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Abstract—The Internet of Things (IoT) ecosystem is witnessing
widespread deployments for emerging applications in diverse
domains such as remote sensing, smart homes, and industry 4.0.
There is also a growing need to secure such deployments against
malicious IoT devices to sustain normal network operations.
Since the IoT deployments encompass geographically distributed
nodes, blockchain technology, which inherently offers distributed
trust in such scenarios, is gaining popularity in providing a secure
and trusted IoT deployment. In this paper, we present a use case
in which an IoT deployment is retrofitted with a blockchain.
The use of blockchain prevents malicious nodes from falsifying
information about their energy levels. We first present attack
scenarios where IoT nodes can spoof energy while joining or
being a part of the network. We then build a defense strategy
and evaluate its performance under various attack scenarios.
Our results indicate that the IoT deployment is robust under the
proposed defense strategy which can detect if a node is spoofing
its energy levels over 75% of the time.

I. INTRODUCTION

With rapid development in communication and computation
technologies, the world is becoming increasingly connected.
Internet of Things (IoT) is a paradigm where a massive
number of low-power and resource constrained devices are
deployed for sensing, data collection, data sharing and other
applications. This is a technology where devices communicate
with each other without human intervention. The current scale
of IoT devices is huge. According to [1], the number of IoT
devices in 2020 was expected to be more than 20 billion
increasing at an exponential rate. IoT devices have distributed
nature and rely on cloud infrastructure due to the limited
resources on endpoints. Cloud is essentially a centralized entity
that has a conflict with the distributed nature of IoT device
deployment. Cloud-based architectures introduce congestion,
delay and security issues [2]. Sensory data dominates the IoT
ecosystem and it tends to be extremely sensitive and critical,
therefore, security and privacy are important. Centralized
security architectures lack scalability which is a big concern
in the context of IoT [3].

Recently, blockchain has emerged as a solution to the
privacy, security and scalability concerns in many applica-
tion domains. Blockchain is a distributed ledger technology
that utilizes cryptography, hash algorithms and consensus to
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form an immutable chain of blocks. Data is encrypted using
cryptography, and the blocks are linked via hashes. A new
block is added to the chain after it has achieved consensus
in the system. Legacy consensus mechanisms are Proof-of-
Work (PoW), Proof-of-Stake (PoS), delegated Proof-of-Stake
(dPoS) and Practical Byzantine Fault Tolerance (PBFT). Due
to its distributed nature, it has been utilized in applications
other than cryptocurrency which was the intended use case of
blockchain. It has been recently utilized in smart grid [4], next
generation cellular networks [5], vehicular networks [6], etc.

Due to its distributed nature and decentralization,
blockchain is a very good candidate for being used in IoT.
Due to its inherent features, it also provides privacy and
security of data. Blockchain itself is very resource consuming.
Deploying blockchain on IoT will have issues regarding the
delay, bandwidth requirements, and limitation of computation
resources. Hierarchical architecture solves this problem by
utilizing network infrastructure for aiding in blockchain de-
ployment. Recently, [7] have considered a blockchain-enabled
internet of underwater things model, where they have con-
sidered the notion of cluster head (CH) and cluster members
(CMs). The inter-cluster communication is supported by CH.
However, a constraint in this work is that they are utilizing
cloud servers for blockchain which introduces the distance and
latency constraint. Similarly, in [8], the authors present an IoT
framework where they are performing lightweight encryption
of IoT nodes. IoT nodes are distributed into a cluster and each
cluster had CHs and CMs and CHs act as miners as well as
blockchain nodes.

The nature of IoT devices is heterogeneous and energy is
an integral requirement. Different types of IoT devices have
expected longevity requirements from a couple of days to
several years. Therefore, the role of energy in IoT devices
is extremely important. Due to the massive scale of IoT
devices, there is a huge cost associated with the maintenance
of device batteries [9]. Energy harvesting has been deemed
as an attractive solution to improve the longevity of IoT
devices. Therefore, energy harvesting solutions should also be
implemented to increase the battery life of IoT devices.

In this work, we consider a clustered dynamic IoT network
to facilitate the IoT network with routing and consensus
management. There are multiple clusters that are connected
with Base Stations (BSes). Each cluster has one CH and
multiple CMs. The CH is a device that has to maintain a high
level of energy in its cluster and is responsible for routing the
data from the CMs to the BS with which it is connected. The
BSes are interconnected and they achieve consensus on the
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block and the block is added to the blockchain which is also
held at the BS.

We consider an attack where a joining node spoofs its
energy level to become the cluster head. A malicious node
can spoof and become cluster head and then withhold data
or run out of the battery to deny blockchain services to the
system. Doing so will also bypass the incentive structure of the
blockchain and claim incentives disproportionate to its energy
value. It could spoof its energy while joining the network to
have a chance of becoming the cluster head right away. It
could also join the network and spoof the energy value while
being a part of the network.

We present a detection algorithm where the spoofing node
spoofs its capabilities while running the system. We can detect
spoofing by keeping track of all the communication to and
from this node by reports from all the other cluster members.
We also keep track of the energy harvested by different nodes
in the system. We also present deterministic and random
energy harvesting mechanisms. We use all this information
in the simulation and detect the spoofed energy values of a
malicious node.

Rest of the paper is organized as follows: In Section II, we
present the system model and blockchain integration in the
IoT scenario, in Section III, we present the threat model and
attack scenarios that we will be considering, in Section IV, we
present the detection algorithm for the energy levels spoofing,
in Section V, we give the simulation setup and results of the
detection algorithm and in Section VI, we conclude the paper.

II. SYSTEM MODEL AND BLOCKCHAIN INTEGRATION

In this section, we present the integration of a blockchain
in an IoT deployment:

A. System Model

We consider an IoT network which has device to device
(D2D) connections among each other. The network comprises
of a trusted authority (TA), large number of IoT devices and
BSes or sink nodes. We assume that secure and timely data
sharing is the most important requirement in this network
for coordinated/cooperative decision making. For ensuring IoT
data security, we are assuming the use of blockchain and
BSes will take part in consensus mechanism as well as act as
blockchain nodes. As we want timely consensus, we assume
that a non-PoW type consensus mechanism such as delegated
Proof-of-Stake (dPoS) or a variant of PBFT is used in the
network. We assume energy-constrained IoT devices which
form clusters based on their deployed positions. To summarize,
we have the following nodes in the network:
TA: The TA is responsible for registering the IoT devices
and BSes in the system. IoT devices and BSes submit their
registration information and get their public/private key pairs
and the digital certificates.
BSes: BSes are the backbone network providers in the system.
They are the consensus as well as blockchain storage nodes
owing to the high on-board computational as well as storage
capabilities.

IoT Devices: IoT devices are the users of the blockchain
service. IoT devices are deployed in clusters based on their
position in the system. Each cluster has one CH and the rest
are CMs. CMs are relatively low energy devices, which utilize
the CHs, which are relatively high energy devices to relay their
data to BSes for consensus and adding to the blockchain. CMs
also report if they shared data with CHs in a particular cycle
to audit the energy level of the CH. IoT devices are provided
with apparatus for energy harvesting which will be the only
source of their energy, which means that a device will die if
it does not harvest the intended energy to stay alive.

Cluster Head Cluster Member

Base Station Blockchain

TA

Registration Key & 
Digital Certificate

Fig. 1. System Model of Blockchain-enabled IoT System

B. Blockchain Integration

Here, we describe a particular application scenario of
blockchain-enabled IoT network. It goes as follows:
Step 1: First, all the joining nodes get authenticated by the TA.
The blockchain is a consortium blockchain, where the BSes
act as blockchain nodes, which perform consensus as well as
storage of blockchain based on their enhanced communication,
computation and storage capabilities. The IoT nodes, along
with their identity information, also share their battery level,
which is a very important metric for allocating CHs and CMs.
Step 2: The TA gets all the identity information from the
IoT nodes and estimates their current battery level using
physical methods. Then it compares the reported as well as
the measured battery level. If there is small difference between
the two, the battery level is deemed correct and the node is
authenticated. If the battery level is deemed incorrect, the node
is not authenticated and not permitted to join the blockchain
network. All the authenticated nodes will get their public-
private key pairs from the TA.
Step 3: All the IoT nodes form clusters. Multiple clusters
are connected to one BS. And multiple BSes form the basis
of the consensus in the blockchain network. Based on the
reported battery levels, one node is selected as CH for one
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cycle while the others are selected as CMs. The probability
of being selected as a CH depends on the battery level of
the nodes. At the beginning of each cycle each IoT node
shares channel state information (CSI), distance with the CH
as well as the energy harvested during the last cycle. During
each cycle, CMs also share their sensing data with the CH
of that cycle. The CH transmits this data to its respective BS
for consensus. There is a time limit within which this data is
to be transmitted from CMs to CH and from CH to BS. But
due to varying CSI, the transmitter node cannot transmit with
fixed value of transmit power. Therefore, it transmits at varying
powers and thus it can spoof its communication energy.
Step 4: BSes form consensus on the data shared with them.
This consensus is based on dPoS or PBFT since these mecha-
nisms are communication intensive and less time taking. This
verified data is available for all the blockchain users to audit.
All the IoT nodes also share their updated battery levels after
each cycle for consensus and it is uploaded to the blockchain.
Analogy with Leader/Follower Systems: This application
scenario bears a lot of resemblance with leader/follower sys-
tems that are used widely in the communication systems as
well as blockchains. Leader-based dPoS and PBFT systems
are examples of such blockchain systems. These schemes are
analogous to the cluster based distribution in IoT networks
or other networks in general. In leader/follower based com-
munication systems, there is a criteria of leader selection. In
cluster-based networks, there is also a criteria of CH selection.
In leader/follower based blockchain systems, leaders have
different incentive structure than the followers. In cluster-
based systems, we suggest a different incentive structure for
CH than those of the CMs. The motivations of employing a
leader/follower system in a communication network is similar
to the motivation of employing CHs in cluster-based systems.
Leaders conduct whatever relevant activity of interest in the
communication network which in the case of dPoS and PBFT
is leading the consensus mechanism and CHs are responsible
for conducting activity within cluster e.g., data aggregation
and data relay. Since our application scenario has similar
distribution of roles and is analogous to leader/follower based
systems, there is a natural inclination of using such consensus
algorithms in an architecture like this.

III. THREAT MODEL AND ATTACK SCENARIOS

In this section, we describe the general threat model
in blockchain-enabled IoT application scenario context and
present the energy level spoofing attack scenarios in particular

A. Threat Model

In a blockchain-enabled IoT scenario, we have base stations
as well as IoT nodes. Both of them could turn malicious.
Malicious BSes: Malicious BSes could add incorrect data to
the blocks. They can also collude with other BSes to get
that data verified and added to the blockchain. Especially,
they could modify data on energy levels to be added to the
blockchain. In this way, they can control which nodes become
CHs for the upcoming cycles.

Malicious IoT Nodes: Malicious IoT nodes could report
spoofed values of their battery levels. They could also col-
lude with other IoT nodes in the network to report spoofed
interactions that support enhanced battery levels. They could
also collude with other BSes to support their battery-level
reporting.

B. Energy Level Spoofing Scenarios

There have been attacks presented in recent literature [10]
where an adversary takes advantage of the inherent vulnera-
bilities of energy constrained devices and spoofs the current
energy level of that device. We observe that a malicious
adversary can make use of such an attack to spoof the energy
capabilities of itself, to launch a DoS attack on the blockchain
network. In this work, we look at attacks where adversaries
report upgraded energy levels while joining or being a part
of the network. We call these attacks Energy Upgrade while
joining (EnU-Join) and Energy Upgrade while running (EnU-
Run) the blockchain network. Next, we look at these attack
scenarios in some detail.

1) EnU-Join: In this attack scenario, an IoT node can
report an upgraded battery level while joining the network.
Along with that, it also overestimates its capability of energy
harvesting. The significance of doing this is that if it is
authenticated as a high energy node in the network, it will be
utilized as a CH. Becoming a CH in the context of IoT nodes
will have multiple advantages. Firstly, it can act maliciously
by not relaying the data from CMs to the BSes for consensus
This type of attack is studied in the blockchain literature called
censorship attack [11]. Here, censorship attacks are defined as
a majority coalition building a chain which rejects transactions
or messages that an ordinary validator, miner, or client would
accept. Even if it does not withhold data maliciously, it can
claim incentive which is disproportionate to its actual battery
level [12] and thus denying the system its fair incentives. This
type of spoofing can be detected using accurate energy state
estimation methods and spoofing nodes will be denied access
to the blockchain.

2) EnU-Run: In this attack scenario, an IoT node can report
upgraded battery level while being a part of the network.
Another dimension of this attack is that it can underestimate
the amount of data being received from all IoT nodes. This
way, it can also spoof the amount of energy required for the
next cycle and increase its probability of becoming CH. Here
also, the motivation is that the node will get to become CH
and gain an advantage in terms of incentive. It can be detected
since all the communication to and from that node is tracked
by the blockchain network. If spoofing is detected, the node
will be kicked out of the network.

IV. DETECTION ALGORITHM

In this section, we present a mechanism for the detection of
energy level spoofing in an IoT-based application scenario.
We consider a queue-based recursive energy model where
we have two different types of energies i.e., communication
energy consumed Ec(t) and harvested energy arrived Eh(t).
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The queue-based energy model is shown in Fig. 2. At any
point in time, the updated energy at the next time instant can be
determined by utilizing the energy harvested, energy consumed
and the current energy level. The queue-based recursive energy
can be represented by equation 1.

Current Battery 
Level Indicator

Harvested 
Energy Arrival

Consumed 
Energy

t1 t2 t3 t4 t5 t

Harvested or 
Consumed Energy 
Chunk

Fig. 2. Queue Based Energy Update Model

E(t+ 1) = [min{Emax, E(t) + Eh(t)− Ec(t)}]+, (1)

where [x]+ = max{0, x}. After every cycle, all the CMs
share the amount of data they shared with the CH and
their respective distances from the CH. This information is
shared with the CH of the next cycle as this information is
intended to be included in the blockchain which is further
transmitted to the BS for consensus. Since the IoT nodes are
energy constrained, in order to avoid their shut down, energy
harvesting models are considered as discussed in the previous
section. We will use two different models, details of which will
be given later on. Based on this, an energy dissipation model
is used which calculates the energy after being dissipated for
CH as well as CMs. This model is given as follows [13]:

ETx(k, d) =

{
Eele × k + Efs × k × d2 d ≤ d0

Eele × k + Emp × k × d4 d ≥ d0
(2)

ERx(k) = Eele × k. (3)
Here, Eele is the electronics energy and specifically, it

is the energy for transmitting or receiving one bit of data.
Efs and Emp are the amplifier energy parameters specifically
free space path loss and multipath fading energy parameters
respectively and k is the number of data bits transmitted or
received. Apart from these energy values, there is some energy
required for aggregation at the cluster head which is denoted
by EDA and the cluster head has to relay the aggregated
information to the BS which is located at a longer distance,
so that energy dissipation also follows equation 2.

Similarly, as discussed before, nodes are equipped with
energy harvesting apparatus which is able to harvest energy
from different sources. We also assume that we have prede-
termined spatial and temporal patterns of energy harvesting.
These patterns follow a certain type of distribution. Knowing
that distribution, we put a δ bound on the energy harvested.

Based on the model explained in equation 2 as well as the
energy harvesting model and knowing the initial attack free

conditions, each node can estimate the energy consumption
at each node based on parameters as discussed in eq. 2. For
each CM node, energy consumption for transmitting the data
to CH will be calculated based on the data and the distance
to relay the data to the CH. For the CH, energy required to
receive the data as well as transmit the data to the BS will
be calculated based on the amount of data and the distance
between CH and BS. Similarly energy harvested is estimated
from the available distribution. The calculated values of energy
are compared with the reported energy values. If the difference
between these values is less than ϵ, then the values of reported
energies are considered correct, otherwise spoofing is detected.
The spoofing nodes will be removed from the system. Next we
describe the energy spoofing cases based on Ec(t) and Eh(t)
which are also presented in Table I.
Case I (Deterministic Ec(t) and Deterministic Eh(t)): In
this case, the communication energy and harvested energy are
deterministic. Ec(t) can be made deterministic by deploying
CM nodes within Line of Sight (LoS) from the CH node. Since
there will be no multipath fading, the energy dissipation can be
quantified. Similarly, Eh(t) can be also be made deterministic.
This can be done if we have reliable energy sources attached
to the IoT devices. For example, if the devices are connected
to the grid, it can deterministically harvest certain amount of
energy at a given time. Spoofing is not possible in this case
since there is no source of uncertainty and with the analytical
model, the spoofing will be detected.
Case II (Random Ec(t) and Deterministic Eh(t)): In this
case, Eh(t) is deterministic but Ec(t) is non-deterministic.
This is the case when there are non-LoS links between the
CH and the CM nodes, there is fading and variable channel
states so the CSI is not the same. Here, spoofing is possible
since there is uncertainty from the communication side of
the energy model. The channel conditions are not always the
same. Therefore, the idea of channel inversion power control
(CIPC) is utilized [14]. CIPC is a technique which is used
to ensure fairness between channels with low and high gains.
The transmitter ensures a constant data rate by increasing or
decreasing its transmit power to compensate for the fading.
For example, if the channel is Rayleigh fading, using CPIC,
some inverse of Rayleigh distribution will be utilized at the
transmitter to ensure constant stream of data at the receiver.
Case III (Deterministic Ec(t) and Random Eh(t)): In this
case Ec(t) is deterministic but Eh(t) is random. Eh(t) can
be random when there is an uncertain source of energy to
which the devices are connected for energy harvesting. For
example, a solar panels based energy harvesting system is
largely non-deterministic. The energy harvested depends on
the temperature, intensity of light which ultimately depends on
how exposed the panels are to the sunlight. So, the malicious
nodes can spoof energy harvested at a given time. This type of
spoofing can possibly be detected by using a similar solution
proposed in Case II but based on Eh(t). That is, we can
assume bounds on harvested energy based on the deployment
of energy harvesting devices available, anomalous deviation
from which can be considered as spoofing.
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Case IV (Random Ec(t) and Random Eh(t)): In this case
both Ec(t) and Eh(t) are random due to their respective
sources of uncertainty. This is the most interesting and prac-
tical scenario since most real life situations are expected to
have non-LoS deployment of nodes and uncertain sources of
energy harvesting. Here, there are two avenues of spoofing
and malicious adversary could utilize both of these to spoof
the energy levels at a given time. This type of spoofing can
be detected by either a solution combining both of the Cases
II and III as well as by a weighted solution of both cases.

Case Eh(t) Ec(t) Spoofing and detection

I Deterministic Deterministic
Spoofing not possible as both
energies can be accurately de-
termined.

II Deterministic Random
Nodes can misreport Ec(t).
Can be detected based on re-
ported CSI.

III Random Deterministic

Nodes can misreport Eh(t).
Can be detected based on the
predetermined energy harvest-
ing patterns.

IV Random Random
Spoofing based on both Ec(t)
and Eh(t). Can be detected by
combining Case II and Case III.

TABLE I
Eh(t) AND Ec(t) SPOOFING CASES

V. SIMULATION SETUP AND RESULTS

In this section, we describe the simulation setup for the
spoofing detection and derive results based on that setup.

A. Simulation Setup

The simulation setup of our work is very similar to [13].
We consider that IoT devices are divided into very small
clusters comprising of 20 devices. The maximum distance
d between CMs and CH is considered to be 150m. We
assume that our clusters are uniformly, randomly distributed
between 1 to 150m for each simulation. The size of message
transmitted between CMs and CH k is 20 bytes. The value of
Eele(electronics Tx/Rx) depends on the communication load
and its value is considered to be 50nJ/b. The values of Efs and
Emp depend on the amplifier characteristics and is supposed
to be 10 pJ/b/m2 and 0.0013 pJ/b/m4, respectively. The energy
of data aggregation is considered to be 5nJ. The BS is located
at a distance of 500m away from the CH on average. At this
range, the inter-cluster distances are considered negligible and
we assume every node is 500m away from the BS. Using
these values, we can calculate the evolution of energy values
of the CMs as well as CH. We also consider a deterministic
energy harvesting model where 0.05J of energy is harvested
after every 5 rounds of consensus and adding the data to
the blockchain. We randomly allocate the mean, µh, of the
energy supplied to the node. We tailor a distribution for the
energy harvested, Eh(t) centered around µh. We assume a
solar panel as the source of energy harvested so we will model
the harvested energy’s probability density function using the
data provided by [15]. We assume that µh does not vary in
a short time frame and that any node can estimate the µh of

any other node accurately. In cases I and case II, we simply
use Eh(t) = µh. In cases III and IV (random Eh(t)), we are
using the distribution derived from solar panel data mentioned
above. We also consider that the maximum energy levels of
all IoT devices in our system model is 0.5J.

Based on the distance and current energy levels, we cal-
culate the average energy consumed for relaying the message
to CH for every CM and for the CM to relay the aggregated
message to the BS. In case III, we simply set Ec(t) = µc

where µc is the average energy required to receive, aggregate
and transmit a message. In cases II and IV, we assume that
Ec(t) has a clipped inverse exponential power distribution.
This distribution has been used before as shown in [16].

In our simulations, a malicious node will report energy
values by over-reporting their overall energy gained. In case II,
this implies that they over-reported their energy harvested and
in case III, this implies that they under-reported their energy
consumed. It may be a mixture in case IV. A malicious node
will pick a mean value that is a certain percentage more or less
than µc and µh and report an energy change centered around
this new mean.

B. Results

Based on the simulation setup described in the previous
subsection, we generate results for the probability of detection
of malicious IoT nodes.

1) Case II: We estimate the measure of energy they have
spoofed as the percentage difference between our µc and
their reported Ec(t). We also set three different thresholds
at 0.3, 0.5 and 0.7 as fractions of µc. If a node reports a
communication power consumption beyond these values, it is
considered malicious. Fig. 3 is a stacked bar graph where the
complete bar (blue and orange shaded area) represents the true
positives and the lower part (shaded blue) represents the false
positives. It shows that at even when the nodes are under-
reporting their energy consumed as 30% of µc, there is a
63% chance of detection. When they under-report their energy
consumed as 70% of µc, the probability of detection rises to
68%. Increasing the threshold results in greater values to be
spoofed, however, it benefits as benign nodes are less likely
to be falsely flagged.
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Fig. 3. The probability of detection of malicious nodes and false alarm for
various fractional thresholds and differing amounts of energies spoofed in a
Case II scenario.
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2) Case III: We threshold the amount of energy they are
spoofing as a percentage of µh. Fig. 4 shows that for various
configurations of thresholds, the probability for detection falls
slightly but remains between 76% and 65%. The probability
of a false flag scenario is found to be 0 in our simulations as
the distribution of the data is very well defined and there are
very small benign deviations over short time intervals.
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Fig. 4. The probability of detection of malicious nodes for various fractional
thresholds and differing amounts of energies spoofed in a Case III scenario.

3) Case IV: We may not know either of Eh(t) or Ec(t)
deterministically for a node. However, we can assume an
average of the results for when Eh(t) = µh or Ec(t) = µc

which corresponds to case II and case III respectively. We
calculate the perceived fractional difference for case II and
case III independently and take an average and threshold
this average as in earlier cases. Fig. 5 shows that detecting
malicious nodes is still viable in this scenario. In this scenario,
a node is spoofing both of µc and µh as a fraction. The
detection probability remains close to 80% in this scenario.
This is attributed to the relatively low deviation in Eh(t). As
the deviation in Eh(t) is smaller than Ec(t), any deviation
between reported and estimated energy may be attributed to
Ec(t) which increases the likelihood for detection significantly
as µc is usually much smaller than µh. Fig. 5 also shows that
in this scenario, the probability of falsely flagging a benign
node drops when the threshold is increased.
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Fig. 5. The probability of detection of malicious nodes and false alarm for
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Case IV scenario.

VI. CONCLUSION

In this paper, we considered the problem of energy con-
straint in IoT nodes and asserted that a cluster-based system
is an appropriate solution for that problem, where a CH with
high energy deals with relaying data from CMs to BSes.

However, this leads to energy spoofing attacks. In this work,
we presented an effective blockchain-based solution to the
problem based on pre-known distributions of harvested as well
as communication energy. We noticed that when the nodes
spoof as low as 30% of their energy, they are detected with
high accuracy of close to 75%. Higher spoofing levels will lead
to even better accuracy. Since the spatial and temporal patterns
of harvested energy are known and the communication energy
depends on the CSI between the sender and the receiver, it is
hard to spoof the energy values. Therefore, this work has the
promise to be included in energy-based blockchain-enabled
IoT scenarios.
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