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Abstract
Previously, a nonlinear autoregressive network with exogenous input (NARX) demonstrated an excellent performance,
far outperforming an established method in optimal baseline subtraction, for defect detection in guided wave signals.
The principle is to train a NARX network on defect-free guided wave signals to obtain a filter that predicts the next
point from the previous points in the signal. The trained network is then applied to new measurement and the output
subtracted from the measurement to reveal the presence of defect responses. However, as shown in this paper, the per-
formance of the previous NARX implementation lacks robustness; it is highly dependent on the initialisation of the net-
work and detection performance sometimes improves and then worsens over the course of training. It is shown that
this is due to the previous NARX implementation only making predictions one point ahead. Subsequently, it is shown
that multi-step prediction using a newly proposed NARX structure creates a more robust training procedure, by enhan-
cing the correlation between the training loss metric and the defect detection performance. The physical significance of
the network structure is explored, allowing a simple hyperparameter tuning strategy to be used for determining the
optimal structure. The overall detection performance of NARX is also improved by multi-step prediction, and this is
demonstrated on defect responses at different times as well as on data from different sensor pairs, revealing the gener-
alisability of this method.

Keywords
Baseline subtraction, defect detection, time-series data prediction, guided wave, machine learning

Introduction

Guided wave testing is a commonly used non-
destructive evaluation (non-destructive evaluation
NDE) technique often applied to structural health
monitoring (SHM), as in comparison to bulk wave
inspections, it requires fewer sensors and less operator
time in collecting test signals. This is because waves
from permanently attached sensors can propagate over
long distances in waveguides (e.g. plate-like structures
and pipes).1 The signals obtained from a network of
sensors can be processed to form images to locate any
defects in the inspected regions.2–4 In many structures,
measured guided wave signals are dominated by the
responses from structural features making the detec-
tion of responses from defects challenging. The general
solution to this is based on recording one or more
baseline signals when the structure is in a defect-free
state, to which subsequent measurements can be com-
pared. This forms the basis of a defect detection strat-
egy for long-term monitoring called baseline signal
subtraction.5–7 However, as the inspection may span

multiple years during the lifetime of a structure, the
changing environmental and operational conditions
(EOCs), especially temperature, will distort the base-
line signals of a defect-free structure.8 These signals
and their changes are complex, making it hard to dis-
tinguish real defect responses from those arising from
changes in EOCs.

Various compensation techniques have been devel-
oped to reduce the effect of temperature on the baseline
signal. This includes baseline signal stretching,9–11 opti-
mal baseline selection (OBS),9,12 a combination of the
two,13 as well as more recent developments compensat-
ing for a range of effects besides the change in velo-
city.14,15 OBS, which selects the best matching baseline
signal from a pool of signals, then amplitude stretched
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and time stretched,13 has been compared to another
data-driven approach, nonlinear autoregressive net-
work with exogenous input (NARX), which is a
machine learning (ML) method. The latter has shown
superior defect detection performance.16 Previous work
with NARX16 processed data spanning 8 years from a
sparse array of permanently attached sensors on a steel
tank. The network was trained using defect-free signals
recorded when the structure was assumed to be pris-
tine, and predicted baseline signals with matching
EOCs when given synthetic defect test signals. The
degradation of the tank over several years was assessed,
and the defect detection performance of the network
was further validated by introducing a physical anom-
aly to the tank. Other ML methods have been investi-
gated for anomaly classification17,18; however, they
require carefully designed example defect data for
training.

The NARX network is an autoregressive neural net-
work containing a single hidden layer that predicts a
future point in a time-domain guided wave signal based
on previous points (history) in the signal. The history
points are repeated in a specific way to feed a wider
input layer for the NARX network. This paper aims to
improve the training robustness and physical interpret-
ability of the network structure, by understanding how
changing the length of history input, the width of the

input layer and the number of future steps to predict
ahead, affects its detection performance, using the same
experimental data as previous work.16 Subsequently, it
aims to show the training procedure and detection per-
formance of the network is robust to different initialisa-
tions of weights, defect responses at different times and
data from different sensor pairs, revealing the potential
of generalising such a network for similar defect detec-
tion problems in SHM and NDE.

The paper is organised as follows. Section 2 intro-
duces the NARX structure, and Section 3 the data used
for training, validating and testing NARX. In Section
4, the primary drawback of the previously implemented
NARX is presented. Section 5 proposes an optimal
network structure using a new approach to hyperpara-
meter tuning. Section 6 shows that the new structure
overcomes the drawback of the previous implementa-
tion, providing more consistent, better defect detection

performance. Section 7 generalises the use of this net-
work structure to different datasets.

NARX structure

In the current paper, NARX is implemented as a fully
connected neural network with one hidden layer, which
takes nh history values from guided wave signals to pre-
dict the nf th step into the future, where nh and nf are
defined as history length and future prediction length,
respectively. The output of the network ŝ½n+ nf � is
obtained by mapping a function for all the nh + nf � 1

values prior to the prediction point:

ŝ½n+ nf �= f̂ fs½n� nh + 1�, s½n� nh + 2�, :::, s½n� 1�, s½n�,
ŝ½n+ 1�, :::, ŝ½n+ nf � 1�g,

ð1Þ

where n denotes the current step in time, s denotes
known values from data and ŝ denotes predicted
values.

A flow chart illustrating the NARX implementation
on time-series data is shown in Figure 1(a). nh values
are taken from the data (Stage 1) and split to nl signals
of length nu, each delayed by one step (Stage 2), where
nu + nl � 1= nh. This is then concatenated to form the
input vector sin consisting of nl3nu values:

sin =

s½n+ 1� nl � nu�, s½n+ 1� nl � (nu � 1)�, :::, s½n+ 1� nl�,
s½n+ 1� (nl � 1)� nu�, s½n+ 1� (nl � 1)� (nu � 1)�, :::, s½n+ 1� (nl � 1)�

:::, :::, :::, :::,
s½n+ 1� nu�, s½n+ 1� (nu � 1)�, :::, s½n�

8>>>><
>>>>:

9>>>>=
>>>>;

ð2Þ

Therefore nl3nu is referred to as the input layer width.
In this way, nu in the current work merges the nu and
ny in previous work,16 and sin merges the two inputs
which were termed u and y. This improves clarity but
does not affect operation of the network in any way.

sin is passed through the network shown in Figure
1(b), and a predicted value for the next step is given
(Stage 3). For single-step ahead prediction, the value at
Stage 3 is the final output, whereas for multi-step pre-
diction, this value joins the previous nh � 1 values,
which are regrouped and passed through the network
by iterating over Stages 2–4. This process is equivalent
to taking nh values starting at different steps
(s½n� nh + 1�, s½n� nh + 2�, :::) from the right-hand side
of Equation (1) to form a new sin in each loop. In this
case, single-step ahead prediction (SP mode of
NARX19) is a special case of multi-step prediction (P
mode19), where the feedback loop shown in Figure 1(b)
is not used.
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The total number of weights and biases of the net-
work is given by ½nl � nu + 2�nm + 1, where nm is the num-
ber of hidden units. In the current paper,

nm = ceil(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nu + ny)nl + nol

p
+ 10) as established in vari-

ous studies,20,21 where (nu + ny)nl is the number of

nodes in the input layer and nol is the number of nodes
in the output layer.

Current work migrated the NARX network from
Matlab to Tensorflow, as the latter provides greater
capacity for processing large datasets and more flexi-
bility in adapting network structure through lower
level coding. This migration necessitates the use of a
different optimiser, Adam, which is commonplace in
Tensorflow, rather than Levenberg–Marquardt, the
default for NARX in Matlab. The default learning rate
of 0.001 was found to yield best performance. A batch
size of 256 was found to be optimal among a range
tested (from 32 to the training sample size). The net-
work is trained to minimise the mean squared error
(MSE) loss metric between s½n+ nf � and ŝ½n+ nf �.

Data for training, validating and testing
NARX

The experimental data consist of guided wave signals
obtained from nine piezoelectric disc sensors perma-
nently installed on a steel water tank, and monitored
from 2012 to 2020, following the previous work.16 The
data from the years 2012 and 2013, which are the
immediate measurements after sensor installation, are
assumed to represent the tank’s pristine condition for
the purposes of subsequent monitoring. The current
work first investigated the NARX network in detail
with data from one sensor pair: transmit on Sensor 1
and receive on Sensor 8. The training data are

comprised of 20 signals chosen from the 2012 set over
a relatively even distribution of EOCs. The validation
data and defect-free test data are comprised of 5 and
200 signals from 2013. Later, more training data are
added at random and data using different sensor pairs
are also investigated.

The signals transmitted by the sensors are chirp
excited,22 and deconvolved to a five-cycle Hanning
windowed toneburst with a centre frequency of
250 kHz,16 and propagate primarily as S0 mode. The
data were sampled at 5 MHz, which gives 20 points per
cycle. Each signal has a duration of 0.8 ms, and hence
consists of 4000 points in time. Removing 120 points of
electrical crosstalk at time zero leaves 3880 valid
points. The training, validation and test samples were
regrouped from each set of original signals to form
inputs of nh history length. Therefore, each dataset has
a sample size of ½#signals33880� (nh + nf � 1)�.

Artificial defect reflections, which are scaled and
delayed tonebursts, were added to the defect-free test
signals to form synthetic signals. Only one such defect
response is added to each signal. This model is thought
to be more conservative than the real measurements,
because it ignores subsequent echoes and shadowing,
which are likely to be bigger than the direct reflection
from the defect. The defect responses were scaled to
the time of the first arrival signal, referred to as the
Syn1 method in previous work,16 to simulate the beam
spreading effect, and were multiplied by another scale
factor, referred to as severity (given in dB),16 to repre-
sent the size of the defect response. Therefore, the
amplitude a of the defect response is given by16:

a=
2

ct
10(b=20), ð3Þ
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Figure 1. (a) Example flow chart of NARX implementation on time-series data. Blue indicates known values taken from data, and
yellow indicates predicted values. (b) Schematic drawing of a NARX network.
NARX: nonlinear autoregressive network with exogenous input.
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where c is the group velocity of the guided wave, t is
the arrival time of the defect response and b is the
severity of the defect. The current work initially looks
at defects with severity of 230 dB occurring at
t = 0.38 ms, to distinguish the detection performances
of different networks using the largest signal to noise
ratio (SNR) level not detected reliably. Later the net-
work is also tested with defects occurring later in time,
which have smaller amplitudes than at t = 0.38 ms.
An illustration of an example defect-free test signal
with added defect is shown Figure 2(a) and (b).

A standard criterion is set to measure the perfor-
mance of networks, a detailed description of which can
be found in previous work.16 The receiver operating
characteristic (ROC) curve of each defect is computed
using probability of false alarm and probability of
detection (POD) at different detection thresholds. If
the maximum amplitude of a defect-free residual signal
exceeds a threshold, then it indicates a false alarm; if
the maximum amplitude of a residual signal with defect
exceeds a threshold, then it counts towards POD. The
area under curve (AUC) is calculated for each ROC.
Higher AUC indicates the detection performance for
that defect is better. The lower limit of AUC is 0.5,
equivalent to random guessing.

Shortcomings of single-step prediction

To understand the limitations of the existing approach,
various training algorithms, learning rates, batch sizes
and two different ML environments (Matlab following
previous work16 and Tensorflow) were investigated for
the previous NARX structure: nu = 21, nl = 4 and nf = 1.
Some representative results are presented in Figure 3,
which show the MSE of training and validation data
versus epochs as well as the AUC computed for differ-
ent defect severities as training progresses. In all cases,
it can be seen that the MSE for both training and vali-
dation data decreases monotonically during training.
However, the MSE is not representative of the

detection performance of the network. Detection per-
formance is described by the AUC and this can be seen
to fluctuate up and down during the training process.
This means that while there are windows of high AUC
during training, these do not always appear at the same
stage or have the same width. Therefore, it is difficult
to define a generalisable training protocol to obtain
networks with consistently good detection perfor-
mance. It is hypothesised that when predicting one step
into the future, the network simply extrapolates the
next point from the previous few points rather than
actually learning the characteristics of the pristine
response. Therefore, even when tested with defect sig-
nals, the network still manages to predict the next step
well enough to obscure the defect response in the resi-
dual signal. At that stage, the network is considered to
be overfitted, for example, from Epoch 30,000 onwards
in Figure 3(a). The overfitting cannot be detected with
the usual criteria, shown by an increase in validation
loss while the training loss continues to decrease,
because the problem is set in a way that the AUC does
not track monotonically with MSE – the network can
produce a small residual signal regardless of whether it
is defect free or with defects.

Increasing the correlation between MSE and AUC
will improve the robustness of the training procedure,
which is the main aim of this work. Validation loss is
used as an indicator of how well the model will perform
at its intended task: detecting defects in the test set.
Although ultimately the detection performance is indi-
cated by AUC, this is not suitable to be used as a loss
metric – not only would this ramp up the computa-
tional burden, it would also require defect signals to be
present in training data. This leads to difficult ques-
tions such as how big the defect should be, at what time
should they occur, and are they representative of all
possible defects of interest, etc, and bypasses the aim of
defect-free model training.

Subsequently, multi-step prediction is investigated
with the aim of reducing the disparity between the

(b)(a)

Figure 2. (a) Baseline signal and added defect signal of amplitude 230 dB. Red dashed line indicates the location of the defect in
time. (b) Zoom-in of synthetic data at defect location.
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training loss metric, MSE, and the performance metric,
AUC. It is believed that by predicting more steps into
the future, the network will be unable to simply extra-
polate forward as a way to reduce MSE between pre-
dicted and true signals. This means that when applied
to a signal containing a defect response, the network
should be unable to predict the defect response from
data before it is visible in its input.

Hyperparameter study for multi-step
prediction

This section searches for a network structure that can
achieve excellent detection performance, which will
subsequently enable the investigation of the AUC and
MSE correlation for training robustness in the follow-
ing sections. Therefore, a hyperparameter tuning strat-
egy assisted by physical reasoning is presented,
showing an efficient way to find an optimal structure
without needing to test all possible combinations.
Essentially, the performance of the NARX network is
influenced by the following factors: how much history
information is input to the network (nh), how large the
network is (nu3nl), how many steps into the future the
network is predicting (nf ) and how much training data
is used. All these factors are interrelated, and it is
hypothesised that increased input history length would
require a larger network to process (more input signals
and network complexity), which subsequently gives the

network the potential to predict further ahead in time.
Therefore, best possible detection performances are
compared for each of those factors, which are used as
indicators for optimising the hyperparameters.

For the used digital time domain signals, it is more
physically significant to describe nh, nu, nl and nf in
terms of their relative scale to a toneburst in the actual
signal rather than numbers of time steps. Therefore, the
duration of a toneburst Tl is used, which is given by:

Tl =
n

fc
, ð4Þ

where n is the number of cycles in a toneburst and fc is
the centre frequency of the signal. Figure 4 shows how
the history length nh and future prediction length nf of
a multi-step prediction NARX are related to a typical
signal. The top graph illustrates when predicting ˜1
cycle (0:2Tl) ahead, the input to the network would still
be the same as the baseline signal, whereas the network
is required to predict a value where the defect response
shows a local maximum. In this case, the predicted
value would follow the baseline signal (black line), and
subtracting that from the test data (red line) would
return a residual more representative of the defect
response. The bottom graph shows a simpler represen-
tation of the principle using envelopes of windowed
tonebursts at the defect location. When nf is too small,
the difference between the predicted baseline and the

(b)(a)

(c)

Figure 3. AUC, and MSE for both training and validation data evaluated over training history of single-step prediction NARX for
training algorithm: (a) GDX in Matlab, (b) Adam in Python, and (c) Levenberg–Marquardt (default for NARX) in Matlab.
AUC: area under curve; MSE: mean squared error; NARX: nonlinear autoregressive network with exogenous input; GDX: gradient descent with

adaptive learning rate and momentum training.
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test data would not be significant enough to allow
robust defect detection.

Changing input layer width

This section aims to find the optimal combination of
nu and nl for a certain nh. This means for a given his-
tory length nh, how complex the network should be to
achieve the best performance, as the input layer width
nu3nl determines the number of hidden units and sub-
sequently the total number of neurons in the network.
Ideally, the network is set to predict 0.5 of a toneburst
ahead (nf = 0:5Tl) so that the output will still be pre-
dicting the defect-free response right up to the position
of the defect peak. However, given nf = 0:01Tl in previ-
ous work, a more modest value nf = 0:2Tl (1 ultrasonic
cycle ahead) is tested first and subsequent sections will
explore extending this.

To predict one cycle ahead, nh must be large enough
to provide sufficient history information. nh’4nf is
chosen to start with, which means that four cycles of
history length is input to the network, and the effect of
increasing nh will be investigated later in this paper.
The study was performed using different values of nu
ranging from 0:01Tl to 0:7Tl and nl = 0:8Tl � nu, and
the networks trained with eight different initialisations
for each combination of nu and nl to understand the
variance resulting from random initialisations of

weights. All networks were trained over 8000 epochs to
allow sufficient convergence on MSE.

Figure 5 plots the best AUC the network can
achieve for detecting 230 dB defects in training history
versus nu3nl. It is found that for nu3nl\0:1375T 2

l ,
high detection performance is not achieved reliably,
with the scatter in AUC having a standard deviation of
0.130 for nu3nl = 0:008T

2
l . The performance of the net-

work becomes progressively more consistent as it
increases in size. The standard deviation for AUC is
only 0.013 for nu3nl = 0:16T

2
l . As a result, nu = nl is

used in subsequent studies to ensure the optimal per-
formance of the network, as this is the hard limit of
how complex the single-layer NARX-based network
can be for a given history length, nh.

Changing future prediction length

The history length nh = 0:79Tl with maximum input
layer width nu = nl = 0:4Tl is then tested with different
future prediction lengths, nf , up to predicting half a
toneburst ahead (0:5Tl). Figure 6 shows that detection
for the 230 dB defect is only achieved with
0:15Tl\nf\0:25Tl (black dots), although it is hypothe-
sised that the network should also perform well past
this point up to nf = 0:5Tl. When the defect signal is at
its maximum at nf = 0:5Tl, a greater residual could be
obtained after subtraction, making the defect more
detectable.

Before more tests were carried out to see whether
the network only performs best with the structure
fnu, nl, nf g= f0:4Tl, 0:4Tl, 0:2Tlg in this scenario, the
data were down-sampled to reduce the computation
load. This is best illustrated by considering predicting
half a toneburst ahead, the network should at least

nh n f

Point to predict

... ...

... ...

... ...

Figure 4. (Top) Extraction of data from an example baseline
guided wave signal (black line) to be input to NARX network,
and an example defect signal (red line) showing deviation from
baseline signal where the defect occurs. (Middle) Signal
envelopes of the example baseline and synthetic defect signal in
the top graph. (Bottom) A simplified representation using only
the envelopes of the windowed tonebursts at defect location.
NARX: nonlinear autoregressive network with exogenous input.

Figure 5. Best performance (AUC) the network can achieve
throughout the training at different complexities with given
history length nh = 0:8Tl , when nf = 0:2Tl .
AUC: area under curve.
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have nu = nl = 1Tl, resulting in 111 hidden units and
1,121,323 total parameters, which took more than 72 h
to train on a graphics processing unit (GPU) facilitated
high-performance computer. Halving the sampling rate
to 2.5 MHz results in 10 points per cycle yielded simi-
lar performance as shown in Figure 6 by black squares.
This means the information content in the signals
remains the same after down-sampling. But it reduced
the computation time significantly because the number
of parameters in the network was reduced by 84% and
the number of feedback loops in the network, the
training, validation and test data points the network
has to go through were halved when the network was
scaled down.

Changing history length

Networks with increased history lengths are also
assessed to determine the performance over different
future prediction lengths to see whether the range for
peak performances is extended this way. Both nu and nl
are increased by the same amount to achieve maximum
network complexity. Black crosses in Figure 6 show the
detection performance when doubling the history
length (nh = 1:6Tl), which are worse than those of
nh = 0:8Tl in previous section. It is hypothesised that the
deteriorated performances are due to insufficient train-
ing data for the comparatively larger networks result-
ing from the increased history length. Consequently, to
ensure training sample size is not a limiting factor, an
extra 40 signals selected at random are added to the
training data. This effectively triples the training sample

size while the history length doubles. The performances
from those are shown by the red dots in Figure 6. It can
be seen that the lower limit for good detection is still set
at nf = 0:15Tl; however, with more training data, future
prediction length can be increased to nf = 0:4Tl before
performance degrades. Increasing the history length fur-
ther to nh = 2:39Tl with the current 60-signal training
data does not show notable improvements on the detec-
tion performance (red crosses in Figure 6).

On the other hand, increasing nu alone would
result in unbalanced nu and nl, which leads to sub-
optimal network structures as the detection perfor-
mances would show less consistency compared to
those with nu = nl. Therefore, results on those tests
are not shown.

To summarise, the peak performance around
nf = 0:2Tl is shown to be indefinite, meaning it is a
function of training data size and history length. It is
also shown that achieving good performance does not
require the network to be very large, as the number of
parameters in a network is many fewer in down-
sampled tests. It is reasonable to assume that given
enough training data, the network would be able to
predict 0.5 toneburst ahead, although it is quite com-
putationally expensive in this scenario. In this way,
when supplied with adequate training data and setting
nu = nl for maximum network complexity, NARX, as a
multi-layer perceptron, works as a universal approxi-
mator.23,24 Further work is required to determine the
optimal training set size for a given nh or the other way
around. The training set size beyond which the perfor-
mance stops improving is yet to be explored.

Figure 6. Best performance (AUC) the network can achieve throughout the training when predicting different points ahead.
Results in black are from training data with 20 signals, results in red are from training data with 60 signals. Apart from results on
black dots, all other results are obtained from down-sampled data.
AUC: area under curve.
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Due to the presence of some abnormal measure-
ments in the 2013 test data (4 out of 200 signals tested
for sensor pair 1–8), the maximum AUC only reaches
0.97 in Figure 5 and 6. Those abnormal signals can be
clearly identified from the test data, as their amplitudes
are one order of magnitude lower than others. It is
believed that these are a result of occasional poor elec-
trical contacts in the relay-based multiplexors used to
acquire experimental data from the array of sensors.
The network can still distinguish the defects from noise
in those residuals; however, a different threshold is
required as the residuals are significantly lower than
others, limiting the maximum AUC to below unity.
The abnormal signals are omitted from the test data in
subsequent sections to present the true detection per-
formance of the network.

Repeatability of proposed NARX
structure

The training metric, MSE of validation data, can be
used as a good proxy for the desired performance

metric, AUC, provided there is a strong correlation
between the two. Therefore, this correlation is investi-
gated using a training history of the proposed optimal
structure of multi-step prediction NARX. AUC, and
MSE for training, validation and test data are evalu-
ated every 100 epochs, giving 80 checkpoints through-
out training, which are plotted as training curves in
Figure 7(a). The MSE of validation data is then plotted
against AUC on a log scale in Figure 7(b), showing a
clear monotonic trend – as MSE decreases and AUC
improves. In contrast, log(MSE) against AUC for
single-step prediction in Figure 7(c) (with values from
training graph in Figure 3(b)) shows a lack of correla-
tion, which explains why training lacks robustness.

The Spearman correlation coefficient, rs, which
shows the strength and direction of the monotonic rela-
tionship between two variables,25 is computed to quan-
tify the correlation between AUC and MSE. Therefore,
it eliminates the effect of outliers, for example, at early
stages of training, when test MSE falls rapidly but
AUC has not improved yet, or at late stages of train-
ing, when test MSE continue to decrease but AUC
reached its ceiling. It is given by:

(a)

(c)(b)

Figure 7. (a) AUC, and MSE for training, validation and test data evaluated at every 100 epochs over the training history of a
multi-step prediction NARX with optimal structure fnu, nl, nf g= f0:4Tl, 0:4Tl, 0:2Tlg. (b) log(MSE) of validation data scattered
against AUC for multi-step prediction NARX, values taken from (a). (c) log(MSE) of validation data scattered against AUC for
single-step prediction NARX, values taken from Figure 3(b).
AUC: area under curve; MSE: mean squared error; NARX: nonlinear autoregressive network with exogenous input.
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rs = 1�
6
P

D2
i

N (N2 � 1)
, ð5Þ

where Di is the difference between the X and Y ranks
for the ith case, N = 80 is the sample size.25 The rs value
for log(MSE) and AUC is 20.72 for Figure 7(b) and
20.030 for Figure 7(c), thus confirming that the former
exhibits a strong negative correlation, while the previ-
ous training approach is effectively random.

On this basis, the point of lowest MSE of validation
data in training history in general leads to a
network with good detection performance. Therefore,
the multi-step prediction network with the optimal
structure found in the previous section, fnu, nl, nf g=
f0:4Tl, 0:4Tl, 0:2Tlg is trained eight times with different
initialisations, and saved at the point with lowest vali-
dation loss within 8000 epochs of training, using a cus-
tom callback function. The detection performance is
assessed when detecting defects with a severity of
230 dB occurring at t = 0.38 ms, because this defect
amplitude is the largest one that cannot be detected
reliably by all networks. The ROC curves are shown in
Figure 8(a), and are subsequently used to compute the
AUCs in Figure 8(b), which have a mean of m= 0:89,
and a standard deviation of s = 0:061. The rs values for
AUC and MSE in 8b for each of the networks have a
mean of m= � 0:65 and a standard deviation of
s = 0:13, showing a good correlation between the train-
ing metric and the performance metric for each. It can
be seen that training the current NARX network in
this way (saving the network weights at lowest MSE)
consistently returns good detection performance, and
there is a high probability of obtaining a perfect detec-
tor (when AUC = 1) for 230 dB defects.

The multi-step prediction NARX network also
demonstrates improved detection performance when
tested with defects occurring at different times compared

to the previously implemented single-step prediction net-
work (Figure 9(a) and (b)). From the perspective of sig-
nal processing, single-step prediction gives unevenly
distributed noise in the residual signal when subtracted
from defect-free test data, as shown in Figure 10(a) and
(b). Multi-step prediction with the optimal hyperpara-
meters found in Section 5, on the other hand, gives more
evenly distributed residual signal (Figure 10(c)). They
can also maintain a good SNR when subtracted from
test data with defects (Figure 10(d)), even though the
average residual is much higher than that of single-step
prediction networks (Figure 10(a) and (b)). The residual
amplitude at the defect location is also more physically
representative, as the defect in this case has an amplitude
of 0.025 above the average residual. Comparing to its
true amplitude of 0.027, this means defect responses are
passed through the network largely unaffected. In other
words, multi-step prediction with the optimal structure
enhances the correlation between AUC and MSE and
achieves good detection by reducing the occurrence of
large values in the residual.

Generalisability of proposed NARX
structure

The proposed optimal network structure, fnu, nl, nf g=
f0:4Tl, 0:4Tl, 0:2Tlg, is applied to signals from other
sensor pairs to evaluate its performance across different
datasets. For each sensor pair, (transmitter–receiver) 1–
2, 1–3, 1–4, 1–5, 2–4 and 2–5, the network is trained
using five different initialisations, with a training sam-
ple comprised of 60 signals from the 2012 set chosen at
random. Artificial defects are added to the defect-free
test data from the 2013 set using the same method,
Syn1, as in Section 2. The defects have a severity of
230 dB. Their normalised amplitudes are kept the

(b)(a)

Figure 8. (a) ROC for detecting 230 dB defects by best performing networks trained with eight different initialisations. Networks
saved at the point of lowest validation loss (MSE of validation data). Networks are ordered by detection performance from low to
high. (b) Left axis: calculated AUC from the ROC curves. Right axis: Spearman correlation coefficient, rs, for AUC and MSE of
validation data.
AUC: area under curve; MSE: mean squared error; ROC: receiver operating characteristic.
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same as the defects in the time location test in Figure 9
(the peak of the test-free data is normalised to 1). In
this case, the defects are added to different time loca-
tions for different sensor pairs due to different first

arrival time of the signals. The results are presented in
Figure 11. At the first instance (230 dB with normal-
ised amplitude = 0.027), all networks can detect the
defects from all sensor pairs with AUCs well above 0.9

(b)(a)

Figure 9. (a) Detection performance of multi-step prediction NARX with optimal structure fnu, nl, nf g= f0:4Tl, 0:4Tl, 0:2Tlg for
defects occurring at different times. (b) Detection performance of previously implemented single-step prediction NARX for
defects occurring at different times, reproduced from previous work,16 but with anomalous readings excluded to allow a fair
comparison with the current results.
AUC: area under curve; NARX: nonlinear autoregressive network with exogenous input.

(b)(a)

(d)(c)

Figure 10. Residual signal from single-step prediction NARX (a) without defect (b) and with defect. Residual signal from multi-
step prediction NARX with optimal structure (c) without defect (d) and with defect.
NARX: nonlinear autoregressive network with exogenous input.

10 Structural Health Monitoring 00(0)



and little variation. The detection performance of the
networks is better and more consistent when the defects
have greater amplitude (.0.025); it degrades as the
defect amplitude decreases. In general, the results show

that the network is readily applicable to more sensor
pairs in addition to the one studied in detail in the cur-
rent work. Future work will involve generalising the
network to other NDE applications through transfer

(b)(a)

(d)(c)

(f)(e)

Figure 11. Defect detection performance of proposed optimal NARX structure trained and tested with data from (a) sensor pair
1–2, (b) sensor pair 1–3, (c) sensor pair 1–4, (d) sensor pair 1–5, (e) sensor pair 2–4 and (f) sensor pair 2–5. Defects appearing later
in time are detected with smaller amplitudes due to beam spreading, so the x-axis ‘Normalised Defect Amplitude’ decreases from
left to right. It follows the same direction of time as in Figure 9.
NARX: nonlinear autoregressive network with exogenous input.
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learning or by adapting the network structure using the
hyperparameter tuning method presented earlier.

Conclusion

In this paper, the single-step prediction NARX net-
work is found to have inconsistent defect detection per-
formance, because the loss metric for training, MSE, is
not a reliable indicator of the performance metric,
AUC. By predicting multiple steps ahead, the NARX
network is able to achieve a strong inverse correlation
between MSE and AUC. This enables a robust training
procedure to be defined, and the best performing net-
work can be reliably selected from training history at
the point of lowest MSE. The overall detection perfor-
mance of multi-step prediction is also seen to be better
than single-step prediction. This method is generalisa-
ble for data from different sensor pairs.

It is shown that by looking at the physical signifi-
cance of the network with regard to the guided wave
signals, a simple hyperparameter tuning for the optimal
structure can be performed. This involves starting with
a reasonable value of input history length based on a
physically representative future prediction length, and
then testing different future prediction lengths using
the maximum network complexity for the given input
history length. The input history length and the train-
ing set size should be increased when predicting further
ahead.

Current work also reveals some questions that are
worth future investigation, for example, how to quanti-
tatively assess the effect of adding more input history
length and training data, and where the upper limits of
performance lie.
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