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In this work, we employ dimensionality reduction and a Bayesian optimisation approach
in an isogeometric analysis (IGA) setting to reduce the design space’s dimensionality and ease
its exploration while reducing the number of required design evaluations. In the first step,
statistical dependencies implicit in the shape modification function encode essential latent
features of the underlining shape while maintaining the maximum geometric variance. These
latent features are used to form a low-dimensional design subspace with a correspondingly
low-dimensional representation of the shape modification function. The subspace is then
employed in design optimisation with a Bayesian approach. During space exploration, smooth
surface representations are reconstructed from the discrete design instances of the subspace and
evaluated with an IGA-enabled hydrodynamic solver. The proposed approach is demonstrated
for a design optimisation of a naval ship-hull model, originally parameterised by 27 parameters,
aiming at the minimisation of its wave-making resistance. The benefits of the proposed approach
are contrasted with conventional optimisation procedures.

I. Introduction
A tremendous scientific effort over the last decade resulted in establishing the isogeometric analysis (IGA) [1]

approach in the field of computer-aided analysis/engineering (CAA/CAE). IGA’s popularity stems from its ability to
employ standard CAD model representations, such as B-splines and Non-Uniform Rational B-splines (NURBS), as well
as their recent extensions [2–4], in computational analysis without the need of any preprocessing step. This approach
does not require any conversion of a typical CAD model into an analysis-suitable one and therefore bridges the gap
between CAD and CAE technologies by circumventing the mesh generation bottleneck daunting the CAE community
for many decades. To further illustrate this, we can mention here that in the typical CAE workflow, around 80% of the
design time is spent on converting accurate and smooth CAD models into analysis-suitable meshes, and only 20% is
used for performing the actual design analysis; see [5].
Furthermore, common CAD geometry representations, such as NURBS and B-Splines, can be efficiently employed
in the construction of parametric free-form models [6], comprising one or several surface patches, at any required
level of accuracy and smoothness (fairness), and via the adoption of IGA approach can maintain their appropriateness
for analysis. Control points are commonly employed when performing local and/or global shape modifications of the
constituent surface patches and quite naturally they become the obvious selection when considering design variables in
the context of design optimisation. However, control points usage as design variables does not come without problems,
and higher level parameters are preferable and generally more efficient in formulating and solving shape optimisations
problems; see [7–9].
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Therefore, NURBS-based IGA has become a favourable approach for simulation-driven shape optimisation as all
involved stages, i.e., design, parameterisation, and analysis, employ the same geometry representation. Despite that,
during optimisation, one still has to circumvent the problems of inappropriate/invalid designs with wiggly and/or
irregular shapes, and cure the notorious curse of dimensionality. The former is often related to the increased number of
control points and/or higher smoothness requirements appearing in complex free-form shapes with many intricate local
features. This increased number of control points can lead to extremely high-dimensional design spaces, and shape
oscillations and irregularities, which require exhaustive design exploration and numerous design constraints to attain
meaningful optimum designs. Moreover, shape modification via control points can pose an additional challenge when
models comprise multiple patches connected with a geometric continuity that needs to be retained; otherwise, design
modifications could result in invalid or irregular geometries. A notable departure from the optimisation of control point
is found in Kostas et al. [7] in which IGA-suitable procedural parameterisation (PP) is proposed. Typically, in PP, a set
of surface control points defining a certain free-form feature is coupled together with a functional relation creating
a versatile and high-level design parameter set with a significantly reduced size. Thus, using a relatively small set
of high-level parameters, the procedural relations systematically modify the control net, which not only performs a
plausible and fair surface modification but also ensures geometric continuity and automatic satisfaction of constraints.
However, the construction of such parametric models requires a significant understanding of the baseline design, the
employed model representation, and the correlation between model features and its performance. Even then, one can
guarantee neither the identification of all relevant parameters nor exclude redundancies that increase unnecessarily the
design space dimensions [10].
In this work, we employ dimensionality reduction techniques [11, 12] and a Bayesian optimisation [13] approach to
cure the curse of dimensionality and ease the design space exploration by reducing the number of required design
evaluations. In the first step, statistical dependencies implicit in the design parameters encode essential latent features of
the underlining shape and form a lower-dimensional subspace while maintaining the maximum geometric variance
of the original space. The feature extraction typically commences with design parameters used to define the baseline
design. However, if the original space created by these parameters is an orthotope, then latent features are only defining
a new orientation of the original design space without capturing any geometric variance. Therefore, dimensionality
reduction is performed on a discretised version of the shape modification vector, which results in a lower-dimensional
subspace that maintains geometric variance of the original space. Subsequently, subspace exploration, with the aim of
shape optimisation, is performed via a Bayesian approach with design instances being evaluated by an Isogeometric
Analysis (IGA) hydrodynamic solver [14], which guides the process towards optimum designs. Evaluating a design
instance with the IGA solver requires a smooth surface representation of the design, which necessitates the solution of
the inverse problem, i.e., constructing an appropriate surface representation from the lower-dimensional subspace vector
instance. This is a two-step process comprising first the reconstruction of the high-dimensional discretised version of
the design from the subspace, followed by a fitting process that generates a corresponding smooth surface representation.
The resulting NURBS model is commonly a surface with a very large number of control points and consequently the
same large number of degrees of freedom (DoFs) for the IGA-enabled analysis tool. Therefore, evaluation of such
surface reconstructions, with mainly redundant control points (and DoFs), is time-consuming and defies the benefit of
the enhanced accuracy with a low number of DoFs offered by IGA-enabled approaches. Simultaneously, the benefit
of the performed dimensionality reduction can easily disappear and therefore, an iterative procedure is introduced for
reducing the number of redundant control points before passing the design to the solver. This process uses a predefined,
problem-specific geometric tolerance that guarantees the required accuracy for the application at hand while significantly
reducing control points/DoFs.

II. Design Space Dimensionality Reduction Method
Let a parent design, G, lying in a three-dimensional ambient space A ⊂ R3, which is parameterised with a set of 𝑛

design parameters x = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛}. The associated parameterisation of G creates a shape modification vector
S(𝜸, x) ∈ R3, which for any x ∈ X modifies each coordinate set 𝜸 ∈ G of the parent design to a new coordinate set 𝜸′

of the new design G′ as follows:

𝜸′ = 𝜸 + S(𝜸, x). (1)

The bounding limits of x define the design/search space X := {𝑥𝑙
𝑖
≤ 𝑥𝑖 ≤ 𝑥𝑢

𝑖
, 𝑖 = 1, 2, . . . , 𝑛} ⊂ R𝑛, where x𝑙 and x𝑢

are the side constraints that determine the allowed variability. The optimum parametric set x∗ ∈ X ⊂ R𝑛 is found
by maximising/minimising a function 𝑔(S(𝜸, x)) ∈ R representing the performance criterion of interest for G. In
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Fig. 1 Workflow of the proposed approach.

summary, and without loss of generality since any maximisation problem can be converted into a minimisation one, the
following optimisation problem is solved: Find x∗ ∈ R𝑛 such that

x∗ = argmin𝑥∈X 𝑔 (S(𝜸, x)) (2)

The present work aims to extract geometrically-active latent features for the formulation of a dimensionally-reduced
representation of S(𝜸, x), namely Ŝ(𝜸, u), where u = {𝑢1, 𝑢2, . . . , 𝑢𝑚} ∈ U ⊂ R𝑚, with 𝑚 << 𝑛, is a Geometrically-
Active Latent Variable (GALV) vector. This vector pertains to the geometrically-active features of X and serves as
the new dimensional coordinate set for the 𝑚-dimensional subspace GAS(U). Therefore, the initial optimisation
problem (2) can be replaced by a computationally more efficient optimisation in U that yields the optimum vector
u∗ ∈ U, which ultimately, via Ŝ(𝜸, u), results in the optimal design G∗.

A. Extracting geometrically active features
Construction of Ŝ(𝜸, u) commences with the eigendecomposition of a symmetric and positive definite covariance

matrix, C. For GAS, this matrix is constructed numerically by discretising G into 𝐸 elements of equal measure ΔG,
which in 3D ambient space yields the spatial discretisation of S(𝜸, x) as:

S(𝜸, x) = d(x) =

d1 (x)
d2 (x)
d3 (x)

 =


𝑑1,1 (x)
...

𝑑1,𝐸 (x)
𝑑2,1 (x)

...

𝑑3,𝐸 (x)


, (3)

where d(x) is a column matrix of size [𝐿 × 1] and 𝐿 = 3𝐸 . Using this discretisation, C can be obtained as:

C =

∫
X

d(x)d(x)𝑇 𝜌(x)𝑑x. (4)

For the complex problem, evaluation of C requires solving high order integrals, which, if the dimensionality of the design
space is sufficiently small, can be solved with techniques like tensor product Gauss-Legendre quadrature. Therefore, in
the present work, it is approximated while sampling X with a statistically convergent number of Monte Carlo realisations,
𝑁 , which produces the data-set D as
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D =


d(x1)
d(x2)

...

d(xN)


=


𝑑1,1 (x1) . . . 𝑑1,𝐸 (x1) 𝑑2,1 (x1) . . . 𝑑2,𝐸 (x1) 𝑑3,1 (x1) . . . 𝑑3,𝐸 (x1)
𝑑1,1 (x2) . . . 𝑑1,𝐸 (x2) 𝑑2,1 (x2) . . . 𝑑2,𝐸 (x2) 𝑑3,1 (x2) . . . 𝑑3,𝐸 (x2)

...
. . .

...
...

. . .
...

...
. . .

...

𝑑1,1 (x𝑁 ) . . . 𝑑1,𝐸 (x𝑁 ) 𝑑2,1 (x𝑁 ) . . . 𝑑2,𝐸 (x𝑁 ) 𝑑3,1 (x𝑁 ) . . . 𝑑3,𝐸 (x𝑁 )


. (5)

At the discrete level, C can be approximated by Ĉ:

C ≈ Ĉ =
1
𝑁

𝑁∑︁
𝑟=1

d(x𝑟 )d(x𝑟 )𝑇 , (6)

whose eigendecomposition is obtained by the solution of the following eigenproblem:

ĈW = ΛW. (7)

Herein, W is the [𝐿 × 𝐿] feature matrix whose columns are orthogonal eigenvectors W = {w1,w2, . . . ,w𝐿} with
(w𝑇

𝑘
w𝑘 = 1). This spans the basis of an eigenspace, which creates rotations of R𝐿 . 𝚲 = diag(𝜆1, 𝜆2, . . . , 𝜆𝐿) are

the eigenvalues sorted in descending order 𝜆1 ≥ 𝜆2 ≥, . . . , 𝜆𝐿 ≥ 0 and represents the geometric variance along the
corresponding eigenvectors. The eigenvectors have the properties of maximising the geometric variance of designs
projected on them and minimising the mean squared distance between the original points and the relative projections.
Equation 7 can be solved via different techniques; however, the most commonly used one is Singular Value Decomposition
(SVD), which is also employed work; see more details on SVD in [15]. The eigenvector with the highest eigenvalue
captures the maximum geometric variance of designs in X. Therefore, for dimension reduction, columns of W are
rearranged in descending order, based on their eigenvalues, and are partitioned into two sets containing dominant and
non-dominant features.

𝚲 =

[
𝚲1

𝚲2

]
, W =

[
W1 W2

]
. (8)

The columns of W1 = {w1,w2, . . . ,w𝑚} and W2 = {w1,w2, . . . ,w𝐿−𝑚} are the dominant and non-dominant
eigenvectors, respectively, while 𝚲1 = {𝜆1, 𝜆2, . . . 𝜆𝑚} and 𝚲2 = {𝜆1, 𝜆2, . . . 𝜆𝐿−𝑚} are their corresponding eigenvalues.
The separation between W1 and W2 is done based on the eigenvalues and hence, W1 contains the first 𝑚 columns of W,
corresponding to the first largest 𝑚 eigenvalues. These 𝑚 eigenvalues constitute 𝚲1 and we pick 𝑚 so that W1 retains a
minimum of 95% of the geometric variance (𝜎2):

𝜎2 =

∑𝑚
𝑖=1 𝜆𝑖∑𝐿
𝑖=1 𝜆𝑖

. (9)

Among the geometrically active u1 = {𝑢1
𝑖
, 𝑖 = 1, 2, . . . , 𝑚} = W𝑇

1 d(x) and the inactive u2 = {𝑢2
1, 𝑢

2
2, . . . , 𝑢

2
𝐿−𝑚} =

W𝑇
2 d(x) latent variables, we are only interested in u1 as their basis W1 covers the largest geometric variability and

designs are only negligibly influenced by u2. Finally, the reduced-order representation of S(𝜸, x), i.e., Ŝ(𝜸, u) in
discrete form can be calculated via d̂(u) = W1u ∈ R𝐿 , where d̂(t) can be also considered as the minimum-squared-error
approximation of d(x), i.e.,

𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑟=1

����d̂(u𝑟 ) − d(x𝑟 )
����2 . (10)

B. Design surface reconstruction and simplification
As described above, the GALV, i.e., u, corresponds to a lower-dimensional parameterisation of a discretised design.

However, in the context of isogeometric analysis, a smooth representation of the design is needed; therefore, during
optimisation in U, the corresponding NURBS surface for each design is reconstructed to evaluate its performance.
Surface fitting to a point grid/cloud is a well-studied topic with applications in reverse engineering, in CAD, and
Computer Graphics communities. However, for complex geometries and performance indices that are highly sensitive
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to shape modifications, the common surface fitting approaches may result in undesired surface irregularities that greatly
affect the analysis process. This is especially true for ship hulls and wave resistance estimations that can be greatly
affected by even small and local shape irregularities. Therefore, it is of uttermost importance to accurately reconstruct
the continuous ship hull model with a sufficiently fair and smooth (𝐺2 continuity is commonly required) surface
representation.
In the present work, we exploit the structure and geometric information we have embedded in our grid during the
discretisation phase and firstly construct a set of appropriately spaced section curves that are then interpolated via a
surface skinning scheme to generate a smooth surface representation of the ship hull; see Figure 2. This process stems
from the traditional ship-lines design approach and forms the basis of many modern design approaches used in naval
architecture & engineering. The resulting surface model is evaluated with an in-house developed IGABEM solver.

(a)

(b)

(c)

Fig. 2 Surface generation from the design grid used in PCA. (a) Design grid, (b) section curves and (c) NURBS
surface representation of the design.

III. BEM-Isogeometric Analysis
The isogeometric solver adopted in the optimisation for the evaluation of the wave resistance coefficient, 𝐶𝑤 , is based

on a linear approximation which avoids the treatment of the non-linear condition on the free surface, i.e., the so-called
Neumann-Kelvin problem. Following the formulation in Baar and Price [16], the wave-resistance problem is formulated
as a Boundary Integral Equation (BIE) defined on the ship’s wetted surface 𝑆 and the corresponding waterline 𝑙, as

𝜇(P)
2

−
∫
𝑆

𝜇(Q) 𝜕𝐺 (P,Q)
𝜕n(P) d𝑆(Q) − 1

𝑘

∫
𝑙

𝜇(Q) 𝜕𝐺 (P,Q)
𝜕n(P) 𝑛𝑥 (Q)𝜏𝑦 (Q)d𝑙 (Q) = −U · n(P) (11)

where 𝜇 is the density of the source-sink distribution on 𝑆, 𝐺 (P,Q) the Neumann-Kelvin Green’s function, U denotes
the steady forward speed of the ship, and 𝑘 = 𝑔/| |𝑈 | |2 is the characteristic wave number. From the solution of the
above integral equation, several quantities of interest, such as velocity/pressure distributions, wave profile and ship wave
resistance can be obtained.
In the present work, a high-order Boundary Element Method (BEM), based on the isogeometric analysis approach, is
applied for the numerical solution of the BIE in Eq. (11); see [14] for relevant details. In this setting, the field quantities
are represented by the very same basis that is being used for representing the geometry of the body boundary, i.e., the
submerged surface of the ship hull. For the latter, we assume that it can be accurately represented as a multi-patch
NURBS surface x𝑝 (𝑡1, 𝑡2), as follows:

x𝑝 (𝑡1, 𝑡2) =
𝑛
𝑝

1∑︁
𝑖1=0

𝑛
𝑝

2∑︁
𝑖2=0

d𝑝

𝑖1𝑖2
𝑅
𝑝

𝑖1𝑖2 ,𝑘
𝑝

1 𝑘
𝑝

2
(𝑡1, 𝑡2) :=

np∑︁
i=0

d𝑝

i 𝑅
𝑝

i,k𝑝 (𝑡1, 𝑡2), (𝑡1, 𝑡2) ∈ 𝐼
𝑝

1 × 𝐼
𝑝

2 , (12)
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where d𝑝

i are the control points, 𝑅𝑝

i,k𝑝 (𝑡1, 𝑡2) are the rational basis functions:

𝑅
𝑝

i,k𝑝 (𝑡1, 𝑡2) := 𝑅
𝑝

𝑖1𝑖2 ,𝑘
𝑝

1 𝑘
𝑝

2
(𝑡1, 𝑡2) =

𝑤
𝑝

𝑖1𝑖2
𝑁

𝑝

𝑖1 ,𝑘
𝑝

1
(𝑡1)𝑁 𝑝

𝑖2 ,𝑘
𝑝

2
(𝑡2)∑𝑛

𝑝

1
𝑙1=0

∑𝑛
𝑝

2
𝑙2=0 𝑤

𝑝

𝑙1𝑙2
𝑁

𝑝

𝑙1 ,𝑘
𝑝

1
(𝑡1)𝑁 𝑝

𝑙2 ,𝑘
𝑝

2
(𝑡2)

, 𝑝 = 1, 2, . . . , 𝑁, (13)

with 𝑁𝑖,𝑘 (𝑡) being the i-th 𝑘 order B-Spline basis function and 𝑝 the patch index. Furthermore, we consider that each
interval 𝐼 𝑝• is partitioned appropriately by the corresponding knot vector 𝐽 𝑝

• . As already mentioned above, in IGA
context, we employ the same representation for the unknown source-sink density distribution, i.e.,

𝜇(𝑡1, 𝑡2) =
n𝑝+ℓ𝑝∑︁

i=0
𝜇
𝑝

i 𝑅
𝑝

i,l𝑝 (𝑡1, 𝑡2), (𝑡1, 𝑡2) ∈ 𝐼
𝑝

1 × 𝐼
𝑝

2 , 𝑝 = 1, 2, . . . , 𝑁. (14)

where ℓ𝑝 are the additional knots that can be inserted to refine the original spline space for improving our field quantity
approximations. representation, sequence of nested finite-dimensional spaces. Substituting Eq. (14) into Eq. (11) and
using an appropriate set of collocation points, Greville points in our case, we arrive at a discrete form of Eq. (11)
producing a linear system that is solved for the unknown coefficients 𝜇𝑝

i .

IV. Bayesian Optimisation
There are many optimisation problems in which the objective function may be considered a black-box function that

does not assume any functional form and which might be computationally expensive to evaluate. Therefore, evaluation
of the objective function, 𝑔

(
Ŝ(𝜸, u)

)
in our case, may be restricted to few sample instances in the design space resulting

in inadequate response sampling. If 𝑔 was computationally inexpensive, one could sample many designs, e.g. via grid
search, random search etc, however, if it is expensive, then it is imperative to find an optimal solution with the least
number of design evaluations with 𝑔. In Bayesian strategy we treat the objective function as a random function and
place a prior over it. The prior captures beliefs about the behaviour of the function. After gathering function evaluations,
which are treated as data, the prior is updated to form the posterior distribution over the objective function. Bayesian
optimisation is therefore a useful tool for computationally expensive black-box functions, as in our case. There are three
main steps: initialisation, objective function evaluations and Bayesian update. In the initialisation step, the prior belief
about 𝑔 in the form of a surrogate model is constructed using a set of pseudo-random samples evaluated directly with
the high-fidelity solver. In the Bayesian update, optimisation uses acquisition functions to update the prior with a new
sample to get a posterior that better approximates 𝑔. The position of the new sample is determined with an acquisition
function, e.g., expected improvement, which is a trade-off between exploitation and exploration.

V. Experimentation: Shape reparameterisation and optimisation

Fig. 3 Ship hull geometry of DTMB 5415 naval ship model used as a test case for the proposed approach.

The DTMB 5415 hull model (see Fig 3) is a widely used benchmark ship model employed in the shape optimisation
research community and broader. In the present work, this hull model is considered for the minimisation of its
wave-making resistance coefficient, 𝐶𝑤 , at a Froude number equal to 0.350. The wave-making resistance constitutes a
significant part of the ship’s total resistance, when considering high Froude numbers, which are common for naval
and large container ships. It corresponds to the energy consumed to generate the free-surface waves appearing when
a body moves on or near the free surface of oceans, rivers or lakes. Moreover, it is sensitive to local features of the
hull form, such as the bulbous bow or sonar dome; thus, a significant reduction can be achieved without significantly
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modifying the ship’s overall dimensions or capacity, which are often critical design constraints. Although minimising
wave-making resistance can be extremely important for several ship types, its evaluation is computationally intensive.
Table 1 summarises the main characteristics of the hull and test conditions.

Table 1 DTMB 5415 original (model scale) hull main particulars.

Quantity Symbol Unit Value

Displacement ∇ m3 0.549
Length between perpendiculars 𝐿pp m 5.720
Beam 𝐵 m 0.760
Draft 𝑇 m 0.248
Longitudinal center of gravity LCG m 2.884
Vertical center of gravity VCG m 0.056
Water density 𝜌 kg/m3 998.5
Kinematic viscosity 𝜈 m2/s 1.09E-6
Gravity acceleration 𝑔 m/s2 9.803
Froude number Fr – 0.350
Wave resistance coefficient 𝐶𝑤 – 9.1476E-04

A. Shape Modification Method
Shape modification is determined by a recursive combination of 𝑀 = 27 shape modification vectors over a

hyper-rectangle embedding the semi-hull:

𝝍𝑖 (𝜻) : A = [0, 𝐿𝜁1 ] × [0, 𝐿𝜁2 ] × [0, 𝐿𝜁3 ] ∈ R3 −→ R3, (15)

with 𝑖 = 1, . . . , 𝑀 . Specifically, 𝜹(𝜻 , x) = 𝜹𝑀 , where

𝜹𝑖 (𝜻 , x) = 𝑥𝑖𝝍𝑖 (𝜻), with

{
𝜻 = 𝜻 + 𝜹𝑖−1

𝜹1 = 0
(16)

The coefficients {𝑥𝑖 , 𝑖 = 1, . . . , 𝑀 ∈ R} are the design parameters and form a 27−dimensional initial/original design
space X. For modification, the shape functions are defined as:

𝝍𝑖 (𝜻) :=
3∏
𝑗=1

sin
(
𝑎𝑖 𝑗𝜋𝜁 𝑗

𝐿𝜁 𝑗

+ 𝑟𝑖 𝑗

)
e𝑞 (𝑖) . (17)

In Eq. (17), {𝑎𝑖 𝑗 , 𝑗 = 1, 2, 3} ∈ R define the order of the function along 𝑗-th axis, {𝑟𝑖 𝑗 , 𝑗 = 1, 2, 3} ∈ R are the
corresponding spatial phases, {𝐿𝜁 𝑗 , 𝑗 = 1, 2, 3} ∈ R are the hyper-rectangle edge lengths, and e𝑞 (𝑖) is the corresponding
unit vector. Modifications are applied along 𝜁1, 𝜁2, and 𝜁3, with 𝑞(𝑖) = 1, 2, or 3 respectively; see additional details in [?
].

B. Shape reparameterisation with GALV
Extraction of geometric features for the GALV vector u ∈ U that constructs Ŝ(𝜸, u) commences with the

eigendecomposition of C, which accumulates the geometric variability of designs into eigenvalues and eigenvectors.
The former captures the original geometric variability of the full design space, whereas the latter determines the order
of importance of the shape deformation modes. Here, u ∈ R𝑚 is set to capture 95% variability of the original design
space, i.e., 𝜎2 = 95%
As mentioned before, the eigendecomposition is performed on a discrete version of C. The process begins by randomly
sampling 𝑁 = 9000 hull-form designs from the original design space X. The sampling follows a uniform random
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distribution performed by Monte Carlo sampling. Afterwards, the discretisation of the sampled designs is generated
using 𝐸 = [90 × 25] elements that correspond to 𝐿 = 3 × 90 × 25 coordinate values. This creates a training data-set
D ∈ R6750×9000, which is used in Eq. (6). Figure 4 depicts (a) the accumulative percentage of geometric variance
retained with each added eigenvector and (b) MSE calculated in Eq. (10).
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Fig. 4 Graphs showing (a) the percentage of geometric variance retained and (b) the convergence of MSE as a
function of the number of dimensions (𝑚) considered for the lower-dimensional design space.

One may observe in Fig. 4 that the first 15 eigenvectors, W1 = {w1,w2, . . . ,w15} obtained from the eigendecom-
position of C retain 95.18% of the geometric variance. This result indicate that 𝑚 = 15 is sufficient to capture more
than 95% of the geometric variability, which can be achieved with the original 𝑛 = 27 parameters. In other words,
there are only 15 latent directions that capture the great majority of the geometric variation in X, which results in an
approximately 44% reduction of the original design space’s dimensionality. Figures 5 depicts the first three eigenvectors,
{w1,w2,w3}, on the hull surface, with blue/yellow areas corresponding to small/large surface deformations, respectively.
Visualising the eigenmodes directly on the design surface offers an insight of great practical value as it demonstrates the
corresponding type and order of variance captured in each case.

Fig. 5 Shape deformation of the hull model corresponding to the first three eigenvectors.

C. Bayesian shape optimisation
As mentioned before, ship-hull shape optimisation targets the minimisation of the wave-resistance coefficient, 𝐶𝑤 .

The achieved values at each iteration of the optimisation process are shown in Fig. 6. As explained earlier, Bayesian
optimisation is initiated by constructing a surrogate model as a prior belief about 𝑔, i.e., 𝐶𝑤 in our case. Therefore,
at the zeroth iteration, 200 designs were sampled using the technique proposed in [17], which ensures uniformly
distributed and diverse samples. During optimisation, the acquisition function is minimised instead of 𝐶𝑤 , which drives
the exploration toward global optima. Therefore, 𝐶𝑤 values of design instances over optimisation iteration may not
always decrease due to the exploratory part of the optimisation. We can easily see in Fig. 6 that the objective value
reduced rapidly in the first few iterations and the current best was updated only after iteration 29. After iteration 29, the
reduction slows down and reaches the estimated optimum (see Fig. 7) at iteration 73. Relatively few design evaluations
were used to reach the optimised design with significant improvement in 𝐶𝑤 , from 9.1476E-04 to 2.0670E-04.

VI. Conclusions
This work utilised a free-surface IGA-BEM for the shape optimisation of the ship hull. To reduce the overall

computational cost, we first reduce the dimensionality of the design space to extract the latent features. These features
are then used to create a subspace whose dimensional is approximately 44% lower than the original design space, but
it still retains the 95.18% of the geometric variance present in the original design space. Afterwards, this subspace
is explored using Bayesian optimisation with the aim of finding the optimal design (i.e., a design with minimal wave
resistance coefficient) with the least number of design evaluations. The design obtained at the end of the optimisation
showed approximately 77% reduction in the wave resistance coefficient compared to the original design space.
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Fig. 6 Optimisation history depicting the current best (𝐶𝑤) updates vs optimisation iterations.

Fig. 7 Comparison between the original and optimised hull shapes.
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