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Abstract—With the increasing demands for unmanned aerial
vehicle (UAV) based autonomous inspections in the oil and gas
industry, one of the challenging issues for 3D UAV positioning
has emerged due to the satellite signal blocking. Considering the
existing characteristics of the ultrasonic based technique, such as
the low cost, extremely lightweight and high positioning accuracy,
it can be promising as the potential solution. Nevertheless, the
low position update rate and vulnerable positioning perfor-
mance to the changing environment still limit its applications
on UAV. Therefore, in this article, an ultrasonic and inertial
measurement unit (IMU) based localisation algorithm and low
cost UAV autonomous inspection system are presented. With the
incorporation of the IMU, the position update rate, accuracy and
stability of the algorithm can all be significantly improved. This
is done by the adaptively estimated noise covariance matrices
through the proposed adaptive extended Kalman filter (AEKF)
algorithm and the added weighting factors. Followed by, an
additional virtual observation process is presented to overcome
the unavailability of the observation information for further
performance improvement. Finally, extensive numerical results
and field tests demonstrate that the proposed algorithm and
system can achieve the high update rate, reliable, accurate
and precision UAV positioning in oil and gas pressure vessels
and are feasible for the UAV autonomous inspection in these
environments.

Index Terms—3D Localisation, unmanned aerial vehicle (UAV),
ultrasonic, inertial measurement unit (IMU), sensor fusion, au-
tonomous inspection, oil and gas pressure vessels.

I. INTRODUCTION

ALONG with the significant development of artificial in-
telligence (AI) and robotics, leveraging unmanned aerial

vehicle (UAV) for the autonomous inspection becomes a new
research area to meet the industrial needs [1], [2]. In the oil and
gas industry, the periodic inspection is required for the pressure
vessel utilised for the storage of the oil and gas to detect
the cracks or corrosion. Traditionally, this work is carried
out by the experienced engineers. However, considering the
flammable and explosive characteristics of the oil and gas and
the extremely confined space, it is unsafe and difficult for
human to access. In addition, the dark environment inside
the pressure vessel will also have the huge impact on the
working efficiency and accuracy. Therefore, leveraging UAV
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for autonomous inspection turns into a potential solution [3],
[4]. Currently, a commercial UAV named Elios 2 designed by
Flyability has already been extensively used for the inspection
in the oil and gas industry [5]. Nevertheless, Elios 2 can only
be manually controlled by well-trained engineers, due to the
lack of UAV position information in such environments. For
traditional UAV applications, the precise position information
of UAV can be provided by the global positioning system
(GPS). But owing to the satellite signal blocking, it is im-
possible for GPS to provide this information. Instead of the
precise UAV positioning, Elios 2 is mounted with a carbon
fibre protection frame to prevent collision and only provide
the manual mode for inspection. Thus, in order to realise the
UAV based autonomous inspection in oil and gas pressure
vessels, a new technology which can achieve the precise 3D
localisation of UAV is required.

Accordingly, the precise UAV positioning is challenging and
pressingly needed for the UAV based autonomous inspection.
This appears to be particularly important for the applications
in the oil and gas pressure vessels, which is the focused
application under the consideration in this paper. The unsafe,
difficult to access, dark, extremely confined and GPS-denied
characteristics for the focused application all have the signifi-
cant impact on the existing UAV based localisation techniques.
As a result, in order to meet the industrial needs, the research
on the precise UAV positioning in such environment to keep its
stability for the autonomous inspection becomes an important
and attractive area. Currently, different localisation techniques
have already been investigated and applied for the precise UAV
positioning to achieve the UAV based autonomous inspection
in the similar environments. In [6], a smart UAV inspection
system was designed for the application inside an industrial
boiler. The precise UAV positioning was achieved through the
integration of inertial measurement unit (IMU) or inertial navi-
gation system (INS) and vision based approach. However, con-
sidering the dark and textureless environment, the localisation
performance for vision based approaches will be influenced.
Differently, authors in [7] and [8] from the same research
group proposed a deep learning based direction identification
approach for micro aerial vehicle (MAV) inspection inside a
mining tunnel. Instead of the precise localisation, the images
captured by the on-board camera were exploited for heading
direction identification to prevent collision. Nevertheless, they
considered the MAV as a free-flying object, only the heading
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Fig. 1. Oil and gas pressure vessel.

direction was provided. For the focused application, known as
the extremely confined space, with only the heading direction
information, the MAV or UAV may crash. Apart from vision
based techniques, localisation approaches based on light de-
tection and ranging (LiDAR) techniques have also been widely
applied for UAV positioning, due to the robust performance in
the dark and textureless environments. Authors in [9] achieved
the precise UAV positioning in dark areas of large historical
monuments with the easy-to-obtain 3D point cloud and 2D
LiDAR. However, how to generate the precise point cloud in
the difficult access space will be a problem. Ozaslan et al.
[10], [11] designed a MAV based autonomous navigation and
mapping system for the autonomous inspection of penstocks
and tunnels leveraging the integration of LiDAR, IMU and
vision. Yet, the high energy consumption of the LiDAR system
will have the huge impact on the operation time of MAV, and
the system cost needs to be considered. Mansouri et al. [12]
proposed another autonomous navigation approach for MAV in
dark underground mine environment with the utilisation of the
optical flow and 2D LiDAR. Instead of localisation, they were
more focused on the direction identification. Nevertheless,
the completely dark environment still has the influence on
the localisation performance of optical flow, and the energy
consumption of the 2D LiDAR still needs to be taken into
account. Furthermore, due to the weight of the LiDAR system,
a relatively large UAV like DJI F550 is required to carry all
the components. However, considering the focused application
has the extremely confined space as shown in Fig. 1 (2.25m ×
7.2m × 2.3m, entrance: 0.45m). It is still infeasible to utilise
the UAV studied in the aforementioned literature. Thus, a
low cost, extremely lightweight and high accuracy localisation
technique for UAV positioning is still needed.

Considering the low cost, extremely lightweight and high
accuracy requirements, the ultrasonic based localisation tech-
nique can be promising as the potential solution [13]. Cur-
rently, the ultrasonic sensor has already been widely utilised

on UAV systems for target detection, structure inspection,
smart navigation and collision avoidance [14]–[16]. One of the
typical representative commercial solutions can be the system
designed by Marvelmind [17], lots of relevant researches have
already been carried out with this commercial system. Kang et
al. [18] proposed an autonomous UAV system with the ultra-
sonic localisation system for the structural health monitoring.
Li et al. [19] employed the ultrasonic system for UAV navi-
gation in indoor environment. Zahran et al. [20] even utilised
the ultrasonic localisation system to serve as the ground truth
for performance evaluation. Nevertheless, the ultrasonic based
localisation technique still have its shortcomings, which may
greatly limit its applications on UAV. Firstly, it is impossible to
provide a high position update rate in terms of the propagation
speed for the acoustic wave. For Marvelmind, they declared
that the position update rate or ranging update rate for their
system is up to 25Hz [17] in the ideal case. The position
update rate is known as one of the key performance indicators
(KPIs) to evaluate the performance of the UAV positioning
system [21]. It has the great influence on the stability of the
UAV. Secondly, the noises come from the propellers may cause
the appearance of the unreasonable value within the ranging
information and lead to the positioning performance oscillation
as seen from the experiment results. Thirdly, the acoustic
wave is vulnerable to the operational environment variation.
Fourthly, during the operational process, the unavailability of
the observation information always exists. This unavailability
will directly cause the positioning failure or performance
degradation. These all may lead to the instability of UAV.

To remedy the aforementioned issues, the investigation on
the Kalman filter (KF) based sensor fusion approaches has
been carried out. This is due to the implementation simplicity,
high position update rate, and high precision performance
characteristics of these approaches [22]. To overcome the
problem of low position update rate and limits the perfor-
mance influence of the unreasonable value within the ranging
information. Guo et al. [23] and Li et al. [24] all proposed the
extended Kalman filter (EKF) based sensor fusion approach
plus with the measurements calibration and outlier detection
methods. Especially for [24], the additional angular rate is
considered in the prediction process to enhance the accuracy
of the orientation information for positioning performance im-
provement. However, the requirement of the reference points
(points with known position information) in the system runs
counter to the applications in hardly access environments. The
error accumulation caused by the unavailability of the ranging
information also has the huge impact on the localisation
performance of these approaches with the ultrasonic system.
To deal with the problem of the unavailability of the obser-
vation information, in [25], a virtual sensor called sliding-
mode observer (SMO) and a hybrid global estimator (HGE)
are proposed and constructed. In their approach, firstly, more
vehicle states are estimated by SMO and provided to HGE
to serve as the partial observation information. Then, the grey
predictor (GP) is exploited to predict the behavior of the strap-
down inertial navigation system (SINS) through the limited
data for performance enhancement. However, the positioning
performance for UAV applications in focused environments is
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still limited due to the added computational complexity and the 
large accumulation error from IMU. From the different per-
spective, authors in [26] proposed a self-learning square-root-
cubature Kalman filter (SL-SRCKF) approach to overcome the 
GPS outage issue. Instead of predicting the position error from 
the SINS, the long short-term memory (LSTM) neural network 
is used to learn the relationship between the predicted state 
vector and the observation information. Through this learned 
relationship, the prediction for the observation information can 
be made during the outage period. Different from [25], the 
positioning error led by the noise from IMU can be limited 
by [26]. Nevertheless, the increased computational complexity 
and the additional training process will limit the position 
update rate and restrict the applications on UAV. Furthermore, 
as declared, the training time required for LSTM is roughly 
129s once, which means a long-term accurate observation in-
formation is desired for training propose. Yet, the unreasonable 
value and the unavailability of the ranging information always 
exist in the operation of the ultrasonic positioning system. 
Meanwhile, it is difficult t o c apture e nough d ata f or training 
during the flight o f U AV. T hese a ll l imit i ts applications 
on UAV positioning with ultrasonic system. In addition, one 
critical issue never considered for all the aforementioned 
approaches is the influence of the unknown and changing noise 
covariance matrices. This appears to be particularly important 
for UAV applications, because the propagation condition and 
operational environment are time-varying during the flight of 
UAV. The process and measurement noise covariance matrices 
highly affect the performance and stability of the positioning 
system [27], inappropriate noise covariance matrices may even 
lead to the filtering d ivergence [ 28]. To d eal w ith t his issue, 
an additional trial and error tuning process is often required to 
find the appropriate noise covariance matrices [27]. However, 
it may cost lot of time and greatly limit the system application 
scenarios. Unlike the traditional applications, in the focused oil 
and gas pressure vessel environments, the operational space 
for the UAV is extremely confined a nd i t i s d ifficult for 
human to access. As a result, it is difficult to adjust the noise 
covariance matrices through trial and error. Furthermore, to 
keep the stability of UAV in such environments and increase 
the operational time of UAV for the detailed inspection, the 
computational complexity and implementation simplicity of 
the approach also need to be considered. To solve all the 
existing issues under the focused applications, the adaptive 
extended Kalman filter ( AEKF) b ecomes a  m ore efficient 
technique [29]. Its advantages include the ability to adaptively 
estimate the noise covariance matrices, low computational 
complexity, implementation simplicity and less prior infor-
mation requirement [30]. With all these merits, the reliable, 
accurate, high update rate and low computational complexity 
positioning of the UAV in the focused environments can be 
achieved.

In order to remedy the aforementioned issues for reliable, 
accurate, high position update rate and low computational 
complexity 3D UAV localisation to achieve autonomous in-
spection in oil and gas pressure vessels, an ultrasonic and IMU 
based UAV autonomous inspection system is firstly proposed. 
The main contributions of this article are listed as follows:

1) An ultrasonic and IMU based sensor fusion approach is
proposed, focusing on the precise 3D UAV localisation
in oil and gas pressure vessels. With the additional IMU,
the adaptively estimated noise covariance matrices and
the added weighting factors for the estimation of these
matrices, the approach can significantly improve the UAV
positioning performance and increase the position update
rate with low computational complexity to keep the
stability of UAV in such environments.

2) A virtual observation process is proposed and applied
in the system to eliminate the performance degradation
caused by the operational environment variation and the
noises from the propellers to keep the stability of the
UAV in such environments and overcome the observation
information unavailability problem.

3) An ultrasonic and IMU based UAV autonomous inspec-
tion system is developed and implemented for the au-
tonomous inspection inside oil and gas pressure vessels.

The remainder of the article is organised as follows. Section
II gives an overview of the whole UAV based autonomous
inspection system. Section III presents an introduction and
discussion about the ultrasonic and IMU based sensor fusion
approach for UAV positioning. To comprehensively prove the
effectiveness of the proposed algorithm and system, laboratory
experiments and field tests are carried out in Section IV.
Finally, the conclusion is made in Section V.

II. SYSTEM OVERVIEW

The structure of the UAV based autonomous inspection
system is depicted in Fig. 2. The system consists of five mod-
ules, including the UAV, ground station, localisation module,
recording module and illumination module. Considering the
size, weight and cost of the system, the Bebop 2 developed
by Parrot is selected in the system. The ground station is a
laptop with Intel(R) Core(TM) i7-8750H CPU, responsible for
the UAV position determination, control command generation
and transmission. The localisation module is composed of
two parts, i.e., the ultrasonic sensor nodes and the IMU.
Throughout the communication between the anchor nodes
(auxiliary nodes with known positions) and tag node (equipped
on the UAV), the distance information between these ultrasonic
sensor nodes can be estimated and transmitted to the ground
station. The IMU attached on the UAV is exploited to provide
the acceleration and orientation information of UAV and
transmit to the ground station for position estimation. In order
to illuminate the whole area and provide high quality images
and videos for precise inspection, the illumination module and
recording module are added on the UAV. The Insta360 GO 2
is utilised as the recording component due to the tiny size,
lightweight and high performance features. The illumination
module is composed of three torches, including one central
torch – Olight Baton 3 to light the dark environment inside
the pressure vessel and two mini torches – Olight i1R 2
EOS to illuminate the ground. All the components attached
on the UAV can power themselves with their own batteries.
The detailed information for each component is summarised
in Table I. Within these, since the ultrasonic modem is not
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TABLE I
TECHNICAL PARAMETERS AND PRICE FOR EACH COMPONENT.

Name Number Price (£) Size (mm) Weight (g) Additional Notes

Parrot Bebop 2 1 279.99 381 × 327.7 × 88.9 504 N/A
Ultrasonic Sensor 5 60.7 55 × 55 × 67 59 N/A
Ultrasonic Modem 1 60.7 N/A N/A N/A

IMU (BNO055) 1 26 20 × 27 × 4 3 N/A
Insta 360 go 2 1 294.99 52.9 × 23.6 × 20.7 26.5 2560x1440 50fps, FlowState stabilisation
Olight Baton 3 1 51.96 63 × 21 × 21 53 1200 Lumens

Olight i1R 2 EOS 2 12.57 44 × 14.8 × 14.8 13.5 150 Lumens

Fig. 2. System structure.

mounted on the UAV, the size and weight for the ultrasonic
modem are not considered.

During the operational process of the whole system, firstly,
the acceleration and orientation information from the IMU
module are transmitted to the ground station. Simultaneously,
the time of departure (TOD) and time of arrival (TOA) for the
communication between the ultrasonic sensor equipped on the
UAV (tag node) and the fixed ultrasonic sensor nodes (anchor
nodes) are all transmitted to the ultrasonic modem for distance
calculation, and then sent to the ground station. The ground
station is responsible for the position estimation through the
recorded acceleration, orientation and distance information.
The flight path of the UAV in the system is prepared before
the flight of UAV and recorded in the ground station. Finally,
with the flight path and estimated position information, the
control command will be generated and transmitted to the UAV
through the ground station to complete the tasks.

III. SENSOR FUSION BASED UAV POSITIONING

According to the system overview, one of the most impor-
tant information for this UAV based autonomous inspection
system is the position information of UAV. However, as
aforementioned, with the pure ultrasonic based localisation
technique, the localisation performance and stability of UAV
are greatly influenced by the low position update rate, variation
of the operational environment and the noises come from the
propellers. In order to remedy these existing issues, in this
section, the ultrasonic and IMU based sensor fusion approach
is introduced.

A. Transformation of the coordinate frame

It is noted that all the required information including the
acceleration, orientation and position information are within
different coordinate frames. In order to appropriately depict the
UAV’s attitude, and estimate the accurate position information,
a suitable coordinate frame is firstly required. Different from
traditional applications, a relative navigation frame can be
defined by the fixed anchor nodes in the system. Therefore, the
conversion between the IMU coordinate frame and the relative
navigation frame is sufficient.

In order to make the transformation process more intuitive,
the Euler angle is selected to present the whole conversion
process. The three Euler angles (roll, pitch and yaw) between
these two frames are assumed as ϕ, θ and ψ. Then the
transformation equation can be represented as

aRN = CY RNCPY CIPa
IMU , (1)

in which, aIMU and aRN are supposed as the acceleration
information in the IMU frame and relative navigation frame,
CIP , CPY and CY RN are denoted as the transformation
matrix in each process to be expressed as

CIP =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 , (2)

CPY =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (3)

CY RN =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 . (4)

B. Sensor fusion based positioning

With the converted acceleration information and the kine-
matic model, the state prediction equation can be derived as

ûi/i−1 = ui−1 +∆tvi−1 +
∆t2

2 aRN
i−1

v̂i/i−1 = vi−1 +∆taRN
i−1

aRN
i−1 = ãRN

i−1 + γi−1,

, (5)

where, the subscript i for all the variables denotes the number
of the estimation round, ûi/i−1 is the predicted position
of the UAV, v̂i/i−1 is the predicted velocity of the UAV,
ui−1 = [xi−1, yi−1, zi−1]

T is the position of the UAV in the
i− 1 round, vi−1 = [vx,i−1, vy,i−1, vz,i−1]

T is the velocity of
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the UAV at each direction in the i − 1 round, ∆t represents 
the time interval between two rounds IMU measurements,
aRN
i−1 = [aRN

x,i−1, a
RN
y,i−1, a

RN
z,i−1]

T denotes the measured and
converted acceleration in the i − 1 round, ãi−1

RN is the
true value of the acceleration in the i − 1 round and γi−1

represents the IMU measurement noise in the i − 1 round,
assumed as the additive white Gaussian noise (AWGN) with
zero mean and Qγ covariance. Meanwhile, the declaration
requires to be made that, considering the high update rate for
the IMU measurements, the acceleration between two rounds
measurements is supposed as constant. Then, converting these
equations into matrix form yields

ρ̂i/i−1 = F iρi−1 +Bia
RN
i−1, (6)

in which, ρi−1 = [xi−1, vx,i−1, yi−1, vy,i−1, zi−1, vz,i−1]
T

represents the state vector in the i−1 round constitutes by the
position and velocity information, ρ̂i/i−1 denotes the predicted
state vector, F i and Bi are assumed as the state transition
matrix and control matrix in the i round,

F i = I3 ⊗
[
1 ∆t
0 1

]
, (7)

Bi = I3 ⊗
[
∆t2

2
∆t

]
. (8)

Within the equation, I3 denotes the 3×3 identity matrix,
”⊗” represents the Kronecker product. Therefore, the state
covariance matrix can be calculated

P̂ i/i−1 = F iP i−1F
T
i +Qi, (9)

in which, P i−1 represents the previous state covariance matrix
in the i − 1 round, Qi is regarded as the process noise co-
variance. Throughout the state prediction process, the position
information of the UAV can be predicted. However, to get rid
of the error accumulation comes from the IMU measurements,
an additional correction process is still required.

In order to address this, the ranging information measured
by the ultrasonic sensor nodes is exploited. Here, the obser-
vation matrix in the i round is supposed as Di. Then, the
observation model can be built

Di = Hiρ̂i/i−1 + ωi. (10)

In the above equation, ωi is regarded as the measurement
noise from ultrasonic sensor nodes in the i round, modelled
as AWGN with zero mean and Qωi

covariance. Hi represents
the observation transition matrix in the i round,

Hi =


∂d1,i/i−1

∂x̂i/i−1
0

∂d1,i/i−1

∂ŷi/i−1
0

∂d1,i/i−1

∂ẑi/i−1
0

∂d2,i/i−1

∂x̂i/i−1
0

∂d2,i/i−1

∂ŷi/i−1
0

∂d2,i/i−1

∂ẑi/i−1
0

...
...

...
...

...
...

∂dn,i/i−1

∂x̂i/i−1
0

∂dn,i/i−1

∂ŷi/i−1
0

∂dn,i/i−1

∂ẑi/i−1
0

 , (11)

which is approximated through the first order Taylor expan-
sion, due to the non-linearity of it. Within it, dn,i/i−1 =∥∥un − ûi/i−1

∥∥ denotes the calculated distance information
between the ultrasonic tag node and fixed anchor nodes
through the predicted state information, n represents the
number of fixed anchor nodes in the system.

TABLE II
RANGING RESULTS BETWEEN TAG NODE AND ANCHOR NODES.

Anchor 1 (m) Anchor 2 (m) Anchor 3 (m) Anchor 4 (m)

1.637 1.774 1.687 1.828
1.638 1.735 1.698 1.817
1.612 6.145 1.721 1.795
1.617 1.744 1.711 7.366
1.622 1.628 1.694 1.792
1.654 1.729 1.708 1.789
1.619 1.729 1.728 1.801
1.645 1.721 1.757 1.769
1.651 5.827 1.764 1.814
1.641 1.704 1.766 1.041
1.615 1.673 0.6 1.74
1.667 1.67 1.812 1.756
1.654 8.017 1.847 1.813
1.715 1.579 1.84 1.735

Then, the Kalman gain at this round can be calculated and
expressed as

Ki,Kalman = P̂ i/i−1H
T
i (HiP̂ i/i−1H

T
i +Ri)

−1, (12)

where, Ri is assumed as the measurement noise covariance
matrix in the i round which determined by the measurement
noise ωi comes from the ultrasonic sensor nodes.

Finally, the predicted information from the state prediction
process can be updated and corrected for performance im-
provement and preventing the error accumulation. However,
due to the inherent nature of the acoustic wave, the huge
performance oscillation caused by the variation of the opera-
tional environment and the noises come from the propellers
still exists. This has the great impact on the stability of
the UAV, especially for the applications inside the small oil
and gas pressure vessels. To remedy the existing issues, a
virtual observation process and an AEKF based sensor fusion
approach are proposed and introduced as follows.

C. Virtual observation

Compared with other localisation techniques, the ultrasonic
based technique is more likely to be influenced by the vari-
ation of the operational environment and the noises from the
propellers, due to the inherent nature of the acoustic wave. In
the localisation or ranging process, this influence may lead to
a huge oscillation for the localisation or ranging results and
may even lead to the unavailability of the ranging information.

As shown in Table II, the data for the ranging results
from the ultrasonic sensor nodes captured during the flight
of UAV are listed. Apparently from the ranging results, the
huge oscillation for the measured distance can be observed.
When looking at the results of anchor 2, the measured distance
suddenly changed from 1.735m to 6.145m and recovered in the
next round measurement. The same phenomenon can also be
observed for other anchor nodes. These unreasonable values
caused by the variation of the operational environment and
the noises from the propellers may lead to the localisation
performance oscillation or even the divergence of the filter.
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According to the data captured, the standard deviation (STD) 
for the accuracy of the ranging information is greatly influ-
enced by these unreasonable values which increased to 2.086m 
from 0.026m with no unreasonable values.

Furthermore, owing to the low propagation speed of the 
acoustic wave, the position or ranging update rate is extremely 
limited for the ultrasonic based localisation technique. Ac-
cording to the experiments results, the ranging update rate 
for the ultrasonic based system is around 16Hz in the ideal 
case for the focused applications. However, considering the 
variation of the operational environment which may lead to 
the unavailability of the ranging information and the existing 
unreasonable values, the ranging information can be provided 
to correct the results even after 30 rounds state perdition, in the 
extreme case. Under such circumstance, the accumulation error 
from the state prediction process will have the huge impact on 
the localisation performance and may cause the UAV crashes, 
especially under the focused application scenarios.

To remedy the aforementioned issues, a virtual observation 
process is proposed and introduced. For the focused appli-
cation, considering the space is extremely confined a nd the 
speed of the UAV requires to be limited for safety reason. 
In addition, since the system is developed for the autonomous 
inspection in such environments, in order to keep a high image 
and video quality for detailed inspection, the speed of the UAV 
also needs to be limited. Under such circumstances, in our 
system, the speed of UAV in all directions are limited within 
0.2m/s. Therefore, it can be supposed that, within a short time 
period, the UAV is relatively static. Taking all the existing 
factors into account, the following strategy is proposed

Di = Di,observed k <= kthreshold

Di =


∥u1 − ûi−1∥
∥u2 − ûi−1∥

...
∥un − ûi−1∥


n×1

k > kthreshold
,

(13)
where, k represents the state prediction round number which
is set as zero initially, kthreshold is an added threshold value.
During the localisation process, if the current prediction round
number k exceeds kthreshold, the virtual observation value will
be simulated and calculated through the previously estimated
position information of the UAV and the prediction round
number k will be set as zero in the next round. Otherwise,
the observed ranging information will be utilised. In the virtual
observation process, the threshold should be carefully selected.
A larger kthreshold means more trust on the predicted results,
which may lead to the performance degradation caused by the
error accumulation. This can directly lead to the drop-off for
the performance of the system and cause the instability of the
UAV inside the oil and gas pressure vessels. On the contrary,
a smaller kthreshold means much more virtual observation
information will be provided. This will certainly lead to the
accuracy drop-off due to the movement of UAV during the
estimation process. The accuracy of the UAV position is
directly linked to whether the UAV can hit the target point or
not, which will have a great impact on the inspection accuracy
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Fig. 3. eCDF results with different threshold values.

TABLE III
SIMULATION RESULTS WITH DIFFERENT THRESHOLD VALUES

kthreshold Median Error (m) 95th Error (m) STD (m)

kthreshold = 2 0.069 0.254 0.075
kthreshold = 3 0.022 0.053 0.018
kthreshold = 4 0.024 0.048 0.014
kthreshold = 5 0.018 0.040 0.014
kthreshold = 6 0.053 0.107 0.027

and may lead to the crash. Furthermore, each distance mea-
surement will be compared with the previous measurements.
If a suddenly changed measurement is detected, the virtual
observation value will also be simulated and utilised as the
observation information in this round.

In order to find the suitable kthreshold before the actual
flight test, the simulations have been carried out in Gazebo
environment. Here, to conform the anchor nodes can be
deployed without human entering the pressure vessel, all the
fixed anchor nodes are set on the same plane near the entrance
of the oil and gas pressure vessel. The flight path of UAV is set
as a reverse ”S”. Five different values of kthreshold have been
tested in the simulations. The empirical cumulative distribution
function (eCDF), root mean square error (RMSE) and detailed
simulation results have been provided in Fig. 3 and Table III.

Obviously from the simulation results, when being with
smaller kthreshold (kthreshold = 2), a huge performance degra-
dation with 0.069m median error, 0.254m 95th error and
0.075m average STD can be observed. With the augmenta-
tion of the kthreshold, this performance degradation can be
eased, due to the lesser virtual observation information in
the estimation process. However, when being with a larger
kthreshold (kthreshold = 6), the performance drop-off can still
be observed which is led by the accumulation error from
the prediction process. Finally, throughout the simulation, a
suitable threshold value (kthreshold = 5) is selected for the
actual flight test considering the best performance with the
median error, 95th error and average STD to be 0.018m,
0.040m and 0.014m, respectively.
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D. Noise covariance matrices estimation

Even the localisation performance can be improved with
the aforementioned EKF based sensor fusion approach and
the additional virtual observation process. The unknown noise
covariance matrices will still limit the system performance.
Besides, it is time consuming to adjust these matrices. Par-
ticularly, the actual noise covariance matrices are constantly
changing due to the variation of the operational environment.
Therefore, the AEKF based sensor fusion approach which is
able to adaptively estimate the noise covariance matrices is
investigated [31]–[33].

With the predicted position information and the observed
distance information from the ultrasonic sensor nodes, the
innovation covariance matrix ĜD′

i
can be obtained as

ĜD′
i
=

1

M

i∑
j=i−M+1

D′
jD

′
j
T
, (14)

D′
i = Di −Hiρ̂i/i−1, (15)

in which, D′
i represents the difference between the observed

and predicted distance information in the i round, M is the
window size or sampling number. Consequently the Ri matrix
can be estimated

Ri = ĜD′
i
−HiP̂ iH

T
i . (16)

Similar to the estimation of the Ri matrix, the Qi matrix
can be approximated through the difference between the
final corrected and predicted results at the same round. The
difference can be expressed as

Biγi = ρ̂i − ρ̂i/i−1

= Ki,Kalman(Di −Hiρ̂i/i−1)
. (17)

Therefore, the Qi matrix can be derived

Qi = Ki,KalmanE[D′
iD

′
i
T
]KT

i,Kalman

= Ki,KalmanĜD′
i
KT

i,Kalman

. (18)

With the estimated noise covariance matrices, the per-
formance degradation led by the environment variation can
be further improved. Nevertheless, since the estimated noise
covariance matrices are constantly changing, the filtering di-
vergence is more likely to occur. This will certainly cause a
crash. To solve this issue, the offline estimation results for the
noise covariance matrices and two weighting factors α and
β are utilised and added. Here it needs to note that, these
two added offline estimation results of the noise covariance
matrices Roff and Qoff are estimated before the flight of
UAV, with the UAV statically at fixed point.

Ri = (1− α)Roff + α(ĜD′
i
−HiP̂ iH

T
i ), (19)

Qi = (1− β)Qoff + β(Ki,KalmanĜD′
i
KT

i,Kalman). (20)

As seen from the above equations, the estimation of the noise
covariance matrices is limited by the offline estimation results
and these two weighting factors. It can be observed that with
the increasing of the α or β, the estimation of the noise covari-
ance matrices will give more trust on the current measurements
to catch up the changes. However, this may cause the filtering
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Fig. 4. eCDF results with different weighting factors.

divergence. On the contrary, with smaller weighting factors,
a more stable estimation of the noise covariance matrices
can be obtained. Nevertheless, there will be a performance
degradation due to the inappropriate noise covariance matrices.
Thus, the suitable weighting factors are required due to the
connection with the positioning performance.

In order to decide the suitable weighting factors, the sim-
ulations with different weighting factors for the proposed
algorithm have been conducted. Similarly, the deployment
strategy for fixed anchor nodes in the system and the planned
path for the UAV are the same as the previous simulations.
Six different values of the weighting factors have been tested
in the simulation for performance analysis. For the Kalman
filter based localisation approaches, the two noise covariance
matrices have the great impact on the localisation performance.
When with smaller process noise covariance matrix and larger
measurement noise covariance matrix, more trust will be
given to the state prediction process. On the contrary, the
localisation performance will more rely on the observation
correction process. With the adaptively estimated noise co-
variance matrices, the proportion between these two matrices
can be decided. However, the frequent changing estimation
results for these two noise covariance matrices may lead to
the filtering divergence. Thus, the two weighting factors plus
with the offline value for these two noise covariance matrices
have been added in the estimation process. In the simulation, if
the different values of the two weighting factors α and β are
selected, the proportion between these two noise covariance
matrices will be changed in comparison with the estimated
results. Therefore, the values for the two weighting factors
α and β are always set as the same in the simulation. The
purpose is to keep the same proportion level for these two
noise covariance matrices for the application scenarios under
consideration. The eCDF for each and the detailed localisation
results have been given in Fig. 4 and Table IV.

Apparently, the same conclusion in comparison with the
previous discussion can be made. With the smaller weight-
ing factors (0.01, 0.05), the performance degradation with
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TABLE IV
SIMULATION RESULTS WITH DIFFERENT WEIGHTING FACTORS

α, β Median Error (m) 95th Error (m) STD (m)

α = β = 0.01 0.025 0.064 0.018
α = β = 0.05 0.022 0.051 0.016
α = β = 0.1 0.018 0.040 0.014
α = β = 0.2 0.020 0.041 0.014
α = β = 0.3 0.019 0.043 0.015
α = β = 0.4 0.021 0.050 0.015

the median error, 95th error and average STD larger than
0.022m, 0.051m and 0.016m can be observed, when being
compared with the localisation results for relatively larger
weighting factors. This is caused by the reduction of the
adaptive ability for the proposed algorithm. Alone with the
increasing of the weighting factors, the adaptive ability for
the proposed algorithm can be elevated, which can be proved
by the localisation results with the weighting factors equal to
0.1, 0.2 and 0.3. However, with much more changes for the
estimation of the noise covariance matrices, the stability of the
filter maybe influenced, which may lead to the performance
degradation or even the filtering divergence. The performance
degradation can be discovered through the localisation results
with 0.4 weighting factors. Meanwhile, the simulations with
larger weighting factors (0.5-0.9) have also been conducted
to comprehensively analyse the proposed algorithm. When
being with these weighting factors, the filtering divergence
can be observed during the flight of UAV in the simulation
environment. This phenomenon is particularly significant at
the position where UAV suddenly changed its position such
as taking off or landing. This filtering divergence will directly
lead to the position lost of it. Considering the focused appli-
cations, the primary objective is to prevent any positioning
failure and performance oscillation. Thus, according to the
simulation results, the weighting factors equal to 0.1 is se-
lected since the best positioning performance in accuracy and
precision can be achieved to keep the stability of the UAV and
improve the inspection efficiency in that extremely confined
space. Furthermore, considering Ri is estimated through a
subtraction of two positive definite matrices, thus it might
become negative after a new update process. To prevent this,
if a negative estimation of Ri is calculated in this round, the
weighting factor α will be directly set to zero. This means that
the measurement noise covariance matrix in this round will be
Roff . Finally, throughout the calculated noise matrices Qi and
Ri, the localisation performance can be improved.

IV. EXPERIMENTS

In this section, the description for a large number of exper-
iments including laboratory experiments and field tests in the
oil and gas pressure vessel will be given to comprehensively
validate the proposed localisation algorithm and prove the
effectiveness of the UAV autonomous inspection system.

A. Laboratory experiment
1) Environment setup: In order to exhaustively validate the

performance of the proposed sensor fusion based algorithm for

Fig. 5. Laboratory experiment environment.

UAV positioning, the ground truth is required. In the labora-
tory experiment, considering the sub-millimeter accuracy, the
OptiTrack V120:Trio [34] is utilised as the reference system
to provide the ground truth for performance evaluation. Our
experiment is performed in a confined area (1.95m × 3.0m
× 2.3m) to mock the operational environment inside the oil
and gas pressure vessel. All the anchor nodes are deployed
on the same plane (X-Z plane) with the same distribution in
field tests to suppose that these nodes can only be deployed
near the entrance of the pressure vessel. This is to conform
that anchor nodes in the system can be deployed without
human entering the pressure vessel to aid the deployment.
The laboratory experiment environment with anchor node
distribution, coordinates of anchor nodes, the reference system
and the UAV system have all been illustrated in Fig. 5.

2) UAV flight test: In laboratory experiments, same as the
simulations, the flight path of UAV is set as a reverse ”S”.
Three different sensor fusion based approaches including the
EKF algorithm in this paper, the EKF based approach pro-
posed by Guo et al. [23] and the sensor fusion based approach
presented in [24] are compared with the proposed algorithm
to prove the effectiveness of it. For all the aforementioned
sensor fusion approaches, the STD of the measurement noise
from the IMU module and the ultrasonic sensor nodes are
assumed as 0.3m/s2 and 0.01m. These are estimated with the
measured acceleration and ranging information at fixed points
and adjusted manually through trial and error. The threshold
value for the virtual observation process and the sampling
number for the estimation of noise covariance matrices are set
as 5 and 50, respectively. With the existing reference system,
the RMSE and eCDF have all been calculated and provided
to validate the localisation performance. Here it needs to note
that, due to the low position update rate for the ultrasonic
based system and the unreasonable values for the ranging
information, the huge localisation performance oscillation for
the pure ultrasonic based approach and the sensor fusion based
approaches without the virtual observation process always ex-
ists. This performance oscillation will directly lead to the UAV
crash in this confined space, according to the experiments.
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Fig. 6. Flight test results in the laboratory environment. (a) Flight trajectories results. (b) Flight trajectories in X direction. (c) Flight trajectories in Y direction.
(d) Flight trajectories in Z direction. (e) Localisation error (m) in X direction. (f) Localisation error (m) in Y direction. (g) Localisation error (m) in Z direction.
(h) eCDF results.

TABLE V
LOCALISATION PERFORMANCE FOR SENSOR FUSION BASED APPROACHES

Algorithm Median Error (m) 95th Error (m) STD (m) Update Rate (Hz) Initialisation Time (s)

[23] with virtual observation 0.067 0.131 0.032 117 14.17
[24] with virtual observation 0.057 0.117 0.029 75 14.91

EKF in this paper with virtual observation 0.061 0.105 0.026 118 10.07
Our proposed 0.056 0.104 0.026 115 20.47

Thus, only the positioning results for these sensor fusion based
approaches with the virtual observation process are provided.

As shown in Fig. 6 and Table V, the flight test results and lo-
calisation performance for the sensor fusion based approaches
on UAV positioning in the laboratory environment have been
given. In [23] and [24], two additional methods including
the measurement calibration and outlier detection methods are
proposed and added in the estimation process to deal with the
performance oscillation issue led by the unreasonable value
in the measured ranging information. Throughout these two
additional methods, plus with the virtual observation process,
the low update rate and performance oscillation issues can
be eliminated with the median error, 95th error and average
STD up to 0.067m, 0.131m and 0.032m in such environment.
Especially for the sensor fusion based approach in [24],
with the added angular rate in the prediction process, the
median error is further reduced to 0.057m. Nevertheless, the
requirement of the suitable calibration parameters still limits
and influences the performance of these. Some reference points
with known position are desired help for the calculation of
these parameters, which is difficult to achieve in the pressure
vessel environments. The unsuitable parameters may even
cause the over correction of the ranging measurements, this
can be proved through the comparison of these two approaches
with the EKF approach in this paper. From the localisation

results, it can be observed that the median error for these
are almost the same as with the EKF approach in this paper.
Particularly, the approach proposed by Li et al. [24] even holds
the better median error 0.057m. However, a huge performance
degradation can be discovered with the 95th error dropped to
0.117m and 0.131m. When being compared all these three
approaches with the proposed method, the proposed method
holds the best positioning performance in all of these three
indexes with 0.056m median error, 0.104m 95th error and
0.026m average STD. The performance for these approaches is
restricted by the unknown and constant noise covariance matri-
ces. When being with the constant noise covariance matrices,
the system can hold the current status with stable performance
which means high precision. Yet, the system cannot catch
up the changes of the noise which may lead to the accuracy
drop-off. This can also be discovered through the localisation
results, that the EKF approach in this paper can attain the same
average STD with the proposed algorithm. However, the drop-
off for the median error can still be observed. Furthermore,
the current noise model exploited for these three approaches
are estimated by the acceleration and ranging information
measured at fixed points with known position and adjusted
manually through trial and error. This takes lots of time and is
hard to achieve in the pressure vessel environments. Thus, the
proposed approach is more suitable for the focused application
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Fig. 7. Anchor node utilised in the oil and gas pressure vessel.

where it is difficult to measure or adjust the noise matrices.
Excluding the localisation accuracy and precision, the up-

date rate or the computational complexity of the system and
the algorithm also has great impact on the stability of UAV
and the inspection performance [21]. As shown in Table V,
the update rate for the position information and the initiali-
sation time of each algorithm are provided. Clearly, the EKF
approach in this paper holds the best update rate 118Hz due to
its lowest complexity. However, a high update rate (115Hz) can
still be obtained for the proposed algorithm. The initialisation
time for these approaches including the initialisation of the
ultrasonic system, the estimation of the original position of
the UAV and the calculation of the offline data for the noise
covariance matrices. Obviously, the EKF approach in this
paper still holds the shortest initialisation time 10.07s, and the
proposed algorithm holds the longest initialisation time 20.47s.
This is caused by the calculation of the offline data for the
noise covariance matrices. Additional 50 rounds estimation are
required to capture sufficient data for more accurate calculation
of the offline noise covariance matrices. Here it needs to note
that, the initialisation time for the system is mostly determined
by the update rate of the ultrasonic ranging information (the
original position of the UAV is calculated through 50 position
information estimated by the pure ultrasonic approach with
the ranging information) and has no influence on the position
update rate during the flight of UAV. Therefore, despite the
proposed algorithm holds the longest initialisation time, it has
no impact on the localisation performance and the inspection
quality and efficiency of the system.

B. Flight test in the pressure vessel

Finally, in order to verify the effectiveness of the UAV based
autonomous inspection system in the oil and gas pressure
vessels, the flight tests in such environment have been carried
out. Therein, the flight tests are only performed with the
proposed approach, considering the unknown and difficult to
adjust noise covariance matrices for other three approaches.
Besides, due to the difficulty to measure the ground truth
in such environment, only the flight trajectory is provided.
Through the magnets attached on the anchor nodes as shown
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Fig. 8. Flight trajectory in field tests. (a) Flight trajectory in X direction. (b)
Flight trajectory in Y direction. (c) Flight trajectory in Z direction.

Fig. 9. Experiment snapshots for field tests.

in Fig. 7, the anchor nodes can be absorbed on the wall of
the oil and gas pressure vessel near its entrance with the same
distribution as in the laboratory experiment without human
access. During the test, the UAV was flying inside the pressure
vessel autonomously to capture images and recording video for
the inspection of the corrosion on the surface.

As shown in Fig. 8 and Fig. 9, the flight trajectory in
each direction and images captured by the UAV during the
flight test have been depicted. Apparently, with the sensor
fusion based localisation algorithm, the attached recording
module and illumination module, high quality images with
the resolution of 2560 × 1440 can be captured by the UAV
system to identify the corrosion in that dark environment.
In conclusion, the proposed ultrasonic and IMU based UAV
autonomous inspection system is feasible for the focused
applications to achieve the low cost autonomous inspection
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in oil and gas pressure vessels.

V. CONCLUSION

Due to the increasing demands on the UAV autonomous
inspection in the oil and gas industry, this article has proposed
a low cost ultrasonic and IMU based UAV autonomous inspec-
tion system for the autonomous inspection inside oil and gas
pressure vessels. In the beginning, the system overview was
presented to provide a detailed information about each module
in the system and the system operational process. Followed by,
a comprehensive description for the proposed sensor fusion
based approach including the EKF based approach, the AEKF
based approach and the virtual observation process was given.
The proposed approach was utilised to achieve the reliable,
accurate, high position update rate and low computational
complexity localisation of UAV in such environments. Finally,
exhaustive simulations and experiments including laboratory
experiments and field tests have been carried out to prove
the effectiveness of the proposed algorithm and the developed
system. Accordingly, high accuracy and precision localisation
of UAV can be attained with the median localisation error,
95th error and average STD to be 0.056m, 0.104m and
0.026m, respectively. Meanwhile, the position update rate for
the system is significantly improved to 115Hz. Throughout
these, it can be demonstrated that our proposed algorithm and
system are feasible for the UAV autonomous inspection in oil
and gas pressure vessels.

However, it requires to be noticed that the limitation for
the proposed approach and system still exists. The long-term
unavailability and low update rate of the observation informa-
tion still has the impact on the localisation performance of
the system due to the accumulation error from the prediction
process. To deal with the existing problem, the multi-rate
sampling updating can be a potential candidate, which will
be the future research direction.
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[15] L. M. González-deSantos, J. Martı́nez-Sánchez, H. González-Jorge,
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