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Abstract—Deep learning for Non-Destructive Evaluation (NDE) 
has received a lot of attention in recent years for its potential 
ability to provide human level data analysis. However, little 
research into quantifying the uncertainty of its predictions has 
been done. Uncertainty Quantification (UQ) is essential for 
qualifying NDE inspections and building trust in their predictions. 
Therefore, this paper aims to demonstrate how UQ can best be 
achieved for deep learning in the context of crack sizing for inline 
pipe inspection. A convolutional neural network architecture is 
used to size surface breaking defects from Plane Wave Imaging 
(PWI) images with two modern UQ methods: deep ensembles and 
Monte Carlo dropout. The network is trained using PWI images 
of surface breaking defects simulated with a hybrid finite element 
/ ray-based model.  

Successful UQ is judged by calibration and anomaly detection, 
which refer to whether in-domain model error is proportional to 
uncertainty and if out of training domain data is assigned high 
uncertainty, respectively. Calibration is tested using simulated and 
experimental images of surface breaking cracks, while anomaly 
detection is tested using experimental side drilled holes and 
simulated embedded cracks. Monte Carlo dropout demonstrates 
poor uncertainty quantification with little separation between in 
and out-of-distribution data and a weak linear fit (𝑹 = 𝟎. 𝟖𝟒) 
between experimental root mean squared error and uncertainty. 
Deep ensembles improve upon Monte Carlo dropout in both 
calibration (𝑹 = 𝟎. 𝟗𝟓) and anomaly detection. Adding spectral 
normalization and residual connections to deep ensembles slightly 
improves calibration (𝑹 = 𝟎. 𝟗𝟖) and significantly improves the 
reliability of assigning high uncertainty to out-of-distribution 
samples. 

Index Terms— Uncertainty estimation, out-of-distribution 
detection, deep-learning, neural networks, plane wave imaging, 
simulation, ultrasound, defect characterization 

I. INTRODUCTION

ON-Destructive Evaluation (NDE) techniques aim to
infer the health of a component through analysis of its 

response to a stimulus such as ultrasound or X-ray. In most 
NDE applications this is conventionally achieved by a skilled 
operator inspecting the response data. As this data is often high-
dimensional, and most inspections must be carried out many 
times, manual data interpretation is expensive and prone to 
human error. Because of this, there is a strong case for 
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automating data interpretation in NDE. Machine learning is 
well suited to pattern recognition tasks such as this one and has 
repeatedly been shown to produce human-level data 
interpretation performance both in NDE  [1]–[9], and related 
fields such as computer vision [10] and medical imaging [11]. 
In safety critical applications such as NDE it is essential to 
know the magnitude of expected error so reports on a 
component’s health can be given with an appropriate level of 
confidence. Calculating the level of expected error for a 
prediction is commonly called Uncertainty Quantification 
(UQ). Despite the acute need for UQ in NDE there has been 
little research into how to implement it for analysis done using 
machine learning.  

Machine learning can broadly be split into two categories: 
‘deep’ and ‘shallow’ learning. Shallow learning necessitates 
hand-selection of the features input to the machine learning 
algorithm, while deep learning takes the raw data as input. 
Shallow learning is a lower dimensional problem so requires 
less training data, and because manufacturing NDE samples is 
expensive, it has been the focus of most NDE research to-date. 
However, deep learning can make use of all available 
information in the data so given sufficient training data it can 
produce more accurate results [4], [5] and reduce the effect of 
human factors [12]. Deep learning is the focus of this paper. To 
produce the training set, data simulation is used as it has 
recently been shown to be an effective way of training 
Convolutional Neural Networks (CNNs) [13] to accurately size 
defects in experimental data [9], [14]–[17]. 

Due to the safety-critical nature of NDE, UQ is an essential 
part of inspection qualification [18] and decision making for 
any automated data analysis. This is because undersizing of 
defects can result in unexpected part failures, causing damage 
to structures and/or people. Effective UQ can signal to the 
operator when there is high uncertainty in the defect size 
prediction so the data can be referred to a human for further 
analysis and possibly the use of additional NDE measurements. 
This paper focusses on how to quantify uncertainty for deep 
learning in the context of crack sizing in ultrasonic inline pipe 
inspection. Ultrasonic inline pipe inspection uses transducers 
mounted on a PIG (Pipeline Inspection Gauge) which travels in 
the flow of product, detecting and size defects in the 
surrounding pipe wall. Automatic defect detection occurs 
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online, and in this paper is assumed to have already been 
performed, hence the task is to characterize and size a defect 
given data that contains an indication of a defect. Defect sizing 
occurs offline and is traditionally carried out by skilled human 
operators. In this paper deep learning is applied to the defect 
characterisation and sizing task with the aim of investigating 
how the uncertainty of that operation can be assessed 

Evaluating the success of UQ methods is challenging as there 
is no ‘ground-truth’ for uncertainty. This paper uses two criteria 
to analyse the success of the UQ methods. The first is for the 
UQ method to be ‘well calibrated’ [19]. For regression tasks, 
such as the one in this paper, this means that predicted 
uncertainty is equal to (or at least proportional to) the expected 
error (i.e. the difference between the crack depth predicted by 
the network and the true crack depth). This is tested using both 
a simulated and experimental test set of surface breaking 
cracks. The second metric is the predicted uncertainty for Out-
Of-Distribution (OOD) data, testing if the network ‘knows what 
it knows.’ As the network is trained on surface-breaking cracks, 
OOD data from experimental embedded Side-Drilled Holes 
(SDHs) and simulated embedded cracks are used for this 
purpose. The OOD data set (𝑁𝑂𝑂𝐷 = 76) contains examples of 
defects not included in the training data and therefore an 
effective UQ method should assign them high uncertainty 

In practice, as in this paper, UQ typically produces a single 
metric, e.g. standard deviation of the probability density 
function, 𝑃(𝑦̂|𝑥̂, 𝐷), where 𝑥̂, 𝑦̂ are the network’s input and 
output for test data and 𝐷 is the input and output training data. 
The methods described in this paper achieve UQ by sampling 
from the space of all possible trained networks (parameterized 
by their weights, 𝑊) and taking the standard deviation of their 
predictions as an estimate of uncertainty. In more rigorous 
terms, all UQ methods function by approximating the 
intractable posterior distribution of weights given the labelled 
training data, 𝑃(𝑊|𝐷), with which inference on the uncertainty 
associated with new test data, 𝑃(𝑦̂|𝑥̂, 𝐷), can be calculated. The 
two most common modern methods for estimating the 
uncertainty of the CNN’s predictions are investigated for this 
paper: deep ensembles (DE) [20] and Monte Carlo (MC) 
dropout [21]. The intuition for these approaches to posterior 
approximation is that if the sampled networks are sufficiently 
diverse, they should produce diverse predictions for inputs far 
from the training data, indicating high uncertainty. DE achieves 
this by training multiple networks from different initializations, 
while MC dropout produces predictions by using dropout 
(traditionally used at train time to reduce overfitting [22]) at test 
time.  

The structure of the rest of the paper is as follows. Relevant 
literature is discussed in Section II, the inspection setup, data-
sets and network architecture are described in Section III, the 
two UQ methods presented in this paper are outlined in Section 
IV, results are presented in Section V, methods for efficient use 
of computational resources are discussed in Section VI and 
conclusions are given in Section VII. 

 

II. RELEVANT LITERATURE 
UQ is a relatively new and active area of research in deep 

learning [23]. Because of this, there are few applications to 
NDE in the literature. To the authors’ knowledge the only 
examples of UQ for deep learning in NDE are the following: 
MC dropout used to estimate uncertainty for defect detection in 
a heat exchanger with eddy-current measurements [24] as well 
as for defect categorization and localization in visual inspection 
of bridges [25]. A mixture density network [26] has been used 
to estimate aleatoric uncertainty for guided wave based defect 
localization in simulated data of structural plates [27]. Deep 
ensembles have been used to increase the accuracy of deep 
learnt predictions in NDE [28]–[30], but there has been little 
investigation into leveraging their ability to quantify 
uncertainty.  

While this paper focusses primarily on DE and MC dropout, 
two other commonly used UQ methods were investigated in the 
formation of this paper: a CNN/Gaussian Process (CNN-GP) 
hybrid [31], [32], and Variational Inference (VI) [33], [34]. 
These methods take a more ‘Bayesian’ rather than ‘Frequentist’ 
approach to approximation of the posterior. CNN-GP makes 
use of the natural probabilistic inference of the Gaussian 
process combined with the expressive powers of convolutional 
layers. Following the implementation described in [32], the 
fully connected layers of a CNN were replaced with a sparse 
Gaussian process approximation based on variational inducing 
points [35] for the current application. This method was found 
to produce no correlation between uncertainty and magnitude 
of error on the experimental test set. VI approximates the 
posterior by casting it as an optimization problem: reducing the 
Kullback-Leibler divergence [36] between the true posterior 
and that produced by the network. For the application described 
in the current paper, VI was implemented using a 
reparameterization estimator [37]. However, VI proved to be 
unstable in training and converged either to a network 
predicting the mean of the training set or one with poor 
predictive accuracy (sizing defects with a root mean square 
error ≈ 0.4 times their true length). There have also been recent 
publications that question the quality of VI’s posterior 
approximation [45]–[47]. As these methods require a lot of 
hyperparameter tuning and, despite this, were found to produce 
poor UQ, they are not investigated further in this paper. 

III. INSPECTION SETUP, DATA AND NETWORK 
ARCHITECTURE 

This section describes the inspection set-up as well as the 
model used to simulate PWI data, experimental and OOD data 
sets, and the details of the CNN architecture. The reader is 
directed to [9] for more details. Note that for clarity, ‘model’ is 
used exclusively to describe physics-based forward models 
while ‘network’ is used to refer to machine learning based 
predictors. 

 

A. Inspection Setup, Imaging and Simulation 
Inline pipe inspection methods are typically used to inspect 

oil and gas pipelines. A major aim of these inspections is to 
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detect cracks in the pipe caused by manufacturing faults or in-
service stresses. While these can occur at any radial location 
this work focusses on surface breaking cracks on the outer 
surface as this is the most common location for them to occur. 
With access to a real pipeline not available for this work an 
inspection setup is devised to match in-service conditions as 
closely as possible. As shown in Fig. 1a, an Imasonic (Voray-
sur-l'Ognon, France) 5MHz, 0.3 mm pitch, 40 element phased 
array is used to induce shear plane waves in 10 mm thick 
stainless-steel plate (approximating a large diameter pipe wall). 
The array is operated using a Peak NDT (Derby, UK) 
MicroPulse 5 array controller and receives on all elements 
individually, with a sample rate of 50MHz, to form Plane Wave 
Capture (PWC) data. The array is immersed in water as an 
approximation for oil that has similar sound speed. 

As shown in Fig. 1b, data is collected from either side of the 
defect to replicate the use of a pair of arrays from the 
circumferential ring of arrays on the PIG. Each of these arrays 
fires a vertical wave at 𝜓 = 0° and an angled wave that travels 
in the fluid at 𝜙 = ±19°, inducing a 𝜓 = ±45° shear wave in 
the steel plate. The vertical wave is used to calculate standoff 
(𝜍) and thickness (𝛤), while all sizing is done using the angled 
waves. The arrays receive on all 40 elements individually to 

collect PWC data which is then filtered using a Gaussian filter 
centered at 5 MHz with a -40 dB half width of 4.5 MHz. This 
filtered PWC data is then focused on reception with the overall 
process termed Plane Wave Imaging (PWI) [38]. When 
multiple ray paths are considered, the images are termed 
‘views’, and are described by the modality(s) of their transmit 
and receive legs (L for longitudinal, S for shear) separated by a 
hyphen to indicate reflection from a defect. The two views 
found to be most successful for sizing the surface breaking 
defects used in this paper are the SS-S and SS-L half-skip views 
(i.e. with a reflection off the back wall of the plate on the 
transmit leg only). Each array produces an SS-S and SS-L 
image for each defect, with the region of interest being the full 
10 mm depth of plate thickness and 12-22 mm from the array 
centre in the X-direction. This results in a 32x32x4 set of data 
as input to the network. Example sets of simulated and 
experimental images for a defect of 𝑃 = 19 mm, 𝐿 = 3 mm 
and 𝜃 = 8° is given in Fig. 1c,d. 

The simulation used to create the training data for this paper 
is a hybrid Finite Element (FE)/ray-based method which 
provides a good tradeoff between computational efficiency and 
accuracy. This simulation functions by calculating the 
scattering matrix for all length (𝐿) and angle (𝜃) combinations 

 
Fig. 1. a) A diagram of the inspection scenario using a plane wave at angle 𝜓 to the vertical transmitted in the sample with a standoff and thickness of 𝜍 and 
𝛤 where 𝐿, 𝜃 and 𝑃 represent the crack length, angle and position respectively, b) all half-skip shear (S) and longitudinal (L) mode ray-paths used in this 
paper where 𝑥, 𝑧 are the co-ordinates of the imaging point and 𝑥𝑜𝑢𝑡, 𝜍 the co-ordinates of the returning ray on the front wall, c) an example set of simulated 
images for a defect with 𝑃 = 19 𝑚𝑚, 𝐿 = 3 𝑚𝑚 and 𝜃 = 8° and d) a fully experimental set of images for a defect of the same parameters. Note that the 
black lines show the true extent of the defects and all images are on the same dB color scale, normalized to the maximum intensity in the experimental set. 
Figure reproduced from [9]. 
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using a local FE calculation, where the defect is modelled as a 
0.3 mm wide rectangular, perfect reflector, excited by a 
unimodal plane wave [39]. This scattering matrix can then be 
used in a ray-based model [40], [41] to calculate the PWC data 
received by the array for every 𝐿, 𝜃 and position (𝑃) 
combination before being summed with experimental, defect-
free PWC data to incorporate grain and wall reflections [42]. 
Finally, the PWC data is filtered and imaged in the same way 
as the experimental data to produce the desired PWI images.  

B. Data Sets 
This paper focusses mainly on quantifying uncertainty for 

sizing surface-breaking cracks but data from other defects is 
also tested to analyse the predicted uncertainty for OOD 
defects. All of the data used in this paper and their main sources 
of uncertainty are described in this section. 

 
1) Surface Breaking Cracks 

The simulation and experimental procedures described in the 
previous section are used to generate data sets of size 16,875 
and 1,485 respectively which are both further broken down into 
the following sets: 

Simulated, training: 85% (14,343) of simulated data used to 
iteratively update the weights and biases of the network. 

Simulated, validation: 7.5% (1,266) of simulated data used 
during research and design stages to qualitatively ensure the 
network is not overfitting to the training set. 

Simulated, testing: 7.5% (1,266) of simulated data used to 
test the calibration of UQ on previously unseen data. 

Experimental, validation: 15% (216) of experimental data 
used during research and design stages to ensure the network is 
not overfitting to the simulated data and to implement the 
training stop condition. 

Experimental, testing: 85% (1,269) of experimental data 
used to test the network’s sizing accuracy and calibration of UQ 
on previously unseen data. 

These data sets are described further in Tables I and II. The 
training/validation/testing split for simulated data is drawn 
randomly, from a uniform distribution, across all image sets 
(i.e. across all {𝐿, 𝜃, 𝑃}), but the experimental validation/testing 
split is drawn randomly in {𝐿, 𝜃} space. This is to guarantee that 
no data from the same physical defect is split across sets, 
ensuring test set performance generalizes past the 𝐿, 𝜃 
combinations used to implement the stop condition. The aim of 
these surface breaking defect test sets is to analyse the 
calibration between uncertainty and 𝐷 prediction error. 

 
2) Defects Outside of Training Set 

To test whether the UQ methods can detect data drawn from 
distributions significantly different to the training set, defect 
types not included in the training set are tested. As exampled in 
Fig. 2, this group of data includes two experimental Side Drilled 
Holes (SDHs) and two simulated embedded (rather than 
surface-breaking) cracks. This data is gathered using the same 
experimental and simulation procedures as described in Section 
III.A. These four defect classes are imaged at 14 𝑋-locations, 

equally spaced across the same range of horizontal positions as 
the surface breaking cracks (13 mm ≤ 𝑃 ≤ 21 mm). 20 
examples of experimental defect free data are also tested, 
forming a total of 𝑁𝑂𝑂𝐷 = 4 × 14 + 20 = 76 image sets.  

 
3) Sources of Uncertainty 

Sources of uncertainty can broadly be broken down into two 
categories; aleatoric and epistemic. Aleatoric or ‘data’ 
uncertainty stems from noise inherent to the data generation 
process, and cannot be reduced by adding training data. 
Epistemic uncertainty is caused by ignorance in how the data is 
generated, creating  uncertainty in the network’s parameters, 
and can be minimized by adding appropriate training data as 
long as the training data chosen matches the test data 
distribution well. It should be highlighted that if there is a 
significant domain shift between training and test domains (e.g. 
when using a numerical simulation to approximate reality) 
adding training data can never fully minimize epistemic 
uncertainty. 

In sizing defects from PWI images the two main sources of 
aleatoric uncertainty are noise and poor correlation between 
indication and defect size.  Noise is caused by reflections from 
grains and structural features (such as front and back walls), as 
well as “artifacts” at locations away from the defect, due to ray 

TABLE I 
Simulated Data Set Summary 

Parameter Range Step Count 

Crack Length, L (mm) 0.2 to 5 0.2 25 

Crack Position, P (mm) 13 to 21 0.3 27 

Crack Angle, 𝜃 (°) -24 to 24 2 25 

Non-Defect Scan  - - 36 

 Total = 25×27×25 = 16,875 image sets 

 TABLE II 
Experimental Data Set Summary. 

The experimental test set contains all of the L/θ combinations marked 
‘Test’ while the experimental validation set all those marked ‘Val.’ 

  
Crack Length, L (mm) 

  
1 2 3 4 5 

C
ra

ck
 A

n
g

le
, 𝜃

 (
°)

 
0 Test Test Test Test Test 

±2 Test Val Test Test Test 

±5 Val Test Test Test Test 

±8 Test Test Test Val Test 

±15 Test Test Test Test Test 

±20 Test Test Val Test Test 
 

Range Step Count 

Crack Position, P (mm) 13 to 21 0.3 27 

 Validation = 𝑁𝜃,𝐿 × 𝑁𝑃 = 8 × 27 = 216 image sets 

Test = 𝑁𝜃,𝐿 × 𝑁𝑃 = 47 × 27 = 1269 image sets 

 
 

Uncertainty quantification for deep learning in ultrasonic crack characterization



 

 

5 

paths other than the one being imaged. Poor angular coverage 
of a defect from incident and received ray paths blurs 
indications in images but as PIGs for inline pipe inspection 
travel at ~2 m/s, capturing data every 1-10 mm, there is too 
little time to remedy this by firing more than ~3 plane waves 
per array, per location. However, aleatoric uncertainty is 
deemed to be negligible in comparison to epistemic uncertainty 
for this application. This is due to both sources of aleatoric 
uncertainty being relatively small. Firstly, the data has a large 
Signal to Noise Ratio (SNR) of ~30 dB. Secondly, while 
classical sizing methods (such as 6dB drop) suffer due to the 
weak link between indication size and defect length [9] a CNN 
can make predictions on more complex features, reducing the 
need for good angular coverage. If aleatoric uncertainty is not 
constant across different input samples (i.e. heteroscedastic) it 
can be estimated by using negative log likelihood as the loss 
function [43] but this was found to predict values of ~3% of the 

total uncertainty, supporting the hypothesis of low aleatoric 
uncertainty. For simplicity, Mean Squared Error (MSE) is used 
as the loss function in this paper, omitting aleatoric uncertainty 
from the UQ. 

Epistemic uncertainty is the main cause of errors in this 
application. This is evidenced by the gap in simulated (RMSE 
= 0.095 mm) and experimental (RMSE = 0.63 mm) test set 
sizing accuracy of a CNN trained on simulated data. This 
performance discrepancy is caused by inaccuracies in the 
simulation such as those given in Table III. Epistemic 
uncertainty could be reduced by adding experimental data to the 
training set or using a more accurate simulation. However, these 
approaches are financially or computationally expensive 
respectively.  

 

C. Network Architecture 
Following the work in [9] the CNN architecture used in this 

 
Fig. 2. a) Diagrams and b) sets of example PWI images of defects outside of the training set. The black circles and rectangles in b) show the true size and 
placement of the defects. All images are on the same dB color scale, normalized to the maximum intensity in the experimental set. 

 

2mm

8mmSim. CrackB

Sim. CrackA
2mm

6mm

8.5mm

1mm

Exp. SDHA

Exp. SDHB
7.5mm

2.5mm

a b

Exp. Defect Free

TABLE III 
Example sources of epistemic uncertainty for the application in this paper. 

Variations in inspection 
conditions 

Inaccurate simplifications Modes not modelled 

Array mispositioning Defects modelled as rectangular, perfect reflectors while test 
set defects have some roughness and rounded tips 

Ray paths with more than 
three legs 

Sound speed variation Surface roughness not modelled Surface waves 

Inconsistency in array 
element performance 

Array assumed to be in far-field of defect in model, but array is 
partially in defect near field for 𝐿 >= 4 mm  

Non-linear effects 
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paper is loosely based on architectures such as VGG-19 due to 
their widespread success in related image recognition 
applications. An off-the-shelf architecture is not optimal due to 
the differences in input size and image content between NDE 
and visual image applications. As illustrated in Fig. 3, the CNN 
is composed of repeating blocks of convolutional and down 
sampling layers, followed by fully connected layers, with 
Rectified Linear Unit (ReLU) activations used throughout. The 
convolutional layers aim to perform feature extraction [44], 
[45], while the fully connected layers predict defect depth, 𝐷 
from those features. Dropout is used after the fully connected 
layers to reduce overfitting to the training set. The 
hyperparameters for this network have been iteratively tuned 
using the validation sets. More details on this design process are 
presented in [9]. The CNN is trained using the state-of-the-art 
Adam optimizer [46] with a learning rate of 1 × 10−3, batch 
size of 64, and a stopping condition of 50 epochs without a 
reduction in experimental validation set loss. There are two 
minor architecture changes from [9] to this paper. Firstly, only 
a single network is needed to predict 𝐷. This matches the 
structure of the 𝐿 network in [9]. Secondly, dropout is increased 
to 0.3, which resulted in slightly better experimental validation 
set accuracy at the cost of needing ~50 more epochs to 
converge. 
 

IV. UNCERTAINTY QUANTIFICATION METHODS 
To achieve UQ the posterior distribution over the network’s 

weights and biases (𝑊) must be calculated or approximated. 
Using Bayes’ theorem this can be written as, 

𝑃(𝑊|𝐷) =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
=

𝑃(𝐷|𝑊)𝑃(𝑊)

𝑃(𝐷)

=
𝑃(𝐷|𝑊)𝑃(𝑊)

∫ 𝑃(𝐷|𝑊)𝑃(𝑊)𝑑𝑊
 

 

(1) 

where 𝐷 is the training data inputs and outputs. With this, 
inference for a given input 𝑥̂ can be calculated by, 

𝑃(𝑦̂|𝑥̂, 𝐷) = ∫ 𝑃(𝑦̂|𝑥̂, 𝑊)𝑃(𝑊|𝐷)𝑑𝑊 (2) 

where 𝑦̂ is the predicted output. However, the posterior is 
computationally intractable due to the difficulty of evaluating 
the normalization constant, 𝑃(𝐷) = ∫ 𝑃(𝐷|𝑊)𝑃(𝑊)𝑑𝑊 due 
to the high dimensionality of both 𝐷 and 𝑊 and the fact that the 
likelihood, 𝑃(𝐷𝑖|𝑊) and the prior, 𝑃(𝑊) are ‘nonconjugate’ 
i.e., do not take the same form in relation to 𝑊 [47]. 
Approximating this distribution as closely as possible to 
produce accurate inference of the posterior is the aim of the 
methods presented in this section. 

For all methods considered in this paper the likelihood of the 
output is considered to be Gaussian,  

𝑃(𝑦̂|𝑥̂, 𝑊) = 𝒩(𝜇, 𝜎) 

(3) 

where both mean, 𝜇 and standard deviation, 𝜎 are a function of 
the network’s parameters. Because of this assumption, the UQ 
methods described in this paper can be said to be ‘well 
calibrated’ if they demonstrate a 1:1 relationship between 
predicted uncertainty and 𝜎. Other approaches such as Mixture 
Density Networks (MDNs) can be used to avoid this 
assumption, but it is commonly used in deep learning UQ 
literature, and is considered sufficient for this application. 

 

A. Deep Ensemble [20] 
Ensembling of machine learning networks has long been 

recognized as a way to improve accuracy [48], [49], but more 
recently it has also become a popular UQ method, commonly 
termed ‘Deep Ensembles’ (DE) [20]. DE functions by training 
𝑀 networks, usually of the same architecture (as is the case in 
this paper), to produce a diverse ensemble of predictors. 
Diversity in the ensemble can be encouraged by training each 
member with a subset of the full training set, sampled with 
replacement, this is commonly called bagging or bootstrapping. 
However, it has been observed that the randomness in network 
initialisation is sufficient [20], [50] so bagging is not used in 

 
Fig. 3. An illustration of the CNN architecture used throughout the paper. 
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this paper.  
The ensemble’s overall prediction is represented by a mean 

(𝜇) and standard deviation (𝜎) of the individual member’s 
predictions, 

𝜇 =
1

𝑀
∑ 𝑦𝑖

𝑀

𝑖=1

   (4) 

𝜎 = √
∑ (𝑦𝑖 − 𝜇)2𝑀

𝑖=1

𝑀
 (5) 

where 𝑦𝑖 is the output of the 𝑖𝑡ℎ member of the ensemble, 𝜎 is 
taken as the measure of uncertainty in all methods presented in 
this paper. The intuition for DE as a UQ method is that different 
members of the ensemble will tend to output similar values 
when the inputs are similar to the training data, because each 
network, even if different, is optimized for that data. But when 
inputs are less alike to the training data, the networks are more 
affected by the specificities of the sub-optimal solution reached, 
producing higher variance results. This can be thought of in a 
‘loss landscape’ perspective as members of the ensemble, due 
to their different initializations, ending up at local minima, that 
all accurately predict on the training data, but behave diversely 
on anomalous data [51]. Prediction error for a specific defect is 
calculated using 

𝐸𝑟𝑟𝑜𝑟𝑗 = 𝜇𝑗 − 𝐷𝑗  (6) 

where 𝑗 is the index of the defect and 𝐷𝑗  is true depth. Error over 
a full test can be summarised by Root Mean Squared Error 
(RMSE), 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝜇𝑗 − 𝐷𝑗)2

𝑁

𝑗=1

 

 

(7) 

where 𝑁 is the size of the test set. 

B. Deep Ensemble with Residual Connections [52] and 
Spectral Normalization [53]  

Neural networks can suffer from an effect called ‘feature-
collapse’ where distances in the input space are not correlated 
with distances in the feature space [32]. This means that inputs 
far from the training data may be mapped close to training set 
features, erroneously assigning them low uncertainty. It has 
been shown that feature collapse can be avoided by enforcing 
‘smoothness’ and ‘sensitivity’ [54]. Smoothness means that 
small input changes cannot cause large output changes, and 
sensitivity requires input changes to always change the feature 
space representation. These properties can be described 
mathematically by bi-Lipshitz continuity, 

𝐾1‖𝑥1 − 𝑥2‖2 ≤ ‖𝑓(𝑥1) − 𝑓(𝑥2)‖2 ≤ 𝐾2‖𝑥1 − 𝑥2‖2 (8) 

where 𝐾1 and 𝐾2 are the Lipschitz constants of function 𝑓 and 
‖ . ‖2 represents the L2 norm. In this paper, the feature extractor 
(convolutional layers) is encouraged to be bi-Lipshitz 
continuous by spectral normalization [53] and residual 
connections [52] which create smoothness and sensitivity 

respectively. Residual networks with spectral normalization 
have been shown to be ‘distance-aware’ (i.e. the ability to assess 
test data’s distance from training data distribution) [55] and 
capture uncertainty effectively [32], [56]. This is explored in 
this paper as a way to improve the UQ capability of deep 
ensembles for NDE.  

Residual connections create a connection between the input, 
and layers deeper into a neural network. They were originally 
proposed to ease the optimization of very deep networks [53] 
but in doing so they also make the network’s activations more 
sensitive to the input, motivating their use in UQ. As shown in 
Fig. 3, residual connections take information and shortcut the 
next few layers by summation with their output. This shortcut 
should be as close to an identity mapping as possible. As the 
number of filters changes and max pooling reduces image size 
by 2 in both width and height, a 1x1 convolutional layer with a 
stride of 2 and no activation function is used for the residual 
connections in this paper.  

Spectral normalization is equivalent to regularizing the 
largest singular value of a layer’s weight matrix. It has been 
popularized recently as a way to improve generalization of 
Generative Adverserial Networks (GANs) [53]. Following [55] 
and the implementation in [57] the spectral norm, Π, is 
estimated at every training iteration, for every layer, using the 
power iteration method. Weights are normalized by 
multiplication with a scaling constant divided by the spectral 
norm, 

𝑐𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙

Π
. This approach has two hyperparameters, the 

number of power iterations and the scaling constant (𝑐𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 >

0). As in [55], one power iteration was found sufficient so is 
used here and 𝑐𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙  was set by a grid search for the smallest 
value that does not reduce the validation set accuracy of 
network, this was found to be 𝑐𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 =  1.2. In this paper this 
method will be referred to as DE-ResSpec from this point 
onwards. 

C. Monte Carlo Dropout [21] 
Dropout was originally proposed as a technique for reducing 

overfitting by setting the output of individual neurons to 0 
during training, with probability 𝑝, at each iteration [22]. It has 
later been shown that implementing dropout at both training and 
test time, before every weight layer, is a close approximation of 
a deep Gaussian Process [21] and has been termed ‘Monte 
Carlo (MC) dropout’. The intuition for MC dropout as an UQ 
method is that each initialisation of dropout at test time is acting 
as a member of an ensemble. As such, 𝜇 and 𝜎 are calculated 
using (4) and (5) with 𝑀 equal to the number of dropout 
initialisations run at test time, 𝑀𝑑𝑟𝑜𝑝𝑜𝑢𝑡. This is set to 200 in 
this work as 𝜇 and 𝜎 were found to change negligibly for 
𝑀𝑑𝑟𝑜𝑝𝑜𝑢𝑡 larger than this. Dropout probability, 𝑝, is set to 0.3 
as larger values significantly increased time to convergence, 
without improving UQ. 

Due to its simplicity, MC dropout has been used in a lot of 
UQ literature [23] but has also received criticism by [51] in 
which it is shown to produce significantly less diverse 
predictors in comparison to DE. This is exampled in [58] where 
a simple single-hidden layer ReLU network with MC dropout 
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fails to produce high uncertainty between clusters of 2D data. 
However, the same work also shows that deeper (>= 2 hidden 
layers) neural networks with MC dropout should theoretically 
approximate the posterior accurately. 

 

V. RESULTS 
This section presents results relating to the quality of UQ 

from the methods presented in the previous section.  

A. Number of networks in ensemble 
When originally proposed in [20] it is suggested that five 

networks are sufficient for effective UQ using DE. However, 
because neither training nor test time computational resources 
are limited in this application a larger ensemble can be used. To 
determine the optimal size of the ensemble, the effect of 
iteratively adding a network to the ensemble was measured in 
terms of the mean absolute change in uncertainty, 

∆𝑚=
1

𝑁
∑|𝑢𝑚,𝑖 − 𝑢𝑚+1,𝑖|

𝑁

𝑖=1

 

 

(9) 

where 𝑢𝑚,𝑖 is the uncertainty for the 𝑖th sample of the 
experimental validation set predicted by an ensemble of 𝑚 
networks and 𝑁 the size of the data set (216 for experimental 
validation). As shown in Fig. 4a, ∆𝑚 decreases as 𝑚 increases, 
indicating a diminishing effect of increasing ensemble size on 
UQ. 60 networks are used for DE in this paper as ∆60≈
1 × 10−3 𝑚𝑚. This is deemed to be low enough to assume that 
the ensemble predictions have mostly converged and adding 
more networks will only minorly change the results.  

It should also be noted that while prediction accuracy is not 
the focus of this paper, ensembling does provide a slight 
reduction in defect sizing error. This can be seen in Fig. 4b 
where the experimental test set RMSE of an ensemble with 𝑚 >

 
Fig. 4. a) Mean absolute change in uncertainty of the experimental validation set and b) RMSE of the experimental test set for both the whole ensemble and 
the newest member for increasing ensemble size. 

 
Fig. 5. Deep ensemble (DE) uncertainty predictions for both in and out of distribution test sets. Experimental test set RMSE = 0.592 mm. 
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10  (solid black line) is ~0.035 mm lower than the mean RMSE  
of the 200 networks when used independently (dotted red line). 

 

B. Calibration 
The uncertainty quantification (Eq. 5) and prediction error 

(Eq. 6) of the methods described in Section IV are illustrated in 
Figs. 5-7. The predictions for uncertainty and crack depth (𝐷) 

for DE and DE ResSpec (Figs. 5,6) are formed from 60 
independently trained networks. For MC dropout (Fig. 7) 
inference uses the output of one network with 200 forward 
passes, assigning a new random seed to the dropout realizations 
each time. The main scatter plots in these figures show 
predicted uncertainty vs. sizing error for each defect in the 
experimental test set.  Effective UQ for in distribution data in 
this plot appears as a zero-mean distribution of error that widens 

 
Fig. 6. Deep ensemble with residual connections and spectral normalization (DE ResSpec) uncertainty predictions for both in and out of distribution test 
sets. Experimental test set RMSE = 0.5831 mm. 

 
Fig. 7. Monte Carlo (MC) dropout uncertainty predictions for both in and out of distribution test sets. Experimental test set RMSE over 30 initialisations = 
0.673±0.05 mm. 
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as uncertainty increases. Also shown in main scatter plot, as 
horizontal dotted and dashed lines, are the calculated 
uncertainties for OOD datasets. These do not have associated 
error as there is no equivalent ‘true’ value. Error bars for this 
data show the 25th and 75th percentiles of uncertainty across the 
full range of 𝑋-positions for each defect type. Ideally, these data 
should be assigned higher uncertainty values than most in-
distribution data. Blue bars in the histograms plotted above and 
to left show the uncertainty and sizing error distributions for 
experimental and simulated test datasets based on bins of width 
of 0.05 mm (above) and 0.01 mm (left). For visual clarity, the 
red simulated test data histograms are not shown in the main 
scatter plot. Solid horizontal lines indicate the 90th percentile of 
the test sets’ UQ. Graphs plotted to the right show aggregated 
uncertainty vs standard deviation of error (STDE). These are 
calculated by splitting the uncertainty predictions into equally 
spaced bins of height 0.015 mm and calculating the STDE in 
each bin containing more than one defect. The black dotted line 
is uncertainty = STDE which is the ideal result for in-
distribution data as points on this line indicate predicted 
uncertainty is close to 𝜎 (as defined in (3)). Table IV gives 
correlation coefficient, 𝑅 for the linear fits to the data in the 
right-most graphs as well as the mean difference between STDE 
and predicted uncertainty. While, for the methods described in 
this paper, the relationship between STDE and uncertainty is 
expected to be monotonic, there is no guarantee it will be 1:1, 
or even linear. Therefore, the following sections describe the 
observed trends in calibration of uncertainty to error for the 
experimental and simulated test sets. 

 
1) Simulated 

Below the 90th percentile of sim test, DE (Fig. 5) and DE-
ResSpec (Fig. 6) have a strong linear relationship between 
uncertainty and STDE. This is quantified by the high 
correlation coefficient of linear fits, (𝑅𝐷𝐸,𝑆𝑖𝑚 = 0.99, 
𝑅𝐷𝐸−𝑅𝑆,𝑆𝑖𝑚 = 0.98). The lines fit to this data have a slope of ~1 
for both methods with low mean differences between 
uncertainty and STDE of 0.032 mm for DE and 0.015 mm for 
DE-ResSpec. In the upper tail of the uncertainty distribution 
(upper 10th percentile of sim test) both methods show increased 
scatter in STDE. This is likely due to the low amount of data in 
the STDE bins. MC dropout (Fig. 7) produces a linear fit for the 
simulated test set (𝑅𝑀𝐶,𝑆𝑖𝑚 = 0.84) but its slope is 2.3, severely 
underestimating error for larger uncertainty values.  

 
2) Experimental 

In the upper tail of the uncertainty distribution (upper 10th 

percentile of exp. test) both DE and DE-ResSpec underestimate 
error significantly. While this is likely contributed to by 
insufficient ensemble diversity it is mainly due to inaccuracies 
in the simulation of the 𝐿 = 5 mm defects. This is because the 
simulation used to create the training set assumes that the 
receiving transducer array elements are in the far-field of the 
defect. This is not the case for the 𝐿 = 5 mm defects, noticeably 
effecting their PWI images [9]. As shown in Figs. 5-7, the 
experimental defects of length 𝐿 = 5 mm are significantly 
undersized because of this domain shift. However, with DE and 
DE-ResSpec they are also assigned higher uncertainty. DE-
ResSpec achieves this most effectively, assigning a mean 
uncertainty to 𝐿 = 5 mm defects higher than 92% of the rest of 
the experimental test set. Even without knowing the true size of 
the defects this would highlight to the operator that they are 
somehow seen as anomalous by the networks. However, these 
uncertainty values are still low in comparison to their absolute 
error. This is because the difference in simulated and 
experimental 𝐿 = 5 mm defects creates a systematic 
undersizing in all members of the ensemble. As this change in 
the predictions has a non-zero mean across the ensemble the 
increased uncertainty is not full captured in the ensemble’s 
overall variance (Eq. 5). This is an example of domain shift 
negatively affecting the quality of UQ, a known issue [59]. 

Experimental test set uncertainty below the 90th percentile 
increases monotonically with STDE for both DE and DE-
ResSpec (𝑅𝐷𝐸,𝐸𝑥𝑝 = 0.95, 𝑅𝐷𝐸−𝑅𝑆,𝐸𝑥𝑝 = 0.98) whereas MC 
dropout shows more significant scatter (𝑅𝑀𝐶,𝐸𝑥𝑝 = 0.84). All 
three of these trends have a slope <1, indicating that UQ is 
significantly underestimating error. The consequence of this for 
implementation of these methods is that if uncertainty 
predictions are to be used as an estimate of expected sizing error 
on a new experimental sample, an experimental validation set 
is needed to calculate the slope. This method is commonly 
called ‘temperature scaling’ [60]. However, even without 
temperature scaling, the strong linear fit means that higher 
uncertainty is a strong indicator of higher error for the DE based 
approaches.  

 
3) Anomaly Detection 

Effective UQ should detect test cases drawn from 
distributions significantly far away from that of the training set. 
As the network has little to no prior information about  these 
cases, it should assign them high uncertainty. As described in 
Section III.B.2 this is primarily tested here using defect types 
not included in the training set. All three methods assign higher 

TABLE IV 
Metrics regarding linear fit of STDE to uncertainty below 90th percentile of uncertainty predictions for simulated and experimental test sets  

Simulated Test Set Experimental Test Set 
 

𝑅 Mean(U-STDE) (mm) 𝑅  Mean(U-STDE) (mm) 

DE 0.98 0.032 0.95 -0.24 

DE-ResSpec 0.99 0.015 0.98 -0.15 

MC Dropout 0.84 0.11 0.84 -0.21 
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uncertainty to the OOD defects than the bulk of the 
experimental test set but for MC dropout it is also almost all 
below the 90th percentile of simulated data, demonstrating poor 
anomaly detection. DE-ResSpec demonstrates the best anomaly 
detection; assigning uncertainty above 90% of the non 𝐿 =
5 mm experimental test set to 60% of the OOD cases. 
Exp. SDH A is assigned the lowest uncertainty by DE-ResSpec. 
This makes intuitive sense, as of all the OOD defects, it is the 
smallest and nearest the back wall, and therefore produces PWI 
images that most closely resemble a surface breaking crack. 
This is exampled in Fig. 2b in comparison to Fig. 1d. 

 
4) Choosing an Uncertainty Threshold 

In implementing these UQ methods for industry, test cases 
with uncertainty above a certain threshold can be dealt with 
separately. This may mean inspection by a human operator, 
further data acquisition, use of traditional sizing methods or a 
combination of these approaches. To do this, a value for the 
uncertainty threshold must be decided upon. Ideally, this would 
be done through the use of an experimental validation set that 
represents the true inspection conditions well. However, in the 
absence of such data, using the simulated validation set could 
be an effective approach. The left and top panels of Fig. 6 show 
that this works well for DE-ResSpec as both the simulated and 
experimental ‘in distribution’ test cases are assigned similar 
uncertainty distributions, meaning that almost all high sizing 
error (>1 mm) and OOD cases are above the 90th percentile of 
the simulated validation set. In contrast, in Fig. 5, DE 
demonstrates limited overlap between the UQ distributions for 
simulated and experimental test sets. This means that using a 
cutoff defined by only simulated data will find almost all 
experimental data anomalous with DE. It is hypothesized that 
the regularization of the spectral norm is responsible for DE-
ResSpec demonstrating better simulated and experimental 
overlap than DE. MC-Dropout has good overlap but doesn’t 
distinguish either of these sets from OOD data. 

 

VI. MAKING EFFICIENT USE OF RESOURCES 
In the application considered in this paper the computational 

resources at both training and test time are not a barrier for 
implementation of DE. Both the training and testing of are 
trivially parallelizable but even with multiple GPUs, some 
applications require more computational efficiency. This 
section discusses ways that training and inference time for DE 
can be reduced. 

 

A. Training Resources 
As the architecture used here has a relatively low number of 

parameters (842,000) each epoch takes ~3.5s using a NVIDIA 
GeForce GTX 1070 Ti, so training a full ensemble of 60 
networks can be completed in ~6hrs. If a more complex 
network was used (e.g. VGG 19 with 138 million) training an 
ensemble could take multiple weeks, making the development 
cycle very slow. Alongside its simplicity, MC dropout has also 
gained popularity as an UQ method because it only requires the 

training of one network so is a good candidate for reducing 
training time. Another approach is ‘snapshot ensembles’ [61] in 
which the members of an ensemble can be captured from one 
initialisation, using a cyclic learning rate. For this application 
snapshot ensembles were found to provide significantly worse 
UQ than DE. It is hypothesized that this is because the local 
optima found by snapshot ensembles are not as diverse as that 
found by re-initializing the network’s parameters. 

 

B. Test Resources 
Inference with the 60-network ensemble used in this paper 

takes ~8𝑚𝑠 per image set which for most applications is quick 
enough to be considered ‘realtime.’ However, if realtime 
inference was required on lightweight hardware and/or using a 
more complex network the test time resources would need to be 
managed more efficiently. This could be achieved by pruning 
the weights of the individual networks [62], using a smaller 
number of networks in the ensemble by optimizing which 
members are used [63] or distilling the ensemble down to a 
single ‘multi-headed’  network with one set of common 
convolutional layers and multiple sets of fully connected layers 
[64]. 

VII. CONCLUSIONS  
This paper has investigated the performance of UQ using DE, 

DE-ResSpec and MC Dropout for modern deep learning in 
application to inline pipe inspection when using a simulated 
training set and experimental test data. The success of these 
methods is judged by their calibration and anomaly detection 
performance. MC Dropout demonstrates only slightly raised 
uncertainty values for OOD samples and poorly calibrated 
uncertainty estimates. DE-ResSpec produced the best 
calibration on simulated test data, created the largest gap 
between in-distribution and out-of-distribution data and is the 
most reliable method in terms of assigning high uncertainty to 
high error test cases. However, while both DE and DE-ResSpec 
show a strong linear fit between experimental data error and 
uncertainty, the gradient of this fit is << 1, meaning that 
uncertainty significantly underestimates error. The implication 
of this for industrial applications is that an experimental 
validation set for scaling is needed if uncertainty values are used 
to infer expected prediction error. However, as the monotonic 
relationship between uncertainty and error is strong, even 
without an experimental validation set, predicted uncertainty 
can be used to compare relative error between test cases and 
detect anomalies. It is therefore the opinion of the authors that 
DE-ResSpec is currently the most appropriate method for UQ 
when using deep learning for NDE. 

One of the biggest unknowns in the field of data science for 
NDE is how data-driven NDE inspections are to be qualified. 
Within the current industrial framework, physics-based data 
analysis is qualified on a small pool of test samples and 
generalization assured by the interpretability of the method. 
However, in the future, the high levels of accuracy 
demonstrated by ‘black-box’ methods may well create a drive 
to qualify them by rigorous testing on a large range of test 
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samples. For this to be realized, UQ methods such as the ones 
presented in this paper, are going to be essential. As presented 
in this paper, DE and DE-ResSpec are suitable for application 
to approximating uncertainty of deep learning for NDE. 
Improvements could be made by research into producing better 
calibrated UQ on experimental test data, despite the domain 
shift from the simulated training set. Domain adaptation 
methods or techniques for increasing the diversity within the 
ensemble are promising candidates for this problem.  

APPENDIX 
Supporting code and data are available at the University of 
Bristol data repository, data.bris, at 
https://doi.org/10.5523/bris.xpeoi1k840fj2mrvfuaejo2t1. 

REFERENCES 
[1] L. Udpa and S. S. Udpa, “Neural networks for the 

classification of nondestructive evaluation signals,” 
IEE Proceedings, Part F: Radar and Signal 
Processing, vol. 138, no. 1, pp. 41–45, 1991, doi: 
10.1049/ip-f-2.1991.0007. 

[2] N. Amiri, G. H. Farrahi, K. R. Kashyzadeh, and M. 
Chizari, “Applications of ultrasonic testing and 
machine learning methods to predict the static & 
fatigue behavior of spot-welded joints,” Journal of 
Manufacturing Processes, vol. 52, pp. 26–34, Apr. 
2020, doi: 10.1016/j.jmapro.2020.01.047. 

[3] M. Mishra, A. S. Bhatia, and D. Maity, “Predicting the 
compressive strength of unreinforced brick masonry 
using machine learning techniques validated on a case 
study of a museum through nondestructive testing,” 
Journal of Civil Structural Health Monitoring, pp. 1–
15, Mar. 2020, doi: 10.1007/s13349-020-00391-7. 

[4] Z. Lin, H. Pan, G. Gui, and C. Yan, “Data-driven 
structural diagnosis and conditional assessment: from 
shallow to deep learning,” in Sensors and Smart 
Structures Technologies for Civil, Mechanical, and 
Aerospace Systems 2018, Mar. 2018, vol. 10598, p. 
38. doi: 10.1117/12.2296964. 

[5] J. Ye, S. Ito, and N. Toyama, “Computerized 
ultrasonic imaging inspection: From shallow to deep 
learning,” Sensors (Switzerland), vol. 18, no. 11, Nov. 
2018, doi: 10.3390/s18113820. 

[6] I. Virkkunen, T. Koskinen, O. Jessen-Juhler, and J. 
Rinta-Aho, “Augmented ultrasonic data for machine 
learning,” Journal of Nondestructive Evaluation, vol. 
40, no. 1, pp. 1–11, 2021. 

[7] S. Sambath, P. Nagaraj, and N. Selvakumar, 
“Automatic defect classification in ultrasonic NDT 
using artificial intelligence,” J Nondestr Eval, vol. 30, 
no. 1, pp. 20–28, 2011. 

[8] X. L. Travassos, S. L. Avila, and N. Ida, “Artificial 
neural networks and machine learning techniques 
applied to ground penetrating radar: A review,” 
Applied Computing and Informatics, 2020. 

[9] R. J. Pyle, R. L. T. Bevan, R. R. Hughes, R. K. 
Rachev, A. Ait Si Ali, and P. D. Wilcox, “Deep 
Learning for Ultrasonic Crack Characterization in 

NDE,” IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control, vol. 68, no. 5, 
pp. 1854–1865, 2020, doi: 
10.1109/TUFFC.2020.3045847. 

[10] A. Voulodimos, N. Doulamis, A. Doulamis, and E. 
Protopapadakis, “Deep learning for computer vision: 
A brief review,” Comput Intell Neurosci, vol. 2018, 
2018. 

[11] A. S. Lundervold and A. Lundervold, “An overview of 
deep learning in medical imaging focusing on MRI,” 
Zeitschrift für Medizinische Physik, vol. 29, no. 2, pp. 
102–127, 2019. 

[12] Dipl.-P. Marija Bertović, “Human Factors in Non-
Destructive Testing (NDT): Risks and Challenges of 
Mechanised NDT,” 2016. 

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep 
learning,” nature, vol. 521, no. 7553, pp. 436–444, 
2015. 

[14] A. Bernieri, L. Ferrigno, M. Laracca, and M. 
Molinara, “Crack shape reconstruction in Eddy current 
testing using machine learning systems for 
regression,” IEEE Transactions on Instrumentation 
and Measurement, vol. 57, no. 9, pp. 1958–1968, 
2008, doi: 10.1109/TIM.2008.919011. 

[15] G. Psuj, “Multi-sensor data integration using deep 
learning for characterization of defects in steel 
elements,” Sensors (Switzerland), vol. 18, no. 1, Jan. 
2018, doi: 10.3390/s18010292. 

[16] D. Medak, L. Posilović, M. Subašić, M. Budimir, and 
S. Lončarić, “Automated Defect Detection from 
Ultrasonic Images Using Deep Learning,” IEEE 
Transactions on Ultrasonics, Ferroelectrics, and 
Frequency Control, 2021. 

[17] J. Sresakoolchai and S. Kaewunruen, “Detection and 
Severity Evaluation of Combined Rail Defects Using 
Deep Learning,” Vibration, vol. 4, no. 2, pp. 341–356, 
2021. 

[18] M.-H. DOD, “Department of Defense Handbook: 
Nondestructive Evaluation System Reliability 
Assessment,” Department of Defense, Washington, 
DC, 2009. 

[19] A. P. Dawid, “The well-calibrated Bayesian,” J Am 
Stat Assoc, vol. 77, no. 379, pp. 605–610, 1982. 

[20] B. Lakshminarayanan, A. Pritzel, and C. Blundell, 
“Simple and scalable predictive uncertainty estimation 
using deep ensembles,” arXiv preprint 
arXiv:1612.01474, 2016. 

[21] Y. Gal and Z. Ghahramani, “Dropout as a bayesian 
approximation: Representing model uncertainty in 
deep learning,” in international conference on 
machine learning, 2016, pp. 1050–1059. 

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, 
and R. Salakhutdinov, “Dropout: a simple way to 
prevent neural networks from overfitting,” The journal 
of machine learning research, vol. 15, no. 1, pp. 
1929–1958, 2014. 

[23] M. Abdar et al., “A review of uncertainty 
quantification in deep learning: Techniques, 
applications and challenges,” Information Fusion, 
2021. 

Uncertainty quantification for deep learning in ultrasonic crack characterization



 

 

13 

[24] P. Zhu, Y. Cheng, P. Banerjee, A. Tamburrino, and Y. 
Deng, “A novel machine learning model for eddy 
current testing with uncertainty,” NDT & E 
International, vol. 101, pp. 104–112, 2019. 

[25] S. O. Sajedi and X. Liang, “Uncertainty‐assisted deep 
vision structural health monitoring,” Computer‐Aided 
Civil and Infrastructure Engineering, vol. 36, no. 2, 
pp. 126–142, 2021. 

[26] C. M. Bishop, “Mixture density networks,” 1994. 
[27] I. D. Khurjekar and J. B. Harley, “Uncertainty aware 

deep neural network for multistatic localization with 
application to ultrasonic structural health monitoring,” 
arXiv preprint arXiv:2007.06814, 2020. 

[28] W. Chen, Y. Gao, L. Gao, and X. Li, “A new 
ensemble approach based on deep convolutional 
neural networks for steel surface defect classification,” 
Procedia CIRP, vol. 72, pp. 1069–1072, 2018. 

[29] M. Marino, K. Virupakshappa, and E. Oruklu, “A 
Stacked Ensemble Neural Network Classifier for 
Ultrasonic Non-Destructive Evaluation Applications,” 
in 2020 IEEE International Ultrasonics Symposium 
(IUS), 2020, pp. 1–4. 

[30] F. Chang, M. Liu, M. Dong, and Y. Duan, “A mobile 
vision inspection system for tiny defect detection on 
smooth car-body surfaces based on deep ensemble 
learning,” Measurement Science and Technology, vol. 
30, no. 12, p. 125905, 2019. 

[31] J. Bradshaw, A. G. de G. Matthews, and Z. 
Ghahramani, “Adversarial examples, uncertainty, and 
transfer testing robustness in gaussian process hybrid 
deep networks,” arXiv preprint arXiv:1707.02476, 
2017. 

[32] J. van Amersfoort, L. Smith, A. Jesson, O. Key, and 
Y. Gal, “On Feature Collapse and Deep Kernel 
Learning for Single Forward Pass Uncertainty,” arXiv 
preprint arXiv:2102.11409, 2021. 

[33] G. E. Hinton and D. Van Camp, “Keeping the neural 
networks simple by minimizing the description length 
of the weights,” in Proceedings of the sixth annual 
conference on Computational learning theory, 1993, 
pp. 5–13. 

[34] A. Graves, “Practical variational inference for neural 
networks,” Adv Neural Inf Process Syst, vol. 24, 2011. 

[35] J. Hensman, A. Matthews, and Z. Ghahramani, 
“Scalable variational Gaussian process classification,” 
in Artificial Intelligence and Statistics, 2015, pp. 351–
360. 

[36] S. Kullback and R. A. Leibler, “On information and 
sufficiency,” The annals of mathematical statistics, 
vol. 22, no. 1, pp. 79–86, 1951. 

[37] D. P. Kingma and M. Welling, “Auto-encoding 
variational bayes,” arXiv preprint arXiv:1312.6114, 
2013. 

[38] L. Le Jeune, S. Robert, E. L. Villaverde, and C. Prada, 
“Plane Wave Imaging for ultrasonic non-destructive 
testing: Generalization to multimodal imaging,” 
Ultrasonics, vol. 64, pp. 128–138, 2016. 

[39] P. D. Wilcox and A. Velichko, “Efficient frequency-
domain finite element modeling of two-dimensional 
elastodynamic scattering,” J Acoust Soc Am, vol. 127, 

no. 1, pp. 155–165, Jan. 2010, doi: 
10.1121/1.3270390. 

[40] R. K. Rachev, P. D. Wilcox, A. Velichko, and K. L. 
McAughey, “Plane Wave Imaging Techniques for 
Immersion Testing of Components with Non-Planar 
Surfaces,” IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control, pp. 1–1, Jan. 
2020, doi: 10.1109/tuffc.2020.2969083. 

[41] L. W. Schmerr, Fundamentals of ultrasonic 
nondestructive evaluation. Springer, 2016. 

[42] H. A. Bloxham, A. Velichko, and P. D. Wilcox, 
“Combining simulated and experimental data to 
simulate ultrasonic array data from defects in 
materials with high structural noise,” IEEE Trans 
Ultrason Ferroelectr Freq Control, vol. 63, no. 12, pp. 
2198–2206, 2016. 

[43] A. Kendall and Y. Gal, “What uncertainties do we 
need in bayesian deep learning for computer vision?,” 
in Advances in neural information processing systems, 
2017, pp. 5574–5584. 

[44] K. Chatfield, K. Simonyan, A. Vedaldi, and A. 
Zisserman, “Return of the devil in the details: Delving 
deep into convolutional nets,” arXiv preprint 
arXiv:1405.3531, 2014. 

[45] J. Donahue et al., “Decaf: A deep convolutional 
activation feature for generic visual recognition,” in 
International conference on machine learning, 2014, 
pp. 647–655. 

[46] D. P. Kingma and J. L. Ba, “Adam: A method for 
stochastic optimization,” Dec. 2015. 

[47] C. M. Bishop, “Pattern recognition,” Mach Learn, vol. 
128, no. 9, 2006. 

[48] I. Goodfellow, Y. Bengio, and A. Courville, Deep 
learning. MIT press, 2016. 

[49] T. G. Dietterich, “Ensemble methods in machine 
learning,” in International workshop on multiple 
classifier systems, 2000, pp. 1–15. 

[50] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, 
and D. Batra, “Why M heads are better than one: 
Training a diverse ensemble of deep networks,” arXiv 
preprint arXiv:1511.06314, 2015. 

[51] S. Fort, H. Hu, and B. Lakshminarayanan, “Deep 
ensembles: A loss landscape perspective,” arXiv 
preprint arXiv:1912.02757, 2019. 

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual 
learning for image recognition,” in Proceedings of the 
IEEE conference on computer vision and pattern 
recognition, 2016, pp. 770–778. 

[53] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, 
“Spectral normalization for generative adversarial 
networks,” arXiv preprint arXiv:1802.05957, 2018. 

[54] J. Van Amersfoort, L. Smith, Y. W. Teh, and Y. Gal, 
“Uncertainty estimation using a single deep 
deterministic neural network,” in International 
Conference on Machine Learning, 2020, pp. 9690–
9700. 

[55] J. Z. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax-Weiss, 
and B. Lakshminarayanan, “Simple and principled 
uncertainty estimation with deterministic deep 

Uncertainty quantification for deep learning in ultrasonic crack characterization



 

 

14 

learning via distance awareness,” arXiv preprint 
arXiv:2006.10108, 2020. 

[56] J. Mukhoti, A. Kirsch, J. van Amersfoort, P. H. S. 
Torr, and Y. Gal, “Deterministic neural networks with 
appropriate inductive biases capture epistemic and 
aleatoric uncertainty,” arXiv preprint 
arXiv:2102.11582, 2021. 

[57] Tensorflow, “tfa.layers.SpectralNormalization,” 2021. 
https://www.tensorflow.org/addons/api_docs/python/tf
a/layers/SpectralNormalization (accessed Sep. 08, 
2021). 

[58] A. Y. K. Foong, D. R. Burt, Y. Li, and R. E. Turner, 
“On the expressiveness of approximate inference in 
bayesian neural networks,” arXiv preprint 
arXiv:1909.00719, 2019. 

[59] Y. Ovadia et al., “Can you trust your model’s 
uncertainty? Evaluating predictive uncertainty under 
dataset shift,” arXiv preprint arXiv:1906.02530, 2019. 

[60] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On 
calibration of modern neural networks,” in 
International Conference on Machine Learning, 2017, 
pp. 1321–1330. 

[61] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and 
K. Q. Weinberger, “Snapshot ensembles: Train 1, get 
m for free,” arXiv preprint arXiv:1704.00109, 2017. 

[62] U. Dorjsembe, J. H. Lee, B. Choi, and J. W. Song, 
“Sparsity Increases Uncertainty Estimation in Deep 
Ensemble,” Computers, vol. 10, no. 4, p. 54, 2021. 

[63] R. Hu, Q. Huang, S. Chang, H. Wang, and J. He, “The 
MBPEP: a deep ensemble pruning algorithm 
providing high quality uncertainty prediction,” 
Applied Intelligence, vol. 49, no. 8, pp. 2942–2955, 
2019. 

[64] L. Tran et al., “Hydra: Preserving ensemble diversity 
for model distillation,” arXiv preprint 
arXiv:2001.04694, 2020. 

  
 

Richard J. Pyle was born in Torquay, U.K. 
in 1996. He received an M.Eng. degree in 
mechanical engineering from The 
University of Bristol, U.K. in 2018. 

Through the summer of 2017 he worked 
for Cavendish Nuclear as a graduate design 
engineer. He is now studying for an Eng.D. 
degree in ultrasonic phased array signal 
processing at The University of Bristol, 

sponsored by Baker Hughes, Cramlington, U.K. His 
current research interests include phased array imaging, 
data compression, defect characterization and machine 
learning. 
 
 
 
 
 

Robert R. Hughes was born in Bristol, 
U.K., in 1989. He received an M.Phys. 
degree in physics followed by an 
Engineering Doctorate (Eng.D.) in non-
destructive evaluation from the Department 
of Physics, University of Warwick, in 2016.  
His Eng.D. research was sponsored by 
Rolls-Royce plc., Bristol, where he carried 

out an industrial placement between 2014 and 2015 
focusing on eddy-current array sensor development and 
data-analysis.  

In 2015, Dr. Hughes took up a position as Research 
Associate with the Department of Mechanical Engineering, 
University of Bristol, U.K, where he developed eddy-
current inspection and data-analysis techniques for 
characterising surface-breaking defects and carbon-fibre 
composite structures.  From 2019, Dr. Hughes has been a 
Lecturer in non-destructive testing at the Department of 
Mechanical Engineering, University of Bristol, U.K where 
his current research interests include eddy-current 
inspection, inversion of inhomogenous materials, defect 
characterisation and advanced data-analysis techniques, as 
well as magnetic particle sensing & manipulation in 
microfluidic environments. 
 
 

Amine Ait Si Ali received the Dipl.-Ing. 
(M.Eng.) degree in computer science from 
the University of Science and Technology 
Houari Boumediene, Algiers, Algeria, in 
2009, the M.Sc. degree in embedded 
intelligent systems from the University of 
Hertfordshire, Hatfield, U.K, in 2012, and 
the Ph.D. degree in computer science from 
the University of the West of Scotland, 

Paisley, U.K., in 2016.  
He took many research positions, including Research 

Assistant with the School of Engineering, Qatar 
University, Doha, Qatar and KTP Associate with the 
Department of Computer and Information Sciences, 
University of Northumbria, Newcastle upon Tyne, U.K. He 
is currently a Data Scientist with Process & Pipeline 
Services, Digital Solutions, Baker Hughes, Cramlington, 
U.K. His research interests are mainly in machine learning, 
big data, cloud computing, non-destructive testing, 
connected health and custom computing using FPGAs and 
heterogeneous embedded systems 

 
 
 
 
 
 

Uncertainty quantification for deep learning in ultrasonic crack characterization



 

 

15 

Paul D. Wilcox was born in Nottingham 
(England) in 1971. He received an M.Eng. 
degree in Engineering Science from the 
University of Oxford (Oxford, England) in 
1994 and a Ph.D. from Imperial College 
(London, England) in 1998. He remained in 
the Non-Destructive Testing (NDT) 
research group at Imperial College as a 
Research Associate until 2002, working on 

the development of guided wave array transducers for large 
area inspection.  

Since 2002 Prof. Wilcox has been with the Department 
of Mechanical Engineering at the University of Bristol 
(Bristol, England) where his current title is Professor of 
Dynamics. He held an EPSRC Advanced Research 
Fellowship in Quantitative Structural Health Monitoring 
from 2007 to 2012, was Head of the Mechanical 
Engineering Department from 2015 to 2018, and has been 
a Fellow of the Alan Turing Institute for Data Science since 
2018. In 2015 he was a co-founder of Inductosense Ltd., a 
spin-out company which is commercialising inductively-
coupled embedded ultrasonic sensors. His research 
interests include array transducers, embedded sensors, 
ultrasonic particle manipulation, long-range guided wave 
inspection, structural health monitoring, elastodynamic 
scattering and signal processing. 

Uncertainty quantification for deep learning in ultrasonic crack characterization


	I. INTRODUCTION
	II. RELEVANT LITERATURE
	III. INSPECTION SETUP, DATA AND NETWORK ARCHITECTURE
	IV. UNCERTAINTY QUANTIFICATION METHODS
	V. RESULTS
	VI. MAKING EFFICIENT USE OF RESOURCES
	VII. CONCLUSIONS
	APPENDIX
	REFERENCES



