
This is an accepted manuscript of the following article: Bhagavathy, S. M., & Melone, J. (2022). Smart streetlights for smart cities. IEEE 

Smart Grid Bulletin (May). https://smartgrid.ieee.org/bulletins/may-2022/smart-streetlights-for-smart-cities 

Smart Streetlights for Smart Cities 

Sivapriya M. Bhagavathy and Joseph Melone 

University of Strathclyde 

 

Abstract 

Streetlights are a key asset in any city as they provide a sense of safety and security to the 

public, especially pedestrians, and increase the quality of life by artificially extending the day. 

Streetlights that are smart and operate intelligently and autonomously can provide added 

benefits of additional lower energy consumption and lower carbon emissions [1], [2]. Such an 

asset can also provide the extra connectivity and sensor data flows required to allow algorithms 

centrally or locally deployed to act on relevant information to optimise asset energy usage and 

provide a degree of automation of operation. This article will discuss a smart street lighting 

system developed by Autonomous-IoT, a UK-based SME. 

 

The Smart aspect of the lighting system can include detection of scenarios where light is required using 

sensors such as PIR, and integrated CCTV cameras can also enhance safety and security. Optimal 

control of smart lighting load has a clear benefit to the goal of energy efficiency, however, added local 

electricity generation and storage to adopt an architecture similar to that of a nanogrid [3], [4] enhances 

the benefits further. 

Challenges 

The technical challenge of deploying smart streetlights is first of all to instrument them appropriately, 

with the right level of onboard processing capability to enable the design goal functionality.  Even a 

smart streetlight requires an energy source, and the concept of smart cities requires optimum efficiency 

and adaptability, which indicates that renewable energy sources like wind and solar are means of 

controlling and reducing the energy consumption, potentially allowing smart streetlights to operate in 

rural and off-grid scenarios in the future. The local processing and monitoring hardware should be 

paired with appropriate communications capability. Adding remote monitoring and control means a 

communications channel is required, and this must have suitable bandwidth and power consumption 

characteristics to work within the streetlight generation and consumption limits. Examples of this 

approach discussed in [1], [2], [5–7] often use wireless communications such as 4G, GSM, LoRaWAN 

or NB-IoT which all provide monitoring bandwidth, secure protocols, and low power consumption. 

However, integration with a remote monitoring and control system is necessary to realise the potential 

of smart devices. This is a parallel challenge which requires software development to work seamlessly 

with innovative hardware architectures. 

Innovation 

Smart streetlights in the last few years have taken advantage of the wide availability of low-cost 

microcontrollers such as Arduino and Raspberry Pi systems [2], [7] and used a range of control 

algorithms and controllable loads to deliver lighting systems which can react to weather conditions such 

as fog [2], [6], the presence of pedestrians and the passage of cars at variable speeds [8]. Integrated 

CCTV systems have been demonstrated, delivering on the promise of safe and secure lighting [9]. 

 

Adding local generation into the proven smart streetlight concept has the potential to make the type of 

control required much more aligned with the concept of autonomous miniature DC grids that have been 
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proposed for use within homes, to connect small groups of homes, and to form local parts of DC 

microgrids [10], [11]. This opens the possibility of much more sophisticated distributed control which 

can optimise individual device state-of-charge, minimise energy losses, and also reduce the cost of 

charging. Such capability is not an innovation for its own sake, instead it can be viewed as a future 

requirement to provide overall system reliability and availability, since local storage provides energy 

reserve for continued off-grid operation. Further, optimal device power-sharing and charging strategies 

will reduce the likelihood of smart streetlights being unavailable. Autonomous-IoT’s smart streetlight 

is a good example of this approach, where the architecture of their smart streetlight has taken the core 

smart streetlight concept and added renewable generation using an integrated photovoltaic panel and 

vertical axis wind turbine shown in Figure 1 and Figure 2. 

  

 

Fig. 1: Schematic of Autonomous-IoT smart streetlight 

Each smart streetlight contains an onboard low voltage DC bus, with Maximum Power Point tracking 

control of the PV panel. Autonomous-IoT use their own developed IP controller board which delivers 

the capability to optimise the power consumption of the lighting and camera systems based on usage 

and monitoring of internal parameters such as battery state of charge as well as external parameters 

such as time of day. This system incorporates a vertical axis wind turbine into the design, generating 

renewable energy to supplement the PV module in charging the system battery. 4G communications 

capability is adopted, with other options such as Wi-Fi and GSM available depending on the installation 

site. Autonomous-IoT’s smart streetlight typically has an installed PV rating of 56W, a design rating 

for the vertical axis wind turbine of 300 W, battery capacity of 70 Ah at 12V, including up to 4 integrated 

CCTV cameras, and a lighting capability of up to 5700 lumens. Combination of wind and solar 

generation capability enables a lower battery capacity requirement as lower autonomy of 1 day is 

sufficient. 
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Fig. 2: Example of Autonomous-IoT smart streetlight next to an EV charger. 

State-of-the-art nanogrid deployments [12–14] have a different set of goals: 

• Loads should be controlled intelligently where possible to optimise energy consumption 

• Local electricity generation and storage should be present 

• Control actions should optimise the energy generation and storage 

• Communications capability should be built in with the control architecture to allow remote 

monitoring and control of the nanogrid [15], [16] 

Using the nanogrid concept to augment smart streetlight functionality makes energy usage optimisation 

a key operating principle of one or multiple smart streetlights operating together. This is expected to 

bring benefits in terms of cost of operation and overall efficiency, and existing hardware used to deliver 

smart streetlights fits the majority of hardware and communications requirements. 

Conclusion 

A smart grid, whether national or nano in scale, should have the capability to monitor its own energy 

consumption, and maintain voltage and current within optimal limits. The nanogrid architecture of 

smart streetlight system follows this conceptual requirement and therefore as control systems are 

optimised and capabilities are added, the potential is there to provide new grid services and 

communications services, based on the nanogrid concept of distributed energy resource and storage 

management. Reducing the cost of ownership of streetlights with these smart capabilities by optimising 

energy use, minimising carbon emissions, is an exciting avenue for development as smart cities are 

realised in the future. The benefits of the smart streetlight in nanogrid configuration are to minimise 

energy consumption, using local generation, storage and smart control of lighting load and CCTV 

cameras.  With the additional integrated renewable energy generation capability combined with smarter 

control of the lighting and CCTV as demonstrated by Autonomous-IoT, we estimate energy savings 

over a traditionally controlled LED streetlight of 30% or more [1]. On units with just smarter control 

considerable savings could be achieved by the use of PIR movement sensors. Also a site is likely to 

have a combination of smart street lights with and without CCTV to optimise the energy usage. 
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