the aforementioned inadequacy. Hence, the definition of a completely new algorithm, which is designed
directly to solve the defined problem, renders a more viable solution with a higher probability of yielding near-optimum results.

2.3. Ant colony optimization and nature inspired algorithms

A number of algorithms for solving combinatorial problems have been inspired by nature. In addition to genetic algorithms,
a pioneering algorithm is the Particle Swarm Optimization algorithm (PSO), which is for instance employed in communication
protocols [17] as well as in system testing [18,19]. In PSO, search space exploration imitates the behavior of swarms, such as
schools of fish or flocks of birds. Windisch et al. proposed a method for performing structural testing using PSO and revealed that
compared to genetic algorithm, this technique is much simpler, easier to implement, and possesses fewer parameters that the user
needs to adjust [19].

Furthermore, a nature-inspired approach is the Ant Colony Optimization (ACO) approach, which we employed in our proposal.
The use of ACO in test case generation has recently been proposed in several studies. To model the SUT, Srivastava et al. employed
CFG. Ants traverse the SUT from the start node to the end node, leading to a combination of pheromone disposal and heuristic value
at the edges, prioritizing those not yet visited. This leads to the completion of all paths coverage [20].

To effectively generate test sequences, considering the importance of states and the need to cover the most critical states,
Srivastava et al. leveraged the statistical MBT based on the Markov chain, in addition to the ACO algorithm. In this method, the
SUT model contains the probabilities of transitions between individual application states based on which test cases are effectively
generated that match the desired importance. The proposed method yields good coverage of critical nodes using a small number of
test sequences [21]. Sayyari and Emadi proposed a similar approach [22].

Let us describe this situation using our SUT model elements as explained in more detail in Section 4. Although the analyzed
techniques offer the possibility of defining the critical states that must be present in 𝑇 (which could potentially be used in our
defined model to cover the LCZ border nodes), they do not ensure the sequence of nodes required in the test cases. In contrast, our
concept ensures this aspect. Notably, uncertainty exists concerning the LCZ IN node 𝑛𝑖𝑛 ∈ 𝑖𝑛(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) preceding the reachable
LCZ OUT node 𝑛𝑜𝑢𝑡 ∈ 𝑜𝑢𝑡(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) in zone 𝐿 ∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). Therefore, we cannot guarantee the fulfillment of the selected
coverage criterion using such a technique. Our proposed approach primarily focuses on fulfilling these criteria, which renders it a
novel contribution among the established path-based testing techniques.

2.4. Alternative techniques for testing IoT system functionality with a limited network connection

Muthiah and Venkatasubramanian focused on network connectivity testing and introduced the term connectivity testing [23].
Murad et al. mentioned the need to perform these connectivity tests in their study focusing on the healthcare industry [24]. Sirshar
et al. used the same term in their preprint [25]. Furthermore, Esquiagola et al. performed connectivity tests on IoT platforms [26].

Alternatives to our approach, which focus on system functionality, primarily focus on the lower levels of an SUT, typically at
the network level [27–29]. As a process-based viewpoint is insufficiently covered in the current literature, this makes the approach
presented in this study an original contribution to the current research field.

The topic has been explored primarily by existing studies on quality of service (QoS) testing [3,28,30]. These studies tended
to assess the reliability of a network, and higher levels of SUT functionality were not tested. However, testing IoT functionalities
remains underexplored from a behavioral perspective.

In 2017, White et al. analyzed 162 research articles for a systematic mapping of state-of-the-art techniques employed in QoS
approaches for IoT [28]. They discovered that the physical, link, and network layers of the OSI model were the most researched
layers of IoT infrastructure as yet. However, the fields of deployment, middleware, and cloud layers required further research - the
current research mainly concentrates on the individual layers of the IoT system infrastructure, among which the lower levels are
better covered. In the current research, the high-level process viewpoint of the system, including integration and end-to-end testing,
is rather neglected.

Moreover, testing system functionality under limited network connectivity is influenced by the volume and frequency of data ex-
change, typically for sensors and actuators in an IoT system. This is affected by the selected data-compression technique [31,32] and
4

the use of methods for aggregating the data measured via sensors, thereby reducing the amount of communication required [33–35].

Internet of Things 22 (2023) 100706M. Klima et al.

n
T

w
p
a

3

a

p

These mechanisms improve the overall energy efficiency of the sensor network, which allows for frequent repeated communication
in case of a network failure and restoration [36,37].

Rudeš et al. conducted a study in this direction to present a concrete example of QoS assurance for IoT systems [27]. In
their study, they tested a prototype of a small sensor network that shares its data with a server in the lab over the Internet.
However, the tests were aimed only at the quality of network communication and not its influence on the overall process. Moreover,
Matz et al. reported an analysis of quality assurance for network communication between IoT systems in the physical and application
layers [30]. The authors measured the quality of a narrowband-IoT technology that enables energy-efficient and long-range network
access to IoT devices on a cellular network (e.g., LTE or 5G in the future). Furthermore, Kim et al. proposed a service-based automatic
IoT testing framework to resolve constraints on the coordination, costs, and scalability issues of traditional software testing [38]. In
particular, this framework performs remote-distributed interoperability, scalable, automated conformance, and semantic testing. The
set of test cases on the SUT is predefined; thus, exhaustive process testing cannot be achieved under a limited network connection.

The analyzed studies in this area assessed network reliability and related topics. Higher levels of SUT functionality (functional
correctness from the system user’s viewpoint or flawless integration) are not tested; therefore, techniques for testing IoT functionality
are underexplored from the perspective of system behavior. No specific path-based or data flow techniques directly address the goals
of this study. This conclusion was also confirmed by our recent independent systematic mapping study on the aspects of quality
assurance in IoT systems [3]. The development of specific test-design techniques to test IoT systems operating with limited network
connection [3] is a subject area that has not been explored sufficiently. Thus, considering the gap in literature, this subject area
was aimed at in the present study. Hence, as process-viewpoint testing of the functionality of an IoT system under limited network
connectivity remains unexplored and, as explained in this section, established path-based techniques are suboptimal for this purpose.
Considering these aspects, we propose a new alternative technique in our study.

2.5. Summary and motivation

In IoT systems, especially mission-critical systems, reliable and safe system functionality must be ensured. This reliable and safe
operation must also be guaranteed during network outages and restoration situations. As analyzed in Section 2, this area has not
been adequately explored.

Although no unified definition exists for the system types belonging to the IoT family, all of these systems certainly employ
the Internet as the connecting element, which is essential for operating the individual components of the system. Considering
the use cases of individual IoT systems, wireless networks are primarily used to connect these components [39,40]. A wireless
network can experience a connection outage owing to the users’ mobile nature. Such situations involve mobile devices in locations
with inadequate network coverage (e.g., uninhabited areas, tunnels, and subways), or when an energy shortage occurs in the
communication infrastructure, or occasional hardware defects.

Tests for limited network connectivity should be approached from a process perspective, as performed in this study, owing to
a number of reasons. First, a potential combinatorial explosion occurs in the number of use cases owing to the number of possible
models and versions of the individual parts of the IoT system created in the general manner [41]. Second, smart device testers may
need to test their devices in the real world, outside the lab, where Internet connectivity may be intermittent. Any test performed in
this manner requires considerable time and resources. This application scenario favors the MBT approach because this algorithm can
automatically generate a precisely optimized set of test cases using only the most important cases. Third, the demand for automating
the IoT system-testing process is rising [8,42], and the process perspective yields an excellent basis for the approach presented herein.

Currently established path-based testing techniques and algorithms do not address the specificity of the problem model considered
in this study (see Section 4).

This model contains several limited connectivity zones (LCZs) that represent a system undergoing network disruption. These
LCZs are connected to the stable parts of the IoT system through the LCZ IN and LCZ OUT nodes, and they must be present in the
test cases. Moreover, placing the LCZ IN node before the LCZ OUT node in 𝑡 is essential for covering the pair of LCZ IN and OUT
odes on the LCZ border 𝑧 in a test case 𝑡. The sequence of nodes between the LCZ IN and LCZ OUT nodes in 𝑡 must not leave 𝑧.
his rule is described in the coverage criteria introduced in Section 5.
This specific rule was not observed in the path-based testing techniques that were investigated. The concept of test requirements is

the only exception in the field that can be utilized, and we have used this option in our proposal. As explained in Section 7.3 in detail,
e transformed the coverage criteria EachBorderOnce and AllBorderCombinations (defined in Section 5) into the test requirements
roposed by Li et al. by using their set cover algorithm to generate a set of test cases that satisfy these requirements [9]. However,
part from the algorithm by Li et al., we could not identify a more recent suitable algorithm that could be used in related work.

. Principle of the Limited Network Connectivity Test (LNCT)

In the testing process, test designers construct a set of test scenarios for an IoT system to verify whether its functionality is
ffected by limited network connectivity or outage. The process focuses on testing the following two principal scenarios [43]:
(1) The network connectivity is interrupted in one part of the process handled by the SUT (or it is limited to an extent that affects

roper functionality of the SUT). In such cases, testing the SUT functionalities should include scenarios such as1

1 The given scenarios are only examples, and the list may not be complete; certain scenarios may not be relevant to all types of IoT systems.
5

Internet of Things 22 (2023) 100706M. Klima et al.

c
s
u
t
o

C
w
s

v
b
t
(

Fig. 1. Initial example of an SUT affected by network connectivity outage in its module and a path-based test case enabling the test of the SUT behavior in
such a scenario.

(1) Assume that an SUT subsystem is isolated from network connectivity for a certain time when collecting data. Are these data
orrectly transmitted and stored offline when the network connectivity is available again, or are the collected data lost? (2) The SUT
ubsystem accepts signals (e.g., commands or API calls) from other devices or subsystems. This receiving subsystem is temporarily
nconnected to the network. Are other devices sending signals to properly notify the missing (offline) subsystem that cannot react
o these signals? (3) Is an SUT user notified properly such that the functionality may be limited for a certain time period because
f a network connectivity outage?
(2) The network connectivity is restored after an outage. The following typical scenarios may be tested when network connectivity

is available again:
(1) If SUT data must be processed transactionally, can this transactionality be maintained despite a network connectivity outage?

Will the affected transactions be discarded correctly or completed via available caches when connectivity is restored? Are the
cached transactions completed correctly, including the logical order of their steps? (2) Are these cached data transmitted to receive
SUT modules correctly when network connectivity is restored when SUT devices, modules, or subsystems cache the data during
a connectivity outage? Is such a temporary decrease acceptable to users and system safety, although this transmission may affect
the responsiveness or performance of the SUT? (3) Are the data stored and processed by the SUT consistent when the network
connectivity is restored, and are the locally stored data transmitted or transactions completed? (4) Is the user of the SUT adequately
informed that the disabled functionality will be available again?

In this study, we approached the problem from the perspective of process testing (or path-based testing). The principle of the
proposed technique involves executing a process in an SUT to test its functionality when affected by a network connection outage or
limitation. Path-based test cases are constructed to test the aforementioned situations. We follow events when network connectivity
is interrupted (or limited) by events wherein connectivity is restored [43]. An example of this situation is illustrated in Fig. 1.

Fig. 1 shows a sample of a fictional IoT system comprising three subsystems (devices and back-end systems). Subsystems A and
represent IoT devices: Subsystem A is connected to a stable network, whereas subsystem C is a mobile device operating in areas
here network connectivity may be limited (e.g., rural, maritime, or subterranean areas). Subsystem B is the back-end part of the
ystem connected to a stable network, and subsystem A handles two separate parts of the process.
In the test, we assume that Subsystem C operates without network connectivity. Furthermore, we exercise various process-flow

ariants to learn the system behavior under such a restriction. In our example, Functions 4, 6, and 7 and Decision 2 are influenced
y network connectivity outages, and they are depicted with a red background. We need to exercise a transition from Function 3
o Decision 2, Decision 2 to Function 2, Function 5 to Function 6, and Function 7 to Function 10 to test the outlined scenarios
these transitions are indicated in red in Fig. 1). Fig. 1 illustrates (in bold arrows) an example of a test case that sequences the event
when the network connectivity is interrupted or limited (arrow incoming to Decision 2) with an event in which the connectivity is
restored (arrow outgoing from Function 7).

Various test paths that chain the events of network connectivity outages with connectivity restoration events can be composed
using an SUT model. However, most test cases are not optimal considering the overall testing cost. Therefore, this study focuses on
6

the generation of optimal test sequences that address the limited network connectivity problem.

Internet of Things 22 (2023) 100706M. Klima et al.

a

Fig. 2. Illustration of defined model elements in the introduced IoT system example.

4. Problem model

We generate test cases for the SUT process that can be impacted by a possible network connection outage (CO), which is
bstracted as a directed graph 𝐺 = (𝑁,𝐸, 𝑛𝑠, 𝑁𝑒), where 𝑁 ≠ ∅ and 𝐸 ⊆ 𝑁 ×𝑁 represent a finite set of nodes and a nonempty set
of edges 𝑒 ∈ 𝐸, respectively. Node 𝑛𝑠 ∈ 𝑁 represents the initial/start node of graph 𝐺, 𝑁𝑒 = {𝑛𝑒 ∣ 𝑛𝑒 ∈ 𝑁 with no outgoing edge},
defining a non-empty set of end nodes of graph 𝐺. The nodes serve as an abstraction of SUT actions, functions, or decision points,
and the edges are the transitions between them in the process flow. In the proposed method, 𝐺 does not allow parallel edges.

Test case 𝑡 represents a sequence of nodes 𝑛1, 𝑛2,… , 𝑛𝑛 with a sequence of edges 𝑒1, 𝑒2,… , 𝑒𝑛−1, where 𝑒𝑖 = (𝑛𝑖,𝑛𝑖+1), 𝑒𝑖 ∈ 𝐸. The
test case 𝑡 starts with the start node 𝑛𝑠 (𝑛1 = 𝑛𝑠) and ends with the 𝐺 end node (𝑛𝑛 ∈ 𝑁𝑒). Test set 𝑇 represents a set of test cases.

The edge connection outage probability (COP) denoted by 𝑐𝑜𝑝(𝑒) is defined for 𝑒 ∈ 𝐸, and represents the percentage number
indicating the abstract probability of a connection outage at this edge. If 𝑐𝑜𝑝(𝑒) is established, 𝑒 is a transition in the IoT system
process influenced by possible limited network connectivity.

The threshold COP, denoted by 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 indicates the threshold connection outage probability for which the test set 𝑇 is
created. By setting 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to 𝑛, we assume that all edges with an LC probability greater than or equal to 𝑛 are affected by a
hypothetical tested connection outage.

We used the limited connectivity zone (LCZ) concept as follows: the LCZ edge is an edge 𝑒 ∈ 𝐸 for which 𝑐𝑜𝑝(𝑒) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,
and the non-LCZ edge is an edge 𝑒 ∈ 𝐸 for which 𝑐𝑜𝑝(𝑒) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. The LCZ 𝐿 is a coherent subgraph of 𝐺 comprising only the
LCZ edges, and 𝐺 can contain more than one LCZs, denoted by (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) for a specific 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

The IN node of LCZ 𝐿 is node 𝑛 that satisfies one of the following conditions:

1. 𝑛 = 𝑛𝑠 and 𝑛 possess an outgoing edge that is an LCZ edge of 𝐿.
2. 𝑛 possess an outgoing edge that is an edge of 𝐿 and an incoming edge that is not an LCZ edge of 𝐿.

𝑖𝑛(𝐿) ⊂ 𝑁 denotes all IN nodes of 𝐿, and 𝑖𝑛(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ⊂ 𝑁 denotes all IN nodes of (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑).
The OUT node of LCZ 𝐿 is node 𝑛 that satisfies one of the following conditions:

1. 𝑛 ∈ 𝑁𝑒 and 𝑛 possess an incoming edge that is an edge of 𝐿.
2. 𝑛 has an incoming edge that is an LCZ edge of 𝐿 and outgoing edge that is not an LCZ edge of 𝐿.

𝑜𝑢𝑡(𝐿) ⊂ 𝑁 denotes all OUT nodes of 𝐿, and 𝑜𝑢𝑡(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ⊂ 𝑁 denotes all OUT nodes of (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑).
The border node of the LCZ is either an IN or OUT node of the LCZ.
The concepts defined above are illustrated in Fig. 2 using the fictional IoT system described in Fig. 1 as a running example.

In this example, 𝑁𝑒 = {𝑛11, 𝑛16}; 𝐿 comprises 𝑛5, 𝑛6, 𝑛7, and 𝑛8; 𝑖𝑛(𝐿) = {𝑛5, 𝑛7}; and 𝑜𝑢𝑡(𝐿) = {𝑛5, 𝑛8}. The sample test case
𝑡 = 𝑛𝑠, 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛7, 𝑛8, 𝑛15, 𝑎𝑛𝑑𝑛16.

The LNCT test case-generation problem is summarized as follows: given an SUT model, 𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, and a test coverage criterion
7

 (specified in Section 5), we determine a test set 𝑇 that satisfies .

Internet of Things 22 (2023) 100706M. Klima et al.

c

f

a
O
t
𝑛
L

6

s

l
b

7

a

Table 1
Test case evaluation criteria .
Evaluation criterion Description

|𝑇 | Number of test cases in test set 𝑇

|𝑡| = 1
|𝑇 |

|𝑇 |
∑

𝑖=1
|𝑡𝑖|, 𝑡𝑖 ∈ 𝑇 Average length of test cases in test set 𝑇

l(𝑇) =
|𝑇 |
∑

𝑖=1
|𝑡𝑖|, 𝑡𝑖 ∈ 𝑇 Total length of test set 𝑇 measured in number of edges

s(𝑇) =

√

√

√

√

√

√

|𝑇 |
∑

𝑖=1
(|𝑡𝑖| − |𝑡|)2

|𝑇 | − 1 , |𝑇 | > 1 Length dispersion of the test cases in test set 𝑇 , expressed by
standard deviation of test case lengths; test case length is
measured in number of edges.

u_nodes(𝑇) Number of unique nodes in test set 𝑇

u_edges(𝑇) Number of unique edges in test set 𝑇

b_nodes(𝑇) Number of border nodes in test set 𝑇 for all LCZs of 𝐺

eff_edges(𝑇) =
u_edges(𝑇)

l(𝑇) ⋅ 100% Ratio of unique edges in test set 𝑇 to total number of edges
in test set 𝑇

eff_b_nodes(𝑇) = b_nodes(𝑇)
l(𝑇) + |𝑇 |

⋅ 100% Ratio of number of border nodes in test set 𝑇 to total
number of nodes in test set 𝑇

5. Test coverage criteria

Various test-coverage criteria can be defined for the limited connectivity problem. In this study, we employed two test-coverage
riteria: EachBorderOnce and AllBorderCombinations.
A test set 𝑇 must contain each node of 𝑖𝑛(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) and 𝑜𝑢𝑡(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) to satisfy the EachBorderOnce criterion. Furthermore,

for all 𝐿 ∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), if 𝑡 ∈ 𝑇 contains a node 𝑛𝑖𝑛 ∈ 𝑖𝑛(𝐿), then this node must be followed by a node 𝑛𝑜𝑢𝑡 ∈ 𝑜𝑢𝑡(𝐿) later in the
path but not necessarily immediately. The proposed technique allows 𝑛𝑖𝑛 to be equal to 𝑛𝑜𝑢𝑡, considering that in certain scenarios,
the LCZ may be entered and exited through the same node. In practice, this test coverage criterion requires that all LCZ border
nodes be visited at least once in certain test cases, regardless of the manner in which the IN nodes are entered and the OUT nodes
are exited.

The second coverage criterion, AllBorderCombinations, requires that for each 𝐿 ∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), the test set 𝑇 must contain
each combination of a node 𝑛𝑖𝑛 ∈ 𝑖𝑛(𝐿) and a node from 𝑛𝑜𝑢𝑡 ∈ 𝑜𝑢𝑡(𝐿), for which a path exists from 𝑛𝑖𝑛 to 𝑛𝑜𝑢𝑡 within 𝐿. Furthermore,
or all 𝐿 ∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), if 𝑡 ∈ 𝑇 contains a node 𝑛𝑖𝑛 ∈ 𝑖𝑛(𝐿), then this node must be followed by a node 𝑛𝑜𝑢𝑡 ∈ 𝑜𝑢𝑡(𝐿)
later in the path but not necessarily immediately. Notably, 𝑛𝑖𝑛 is equal to 𝑛𝑜𝑢𝑡. Thus, this test coverage criterion requires that
ll possible combinations of IN and OUT nodes of LCZ borders, for which a path exists inside the LCZ from an IN node to an
UT node, be visited by the test cases, regardless of which edges we enter the IN and leave the OUT nodes in the test case. sfy
he ComprehensiveAllBorderCombinations, for each 𝐿 ∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), the test set 𝑇 must contain each combination of a node
𝑖𝑛 ∈ 𝑖𝑛(𝐿) and a node from 𝑛𝑜𝑢𝑡 ∈ 𝑜𝑢𝑡(𝐿) for which exists a path from 𝑛𝑖𝑛 to 𝑛𝑜𝑢𝑡 inside the 𝐿. Further, 𝑛𝑖𝑛 must be entered by a non
CZ edge in some 𝑡 ∈ 𝑇 and 𝑛𝑜𝑢𝑡 must be exited by a non LCZ edge in this 𝑡.

. Test set evaluation criteria

Several evaluation criteria for path-based testing have been discussed in literature [9,44,45]. We employed the options
ummarized in Table 1 for the problem discussed in this study as a test-set evaluation criterion .
Considering length dispersion (𝑠(𝑇)), this criterion aims to prevent excessively long and short test cases. Test analysts consider

ong test cases impractical because the probability that the test case is interrupted by a defect and the rest of the test case cannot
e finished increases with the length.
In the experiments, we utilized to evaluate the properties of 𝑇 created by the algorithms discussed for the different SUT models.

. Proposed algorithms

We compare three algorithms that generate 𝑇 from 𝐺 for the LNCT technique. The first two algorithms are our proposed
pproaches, and the third one is based on an established algorithm:

1. The shortest paths composition algorithm (SPC) is based on the principle of finding the shortest paths between identified
points in 𝐺 and chaining them in the test cases (description follows in Section 7.1),

2. The ant colony optimization-based algorithm (ANT) is based on the general ant colony optimization principle for
determining the optimal test cases (description is given in Section 7.2),

3. The enforced prime paths algorithm (EPP) employs a previous path-based algorithm that supports the test requirements
(description is provided in Section 7.3).
8

Internet of Things 22 (2023) 100706M. Klima et al.

t
𝐹

𝐿
s
d

i
n
p
𝑝
t

d
o

7.1. Shortest Path Composition algorithm (SPC)

The main routine of SPC is defined in Algorithm 1, which accepts 𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, and as inputs and produces 𝑇 as an output
while maintaining a set of unvisited LCZ IN nodes 𝑈𝑖𝑛 and a set of unvisited LCZ OUT nodes 𝑈𝑜𝑢𝑡. Algorithm 1 starts by determining
he shortest paths between 𝑖𝑛(𝐿) and 𝑜𝑢𝑡(𝐿) within all LCZ 𝐿 ∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) of the given 𝐺, which is achieved using the subroutine
𝑖𝑛𝑑𝑃𝑎𝑡ℎ𝑠𝐼𝑛𝑠𝑖𝑑𝑒𝐿𝐶𝑍𝑠 described in Algorithm 2.
The subroutine 𝐹 𝑖𝑛𝑑𝑃𝑎𝑡ℎ𝑠𝐼𝑛𝑠𝑖𝑑𝑒𝐿𝐶𝑍𝑠 operates on the breadth-first search principle, starting in the 𝑜𝑢𝑡(𝐿) nodes of each LCZ
∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). The nodes that must be traversed are stored in queue 𝑄. The distance from a particular node 𝑛𝑜𝑢𝑡 ∈ 𝑜𝑢𝑡(𝐿) is
tored for all the explored nodes; this distance is denoted by 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛1, 𝑛2). For each 𝐿, the paths of each 𝑖𝑛(𝐿) with the shortest
istance to 𝑜𝑢𝑡(𝐿) are selected as the output, which is denoted by 𝑃 . In Algorithm 2, 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑛) denote the set of parents of node 𝑛.
The main routine of Algorithm 1 is to continue by exploring 𝐺 using the breadth-first search principle. The exploration history

s expanded by 𝑝 when this search reaches the starting node of any path 𝑝 ∈ 𝑃 . Then, the end node of 𝑝 is added to the set of
odes from which further exploration of the graph is conducted. This behavior is performed using the 𝐺𝑒𝑡𝑁𝑒𝑥𝑡𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃 𝑎𝑡ℎ𝐼𝑛𝐿𝐶𝑍
rocedure described in Algorithm 3. For AllBorderCombinations, this procedure removes 𝑝 from 𝑃 , and for EachBorderOnce, all paths
′ ending with the already visited LCZ OUT nodes (nodes that are not in 𝑈𝑜𝑢𝑡) are removed from 𝑃 . We can remove 𝑝′ from 𝑃 if
here exists any subpath 𝑝′ of 𝑝 connecting some unvisited LCZ IN nodes to the LCZ OUT node.
Further exploration of 𝐺 continues to reach the start node of another 𝑝 ∈ 𝑃 , which then follows by repeating the behavior

escribed above. A test case is composed based on the exploration history and added to a set of test cases 𝑇 produced as the output
f the algorithm if an end node of 𝐺 is reached during exploration.

Algorithm 1: 𝑆𝑃𝐶(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,): Identify all relevant shortest paths inside the LCZs and between LCZs of 𝐺, start node
and end nodes of 𝐺, then combine them in the test cases

Input : SUT model 𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, and coverage criterion
Output: set of test cases 𝑇

1 𝑇 ← ∅, 𝑈𝑖𝑛 ← 𝑖𝑛(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), 𝑈𝑜𝑢𝑡 ← 𝑜𝑢𝑡(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
2 𝑃 ← 𝐹 𝑖𝑛𝑑𝑃𝑎𝑡ℎ𝑠𝐼𝑛𝑠𝑖𝑑𝑒𝐿𝐶𝑍𝑠(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
3 while 𝑃 ≠ ∅ do
4 PUT 𝑛𝑠 ∈ 𝐺 to 𝑄 ; ⊳ 𝑄 is a queue of nodes to traverse
5 set 𝑝𝑎𝑡ℎ as empty ; ⊳ 𝑝𝑎𝑡ℎ is a sequence of nodes
6 while 𝑄 is not empty do
7 𝑛← POP from 𝑄 ; ⊳ 𝑛 is a currently traversed node
8 if 𝑛 ∈ in(𝐺) and 𝑃 contains a path that starts in 𝑛 then
9 𝑝← 𝐺𝑒𝑡𝑁𝑒𝑥𝑡𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃 𝑎𝑡ℎ𝐼𝑛𝐿𝐶𝑍(, 𝑃 , 𝑛, 𝑈𝑖𝑛, 𝑈𝑜𝑢𝑡)
10 𝑃 ← 𝑃 ∖ {𝑝}
11 𝑜← the last node of 𝑝 ; ⊳ 𝑜 ∈ 𝑜𝑢𝑡(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
12 for each 𝑛𝑝 ∈ 𝑝 do
13 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑇𝐶_𝑠𝑡𝑒𝑝(𝑛𝑝) ← 𝑝𝑎𝑟𝑒𝑛𝑡(𝑛𝑝)
14 end
15 SET 𝑄 as empty, PUT 𝑜 to 𝑄
16 end
17 else if 𝑛 ∈ 𝑁𝑒 then
18 𝑡 is a path containing only 𝑛, 𝑡𝑒𝑚𝑝← 𝑛
19 while 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑇𝐶_𝑠𝑡𝑒𝑝(𝑡𝑒𝑚𝑝) has been set do
20 add 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑇𝐶_𝑠𝑡𝑒𝑝(𝑡𝑒𝑚𝑝) at the beginning of 𝑡
21 𝑡𝑒𝑚𝑝← 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑇𝐶_𝑠𝑡𝑒𝑝(𝑡𝑒𝑚𝑝)
22 end
23 𝑇 ← 𝑇 ∪ 𝑡
24 end
25 else
26 for each 𝑑 ∈ 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠(𝑛) do
27 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑇𝐶_𝑠𝑡𝑒𝑝(𝑑) ← 𝑛
28 end
29 end
30 end
31 end
32 return 𝑇
9

Internet of Things 22 (2023) 100706M. Klima et al.

f

a

7

b

Algorithm 2: 𝐹 𝑖𝑛𝑑𝑃𝑎𝑡ℎ𝑠𝐼𝑛𝑠𝑖𝑑𝑒𝐿𝐶𝑍𝑠(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑): Find all relevant shortest paths inside LCZs present in the SUT model 𝐺
Input : SUT model 𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
Output: set of shortest paths between 𝑖𝑛(𝐿) and 𝑜𝑢𝑡(𝐿) inside the LCZ 𝐿 for all 𝐿 ∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), denoted as 𝑃

1 𝑃 ← ∅
2 for each LCZ 𝐿 ∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) do
3 for each 𝑛𝑜𝑢𝑡 ∈ 𝑜𝑢𝑡(𝐿) do
4 SET 𝑄 as empty ; ⊳ 𝑄 is a queue of nodes to traverse
5 PUT 𝑛𝑜𝑢𝑡 to 𝑄
6 for each 𝑥 in 𝐿 except 𝑛𝑜𝑢𝑡 do
7 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑜𝑢𝑡, 𝑥) ← ∞ ; ⊳ distance equals to number of nodes of a path from 𝑛𝑜𝑢𝑡 to 𝑥
8 end
9 while 𝑄 is not empty do
10 𝑛← POP from 𝑄
11 for each 𝑝 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑛) do
12 if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑜𝑢𝑡, 𝑝) > 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑜𝑢𝑡, 𝑛) then
13 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑜𝑢𝑡, 𝑝) ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑜𝑢𝑡, 𝑛) + 1
14 PUT 𝑝 to 𝑄
15 end
16 end
17 end
18 for each 𝑛𝑖𝑛 ∈ 𝑖𝑛(𝐿) do
19 SET 𝑝𝑎𝑡ℎ as empty ; ⊳ 𝑝𝑎𝑡ℎ is a sequence of nodes
20 𝑛← 𝑛𝑖𝑛 ; ⊳ 𝑛 is a currently traversed node
21 while 𝑛 ≠ 𝑛𝑜𝑢𝑡 do
22 𝑛← 𝑥 ∈ 𝐿 such that 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛, 𝑥) is minimal
23 ADD 𝑛 at the end of 𝑝𝑎𝑡ℎ
24 end
25 ADD 𝑛 at the end of 𝑝𝑎𝑡ℎ
26 if |𝑝𝑎𝑡ℎ| > 1 then
27 𝑃 ← 𝑃 ∪ 𝑝𝑎𝑡ℎ
28 end
29 end
30 end
31 end
32 return 𝑃

7.2. Ant-colony-optimization-based algorithm (ANT)

The ANT algorithm uses the ACO principle introduced by Dorigo [46]. According to this principle, a specific algorithm was
ormulated to solve the discussed problem. The main routine of ANT is described in Algorithm 4, which accepts 𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, and
as inputs, and produces 𝑇 as the output. The following section presents the algorithm variables, their initiation, algorithm steps,
nd details on how the desirability levels are obtained and the best ant is selected.

.2.1. Algorithm variables
The following variables are used in the ANT algorithm.

• 𝛼: A constant that represents the weight of the pheromone level in the calculation.
• 𝛽: A constant that represents the weight of the desirability level in the calculation.
• 𝑁𝐶: A constant that represents the number of repetitions of an ant’s search for a path.
• 𝜌: A coefficient that represents the level of pheromone evaporation after each iteration of the ant’s search for a path.
• 𝑚: A constant that represents the number of ants is used for graph exploration.
• 𝜏𝑖𝑗 : An edge pheromone intensity (𝑖, 𝑗), {𝑖, 𝑗} ∈ 𝑁 ∈ 𝐺.
• 𝐻[(𝑖, 𝑗)]: Desirability of the edge (𝑖, 𝑗), {𝑖, 𝑗} ∈ 𝑁 ∈ 𝐺.
• 𝑐: Initial level of the 𝜏𝑖𝑗 variable.

During the experiments, the following values of the variables were found after extensively fine-tuning the algorithm to yield the
10

est results for the ANT algorithm: 𝛼 = 1, 𝛽 = 3, 𝑁𝐶 = 10, 𝜌 = 0.5, 𝑄 = 1.0, 𝑚 = 50, and 𝑐 = 1.0.

Internet of Things 22 (2023) 100706M. Klima et al.

g

o
i

g

7

o
i
6
a

7

s
e

7

𝑛
s
O

7

t
s

Algorithm 3: 𝐺𝑒𝑡𝑁𝑒𝑥𝑡𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃 𝑎𝑡ℎ𝐼𝑛𝐿𝐶𝑍(, 𝑃 , 𝑛𝑖𝑛, 𝑈𝑖𝑛, 𝑈𝑜𝑢𝑡): Return the shortest path inside LCZ from 𝑛𝑖𝑛 with respect to
iven coverage criterion
Input : coverage criterion , set of shortest paths 𝑃 , an LCZ IN node 𝑛𝑖𝑛, set of unused LCZ IN nodes 𝑈𝑖𝑛, and set of

unused LCZ OUT nodes 𝑈𝑜𝑢𝑡
Output: next shortest path 𝑝

1 𝑛𝑜𝑢𝑡 ← a node to which there exists a path from 𝑛𝑖𝑛 present in 𝑃
2 if = 𝐸𝑎𝑐ℎ𝐵𝑜𝑟𝑑𝑒𝑟𝑂𝑛𝑐𝑒 then
3 if 𝑛𝑜𝑢𝑡 ∉ 𝑈𝑜𝑢𝑡 and 𝑃 contains a path that ends in an 𝑛′𝑜𝑢𝑡 ∈ 𝑈𝑜𝑢𝑡 then
4 𝑛𝑜𝑢𝑡 ← 𝑛′𝑜𝑢𝑡
5 end
6 end
7 𝑝← a path from 𝑛𝑖𝑛 to 𝑛𝑜𝑢𝑡 that is present in 𝑃
8 𝑃 ← 𝑃 ∖ {𝑝}
9 for each 𝑛 ∈ 𝑝 do
10 for each path 𝑝′ from 𝑛 that is present in 𝑃 do
11 𝑛′𝑜𝑢𝑡 ← the end node of path 𝑝′
12 if 𝑛′𝑜𝑢𝑡 follows 𝑛 in the path 𝑝 then
13 𝑃 ← 𝑃 ∖ {𝑝′}
14 end
15 end
16 end
17 if = 𝐸𝑎𝑐ℎ𝐵𝑜𝑟𝑑𝑒𝑟𝑂𝑛𝑐𝑒 then
18 𝑃 ← 𝑃 ∖ { 𝑝 | 𝑝 ∈ 𝑃 , 𝑝 starts in 𝑛𝑖𝑛, 𝑝 leads to an 𝑛𝑥 ∉ 𝑈𝑜𝑢𝑡 }
19 end
20 return 𝑝

7.2.2. Algorithm initiation
The main ANT routine is specified in Algorithm 4. The algorithm accepts 𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, and as inputs, and produces 𝑇 as an

utput. In the initial step, we create a map that contains a set of reachable nodes 𝑈 ⊂ 𝑜𝑢𝑡(𝐿) for every node 𝑛 ⊂ 𝑖𝑛(𝐿). This map
s constructed for all LCZs 𝐿.
In Algorithm 4, the out node 𝑟 ⊂ 𝑈 that is reachable from node 𝑛 indicates that a directed path exists from 𝑛 to 𝑟. The method for

enerating traverses 𝐿. This traversal begins at the 𝑛𝑖𝑛 ∈ 𝑖𝑛(𝐿) nodes and ends at the 𝑛𝑜𝑢𝑡 ∈ 𝑜𝑢𝑡(𝐿) nodes using the BFS algorithm.
The ANT algorithm continues by repeatedly calling the ANTCore procedure (see Algorithm 5), which produces a path that

contains the LCZ border-node pairs that are then removed from the map . Algorithm 4 continues until the map is not empty.

.2.3. The ANTCore algorithm
The ANTCore procedure described in Algorithm 5 manages the traversal of ants through 𝐺. The ants were led by a combination

f desirability and pheromone disposal at the edges of 𝐺. In this algorithm, we created a list of 𝑚 ants. The map of desirabilities 𝐻 is
nitialized by calling the 𝐼𝑛𝑖𝑡𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 procedure specified in Algorithm 6, which is further described in Section 7.2.5. Algorithm
initializes the mapping , which for each node 𝑥 ∈ 𝑁 ∈ 𝐺 returns the LCZ border nodes that are reachable (mapping returns
set (𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡), where the reachable LCZ IN nodes are stored in the set 𝑅𝑖𝑛 and the reachable LCZ OUT nodes in the set 𝑅𝑜𝑢𝑡).

.2.4. Beginning of the ant’s traversal
We start by traversing 𝐺 at node 𝑛𝑠 for each ant 𝑡 ∈ 𝐴. We initialize temporary variables, such as the 𝑡 path, stored in 𝑃 , or

ets of the LCZ IN and LCZ OUT nodes 𝐵𝑖𝑛 and 𝐵𝑜𝑢𝑡 that 𝑡 covers. The traversal of 𝐺 by 𝑡 is driven by a combination of pheromone
limination and the level of desirability at the edges.

.2.5. Obtaining the desirability levels
The process of obtaining the desirability levels stored on a map 𝐻 begins with the execution of Algorithm 6, which, for each

𝑒 ∈ 𝑁𝑒, uses the 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐵𝑁𝑠 procedure specified in Algorithm 7 to create the mapping , introduced in the previous
ection. Algorithm 7 traverses 𝐺 from the end nodes to the start node using the DFS algorithm, which stores the LCZ IN and LCZ
UT nodes that are reachable from all nodes of 𝑁 ∈ 𝐺.

.2.6. Traversing 𝐺 and covering LCZ border nodes
After calculating the desirabilities of the edges, we calculated the probabilities of the moving ant from its current location 𝑖 ∈ 𝑁

o a neighboring node 𝑗 ∈ 𝑁𝑖 using edge (𝑖, 𝑗), which was inspired by Dorigo’s formula (1) in [47]. Using this probability, the ant
11

elects the node 𝑗 ∈ 𝑁𝑖 to which it moves. We use the procedure 𝑀𝑎𝑛𝑎𝑔𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝐵𝑜𝑟𝑑𝑒𝑟𝑁𝑜𝑑𝑒𝑠 described in Algorithm 9 to update

Internet of Things 22 (2023) 100706M. Klima et al.

o

7

o
p

7

r
t

7

s

Algorithm 4: 𝐴𝑁𝑇 (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,): Main routine of the ANT Algorithm which explores 𝐺 via ants and maintains a map of
covered LCZ border nodes

Input : SUT model 𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, coverage criterion ,
Output: Set of test cases 𝑇

1 is a map where a key is an LCZ IN node 𝑘 ∈ 𝑖𝑛(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) and a value is a set of LCZ OUT nodes from 𝑜𝑢𝑡(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
that can be reached from 𝑘 in 𝐺. In , an empty set can be stored for a particular key.

2 Initiate for 𝐺 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.
3 𝑇 ← ∅
4 while is not empty do
5 (𝑎, ,𝑖𝑛,𝑜𝑢𝑡) ← 𝐴𝑁𝑇𝐶𝑜𝑟𝑒(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,,)
6 𝑇 ← 𝑇 ∪ {[𝑎]}
7 for each 𝑛𝑖𝑛 ∈ 𝑖𝑛[𝑎] do
8 for 𝑛𝑜𝑢𝑡 ∈ 𝑜𝑢𝑡[𝑎] do
9 REMOVE 𝑛𝑜𝑢𝑡 from [𝑛𝑖𝑛]
10 end
11 end
12 for each 𝑛𝑖𝑛 ∈ 𝑖𝑛[𝑎] do
13 if [𝑛𝑖𝑛] = ∅ then
14 REMOVE a key 𝑛𝑖𝑛 from ; ⊳ Remove in LCZ IN node covered by 𝑎
15 end
16 end
17 end
18 return 𝑇

Algorithm 5: 𝐴𝑁𝑇𝐶𝑜𝑟𝑒(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,,) (1st part):
Traverse the SUT model by ants, who are trying to visit as much LCZ border nodes as possible; return the champion when
finished

Input : SUT model 𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, coverage criterion , a map of uncovered nodes
Output: Ant’s champion 𝑎, who found the best path among the others, , which is a map of ant paths, where key is an ant

and value is its path, 𝑖𝑛 and 𝑜𝑢𝑡, which are maps of LCZ IN and LCZ OUT, nodes covered by ants, where key is
an ant and the values are the nodes covered by this ant.

1 Set the constants for the ANT algorithm defined in 7.2.1 to: 𝛼 = 1, 𝛽 = 3, 𝑁𝐶 = 10, 𝜌 = 0.5, 𝑄 = 1.0, 𝑚 = 50, and 𝑐 = 1.0.
2 𝐴 is a set 𝑚 ants (see Section 7.2.1)
3 is a mapping of a node 𝑛 ∈ 𝐺 to a set (𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡), 𝑅𝑖𝑛 ⊂ 𝑁 ∈ 𝐺, 𝑅𝑜𝑢𝑡 ⊂ 𝑁 ∈ 𝐺, where nodes from 𝑅𝑖𝑛 are reachable from 𝑛

and nodes from 𝑅𝑜𝑢𝑡 are reachable from 𝑛. This mapping is created for all 𝑁 ∈ 𝐺 and (𝑥) denotes particular (𝑅𝑥𝑖𝑛, 𝑅
𝑥
𝑜𝑢𝑡) for

a node 𝑥.
4 ← 𝐼𝑛𝑖𝑡𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,) ; ⊳ Find LCZ border nodes reachable from each 𝑛 ∈ 𝑁 ∈ 𝐺
5 𝑐𝑜𝑢𝑛𝑡 ← 0
6 ... continues on the next page

the sets 𝐵𝑖𝑛 and 𝐵𝑜𝑢𝑡 of the covered LCZ IN and LCZ OUT nodes, respectively, based on the current path of the ant and the nature
f node 𝑗 (e.g., the LCZ IN node, uncovered LCZ OUT node, or other types).

.2.7. Choosing the best ant
The algorithm selects the best ant 𝑎 ∈ 𝐴 (champion) when all ants finish their paths and find an end node 𝑛𝑛 ∈ 𝑁𝑒. The process

f finding the champion is specified in Algorithm 10, which iterates 𝐴 and selects the best ant based on the found path. The best
ath contains the highest number of LCZ border nodes that are not yet covered and has the shortest length.

.2.8. ANTCore repetitions
The steps described in Sections 7.2.4 to 7.2.7 are repeated 𝑁𝐶 several times so that the pheromone levels have a more significant

effect. After completing the repetition, we select the champion 𝑎 ∈ 𝐴 again using the 𝐹 𝑖𝑛𝑑𝐶ℎ𝑎𝑚𝑝𝑖𝑜𝑛 procedure (Algorithm 10) and
eturn it to the main 𝐴𝑁𝑇 routine (Algorithm 4). The map of the uncovered LCZ border nodes is updated based on 𝑎’s path and
he LCZ border nodes that it contains.

.3. Enforced Prime Path algorithm (EPP)

The EPP algorithm first creates a set of test requirements to satisfy the test coverage criteria . Then, it uses an existing
et-covering algorithm for prime path search to find 𝑇 .
12

Internet of Things 22 (2023) 100706M. Klima et al.

a
n
a

Algorithm 5: 𝐴𝑁𝑇𝐶𝑜𝑟𝑒(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,,) (2nd part)
6 while 𝑐𝑜𝑢𝑛𝑡 ≤ 𝑁𝐶 do
7 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1
8 for 𝑒𝑎𝑐ℎ 𝑡 ∈ 𝐴 do
9 Place ant 𝑡 to position 𝑛𝑠
10 𝑃 ← empty path ; ⊳ 𝑃 is a path of ant 𝑡
11 𝑃𝐿 ← empty path ; ⊳ 𝑃𝐿 is a path of ant 𝑡 through an LCZ 𝐿 ∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
12 𝐵𝑖𝑛 ← ∅ ; ⊳ A set of LCZ IN nodes covered by ant 𝑡
13 𝐵𝑜𝑢𝑡 ← ∅ ; ⊳ A set of LCZ OUT nodes covered by ant 𝑡
14 𝑛𝑖𝑛 ← 𝑛𝑖𝑙 ; ⊳ The last LCZ IN node reached by ant 𝑡 during its path
15 while 𝑡 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑛𝑒 do
16 𝑖 ← current position of 𝑡 ; 𝑁𝑖 ← set of 𝑖 descendants ; ⊳ 𝑖 is a currently iterated node
17 𝐻 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝐺, , , 𝑖, 𝑛𝑖𝑛, 𝑃 , , 𝐵𝑖𝑛, 𝐵𝑜𝑢𝑡)
18 𝐸𝑁𝑖 is a map where a value is a number < 0, 1 > of the probability that the ant 𝑡 moves to 𝑗 ∈ 𝑁𝑖 through the

edge 𝑥 incoming to 𝑗 and the key is 𝑥
19 for all nodes 𝑗 ∈ 𝑁𝑖 do

20 𝐸𝑁𝑖 [(𝑖, 𝑗)] ←
(𝜏𝑖𝑗)𝛼 ⋅ (𝐻[(𝑖, 𝑗)])𝛽
∑

𝑙∈𝑁𝑖

𝜏𝑖𝑙 ⋅𝐻[(𝑖, 𝑙)]
; ⊳ Store the probability of ant 𝑡 moving to node 𝑗 by edge (𝑖, 𝑗)

21 end
22 Randomly select the next node 𝑗 ∈ 𝑁𝑖 to move the ant 𝑡 in, using edge (𝑖, 𝑗). In this selection, the probability

𝐸𝑁𝑖 [(𝑖, 𝑗)] is used.
23 if 𝑐𝑜𝑝((𝑖, 𝑗)) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
24 Add (𝑖, 𝑗) at the end of 𝑃𝐿
25 end
26 Add (𝑖, 𝑗) at the end of 𝑃 ; Move 𝑡 from node 𝑖 to the neighboring node 𝑗 using edge (𝑖, 𝑗)
2727 if 𝑗 is a key in then
2828 𝑛𝑖𝑛 ← 𝑗 ; ⊳ node 𝑗 is uncovered LCZ IN node
29 end
3030 else if 𝑗 is anywhere in values of then
3131 𝐵𝑖𝑛 = 𝐵𝑖𝑛 ∪ {𝑛𝑖𝑛}, 𝐵𝑜𝑢𝑡 = 𝐵𝑜𝑢𝑡 ∪ {𝑗}
3232 for each node 𝑥 in 𝑃𝐿 from the beginning of 𝑃𝐿 do
3333 𝑃 ′

𝐿 ← part of 𝑃𝐿 starting with 𝑥
3434 for each node 𝑝′ in 𝑃 ′

𝐿 from the beginning of 𝑃 ′
𝐿 do

3535 (𝐵𝑖𝑛, 𝐵𝑜𝑢𝑡) ←𝑀𝑎𝑛𝑎𝑔𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝐵𝑜𝑟𝑑𝑒𝑟𝑁𝑜𝑑𝑒𝑠(𝑥, 𝑝′, 𝐵𝑖𝑛, 𝐵𝑜𝑢𝑡, , , 𝑃𝐿)
36 end
37 end
38 end
3939 [𝑡] ← 𝑃 , 𝑖𝑛[𝑡] ← 𝐵𝑖𝑛, 𝑜𝑢𝑡[𝑡] ← 𝐵𝑜𝑢𝑡
4040 𝑎← 𝐹 𝑖𝑛𝑑𝐶ℎ𝑎𝑚𝑝𝑖𝑜𝑛(𝐴,𝑖𝑛,𝑜𝑢𝑡,) ; ⊳ Select the champion 𝑎 from the set of ants 𝐴
4141 for each edge (𝑖, 𝑗) in [𝑎] do ; ⊳ |[𝑎]| denotes the number of nodes in path
4242 𝜏𝑖𝑗 ← 𝜏𝑖𝑗 +

1
|[𝑎]| ; ⊳ Deposit pheromone on edges that were used, for 𝜏𝑖𝑗 refer to Section 7.2.1

43 end
4444 for each (𝑖, 𝑗) ∈ 𝐸 ∈ 𝐺 do
4545 𝜏𝑖𝑗 ← (1 − 𝜌) ∗ 𝜏𝑖𝑗 ; ⊳ Pheromone decay of all edges, for 𝜌 refer to Section 7.2.1
46 end
4747 𝑎← 𝐹 𝑖𝑛𝑑𝐶ℎ𝑎𝑚𝑝𝑖𝑜𝑛(𝐴,𝑖𝑛,𝑜𝑢𝑡,) ; ⊳ The best in the last iteration
4848 return (𝑎, ,𝑖𝑛,𝑜𝑢𝑡)

The core of the EPP is based on a greedy set-covering algorithm, and it aims to solve the minimum-cost test-path problem by
dopting approximation algorithms for the shortest superstring problem. This algorithm was introduced by Li et al. [9]. We have
ot yet identified a more recent algorithm that can solve the problem suggested in this study. The inputs to the greedy set-covering
lgorithm are a set of test requirements 𝑅 and a small set of test paths 𝑇𝑃 , where a test path is a path in 𝐺. A set of test requirements
is a set of elements of a system that must be covered by tests. In our case, it is a set of specific paths through 𝐺. The test paths
are prime paths, which implies that they are simple and do not appear as sub-paths of other simple paths. Furthermore, simple paths
13

have no internal loops, and only the first and last nodes of the path can repeat.

Internet of Things 22 (2023) 100706M. Klima et al.

O
l
O

7

c
p
r
s

8

m
t

Algorithm 6: 𝐼𝑛𝑖𝑡𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,): Traverse 𝐺 and find which LCZ border nodes are reachable from each
𝑛 ∈ 𝑁 ∈ 𝐺

Input : SUT model 𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and a map of uncovered nodes
Output: Mapping that for each node 𝑥 ∈ 𝑁 ∈ 𝐺 returns which LCZ border nodes can be reached from 𝑥

1 ← ∅
2 for each 𝑛𝑒 ∈ 𝑁𝑒 do
3 𝑉 ← ∅ ; ⊳ A set to store visited nodes
4 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐵𝑁𝑠(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, , , 𝑉 , 𝑛𝑒) ; ⊳ Fill the map
5 end
6 return

Algorithm 7: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐵𝑁𝑠(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, , , 𝑉 , 𝑛): Traverse the SUT model 𝐺 to find from which nodes we can
reach which LCZ border nodes

Input : SUT model 𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, a map of uncovered LCZ border nodes , a set of already visited nodes 𝑉 , mapping
that for each node 𝑥 ∈ 𝑁 ∈ 𝐺 returns which LCZ border nodes can be reached from 𝑥, traversed node 𝑛

Output: Updated after all recursive iterations of this subroutine
1 for each 𝑝 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑛) do
2 if 𝑝 ∉ 𝑉 then
3 𝑉 ← 𝑉 ∪ 𝑝
4 (𝑅𝑝𝑖𝑛, 𝑅

𝑝
𝑜𝑢𝑡) ← (𝑝)

5 if 𝑛 ∈ 𝑖𝑛(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) and 𝑛 is a key in then
6 𝑅𝑝𝑖𝑛 ← 𝑅𝑝𝑖𝑛 ∪ 𝑛
7 end
8 if 𝑛 ∈ 𝑜𝑢𝑡(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) and contains a value 𝑛 for any key then
9 𝑒 is an edge from 𝑝 to 𝑛
10 if 𝑐𝑜𝑝(𝑒) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
11 𝑅𝑝𝑜𝑢𝑡 ← 𝑅𝑝𝑜𝑢𝑡 ∪ 𝑛
12 end
13 end
14 (𝑝) ← (𝑅𝑝𝑖𝑛, 𝑅

𝑝
𝑜𝑢𝑡)

15 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐵𝑁𝑠(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, , , 𝑉 , 𝑝)
16 end
17 end

7.3.1. The main algorithm
The main procedure of the EPP is described in Algorithm 11, it begins with a sub-routine for constructing a set of test requirements

𝑅 defined in Algorithm 12, which iterates and determines the shortest paths from all 𝑥 ∈ 𝑖𝑛(𝐿) to all 𝑦 ∈ 𝑜𝑢𝑡(𝐿). This step is
only necessary if the AllBorderCombinations coverage criterion is selected. We added all of the shortest paths that we found to 𝑅.
therwise, the algorithm reduces the set of paths found when EachBorderOnce coverage is selected. We sorted the paths by their
engths and stored them in a new list . Subsequently, we traverse and add to 𝑅 only those paths that contain LCZ IN or LCZ
UT nodes that have not yet been added to 𝑅.

.3.2. Greedy set-covering algorithms
The set of test requirements 𝑅 is an input to Li’s 𝑠𝑒𝑡𝐶𝑜𝑣𝑒𝑟𝑖𝑛𝑔𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 procedure [9], chaining them together into one long path,

alled the super-test requirement ∏. The 𝑔𝑒𝑡𝑆𝑚𝑎𝑙𝑙𝑆𝑒𝑡𝑂𝑓𝑇 𝑒𝑠𝑡𝑃 𝑎𝑡ℎ𝑠 procedure traverses 𝐺 and generates a set of all possible test
aths, 𝑇𝑃 . Finally, 𝑇𝑃 , ∏, and 𝐺 are inputs to Li’s 𝑠𝑝𝑙𝑖𝑡𝑆𝑢𝑝𝑒𝑟𝑇 𝑒𝑠𝑡𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 procedure [9] based on 𝑇𝑃 , which splits a super-test
equirement ∏ into a set of final test paths 𝑇 that starts in 𝑛𝑠 and ends in one of 𝑛𝑒 ∈ 𝑁𝑒. The selected test-coverage criterion is
atisfied by 𝑇 because the selected test-coverage criterion is reflected by the set of test requirements 𝑅.

. Experimental evaluation

In the experiments, we compared the test cases created by the proposed SPC, ANT, and EEP algorithms for a set of 150 SUT
odels and test coverage criteria introduced in Section 5. The evaluation criteria defined in Section 6 were employed to compare
he test cases. In this section, we illustrate the experimental method and its setup, and present the results of the experiments.
14

Internet of Things 22 (2023) 100706M. Klima et al.
Algorithm 8: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝐺, , , 𝑖, 𝑛𝑖𝑛, 𝑃 , , 𝐵𝑖𝑛, 𝐵𝑜𝑢𝑡) (1st part): Calculates desirabilities of the edges according
to the number of not yet covered border nodes reachable from surrounding nodes.

Input : SUT model 𝐺, map of uncovered LCZ border nodes , coverage criterion , node 𝑖, uncovered LCZ IN node 𝑛𝑖,
path 𝑃 of ant, mapping that for each node 𝑛 ∈ 𝑁 ∈ 𝐺 returns which LCZ border nodes it reaches, set of covered
LCZ IN nodes 𝐵𝑖𝑛, set of covered LCZ OUT nodes 𝐵𝑜𝑢𝑡,

Output: Map 𝐻 for ant-routing to neighbors of 𝑖 where, key is an edge and value is a desirability.
1 Set 𝐻 as empty
2 For 𝑒𝑎𝑐ℎ 𝑒𝑑𝑔𝑒 𝑡 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 do
3 ℎ𝑡 ← 0 ; ⊳ Number of reachable uncovered LCZ border nodes when using edge 𝑡
4 𝑗 ← target node of edge 𝑡
5 (𝑅𝑗𝑖𝑛, 𝑅

𝑗
𝑜𝑢𝑡) ← (𝑗) ; ⊳ Symbols defined in Algorithm 5

6 𝑅𝑗𝑖𝑛
′ ← ∅ ; ⊳ Uncovered LCZ IN nodes reachable from 𝑗

7 𝑅𝑗𝑜𝑢𝑡
′ ← ∅ ; ⊳ Uncovered LCZ OUT nodes reachable from 𝑗

8 if 𝑗 ∈ 𝑅𝑗𝑖𝑛 then
9 𝑅𝑗𝑖𝑛

′ ← 𝑅𝑗𝑖𝑛 ⧵ 𝐵𝑖𝑛
10 end
11 if 𝑗 ∈ 𝑅𝑗𝑜𝑢𝑡 then
12 for each LCZ OUT node 𝑟 ∈ 𝑅𝑗𝑜𝑢𝑡 do
13 if 𝑟 ∉ 𝐵𝑜𝑢𝑡 then
14 𝑅𝑗𝑜𝑢𝑡

′ ← 𝑅𝑗𝑜𝑢𝑡
′ ∪ {𝑟}

15 end
16 end
17 end
18 ... continues on the next page

Fig. 3. Oxygen application with an SUT model, highlighted LCZs, and a test case.
15

Internet of Things 22 (2023) 100706M. Klima et al.
Algorithm 8: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝐺, , , 𝑖, 𝑛𝑖𝑛, 𝑃 , , 𝐵𝑖𝑛, 𝐵𝑜𝑢𝑡) (2nd part)

18

19 if 𝑡 is a LCZ edge then
20 𝐿 is a LCZ which contains 𝑡
21 if 𝑛𝑖𝑛 is not nil then
22 𝑅𝑗𝑜𝑢𝑡

′ ← 𝑅𝑗𝑜𝑢𝑡
′ ⧵ {𝑖} ; ⊳ Because 𝑖 is uncovered LCZ OUT node

23 𝑅𝑗𝑖𝑛
′ ← 𝑅𝑗𝑖𝑛

′ ⧵ 𝑖𝑛(𝐿)
24 ℎ𝑡 ← 1 + |𝑅𝑗𝑖𝑛

′
| + |𝑅𝑗𝑜𝑢𝑡

′
|

25 end
26 else if last edge of path 𝑃 is not a LCZ edge and 𝑖 ∈ and 𝑖 ∉ 𝐵𝑖𝑛 then
27 𝑅𝑗𝑖𝑛

′ ← 𝑅𝑗𝑖𝑛
′ ⧵ {𝑗} ; ⊳ Because 𝑗 is uncovered LCZ IN node

28 ℎ𝑡 ← 1 + |𝑅𝑗𝑖𝑛
′
| + |𝑅𝑗𝑜𝑢𝑡

′
|

29 end
30 else
31 𝑅𝑗𝑖𝑛

′ ← 𝑅𝑗𝑖𝑛
′ ⧵ 𝑜𝑢𝑡(𝐿)

32 end
33 end
34 else if 𝑛𝑖𝑛 is not nil and (𝑖 ∈ or = 𝐸𝑎𝑐ℎ𝐵𝑜𝑟𝑑𝑒𝑟𝑂𝑛𝑐𝑒) then
35 end
36 ℎ𝑡 ← 1 + |𝑅𝑗𝑖𝑛

′
| + |𝑅𝑗𝑜𝑢𝑡

′
|

37 else if 𝑛𝑖𝑛 is nil and 𝑖 ∈ and 𝑖 ∉ 𝐵𝑖𝑛 then
38 ℎ𝑡 ← 0 ; ⊳ To avoid reaching the border of LCZ zone
39 end
40 else
41 ℎ𝑡 ← |𝑅𝑗𝑖𝑛

′
| ; ⊳ 𝑡 is leading to a LCZ OUT node

42 end
43 if ℎ𝑡 > 0 then
44 ℎ𝑡 ←

1
−2ℎ𝑡

+ 1

45 end
46 else
47 ℎ𝑡 ← 0
48 end
49 PUT ℎ𝑡 to 𝐻 with key 𝑡
50 end
51 return 𝐻

8.1. Implementation of the algorithms

SPC, ANT, and EEP algorithms were implemented in Oxygen.2 Oxygen is an MBT platform developed by our research group. It
is an open-source freeware platform created in Java 1.8 [48]. We extended the graphical editor of the SUT model for the creation
of 𝐺.

An example of an SUT model constructed with oxygen is depicted in Fig. 3. The figure presents the UML Activity Diagram of a
Smart Home inspired by the system proposed by Aravindan et al. [49]. The central server of the Smart Home communicates over
a network with three subsystems. The first is a database server, and nodes B - C - D - E - F - Q model a subprocess handled by this
subsystem. The second subsystem constitutes a central IoT server (the sub-process handled by this subsystem is modeled by nodes
H - I - J - K). The last subsystem is a Raspberry Pi with connected sensors and actuators (the subprocess provided by this subsystem
is modeled by nodes N - O - P - END T). The probability of a network outage is higher than the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 level when the central

2 Java 1.8 executable JAR file packed into a ZIP archive available at http://still.felk.cvut.cz/download/oxygen_lnct.zip.
16

http://still.felk.cvut.cz/download/oxygen_lnct.zip

Internet of Things 22 (2023) 100706M. Klima et al.
Algorithm 9: 𝑀𝑎𝑛𝑎𝑔𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝐵𝑜𝑟𝑑𝑒𝑟𝑁𝑜𝑑𝑒𝑠(𝑛𝑖𝑛, 𝑛𝑜𝑢𝑡, 𝐵𝑖𝑛, 𝐵𝑜𝑢𝑡, , , 𝑃𝐿): Cover the LCZ IN and LCZ OUT nodes in the
parameters by adding them to 𝐵𝑖𝑛 and 𝐵𝑜𝑢𝑡

Input : LCZ IN node 𝑛𝑖𝑛 and LCZ OUT node 𝑛𝑜𝑢𝑡 to be covered, a set of covered LCZ IN nodes 𝐵𝑖𝑛 and LCZ OUT nodes 𝐵𝑜𝑢𝑡,
a map of uncovered LCZ border nodes, coverage criterion , a set 𝑃𝐿 where a path through LCZ 𝐿 is stored

Output: Updated sets 𝐵𝑖𝑛 and 𝐵𝑜𝑢𝑡
1 if 𝑛𝑖𝑛 ∈ 𝐵𝑖𝑛 then
2 if 𝑛𝑜𝑢𝑡 ∈ 𝐵𝑜𝑢𝑡 then
3 𝐵𝑜𝑢𝑡 = 𝐵𝑜𝑢𝑡 ∪ {𝑛𝑜𝑢𝑡}
4 if 𝑛𝑖𝑛 = 𝑛𝑜𝑢𝑡 and 𝑛𝑖𝑛 ∈ 𝐵𝑜𝑢𝑡 and |𝑃𝐿| > 0 then
5 𝐵𝑜𝑢𝑡 = 𝐵𝑜𝑢𝑡 ∪ {𝑛𝑖𝑛}
6 end
7 end
8 end
9 if = 𝐸𝑎𝑐ℎ𝐵𝑜𝑟𝑑𝑒𝑟𝑂𝑛𝑐𝑒 then
10 for each 𝑢𝑜𝑢𝑡 anywhere in values of do
11 if 𝑢𝑜𝑢𝑡 = 𝑛𝑜𝑢𝑡 then
12 𝐵𝑜𝑢𝑡 = 𝐵𝑜𝑢𝑡 ∪ {𝑛𝑜𝑢𝑡}
13 end
14 end
15 𝐵𝑖𝑛 = 𝐵𝑖𝑛 ∪ {𝑛𝑖𝑛}
16 end
17 else
18 if [𝑛𝑖𝑛] ⊂ 𝐵𝑜𝑢𝑡 then
19 𝐵𝑖𝑛 = 𝐵𝑖𝑛 ∪ {𝑛𝑖𝑛}
20 end
21 end
22 return (𝐵𝑖𝑛, 𝐵𝑜𝑢𝑡)

Algorithm 10: 𝐹 𝑖𝑛𝑑𝐶ℎ𝑎𝑚𝑝𝑖𝑜𝑛(𝐴,𝑖𝑛,𝑜𝑢𝑡,): Iterate a set of ants 𝐴 and find the one that visits the biggest number of
uncovered yet LCZ border nodes using the smallest number of steps

Input : Set of ants 𝐴, map of LCZ IN nodes 𝑖𝑛 visited by each ant, map of LCZ OUT nodes 𝑜𝑢𝑡 visited by each ant, map
of each ant paths

Output: Ant 𝑎 that found the most efficient path
1 𝑎← any ant from 𝐴
2 for each 𝑡 ∈ 𝐴 do
3 if (𝑖𝑛[𝑡] + 𝑜𝑢𝑡[𝑡]) > (𝑖𝑛[𝑎] + 𝑜𝑢𝑡[𝑎]) then
4 𝑎← 𝑡
5 end
6 else if (𝑖𝑛[𝑡] + 𝑜𝑢𝑡[𝑡]) = (𝑖𝑛[𝑎] + 𝑜𝑢𝑡[𝑎]) then
7 if |[𝑡]| < |[𝑎]| then
8 𝑎← 𝑡
9 end
10 end
11 end
12 return a

server communicates with external subsystems. Therefore, LCZ zones were formed and visually separated from the rest of the graph
by a light brown color. Additionally, the symbols of the LCZ IN and LCZ OUT nodes are light brown. In the left application panel,
the 𝑃 generated by the SPC algorithm is visible, and these are denoted as test situations.

A pop-up window opens with individual test cases when the user clicks on the item. This test case is visually highlighted in the
model when the user selects test cases from the list. In the sample presented in Fig. 3, we can observe the highlighted test case
(composed of nodes START - A - B - F - C - G - H - J - R - P - O - END T).

Part of the Oxygen platform (development version) includes a module for comparing algorithms, which we configured for this
study. This comparison module allows multiple algorithms to be executed on a given set of SUT models (saved in oxygen format).
17

When test cases are generated for an SUT model, the module computes the defined properties (herein, a set of evaluation criteria;

Internet of Things 22 (2023) 100706M. Klima et al.

o

Algorithm 11: EPP(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,): The main routine of the EPP algorithm which creates a set of test requirements 𝑅 to
tour through LCZs and using this set, it constructs 𝑇 as a set of prime paths containing these test requirements

Input : SUT model 𝐺, coverage criterion , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
Output: set of test cases 𝑇

1 𝑅 ← getTestRequirements(𝐺, , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
2
∏

← setCoveringAlgorithm(𝐺, 𝑅) ⊳ Defined in [9]
3 𝑇𝑃 ← getSmallSetOfTestPaths(𝐺) ⊳ Defined in [9]
4 𝑇 ← splitSuperTestRequirement(𝐺, ∏, 𝑇𝑃) ⊳ Defined in [9]
5 return 𝑇

Algorithm 12: 𝐺𝑒𝑡𝑇 𝑒𝑠𝑡𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠(𝐺,, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑): Construct a set of test requirements 𝑅 that would be used in generation
of 𝑇 to tour all 𝐿 ∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) so that would be satisfied.

Input : SUT model 𝐺, coverage criterion , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
Output: set of test requirements 𝑅

1 𝑅 ← ∅
2 if = 𝐴𝑙𝑙𝐵𝑜𝑟𝑑𝑒𝑟𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 then
3 for each 𝐿 ∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) do
4 for each 𝑥 ∈ 𝑖𝑛(𝐿) do
5 for each 𝑦 ∈ 𝑜𝑢𝑡(𝐿) do
6 𝑅 ← 𝑅 ∪ { the shortest path from 𝑥 to 𝑦 leading through nodes inside 𝐿 }
7 end
8 end
9 end
10 return 𝑅
11 end
12 if = 𝐸𝑎𝑐ℎ𝐵𝑜𝑟𝑑𝑒𝑟𝑂𝑛𝑐𝑒 then
13 for each 𝐿 ∈ (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) do
14 for each 𝑥 ∈ 𝑖𝑛(𝐿) do
15 for each 𝑦 ∈ 𝑜𝑢𝑡(𝐿) do
16 𝑅𝑙 ← 𝑅𝑙 ∪ { the shortest path from 𝑥 to 𝑦 leading through nodes inside 𝐿 }
17 end
18 end
19 ← list of paths from 𝑅𝑙 sorted in ascending order of lengths
20 𝐿𝑖𝑛 ← 𝑖𝑛(𝐿), 𝐿𝑜𝑢𝑡 ← 𝑜𝑢𝑡(𝐿)
21 for each 𝑝 ∈ starting with the shortest path do
22 𝑝𝑖𝑛 ← the first node in 𝑝, 𝑝𝑜𝑢𝑡 ← the last node in 𝑝
23 if 𝑝𝑖𝑛 ∈ 𝐿𝑖𝑛 then
24 𝐿𝑖𝑛 ← 𝐿𝑖𝑛∖{𝑝𝑖𝑛}, 𝐿𝑜𝑢𝑡 ← 𝐿𝑜𝑢𝑡∖{𝑝𝑜𝑢𝑡}
25 𝑅 ← 𝑅 ∪ {𝑝}
26 end
27 else if 𝑝𝑜𝑢𝑡 ∈ 𝐿𝑜𝑢𝑡 then
28 𝐿𝑜𝑢𝑡 ← 𝐿𝑜𝑢𝑡∖{𝑝𝑜𝑢𝑡}
29 𝑅 ← 𝑅 ∪ {𝑝}
30 end
31 end
32 end
33 return 𝑅
34 end

refer to Section 6). Subsequently, the module exports the results in a consolidated summary report in the CSV file, which enables
further analysis and processing of the data.

8.2. Experiment method and set-up

To compare the SPC, ANT, and EEP algorithms, we prepared 150 models for different SUTs that varied by |𝑁|, |𝐸|, number
f LCZs (denoted as ||), number of potential LCZ IN and OUT nodes (denoted as |𝑖𝑛(𝐺)| and |𝑜𝑢𝑡(𝐺)|), number of cycles (𝑐𝑦𝑐𝑙𝑒𝑠),
18

Internet of Things 22 (2023) 100706M. Klima et al.

L

a
a
t
i
o
i
c

Table 2
Overall properties of SUT models used in the experiments.

|𝑁| |𝐸| 𝑑𝑒𝑔(𝑛) |𝑁𝑒| 𝑐𝑦𝑐𝑙𝑒𝑠 || |𝑖𝑛(𝐺)| |𝑜𝑢𝑡(𝐺)| |𝜒(𝐺)|

𝑀𝐼𝑁 19 26 2.39 1 0 1 1 1 1
𝑀𝐴𝑋 442 606 4.26 21 54 4 18 18 32
𝑥 66.95 101.73 3.15 3.24 6.85 2.23 4.79 5.15 5.53
𝑥 40 60.5 3.15 3 3 2 4 5 4

average node degree (𝑑𝑒𝑔(𝑛)), and |𝑁𝑒|. Various methods were generated to create the SUT model. We considered 11 real projects
with documented process models,3 which we transformed into directed graphs with LCZs. We created 11 other models by relocating
the LCZs in these models. We constructed another 98 models that varied according to the number of nodes, edges, and LCZs. These
models do not represent certain existing systems. However, they are based on the topology of existing system models created to
closely resemble their topology. In particular, they possess sufficient flexibility for creating sufficient model variants for experiments.
We generated another 30 models using a specialized generator that we implemented to further extend the variability of the input
set. The inputs to this generator are |𝑁|, |𝐸|, |𝑁𝑒|, 𝑐𝑦𝑐𝑙𝑒𝑠, the number of LCZs ||, and for each LCZ 𝐿, the number of nodes, edges,
cycles, 𝑖𝑛(𝐿), and 𝑜𝑢𝑡(𝐿). 𝐺 is generated as the output.

We extend the SUT models by simulating the defects caused by limited network connectivity to evaluate the effectiveness of the
generated 𝑇 in detecting these defects. Two scenarios can occur based on the problem description presented in Section 3. First, a
defect is present at the border node of an LCZ; this defect is activated when the border node is visited during a process flow in the
SUT. Given the test coverage criteria defined in Section 5, these defects were detected via LNCT. Thus, adding such defects to the
evaluation was not considered a necessary step.

Second, a defect can be more complex and simulated as a pair (𝑛𝑜𝑢𝑡, 𝑛𝑏𝑎𝑐𝑘), where 𝑛𝑜𝑢𝑡 ∈ 𝑁 denotes a node of an SUT process
model 𝐺 in which the network connectivity is disrupted, which affects the SUT, and the defect is activated and demonstrated if the
process flow goes to a node 𝑛𝑏𝑎𝑐𝑘 ∈ 𝑁 . We added a set of such simulated defects (𝑛𝑜𝑢𝑡, 𝑛𝑏𝑎𝑐𝑘) to the created SUT models; we denote
the set of these defects in an SUT model 𝐺 as 𝜒(𝐺).

The number of (𝑛𝑜𝑢𝑡, 𝑛𝑏𝑎𝑐𝑘) defect pairs in each 𝐺 was set as a random number in the interval ranging from 1
3 || to

2
3 ||, and

both interval boundaries were rounded to the nearest integer. In every LCZ, where defect pairs are generated, their number was
equal to a random number in the interval ranging from 1

3 to
2
3 of the total number of combinations of the reachable LCZ IN and

CZ OUT nodes of this LCZ, both of which are rounded to the nearest integer.
The overall properties of the SUT models employed in the experiments are summarized in Table 2, in which we present the

minimal (𝑀𝐼𝑁), maximal (𝑀𝐴𝑋), average (𝑥), and median (𝑥) values for the individual model properties, as discussed previously.
The computation of 𝑇 was performed on a machine running the Windows 10 platform and Java version 15.0.1 with the following

hardware configuration: Intel(R) Core(TM) i5-10210U CPU @ 1.60 GHz, clock frequency of 2.11 GHz, 16 GB RAM, with an SSD
disk.

8.3. Evaluation results

We describe the results of the EPP, SPC, and ANT algorithms for the coverage criteria specified in Section 5. The overall results
of the algorithm are presented in Section 8.3.1. As presented in Section 8.3.2, the algorithm is analyzed, which yields the optimal
results for the individual SUT models. Finally, we analyzed the effectiveness with which test cases produced by the individual
algorithms detected the simulated limited connectivity network defects that are present in the SUT models.

8.3.1. Properties of test sets produced by the compared algorithms
First, we compare the properties of 𝑇 generated by the individual algorithms using the evaluation criteria introduced in Table 1.

The results are averaged for all 150 SUT models for the AllBorderCombinations test-coverage criterion summarized in Table 3 and
are presented in Fig. 4. The results for the EachBorderOnce criterion are summarized in Table 4 and are further visualized in Fig. 6.

For the AllBorderCombinations coverage, the ANT algorithm exhibits a significantly lower average value of |𝑇 | than the EPP
nd SPC algorithms, yielding similar results for this criterion. The average ANT |𝑇 | is 50% smaller than the average |𝑇 | of the EPP
lgorithm. The average |𝑇 | of EPP is only 1.8% smaller than the average |𝑇 | of the SPC (see Table 3 and Fig. 4). Furthermore,
he ANT algorithm outperformed the EPP and SPC in terms of the average total length of test cases 𝑙(𝑇). The ANT’s average 𝑙(𝑇)
s 15% smaller than the EPP and 20% smaller than the SPC. Considering the criterion 𝑏_𝑛𝑜𝑑𝑒𝑠 that represents the average number
f border nodes in 𝑇 , the ANT algorithm yields the superior result, which is approximately 26% less than the EPP, and its result
s approximately 1.5% smaller than that of the SPC algorithm. The results of the ANT algorithm for |𝑇 |, 𝑙(𝑇), and 𝑏_𝑛𝑜𝑑𝑒𝑠 are
ompensated by the longer test cases produced by this algorithm. Considering |𝑡|, the average value of the results rendered by the
ANT algorithm is 85% higher than that of the SPC algorithm and 90% higher than that of the EPP algorithm.

Table 3 lists the average runtimes of the compared algorithms in milliseconds. For this criterion, EPP emerges as the fastest
algorithm with an average runtime of 3.96 ms, which is followed by SPC with an average runtime of 8.44 ms. The ANT algorithm

3 List of the projects is available in XLSX, CSV, Open Excel, and PDF formats at: http://still.felk.cvut.cz/lnct/.
19

http://still.felk.cvut.cz/lnct/

Internet of Things 22 (2023) 100706M. Klima et al.

a
i

c

a
w

Fig. 4. Algorithm and portfolio strategy comparison for 𝐴𝑙𝑙𝐵𝑜𝑟𝑑𝑒𝑟𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 coverage through the evaluation criteria .

considered a considerably longer time to compute 𝑇 , i.e., 190.05 ms on average. The longest run time measured during the
experiments are 65.30 ms for EPP (for SUT model 𝑖𝑑 = 137, |𝑁| = 221, and |𝐸| = 377, refer to Table 2), followed by 0.54 s
for SPC (SUT model 𝑖𝑑 = 121, |𝑁| = 83, and |𝐸| = 144) and by 6.22 s for ANT (SUT model 𝑖𝑑 = 148, |𝑁| = 376, and |𝐸| = 522).
For the largest SUT model (|𝑁| = 442 and |𝐸| = 606, 𝑖𝑑 = 150 in Table 2), the runtime of the SPC algorithm is 13.90 ms, followed
by those of the EPP algorithm with 51.88 ms and ANT algorithm with 1.39 s.

The results for |𝑇 | are similar to those for AllBorderCombinations for the EachBorderOnce coverage criteria. The ANT algorithm
possesses the smallest average size of the produced test set, which is 41% smaller than that of the average |𝑇 | for the test sets
produced by SPC, and 41% smaller than that of the average |𝑇 | for the EPP algorithm (refer to Table 4 and Fig. 6). In contrast, the
verage 𝑙(𝑇) differs for EachBorderOnce coverage compared to AllBorderCombinations coverage. The average 𝑙(𝑇) is approximately
dentical for the ANT and SPC algorithms, with a difference of only approximately 0.5
The average numbers of unique nodes 𝑢_𝑛𝑜𝑑𝑒𝑠(𝑇) and unique edges 𝑢_𝑒𝑑𝑔𝑒𝑠(𝑇) contained in 𝑇 for the EachBorderOnce coverage

criteria are similar to those for the previous AllBorderCombinations coverage. The ANT algorithm visits the largest number of unique
nodes and edges on average, whereas the EPP algorithm visits the smallest number of unique nodes and edges on average. The ANT
possesses 11% more 𝑢_𝑛𝑜𝑑𝑒𝑠(𝑇) and 13% more 𝑢_𝑒𝑑𝑔𝑒𝑠(𝑇) on average compared with the same criteria for the test sets produced by
the EPP algorithm, and 9% more 𝑢_𝑛𝑜𝑑𝑒𝑠(𝑇) and 7% more 𝑢_𝑒𝑑𝑔𝑒𝑠(𝑇) produced by the SPC algorithm.

The trend in the average value of |𝑡| is similar for the EachBorderOnce criterion compared to the previous AllBorderCombinations
overage. The test sets produced by the ANT algorithm exhibit more than an 87% larger average |𝑡| than those produced by the
SPC algorithm. Moreover, they have a 97% larger average |𝑡| than the EPP algorithm, which produced test sets with the shortest
verage length of test cases. For EachBorderOnce, the EPP algorithm outperformed the others in the length dispersion criterion 𝑠(𝑇)
hich is 15% lower than the average 𝑠(𝑇) of the SPC algorithm and 62% lower than the average 𝑠(𝑇) of the ANT algorithm.
The SPC and EPP algorithms yielded the same result equal to 0.19 for the average 𝑒𝑓𝑓 _𝑏_𝑛𝑜𝑑𝑒𝑠(𝑇) ratio, which is 17% less than

the average 𝑒𝑓𝑓 _𝑏_𝑛𝑜𝑑𝑒𝑠(𝑇) of 0.23.
Considering the average runtime of the algorithms (refer to the last line of Table 4), the EPP emerges as the fastest algorithm

with an average runtime of 3.27 ms, which is closely followed by the SPC with an average runtime of 4.45 ms. Similarly, as in the
AllBorderCombinations coverage criterion, the ANT algorithm required the longest time to compute 𝑇 , i.e., 135.40 ms on average.
The longest runtime measured during the experiments for the EachBorderOnce test-coverage criterion is 44.84 ms for the EPP (for
SUT model 𝑖𝑑 = 137, |𝑁| = 221, and |𝐸| = 377, refer to Table 2), followed by 0.27 s for the SPC (SUT model 𝑖𝑑 = 121, |𝑁| = 83,
and |𝐸| = 144), and by 4.08 s for ANT (SUT model 𝑖𝑑 = 148, |𝑁| = 376, and |𝐸| = 522).

The SUT models for which the EPP, SPC, and ANT algorithms required the longest time to compute 𝑇 for the AllBorderCombi-
nations and EachBorderOnce test-coverage criteria are the same. For the largest SUT model (|𝑁| = 442 and |𝐸| = 606, 𝑖𝑑 = 150 in
20

Internet of Things 22 (2023) 100706M. Klima et al.

b
v

s
p
a

𝑒
a
c

Fig. 5. Overall statistics of the test set selection strategy for 𝐴𝑙𝑙𝐵𝑜𝑟𝑑𝑒𝑟𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠.

Table 2), the runtime of the SPC algorithm is 12.25 ms, which is followed by those of the EPP and ANT algorithms at 44.29 ms and
1.33 s, respectively.

8.3.2. Algorithms that produced superior test sets for particular SUT models
The averaged properties of 𝑇 produced by the individual algorithms, as discussed in Section 8.3.1, yielded beneficial insights

into the performance of the algorithms. However, it is only one of the possible viewpoints on the results. Moreover, we aimed to
determine the algorithm showing the optimal result (considering a particular) for the individual SUT models.

First, the results for AllBorderCombinations coverage are presented in Fig. 5, and the results for EachBorderOnce coverage are
illustrated in Fig. 7. In Figs. 5 and 7, the 𝑦-axis presents the individual test-set evaluation criteria introduced in Section 6 on the
𝑥-axis, which are individual algorithms. Each number at the intersection of the axes represents the number of cases in which a
specific algorithm returns the optimal 𝑇 considering specific evaluation criteria. This number is visually emphasized by the size of
its surrounding bubble.

The difference between Figs. 5(a) and 5(b) lies in the comparison operator employed to select the winning algorithm. The ≥
comparator is utilized for the a part (left side) in these graphs. Therefore, if 𝑇1 exhibits a better value for the evaluation criterion
in the test sets 𝑇1 and 𝑇2 produced by Algorithms 1 and 2, then Algorithm 1 is considered the winner. Algorithms 1 and 2 are
considered winners when the value of the evaluation criterion is identical for both 𝑇1 and 𝑇2. For the b part (right side) of the graph
in Figs. 5 and 7, the > comparator is utilized such that when in the test sets 𝑇1 and 𝑇2 produced by Algorithms 1 and 2, 𝑇1 offers a
etter value for the evaluation criterion, and Algorithm 1 is considered the winner. No algorithm is considered a winner when the
alue of the evaluation criterion is identical for 𝑇1 and 𝑇2. The same difference applies to Figs. 7(b) and 7(a).
First, we characterized the performance of the algorithms using a > comparator. Fig. 5(b) indicates that the ANT algorithm

outperforms the others in several criteria for AllBorderCombinations coverage. This algorithm achieved the optimal result in 78%
of the SUT models for |𝑇 | in more than 75% of the models for 𝑒𝑓𝑓 _𝑒𝑑𝑔𝑒𝑠(𝑇), which is approximately 65% of the models for
𝑒𝑓𝑓 _𝑏_𝑛𝑜𝑑𝑒𝑠(𝑇), 64% for 𝑏_𝑛𝑜𝑑𝑒𝑠(𝑇), and 62% for 𝑙(𝑇). However, the EPP algorithm achieved the optimal results in the case of
50% and approximately 45% of the models for the |𝑡| and 𝑠(𝑇) criteria, respectively. Both the ANT and EPP algorithms returned
imilar results for the 𝑢_𝑛𝑜𝑑𝑒𝑠(𝑇) and 𝑢_𝑒𝑑𝑔𝑒𝑠(𝑇) criteria. For EachBorderOnce coverage, Fig. 7(a) illustrates a scenario similar to the
revious coverage criterion. The ANT algorithm outperformed the others in over 50% of the models for the |𝑇 |, 𝑙(𝑇), 𝑒𝑓𝑓 _𝑒𝑑𝑔𝑒𝑠(𝑇),
nd 𝑒𝑓𝑓 _𝑏_𝑛𝑜𝑑𝑒𝑠(𝑇) criteria. For 𝑏_𝑛𝑜𝑑𝑒𝑠(𝑇), the results are not as satisfactory, i.e., the ANT algorithm clearly wins for only 41% of
the models.

The EPP algorithm achieved the optimal value of |𝑡| for 56% of the models and 𝑠(𝑇) for approximately 45% of the models. This
scenario is similar to the case of the AllBorderCombinations criterion for the 𝑢_𝑛𝑜𝑑𝑒𝑠(𝑇) and 𝑢_𝑒𝑑𝑔𝑒𝑠(𝑇) criteria, wherein the ANT and
EPP algorithms won an equal number of cases.

The ANT algorithm achieved superior results for more than 80% of the cases considering |𝑇 |, 𝑒𝑓𝑓 _𝑒𝑑𝑔𝑒𝑠(𝑇), 𝑏_𝑛𝑜𝑑𝑒𝑠(𝑇),
𝑓𝑓 _𝑏_𝑛𝑜𝑑𝑒𝑠(𝑇), and 𝑙(𝑇) for the AllBorderCombinations coverage (depicted in Fig. 5(a)) criteria when more than one winner could be
llowed for the given criteria (using the > comparator). None of the other algorithms performed optimally for any of the remaining
riteria.
The results for the EachBorderOnce coverage criterion (Fig. 5(a)) cannot achieve a clear conclusion, i.e., the ANT algorithm wins

in more than 80% of the cases only in the |𝑇 | criteria.
21

Internet of Things 22 (2023) 100706M. Klima et al.
Table 3
Average values of evaluation criteria over all G for the AllBorderCombinations coverage criterion.
Evaluation criterion Algorithm

EPP SPC ANT Portfolio

|𝑇 | 6.46 6.58 3.24 3.24
l(𝑇) 96.47 102.79 81.82 71.08
u_edges(𝑇) 39.97 42.75 44.99 37.75
u_nodes(𝑇) 35.62 37.76 39.89 34.3
|𝑡| 12.48 12.85 23.82 12.27
s(𝑇) 3.22 3.56 8.35 2.83
b_nodes(𝑇) 25.13 25.52 19.96 18.7
eff_edges(𝑇) 0.58 0.6 0.75 0.75
eff_b_nodes(𝑇) 0.17 0.16 0.22 0.23
time [ms] 3.96 8.44 190.05 1.74

Table 4
Average values of evaluation criteria over all G for the EachBorderOnce coverage criterion.
Evaluation criterion Algorithm

EPP SPC ANT Portfolio

|𝑇 | 5.43 4.88 2.87 2.86
l(𝑇) 75.8 69.3 68.89 58.29
u_edges(𝑇) 38.25 39.7 43.22 36.43
u_nodes(𝑇) 34.85 36.37 38.95 33.68
|𝑡| 11.97 12.61 23.53 11.8
s(𝑇) 3.04 3.56 8.08 2.65
b_nodes(𝑇) 19.35 17.38 16.53 14.9
eff_edges(𝑇) 0.65 0.69 0.78 0.8
eff_b_nodes(𝑇) 0.19 0.19 0.23 0.24
time [ms] 3.27 4.45 135.40 1.18

Fig. 6. Algorithm and portfolio strategy comparison for 𝐸𝑎𝑐ℎ𝐵𝑜𝑟𝑑𝑒𝑟𝑂𝑛𝑐𝑒 coverage through the evaluation criteria .
22

Internet of Things 22 (2023) 100706M. Klima et al.

w
i
a

9

p
u

T
t
c

t

c
o
|

s

i

Fig. 7. Overall statistics of the test set selection strategy for 𝐸𝑎𝑐ℎ𝐵𝑜𝑟𝑑𝑒𝑟𝑂𝑛𝑐𝑒.

8.3.3. Effectiveness of the detection of limited network connectivity defects in the SUT
A 𝑇 value satisfying the AllBorderCombinations test-coverage criterion activates 100% of the defect pairs defined in 𝐺, resulting

from the definition of AllBorderCombinations. Therefore, the results for EachBorderOnce warrant a more detailed analysis. In the
experiments, 𝑇 generated by the EPP detected 88% of the defect pairs on average for all SUT models. 𝑇 generated by SPC detected
88%, and 𝑇 generated by ANT detected 93% of these defects; these values are denoted as 𝜓 .

These results must be considered in the context of the 𝑇 size, i.e., 𝑙(𝑇). Herein, we consider 𝛹 = 𝜓∕ 𝑙(𝑇) as an indicator, and
e determine the effectiveness of 𝑇 in the activation (visiting) of defect pairs inserted in all SUT models in the experiment; 𝑙(𝑇)
s the average of 𝑙(𝑇) for all SUT models. A higher 𝛹 indicates an improved effectiveness of the test sets generated by a particular
lgorithm. The 𝛹 values are 0.0116 for EPP, 0.0127 for SPC, and 0.0135 for ANT.

. Portfolio strategy

This project utilizes two levels of test coverage criteria owing to the problem complexity, variability in 𝐺 topology, and
rinciple of individual algorithms that can generate 𝑇 . For a variety of test set evaluation criteria , a portfolio strategy must be
sed to generate the most close-to-optimum 𝑇 for a general 𝐺.
As defined in Algorithm 13, the proposed portfolio strategy accepts 𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, , and as inputs, generating 𝑇 as the output.

his strategy computes the individual 𝑇 for 𝐺 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 using the SPC, ANT, and EPP algorithms. Subsequently, it determines
he optimal 𝑇 by considering . In particular, the SPC, ANT, and EPP algorithms can be executed concurrently to optimize the
omputation runtime.

Algorithm 13: 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,,): Compute 𝑇 for 𝐺 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 by SPC, ANT and EPP algorithms and determine
he best 𝑇 by
Input : SUT model 𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, coverage criterion and test set optimality criterion
Output: set of test cases 𝑇

1 𝑇𝑆𝑃𝐶 ← ∅, 𝑇𝐴𝑁𝑇 ← ∅, 𝑇𝐸𝑃𝑃 ← ∅
2 𝑇𝑆𝑃𝐶 ← 𝑆𝑃𝐶(𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,)
3 𝑇𝐴𝑁𝑇 ← 𝐴𝑁𝑇 (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,)
4 𝑇𝐸𝑃𝑃 ← 𝐸𝑃𝑃 (𝐺, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,)
5 𝑇 ← a test set from {𝑇𝑆𝑃𝐶 , 𝑇𝐴𝑁𝑇 , 𝑇𝐸𝑃𝑃 } having the best value of given
6 return 𝑇

The results of the portfolio strategy are presented in Fig. 4 for the AllBorderCombinations and in Fig. 6 for the EachBorderOnce
riteria. The average |𝑇 | for the AllBorderCombinations coverage is the identical to that for the ANT algorithm in terms of the results
f the portfolio strategy, which is approximately 50% smaller than the average |𝑇 | of the EPP and 51% smaller than the average
𝑇 | of SPC. The portfolio strategy returned 𝑇 with 13% smaller 𝑙(𝑇) (the total length of the test cases) than the ANT algorithm, 26%
maller than the EPP algorithm, and approximately 31% smaller than the SPC algorithm for the total length of the test cases.
Considering 𝑢_𝑒𝑑𝑔𝑒𝑠(𝑇), the portfolio strategy generates a value approximately 6% smaller than that of the EPP algorithm, which

s approximately 12% smaller than that of the SPC algorithm and more than 16% smaller than the results of this criterion for 𝑇
23

Internet of Things 22 (2023) 100706M. Klima et al.

g
t

H
t
o
t
c
A
E

i

E
𝐺

t
e
g
i
t
b

r

generated by the ANT algorithm. For the 𝑢_𝑛𝑜𝑑𝑒𝑠(𝑇) criterion, only a 4% difference is observed between the results of the portfolio
strategy and EPP algorithm. Otherwise, the portfolio strategy has 9% smaller 𝑢_𝑛𝑜𝑑𝑒𝑠(𝑇) than the SPC algorithm, and 14% smaller
nodes than the ANT algorithm. Considering the average number of border nodes 𝑏_𝑛𝑜𝑑𝑒𝑠 in 𝑇 , the portfolio strategy yields a value
reater than 6%, which is smaller than the ANT algorithm, i.e., approximately 26% less than the EPP algorithm and 27% smaller
han the SPC algorithm.
The average |𝑇 | value is nearly the same for both the portfolio strategy and the ANT algorithm for EachBorderOnce coverage.

owever, the portfolio strategy returns 𝑇 with more than 41% lower |𝑇 | than the SPC algorithm and more than 47% lower values
han the EPP algorithm. The average value for the results generated using the portfolio strategy is more than 15% lower than that
f the ANT algorithm for the 𝑙(𝑇) criterion, which is nearly 16% lower than that of the SPC algorithm and more than 23% lower
han that of the EPP algorithm. Considering the 𝑢_𝑒𝑑𝑔𝑒𝑠(𝑇) criterion, the portfolio strategy achieves a nearly 5% lower value of this
riterion compared to the EPP algorithm, which is more than 8% smaller than the SPC algorithm, and nearly 16% smaller than the
NT algorithm. For the 𝑢_𝑛𝑜𝑑𝑒𝑠(𝑇) criterion, the portfolio strategy produces 𝑇 with a value more than 3% lower than that of the
PP algorithm; this is more than 7% smaller than that of the SPC algorithm, and nearly 14% smaller than that of the ANT algorithm.
The portfolio strategy selects the best 𝑇 for the individual results provided by the SPC, ANT, and EPP algorithms. Therefore, it

s not included in the overall statistics presented in Figs. 5 and 7.
For AllBorderCombinations, the portfolio strategy produced 𝑇 that detected 100% of the defect pairs defined in 𝐺. For

achBorderOnce, on average, the portfolio strategy produced 𝑇 which activated 95.6% of the defect pairs defined in individual
in the experiments. For the portfolio strategy, 𝑙(𝑇) is 58.29, and 𝛹 is 0.0164, which is 21%, 29

10. Discussion

The main finding from the performed experiments is that, despite the ANT yielding the best results for the number of criteria and
most SUT models (Figs. 5 and 7), it is not a clear winner that would yield the best 𝑇 considered for all SUT models. This scenario
occurs only once for |𝑇 | and AllBorderCombinations.

Fig. 5(a) shows that even the SPC algorithm for some criteria (e.g., 𝑢_𝑛𝑜𝑑𝑒𝑠(𝑇), 𝑒𝑓𝑓 _𝑏_𝑛𝑜𝑑𝑒𝑠(𝑇), or |𝑡|) returns results comparable
o those generated by the other two algorithms. Furthermore, the results generated by this algorithm seem to be better distributed,
specially when we look at those for the EachBorderOnce coverage depicted in Fig. 7(b). The SPC algorithms return results almost as
ood as the other two algorithms for all measured criteria, which range from the |𝑇 | criteria, which have the same size as the winner
n 22% of the cases, to the 𝑒𝑓𝑓 _𝑏_𝑛𝑜𝑑𝑒𝑠(𝑇) criteria, which return the same result as the winner in 48% of the cases. Thus, using the
hree algorithms examined in this study in the portfolio strategy presented in Section 9 is the optimal option for constructing the
est 𝑇 for 𝐺.
An analysis of the differences between the test sets generated using the portfolio strategy and the algorithm achieving the optimal

esult for the compared criteria for |𝑇 | indicates that 𝑢_𝑛𝑜𝑑𝑒𝑠(𝑇), |𝑡|, 𝑒𝑓𝑓 _𝑒𝑑𝑔𝑒𝑠(𝑇), and 𝑒𝑓𝑓 _𝑏_𝑛𝑜𝑑𝑒𝑠(𝑇) are close (less than 5%). Thus,
these results conclusively indicate that the winning algorithms are adequately designed and achieve optimal results for these criteria.
In contrast, the most significant difference between the results of the portfolio strategy and winning algorithms for both coverage
criteria is 15.4%, which corresponds to the 𝑙(𝑇) criterion for 𝑇 generated by the ANT algorithm under EachBorderOnce coverage.

The ANT algorithm generates a lower number (|𝑇 |) of longer test cases but with fewer steps in total (𝑙(𝑇)), as revealed by
analyzing the functionality of individual algorithms. This result corresponds well with the algorithm principle: ants attempt to visit
more LCZs in a single test case. Shorter test cases are produced in the case of SPC; however, they may involve more steps in total.
This is a result of this algorithm’s ‘‘greedy’’ nature when traversing 𝐺. In contrast to ANT, SPC does not consider the proximity of
the individual LCZs. Moreover, the performance of EPP is slightly superior than that of the SPC optimization part presented in its
set-covering algorithm and by splitting the super test requirement to 𝑇 (refer to Algorithm 11).

The maximum runtime of the ANT algorithm during the entire experiment (6.22 s) was considered acceptable. This runtime was
for the SUT model with 376 nodes and 522 edges, which is a rare scenario in industrial praxis. We expect that models with more
than 100 nodes are less common. An analysis of the highest runtime versus runtime for the largest SUT model indicates that not
only does the 𝐺 size in terms of |𝑁| and |𝐸| play a role, but the graph topology combined with the presence of LCZs is more critical.
Interestingly, the SUT models for which the algorithms required the longest time to compute 𝑇 were identical for all algorithms and
both test coverage criteria. During runtimes, the principle of the algorithms and number of cycles present in 𝐺 play a significant
role.

Simulated defect pairs were defined in the SUT models for the effectiveness of 𝑇 in detecting limited network connectivity. The
ANT algorithm achieved the best results for the 𝛹 criterion in EachBorderOnce. Furthermore, the portfolio strategy outperformed
ANT by 21% in terms of 𝛹 . A simple defect type of limited network connectivity, activated by visiting either the LCZ IN or LCZ
OUT node, will be activated by the test set for both test coverage criteria proposed in this study. This scenario was also observed
with the AllBorderCombinations test-coverage criterion for defect pairs. The presented simulation yields initial insight. However, real
defects in an SUT must be investigated in a forthcoming study to evaluate this type of effectiveness more accurately.

11. Threats to validity

Several concerns can be raised regarding the validity of these experiments. First, the experimental data could be biased owing
to the small sample size. We executed all the algorithms in the experiment on 150 various SUT models to mitigate this potential
24

Internet of Things 22 (2023) 100706M. Klima et al.

T
e
r
m
r
S
t

a
p
c

n
c
o
d
d
t

1

w
c
a
w
n
c
c
c

f
A
b
o

e
H

h
a
a
E
t
t
F
c
𝑇
a

D

i
C

problem, yielding a sufficient variety of situations in which the algorithms can exercise to draw conclusions. The SUT models are
elucidated in Section 8.2.

Second, the relevance of used SUT models to real-life cases of the workflows in real-time IoT systems is an issue of concern.
he analysis of 50 or more different real-time IoT systems is not feasible because of the confidential nature of internal structures
mployed in industrial IoT systems. A balance between the number of SUT models used in the experiments and their similarity to
eal-world cases should be determined to solve this problem. We utilized the process described in Section 8.2 to ensure that the SUT
odels approximated the real systems. The initial set of 22 workflows was based on real systems, and an extended set comprised the
emaining 98 models. Selected details of the workflows were applied to maintain the topology of the workflows in the remaining
UT models. Only 30 SUT models used in the experiments were generated using specialized software; these models were utilized
o ensure heterogeneous topology of the models.
Another concern was identified regarding the EPP algorithm used for comparison with the discussed algorithms. Among the

vailable algorithms suitable for serving as the baseline, the algorithm proposed by Li et al. [9] is the most recent. Furthermore, a
ossible bias may have resulted from the incorrect implementation of the EPP core, the set-covering algorithm [9]. This issue was
ircumvented by employing the original implementation of the algorithm reported by Offutt, Ammann, Li, Xu, and Deng.4
The algorithms were compared using the evaluation criteria related to 𝑇 (see Section 6). The defect detection power, i.e., the

umber of defects in an SUT discovered by a particular 𝑇 , was analyzed by simulating the defects concerning limited network
onnectivity in the SUT model. An initial insight into this effectiveness was obtained; however, further experiments are required to
btain more accurate data. Mutation testing [50,51] or defect-injection experiments [52] are required for several SUT instances with
ifferent sets of inserted defects to obtain more data. However, in principle, defects concerning limited network connectivity are
ifficult to simulate using code mutations or defect insertion. Therefore, an appropriate experiment must be designed to maintain
he objectivity of the experiment.

2. Conclusion

We proposed a novel technique for path-based testing of the behavior of an IoT system wherein the functionality of its components
as influenced by limited network connectivity. For example, when the network connectivity outage or bandwidth was limited, it
ould affect the functionality of a system component. This technique was based on modeling an SUT process or workflow aspect,
nd could capture the network outage probability in the model. The test cases included a flow of SUT functions, such that they
ere sequenced according to the test coverage criterion when the network connectivity was disrupted and restored. In contrast, the
umber of steps in other parts of the SUT model was minimal. Using this principle, the testing costs were minimized, and they were
ompared to other ad hoc approaches that could be considered for solving the problem. No previous path-based testing algorithms
ould be utilized directly because the direct support to follow a particular node (edge) after another node (edge) visited in the test
ase was not present in these algorithms.
The major contributions of this paper include: (1) the definition of LNCT in an IoT system from the viewpoint of system

unctionality, (2) two algorithms (a new SPC using the principle of the shortest path composition and ANT, a novel application of the
CO principle to solve the problem discussed), (3) a detailed evaluation of these algorithms in comparison to EPP as an alternative
ased on the established prime-path composition approach, and (4) a portfolio strategy that employed all of these algorithms to
btain the superior 𝑇 .
The ANT algorithm achieved the best results for most of the 150 SUT models employed in the experiments, considering the

valuation criteria of the defined test set, total number of test steps, average length of test cases, and other parameters (Table 1).
owever, SPC and EPP yielded better results than ANT in certain SUT instances.
We could consider 𝑙(𝑡) as the main criterion that approximated the potential effort required to execute the test cases for

ighlighting key findings. For the AllBorderCombinations test-coverage criterion and > comparator, the ANT algorithm clearly
chieved the optimal test set for 93 SUT models, whereas the SPC and EPP algorithms achieved the optimal test set for 14
nd 13 models, respectively. Observably, the ANT algorithm computed the best test set for the 78 SUT models concerning the
achBorderOnce and > comparator; the SPC and EPP algorithms computed the superior test set for 24 and 17 models out of 150
otal models. Therefore, although ANT was considered the best option (owing to the individual options of used in this study)
o guarantee the optimal 𝑇 , all the algorithms examined must be combined in the portfolio strategy presented in this paper.
urthermore, this strategy achieved the best results, considering the potential of the produced test sets in detecting simulated defects
oncerning limited connectivity. In future research, we shall enhance the portfolio strategy by including other algorithms to compute
. The core principle of these algorithms will differ primarily from SPC, ANT, and EPP, aiming to improve the probability that the
dded algorithm will contribute to the computation of 𝑇 as optimally as possible for any given topology of the SUT model.

eclaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
nterests: Miroslav Bures and Matej Klima has patent Method of Testing of IoT System Behavior in Case of Limited Network
onnection issued to Czech Technical University in Prague.

4 https://cs.gmu.edu/~offutt/softwaretest/coverage-source/.
25

https://cs.gmu.edu/~offutt/softwaretest/coverage-source/

Internet of Things 22 (2023) 100706M. Klima et al.

A

U

H

R

Data availability

Data will be made available on request.

cknowledgments

The high-level principle of a technique including some initial algorithm that is not included in this study is also described in a
S patent application US2021311857A1 by our team. The details are available at: https://worldwide.espacenet.com/patent/search/

family/074221195/publication/US2021311857A1?q=pn%3DUS2021311857A1
The project is supported by CTU in Prague internal grant SGS20/177/ OHK3/3T/13 Algorithms and solutions for automated

generation of test scenarios for software and IoT systems.
The authors acknowledge the support of the OP VVV funded project CZ.02.1.01/0.0/0.0/16_019/0000765 Research Center for

Informatics.
Bestoun S. Ahmed has been supported by the Knowledge Foundation of Sweden (KKS) through the Synergi Project AIDA - A

olistic AI-driven Networking and Processing Framework for Industrial IoT (Rek:20200067).

eferences

[1] S. Li, L. Da Xu, S. Zhao, The internet of things: a survey, Inf. Syst. Front. 17 (2) (2015) 243–259.
[2] T. Qiu, N. Chen, K. Li, M. Atiquzzaman, W. Zhao, How can heterogeneous Internet of Things build our future: A survey, IEEE Commun. Surv. Tutor. 20

(3) (2018) 2011–2027.
[3] B.S. Ahmed, M. Bures, K. Frajtak, T. Cerny, Aspects of quality in internet of things (IoT) solutions: A systematic mapping study, IEEE Access 7 (2019)

13758–13780.
[4] M. Bures, M. Klima, V. Rechtberger, B.S. Ahmed, H. Hindy, X. Bellekens, Review of specific features and challenges in the current internet of things

systems impacting their security and reliability, in: Trends and Applications in Information Systems and Technologies, Springer, Cham, 2021, pp. 546–556.
[5] D.E. Kouicem, A. Bouabdallah, H. Lakhlef, Internet of things security: A top-down survey, Comput. Netw. 141 (2018) 199–221.
[6] B.B. Gupta, M. Quamara, An overview of Internet of Things (IoT): Architectural aspects, challenges, and protocols, Concurr. Comput.: Pract. Exper. 32

(21) (2020) e4946.
[7] Y. Ding, M. Jin, S. Li, D. Feng, Smart logistics based on the internet of things technology: an overview, Int. J. Logist. Res. Appl. 24 (4) (2021) 323–345.
[8] M. Bures, T. Cerny, B.S. Ahmed, Internet of things: Current challenges in the quality assurance and testing methods, in: International Conference on

Information Science and Applications, Springer, 2018, pp. 625–634.
[9] N. Li, F. Li, J. Offutt, Better algorithms to minimize the cost of test paths, in: Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth

International Conference on, IEEE, 2012, pp. 280–289.
[10] P. Ammann, J. Offutt, Introduction to Software Testing, Cambridge University Press, 2016.
[11] V. Arora, R. Bhatia, M. Singh, Synthesizing test scenarios in uml activity diagram using a bio-inspired approach, Comput. Lang. Syst. Struct. 50 (2017)

1–19.
[12] M. Bures, B.S. Ahmed, Employment of multiple algorithms for optimal path-based test selection strategy, Inf. Softw. Technol. 114 (2019) 21–36.
[13] M. Bures, B.S. Ahmed, K.Z. Zamli, Prioritized process test: An alternative to current process testing strategies, Int. J. Softw. Eng. Knowl. Eng. 29 (07)

(2019) 997–1028.
[14] S. Anand, E.K. Burke, T.Y. Chen, J. Clark, M.B. Cohen, W. Grieskamp, M. Harman, M.J. Harrold, P. Mcminn, A. Bertolino, et al., An orchestrated survey

of methodologies for automated software test case generation, J. Syst. Softw. 86 (8) (2013) 1978–2001.
[15] T. Su, K. Wu, W. Miao, G. Pu, J. He, Y. Chen, Z. Su, A survey on data-flow testing, ACM Comput. Surv. 50 (1) (2017).
[16] A. Khamis, R. Bahgat, R. Abdelaziz, Automatic test data generation using data flow information, 2000.
[17] H.M. Salman, A.K.M. Al-Qurabat, A.A.R. Finjan, Bigradient neural network-based quantum particle swarm optimization for blind source separation, IAES

Int. J. Artif. Intell. (IJ-AI) 10 (2) (2021) 355.
[18] D. Wang, D. Tan, L. Liu, Particle swarm optimization algorithm: an overview, Soft Comput. 22 (2) (2018) 387–408.
[19] A. Windisch, S. Wappler, J. Wegener, Applying particle swarm optimization to software testing, in: Proceedings of the 9th Annual Conference on Genetic

and Evolutionary Computation, GECCO ’07, Association for Computing Machinery, New York, NY, USA, 2007, pp. 1121–1128.
[20] P.R. Srivastava, K. Baby, G. Raghurama, An approach of optimal path generation using ant colony optimization, in: TENCON 2009-2009 IEEE Region 10

Conference, IEEE, 2009, pp. 1–6.
[21] P.R. Srivastava, N. Jose, S. Barade, D. Ghosh, Optimized test sequence generation from usage models using Ant colony optimization, Int. J. Softw. Eng.

Appl. 2 (2) (2010) 14–28.
[22] F. Sayyari, S. Emadi, Automated generation of software testing path based on ant colony, in: 2015 International Congress on Technology, Communication

and Knowledge, ICTCK, IEEE, 2015, pp. 435–440.
[23] S. Muthiah, R. Venkatasubramanian, The internet of things : QA unleashed, 2015.
[24] G. Murad, A. Badarneh, A. Qusef, F. Almasalha, Software testing techniques in IoT, in: 2018 8th International Conference on Computer Science and

Information Technology, CSIT, 2018, pp. 17–21.
[25] M. Sirshar, K. Naeem, M. Khan, T. Akbar, Software quality assurance testing methodologies in IoT, 2019.
[26] J. Esquiagola, L.C. de Paula Costa, P. Calcina, G. Fedrecheski, M. Zuffo, Performance testing of an internet of things platform, in: IoTBDS, 2017, pp.

309–314.
[27] H. Rudeš, I.N. Kosović, T. Perković, M. Čagalj, Towards reliable iot: Testing lora communication, in: 2018 26th International Conference on Software,

Telecommunications and Computer Networks (SoftCOM), IEEE, 2018, pp. 1–3.
[28] G. White, V. Nallur, S. Clarke, Quality of service approaches in IoT: A systematic mapping, J. Syst. Softw. 132 (2017) 186–203.
[29] S.H. Alsamhi, F.A. Almalki, H. Al-Dois, S. Ben Othman, J. Hassan, A. Hawbani, R. Sahal, B. Lee, H. Saleh, Machine learning for smart environments in

B5G networks: connectivity and QoS, Comput. Intell. Neurosci. 2021 (2021).
[30] A.P. Matz, J.-A. Fernandez-Prieto, U. Birkel, et al., A systematic analysis of narrowband IoT quality of service, Sensors 20 (6) (2020) 1636.
[31] A.K.M. Al-Qurabat, Z.A. Mohammed, Z.J. Hussein, Data traffic management based on compression and MDL techniques for smart agriculture in IoT, Wirel.

Pers. Commun. 120 (3) (2021) 2227–2258.
[32] A. Al-Qurabat, A lightweight huffman-based differential encoding lossless compression technique in IoT for smart agriculture, IJCDS J. 11 (2022) 117–127.
[33] I. Dakhil Idan Saeedi, A. Al-Qurabat, Perceptually important points-based data aggregation method for wireless sensor networks, Baghdad Sci. J. 19 (2022)

875–886.
26

https://worldwide.espacenet.com/patent/search/family/074221195/publication/US2021311857A1?q=pn%3DUS2021311857A1
https://worldwide.espacenet.com/patent/search/family/074221195/publication/US2021311857A1?q=pn%3DUS2021311857A1
https://worldwide.espacenet.com/patent/search/family/074221195/publication/US2021311857A1?q=pn%3DUS2021311857A1
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb1
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb2
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb2
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb2
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb3
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb3
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb3
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb4
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb4
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb4
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb5
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb6
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb6
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb6
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb7
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb8
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb8
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb8
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb9
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb9
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb9
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb10
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb11
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb11
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb11
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb12
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb13
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb13
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb13
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb14
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb14
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb14
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb15
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb16
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb17
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb17
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb17
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb18
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb19
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb19
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb19
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb20
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb20
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb20
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb21
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb21
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb21
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb22
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb22
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb22
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb23
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb24
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb24
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb24
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb25
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb26
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb26
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb26
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb27
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb27
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb27
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb28
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb29
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb29
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb29
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb30
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb31
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb31
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb31
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb32
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb33
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb33
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb33

Internet of Things 22 (2023) 100706M. Klima et al.
[34] I.D.I. Saeedi, A.K.M. Al-Qurabat, An energy-saving data aggregation method for wireless sensor networks based on the extraction of extrema points, AIP
Conf. Proc. 2398 (1) (2022) 050004.

[35] A.K.M. Al-Qurabat, H.M. Salman, A.A.R. Finjan, Important extrema points extraction-based data aggregation approach for elongating the WSN lifetime,
Int. J. Comput. Appl. Technol. 68 (4) (2022) 357–368.

[36] A.K.M. Al-Qurabat, S.A. Abdulzahra, A.K. Idrees, Two-level energy-efficient data reduction strategies based on SAX-LZW and hierarchical clustering for
minimizing the huge data conveyed on the internet of things networks, J. Supercomput. 78 (16) (2022) 17844–17890.

[37] A. Abdulzahra, A. Al-Qurabat, A clustering approach based on fuzzy C-means in wireless sensor networks for IoT applications, Karbala Int. J. Mod. Sci. 8
(2022) 579–595.

[38] H. Kim, A. Ahmad, J. Hwang, H. Baqa, F. Le Gall, M.A. Reina Ortega, J. Song, IoT-TaaS: Towards a prospective IoT testing framework, IEEE Access 6
(2018) 15480–15493.

[39] A. Rayes, S. Salam, Internet of things (IoT) overview, in: Internet of Things from Hype to Reality, Springer, 2019, pp. 1–35.
[40] A.K. M. Al-Qurabat, S. Abdulhussein Abdulzahra, An overview of periodic wireless sensor networks to the internet of things, IOP Conf. Ser. Mater. Sci.

Eng. 928 (3) (2020) 032055.
[41] A.K. Gomez, S. Bajaj, Challenges of testing complex internet of things (IoT) devices and systems, in: 2019 11th International Conference on Knowledge

and Systems Engineering, KSE, 2019, pp. 1–4.
[42] M. Noura, M. Atiquzzaman, M. Gaedke, Interoperability in internet of things: Taxonomies and open challenges, Mob. Netw. Appl. 24 (3) (2018) 796–809.
[43] M. Klima, M. Bures, A testing tool for IoT systems operating with limited network connectivity, in: A. Rocha, H. Adeli, G. Dzemyda, F. Moreira, A.M.

Ramalho Correia (Eds.), Trends and Applications in Information Systems and Technologies, Springer International Publishing, Cham, 2021, pp. 570–576.
[44] M. Bures, T. Cerny, M. Klima, Prioritized process test: More efficiency in testing of business processes and workflows, in: International Conference on

Information Science and Applications, Springer, 2017, pp. 585–593.
[45] A. Dwarakanath, A. Jankiti, Minimum number of test paths for prime path and other structural coverage criteria, in: IFIP International Conference on

Testing Software and Systems, Springer, 2014, pp. 63–79.
[46] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Trans. Syst. Man Cybern. B 26 (1) (1996) 29–41.
[47] M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat.

No. 99TH8406), Vol. 2, 1999, pp. 1470–1477.
[48] M. Bures, Pctgen: Automated generation of test cases for application workflows, in: New Contributions in Information Systems and Technologies, Springer,

2015, pp. 789–794.
[49] V. Aravindan, D. James, Smart homes using Internet of Things, Int. Res. J. Eng. Technol. (2017) 1725–1729.
[50] P. Reales, M. Polo, J.L. Fernandez-Aleman, A. Toval, M. Piattini, Mutation testing, IEEE Softw. 31 (3) (2014) 30–35.
[51] Y. Jia, M. Harman, An analysis and survey of the development of mutation testing, IEEE Trans. Softw. Eng. 37 (5) (2010) 649–678.
[52] M. Bures, P. Herout, B.S. Ahmed, Open-source defect injection benchmark testbed for the evaluation of testing, in: 2020 IEEE 13th International Conference

on Software Testing, Validation and Verification, ICST, 2020, pp. 442–447.
27

http://refhub.elsevier.com/S2542-6605(23)00029-X/sb34
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb34
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb34
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb35
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb35
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb35
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb36
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb36
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb36
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb37
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb37
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb37
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb38
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb38
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb38
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb39
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb40
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb40
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb40
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb41
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb41
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb41
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb42
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb43
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb43
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb43
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb44
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb44
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb44
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb45
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb45
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb45
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb46
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb47
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb47
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb47
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb48
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb48
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb48
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb49
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb50
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb51
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb52
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb52
http://refhub.elsevier.com/S2542-6605(23)00029-X/sb52

	Specialized path-based technique to test Internet of Things system functionality under limited network connectivity
	Introduction
	Related Work
	Path-based testing
	Data-flow testing
	Ant Colony Optimization and Nature Inspired Algorithms
	Alternative techniques for testing IoT system functionality with a limited network connection
	Summary and motivation

	Principle of the Limited Network Connectivity Test (LNCT)
	Problem Model
	Test Coverage Criteria
	Test Set Evaluation Criteria
	Proposed Algorithms
	Shortest Path Composition algorithm (SPC)
	Ant-colony-optimization-based algorithm (ANT)
	Algorithm variables
	Algorithm initiation
	The ANTCore algorithm
	Beginning of the ant's traversal
	Obtaining the desirability levels
	Traversing G and covering LCZ border nodes
	Choosing the best ant
	ANTCore repetitions

	Enforced Prime Path algorithm (EPP)
	The main algorithm
	Greedy set-covering algorithms

	Experimental Evaluation
	Implementation of the algorithms
	Experiment method and set-up
	Evaluation results
	Properties of test sets produced by the compared algorithms
	Algorithms that produced superior test sets for particular SUT models
	Effectiveness of the detection of limited network connectivity defects in the SUT

	Portfolio Strategy
	Discussion
	Threats to Validity
	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

