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Abstract

In Model-Based System Engineering (MBSE), the creation of complex engineering systems is facilitated by a standard-
ised engineering data model and model version control, both of which generate valuable data after each conducted study.
However, there are currently few to no approaches, reusing the information and knowledge from previous engineering
studies. In this work, we present a new recommendation system, based on a widely adopted engineering data model,
defined in the ECSS-E-TM-10-25A technical memorandum. This engineering data model is used by the European Space
Agency (ESA), associated partners, as well as in other engineering domains. An engineering model (EM) is a hierar-
chical decomposition of an engineering system, providing information about the overall system, design options but also
about low-level components. The novel recommendation system leverages a Knowledge Graph (KG) as a unified frame-
work for storing multiple EMs. State-of-the-art semantic similarity Natural Language Processing (NLP) techniques are
then used to define similarity between higher level information, so called metadata, associated with each EM. Textual
information, such as the ”Mission Objectives” of each study, are encoded with a neural language model into a vector
representation, which allows to calculate a similarity metric between them, and then compare past-mission metadata with
proposed metadata of a new study. In addition, a similarity between lower-level engineering components in the KG is
described through the Jaccard metric, which compares components based by the set of parameters that each of them are
associated with. By firstly clustering similar engineering designs through their associated metadata and then identifying
analogous components in each cluster, the algorithm is able to recommend engineering components for new studies. In
the results, the functionality of the approach is demonstrated as a pilot study for spacecraft conceptual design.

1 Introduction
As defined in [1],Model-Based System Engineering (MBSE) is a holistic system engineering approach, centered on the
system model, the “sole source of truth”. MBSE is quickly becoming a preferred design approach as it allows to main-
tain the consistency and manage the complexity of the system development process. Several organisations, across the
manufacturing and production fields have initiated or completed the transition from a document-centric to a model-based
approach [2].

The data model defined in the ECSS-E-TM-10-25A technical memorandum [3] contributes to the MBSE approach by
defining guidelines for model-based data exchange for the early stages of engineering design. Furthermore, it contains a
decomposition of a system, down to subsystem and equipment level, with a defined lists of parameters and disciplines.
The ECSS, standing for European Cooperation for Space Standardization, is an initiative launched by the European Space
Agency (ESA) in 1993 to define a coherent and single set of standards for all European space activities [4]. The ECSS-
E-TM-10-25A is however not specific to the design of space systems and has also been applied within the maritime and
defense fields.

While the ECSS-E-TM-10-25A provides the decomposition for a system, the comparison with past models is not yet
feasible. Past-mission analysis is however a key initial step, often performed manually by engineers, to kick-start their
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design, and better evaluate initial parameters. It is therefore of interest to explore methods to enable analysis of past
missions to provide insight for future studies. Multiple approaches have been developed in recent years by the National
Aeronautics and Space Administration (NASA) to facilitate the design process of new studies. This includes a system that
based on established rules-of-thumb, historical missions, and through multitude of metadata inputs by the user can pick
from a catalogue adequate components or adapt mission parameters [5, 6]. Similarly, several algorithms are already used
to predict the cost of a mission and verify that it will not exceed the allocated budget [7]. Access to previous data models
can thus accelerate and enhance the design of new systems.

However, the complexity of space mission design and engineering systems in general with multiple design options
create a high dimensional search space. With the amount of different design options, choosing the most important ones to
accurately compare and match heritage information quickly becomes a complex task. An approach to enhance knowledge
reuse is the one described in [8]. The authors propose to implement a conversational recommendation system, which
would allow the user to have a more guided interaction to search for helpful design inputs, but would require a scheme of
logical design combinations. Our approach instead focuses on using natural language to describe relevant design choices.
In this paper, we present a recommendation system for the ECSS-E-TM-10-25A data model. The similarity analysis
is performed at two levels, first comparing metadata describing the main engineering concept characteristics, and then
comparing the content of the Engineering Models (EMs), which defines in more detail the architecture of the past studies.
Metadata information in the domain of spacecraft engineering can be for example the ”Mission Objectives”, ”Propulsion
Type”, or ”Orbit type” associated to each study. The metadata and the EMs are firstly migrated to a common KG based on
previous work presented in [9]. The recommendation system is then deployed on this KG. With the approximate metadata
of a new study, the recommendation compares these new inputs to the ones contained in the KG and identifies past similar
architectures. The recommendation system then suggests similar equipment and architecture elements, identified in the
cluster of past study, for the new study.

To summarise, the main contributions of the paper are the following:

1. Define a similarity metric among a set of metadata that represents the high level engineering product features and
adheres to the ECSS-E-TM-10-25A data model.

2. Describe a recommendation system that by leveraging on the aforementioned similarity metric and the Jaccard
similarity measure, provides system engineering recommendations (overall system and components).

3. Demonstrate the functionality on the conceptual design of a space mission, which could be extended to any engi-
neering systems that adheres to the ECSS-E-TM-10-25A data model.

Section 2 introduces in more details the conceptual design process of space missions, the case study of the method-
ology here proposed. Section 3 introduces the structure of the EMs adhering to the ECSS-E-TM-10-25A data model.
Section 4 defines the mathematical problem of the textual metadata comparison, and introduces the Jaccard index for
the EM’s components comparison. Section 5 details the methodology followed to develop the recommendation system.
Finally, the results are presented and discussed in Section 6.

2 Application
The conceptual design phase is the first stage of a spacecraft’s life cycle, where its initial technical, programmatic and
economic feasibility are established. The Concurrent Design Facility (CDF) team at ESA applies the concurrent engi-
neering approach to optimise the feasibility studies of space missions. The keys elements of this design approach are (i)
the concurrency of the design process, (ii) the cross-functionality of the team, (iii) a facility with adequate hardware and
software infrastructure, and (iv) a design model [10]. The experts work simultaneously on the system design in a shared
facility thus emphasising team communication. The system design is stored in an EM, and is used as source of truth by
the experts. In the past 20 years, the CDF has performed over 250 studies.

To help kick-start a new study, system engineers usually look at past similar missions’ reports to estimate initial
parameters and foresee potential design drivers. However, the amount of accumulated data slows down this essential
heritage analysis step. This task is often performed manually by the experts. Valuable design information is contained in
EMs but those are not easily reused, queried, let alone compared. With an increasing number of space missions designed
and the limitation of the manual approach, a recommendation system for this specific application is here proposed.

3 Data
The EM stores in a semi-structured way the information related to a single mission, its equipment and parameters. Figure 1
displays a simplified view of the EM’s structure, a formal version is found in the UML data model of the ECSS-E-TM-
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10-25A [3]. Each EM contains several design iterations of the system. Within each iteration, multiple design options are
studied in parallel to facilitate trade-offs decisions. For instance, some design option might have a propulsion system and
another option not. Each design option has a product tree organising the equipment and parameters per subsystems, for
instance, a battery and its capacity would be listed under the power subsystem. Part of the parameters can be imported from
a reference data library while others are directly defined by experts during the study. A group of parameters corresponding
to a set of metadata is linked to the EM, the product tree root. The objects defined in the ECSS-E-TM-10-25A data model,
for instance, iteration or option are not domain-specific and could therefore be applied to any engineering domain. This
flexibility however comes at the cost of semantics. The information contained in each EM and respective associated
metadata information are stored in a common KG. This is necessary as currently each EM is a standalone model. The
migration of multiple EMs into a common database and conversion of the UML data model from ECSS-E-TM-10-25A is
described in more detail in [9].

Figure 1: Simplified Schema of an Engineering Model

4 Problem Definition

4.1 Metadata Similarity
Being n the list of metadata associated to the conceptual design of an engineering system, one can define a set of metadata
M as:

M = {m1, ...,mn} ∈ Rn

Let’s consider two metadata sets P and Q, with pi and qi being their respective i-th single metadata entries. To calculate
similarity between the two metadata sets and also the single metadata entries, the information they contain needs to be
converted into a computer-interpretable format. More formally this can be represented as:

pi ∼ qi↔ s(xpi ,xqi)> ε1

, where s(xpi ,xqi) is a function which defines a similarity metric between two vector representations of two single metadata
entries. The representations xpi and xqi can be computed with a neural language model, where the input is the textual
information of the single metadata entries and the output a vector or so called ”embedding” of the textual information.
This can be formulated as:

f (yi,θ f ) = xi ∈ Rd

∀yi = p1,q1..,qn, pn ∈ pi∪qi

where θ f represents the particular set of model parameters of the pre-trained language model f , which is discussed in
more detail in the next section.

The semantic similarity between two embedding vectors can then be calculated following standard practice e.g. with
the cosine similarity metric [11]:

s(xpi ,xqi) =
xpi · xqi

∥xpi∥∥xqi∥
(1)
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This allows to define a similarity criteria between a single metadata entry as:

S(pi,qi) = s(xpi ,xqi) with pi,qi ∈ P,Q (2)

Analogously, one can define the similarity between two sets of metadata by calculating the average over the single meta-
data similarities:

Sw(P,Q) =
∑

n
i=1 S(pi,qi)

n
(3)

4.2 Recommendation System
Let’s consider a KG containing various EMs with m components C = {c1, ...,cm} and k associated parameters P =
{p1, ..., pk} each. Components and parameters are connected by a set of relations R, e.g. r = {cm, pk} means that compo-
nent cm contains parameter pk. Given a component cm there exist a set of parameters N(cm) that are associated with cm in
the following way:

N(cm) = {pk ∈ P : r{cm, pk} ∈ R} (4)

This means that given two components ca and cb one can extract two sets of parameters Na = N(ca) and Nb = N(cb),
containing the parameters for ca or cb respectively. One can hence calculate a similarity between two components by
calculating the Jaccard similarity between their two associated sets of parameters [12]:

J(ca,cb) =
|Na∩Nb|
|Na∪Nb|

(5)

The Jaccard similarity quantifies the ratio of parameters associated with both components to the total amount of
parameters of both components. Now, let P be the set of metadata for a new design system, the list of recommended
components R∗ is then defined as:

R∗ = {(ca,cb) |J(ca,cb)> ε2,∀ca ∈Ck,∀cb ∈Cm∀k,m ∈ D} (6)

where D = {J |S(q j, p)> ε1},∀ j = 1, ..,n represents a cluster of J engineering systems that have single metadata entries
q j similar to p over n EMs contained in the KG. ε1 and ε2 are constant parameters that represent the similarity threshold
set for metadata and components comparison respectively, determining if a pair of components it deemed to be similar as
well as if a engineering system is similar to the new mission.

5 Methodology
For encoding textual metadata information, at sentence level, a neural language model from the family Sentence-Transformers
is used [13]. These models create dense semantically meaningful vector representations taking as input the raw natural
language sentences. They are trained so that the representations of two semantically related sentences have a high cosine
similarity, while the cosine similarity between semantically distanced sentences is minimised. Sentence Transformers can
lead to significantly improved embedding representations, if compared to existing word and sentence level models, and
are the current state of the art as shown in [13]. As described in Section 4, the dense representations are used to compare
different sets of past mission metadata. Based on the similarity of past-mission metadata to the metadata of a new mission,
similar missions are identified with a threshold value. This simple threshold method could also be expanded by using a
clustering algorithm e.g. k-nearest neighbours algorithm. If at least two similar past missions are identified, they can
then be queried for for similar components defined in their EMs in order to identify patterns and then infer from these
patterns possible recommendations for a new mission. The most simplest pattern would be to see what components has
the highest number of similarity relations to other components and rank the components for recommendation accordingly.
The complete methodology for the recommendation process described is presented in Algorithm 1.

6 Results
To demonstrate the recommendation system, a simple scenario was chosen where heritage information about three past
missions is used to infer recommendations for a fourth new study. In this simplified scenario, the sole metadata parameters,
which were considered, were “Mission Objective” and “Propulsion Type”. The “Mission objective” briefly describes
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Algorithm 1 Component Recommendation System

Require: x1 . . .xk ∈ Xk← f (qk,θ f ) ▷ Embeddings Xk are precomputed for single metadata q
1 procedure SIMILAR MISSIONS(Xk, ε2, p)
2 for xI in Xq, I = 1 . . .q do ▷ Calculate pairwise similarities
3 for xJ in Xq, J = I . . .q do
4 Compute similarity S(xI ,xJ)
5 Add S(xI ,xJ) to set of metadata similarities σMeta
6 end for
7 end for
8 Calculate X clusters based on σMeta
9 Metadata of new design mission p ∈ D,D ∈X

10 return D
11 end procedure
12 procedure SIMILAR COMPONENTS(D, C, ε1)
13 for all pairs missiond ,missione ⊂ D do
14 for all cd in Cd do ▷ Components missiond
15 for all ce in Ce do ▷ Components missione
16 Calculate Jaccard similarity J(cd ,ce)
17 if J(cd ,ce)> ε1 then
18 Add cd ,ce to set of similar components ω

19 end if
20 end for
21 end for
22 end for
23 Define Dc← empty dictionary ▷ Get frequency of components
24 for component c in ω do
25 if component ̸∈ keys(Dc) then
26 add component to keys(Dc)
27 initialize Dc(component) = 1
28 else Dc(component)← Dc(component)+1
29 end if
30 end for
31 return Dc
32 end procedure

the main reason why a particular spacecraft or satellite was designed, for instance, to observe all boreal forests. The
parameter “Propulsion Type” describes if and what kind of propulsion system is used for changing the spacecraft’s orbit.
The respective parameters for the three example missions are shown in Table 1.

For the new mission, the following metadata parameters are known and defined:

• Mission objective: autonomously seek out space debris with an short-range doppler radar, capture, and then de-orbit
debris

• Propulsion Type: Gridded iodide ion thruster

The first step in the recommendation system is to compare the metadata information of the new study to the one
of the past missions. As described in Section 4, textual metadata information is embedded into a vector representa-
tion with mpnet-base, a deep neural language model from the SentenceBERT family (https://huggingface.co/sentence-
transformers/all-mpnet-base-v2) Subsequently, the pairwise cosine similarity between each pair of metadata information
is calculated. In a first analysis, the “Mission objective” metadata of the new mission is compared to the ones of the
heritage missions. The results of the cosine similarity comparison are shown in Table 2. A value close to 1 means a high
similarity. The similarities between the different missions ranges between 0.2 and 0.7. The highest similarity is between
Mission 1 and Mission 2 and the new mission with Mission 2. Multidimensional scaling is used for a better visualisation
in two dimensions to allow for a better interpretation. Multidimensional scaling iteratively tries to minimise the square
difference (distance represented by the similarity measure) between the representation in the original higher dimensional
space and the smaller two-dimensional space.In Figure 2a, the similarity results are visualised for the parameter “Mission
objective”. While Mission 1, Mission 2, and the “new” Mission all are relatively close to each other in the projected space,
Mission 3 is separated from this cluster. Considering the actual mission objectives of each mission, this is unsurprising
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Table 1: Spacecrafts metadata of three demonstrative heritage missions

Models Mission objective PropType
Mission 1 launch a CubeSat into LEO as a space-based passive bistatic

radar technology demonstrator where a signal processing algo-
rithm to detect space debris will be tested

no propulsion module

Mission 2 study the (micro) space debris environment in LEO to comple-
ment the models by an active short-range radar”

RIT Xenon thruster

Mission 3 provide a close and regular monitoring of vegetation on Earth’s
surface with a super-spectral camera

Hall effect on Xenon
thruster

Table 2: Pairwise similarities for metadata parameter “Mission objective”

Mission 1 Mission 2 Mission 3 New mission
Mission 1 1.00 0.69 0.23 0.62
Mission 2 0.69 1.00 0.20 0.70
Mission 3 0.23 0.20 1.00 0.25

New mission 0.62 0.70 0.25 1.00

as Mission 3 describes an Earth observation mission for vegetation, while the other missions share as a goal using radar
technology for detecting space debris.

(a) MDS of “Mission objective” metadata (b) MDS of “Propulsion” metadata

Figure 2: Multidimensional scaling (MDS) of pairwise similarities of “Propulsion” metadata

Based on the semantic similarity of their mission objectives, past Mission 1 and Mission 2 are queried for shared
similar components to recommend for the new study. An exemplary list of results is presented in Table 3. Similar
components contained in Mission 1 and Mission 2 are firstly generic ones, such as battery or solar cell, which would
occur in most studies. But secondly there are also specific ones such as radar receiver and radar antenna, which are
expected in missions using radar technology.

After the comparison of the new mission based on similarities between their mission objectives, the next step is to
consider the similarities between the ”Propulsion Type” metadata parameter. Here, a different distribution of similarities is
expected as Mission 1, with no propulsion module selected, is significantly different from the rest. Analogously to the first
comparison, the cosine similarities are calculated, presented in Table 4, and subsequently visualised with multidimensional
scaling in Figure 2b.
Mission 1 is as expected relatively separated from the concentration of other missions. This once more aligns with the
actual information provided, since Mission 1 does not contain a type of propulsion while the other two heritage missions
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Table 3: Example components sharing high Jaccard similarity, showing the component type and relevant parameters for their
identification for metadata ”Mission objective”

Component type Set of components Relevant parameters
Cubesat battery (”NanoAvionics EPS”, ”Battery”) battery capacity, battery cell type
Cubesat solar cells (”DHV-CS-10 Cubesat Solar Panel”, ”ISIS-

PACE Small satellite solar panel”)
Solar cell type, solar array type

Sun sensor (”SUN LENS Bison 64”, ”NSS Fine Sun Sen-
sor”)

field of view,sun sensor bias

Radar receiver (”XM1110 1103886”, ”ZOE-M8G-0”) Sensitivity, modulation or protocol
Radar antenna (”PulseLARSEN W3227”,”ISIS-GAPA-DSH-

0001”)
Antenna Type, frequency Group

Table 4: Pairwise similarities for metadata parameter “Propulsion Type”

Mission 1 Mission 2 Mission 3 Mission new
Mission 1 1.00 0.30 0.26 0.29
Mission 2 0.30 1.00 0.78 0.61
Mission 3 0.26 0.78 1.00 0.59

Mission new 0.29 0.61 0.59 1.00

have ion thrusters as their main propulsion system. Optimally, a value close to zero for the similarity of Mission 1 to the
respective others would be expected, as having no propulsion system is semantically the opposite to having one. This
could be improved by fine-tuning the used language model for the application in the technical domain, so it better grasps
semantic nuances. The performance is adequate enough to differentiate between having a propulsion system and not
having one.

The analysis of similar components is repeated for the similarity of “Propulsion Types” between the missions. The
idea here is to find shared elements typically included in a propulsion system in the different EMs. An examplary list of
components is presented in Table 5.

Both past missions interestingly include a type of cold gas thruster. This type of propulsion is not using electricity but
relies on the expansion of the pressurised gas to create thrust. These thrusters are commonly used for small and precise
manoeuvres. In this case, the available pressurised Xenon for the main engine was also used as propellant for this system,
instead of installing a separate assembly with pipes and propellant tanks only for these type of manoeuvres. Although
the new mission uses a different propellant (Iodine), this could also prove as a viable option. In contrast, novel electric
propulsion systems are testing ways of not using a neutraliser for their setup. This shows that relaying just on heritage
data cannot take into consideration new trends in design.

7 Conclusions
A new approach for providing recommendations for assisting in the design of engineering systems has been introduced in
this work. EMs and associated metadata, described in natural language, build the basis of the approach. Firstly, similarity
between the metadata information is established by calculating the cosine similarity of their representations, which are
created by a neural language model from the Sentence-Transformers-family. Based on the similarity of the metadata, the
respective associated EMs are clustered into similar missions, which in the second step of the analysis are investigated

Table 5: Example components sharing high Jaccard similarity, showing the component type and relevant parameters for their
identification for metadata ”Propulsion type”

Component type Set of components Relevant parameters
Cold gas thruster (”Xe Cold Gas Thruster/Valve Assy”, ”Cold

Xenon Thruster”)
thrust, expansion ratio

Electric propul-
sion neutraliser
assembly

(”EP neutraliser assembly”, ”Neutraliser as-
sembly”)

neutralizer flow rate

Propellant tank (”Propellant storage tank”, ”Xenon storage
tank”)

Propellant, tank volume
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for similar components. The link between components is established by using the Jaccard similarity metric between their
respective associated parameters. The functionality of the method was demonstrated for space mission design. It was
shown that by defining different characteristics semantic similar missions could be identified. Secondly, a list of example
components could be generated for each respective characteristic as possible recommendations for a new mission. A pos-
sible downfall of this approach is that the representations created by the neural language model possibly do not completely
capture the semantic meaning, as the chosen model is trained on generic language and not specialised for the technical
domain. Additionally, the link between components is only possible if they share common parameters; for components
such as valves, pipes, or even more specific components sometimes no characteristic parameters exist. This could lead to
problems of ambiguity, when elements are predicted as similar, even if in reality they are not. Nonetheless, the approach
can be easily expanded to other engineering domains, using the ECSS-E-TM-1025A data model or equivalent, provided
relevant metadata parameters can be defined.
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