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ABSTRACT: We computed the optical properties of a large set of molecular
crystals (∼2200 structures) composed of molecules whose lowest excited states
are strongly coupled and generate wide excitonic bands. Such bands are
classified in terms of their dimensionality (1-, 2-, and 3-dimensional), the
position of the optically allowed state in relation with the excitonic density of
states, and the presence of Davydov splitting. The survey confirms that one-
dimensional aggregates are rare in molecular crystals highlighting the need to
go beyond the simple low-dimensional models. Furthermore, this large set of
data is used to search for technologically interesting and less common
properties. For instance, we considered the largest excitonic bandwidth that is
achievable within known molecular crystals and identified materials with strong
super-radiant states. Finally, we explored the possibility that strong excitonic
coupling can be used to generate emissive states in the near-infrared region in
materials formed by molecules with bright visible absorption and we could
identify the maximum allowable red shift in this material class. These insights with the associated searchable database provide
practical guidelines for designing materials with interesting optical properties.

■ INTRODUCTION

Exploring, designing, and synthesis of luminescent molecular
crystals, in particular far-red/near-infrared (NIR) emitters
(650−1000 nm) and super-radiant structures, exhibiting highly
efficient emissions in the solid-state is of great scientific
interest.1−8 The luminescent molecular crystals find potential
application in light-emitting diodes,9,10 organic lasers,11,12 and
biological imaging.13 Within this material class, particularly
interesting structures are those composed of nonluminescent
molecules in solution which turn out to be luminescent in the
solid state, a phenomenon initially described by Jelley and
Scheibe in the 1930s.14−16 An early insightful study with a
qualitatively correct explanation of this complex phenomenon
was provided in ref.17 followed by a full understanding gained a
few years later.8 The optical properties of molecular crystals are
characterized by their numerous electronic and intra- as well as
intermolecular excitations.18−20 Due to their tunable molecular
conformations and packing modes, leading to different
intermolecular interactions, these materials provide a rational
framework to investigate photophysical properties and
explore/design structures that efficiently emit light in the
solid state neglecting the complication that might arise in
polycrystalline samples or thin films due to their structural
defects and grain boundaries.21−23 However, crystallinity is
often considered as a cause of changes in photochemical
properties, for instance, Stokes shift, polarization, and quantum
efficiency of fluorescence.12 Therefore, to attain high quantum
efficiencies suitable for successful technological implementa-
tion, the luminescence behavior of these crystalline materials

needs to be controlled requiring an understanding of the
excited states in the solid-state phase. Accordingly, widespread
theoretical and experimental attention has been focused on the
mechanism of the electronic excitations in organic solids,
predominantly described by Frenkel excitons as a super-
position of localized excitations.24−29 Throughout the years,
researchers have utilized the simple model developed over six
decades ago by Kasha and co-workers30,31 to understand the
photophysics of dimers, as such, molecular dimers stacked in a
“side-by-side” fashion result in a positive Coulomb coupling
and exhibit a blue-shifted absorption maximum accompanied
with a suppressed radiative decay rate and are known as H-
aggregates, whereas those packed in a “head-to-tail” config-
uration exhibit a negative Coulomb coupling leading to a red-
shifted absorption maximum and enhanced radiative decay rate
and are referred as J-aggregates.30 One can shift between H-
and J-aggregations through altering the slip or angle between
the molecules, and accordingly, many groups have utilized this
strategy to generate H- or J-aggregated structures.32,33 It is
important to note that the difference in the photoluminescence
between H- and J-aggregates is related to the radiative decay
rates but not to the total emission quantum yield. It is known
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that the quantum yield depends on how large the radiative rate
is compared to the nonradiative rate. Therefore, as shown by
Gierschner and co-workers,19,34 one can expect highly emissive
H-aggregates if the weak radiative decay rate dominates an
even lower nonradiative decay rate. The highly emissive H-
aggregates are often seen as a result of static and dynamic
symmetry breaking, through aggregate-type Herzberg-Teller
coupling.35,36 Many examples of J- and H- aggregates are
experimentally known. The cyanine-based dyes (pseudoiso-
cyanine,14,37,38 merocyanine,39,40 and thiacarbocyanine41,42),
perylene diimides,43,44 and porphyrins45,46 are among the
mostly known J-aggregates. H-aggregating chromophores
include certain carotenoids,47,48 oligothiophenes,49,50 oligo-
phenylenevinylenes,51,52 as well as perylene diimides,53,54 some
of which can form both H- and J-aggregation types.55,56

Polymer π-stacks such as those based on P3HT are also
generally categorized as H-aggregates.57

The original Kasha’s theory has been refined in recent years
to include the effects of vibronic coupling which were primarily
focused on the local electron-vibrational coupling58−61 and
lately on off-diagonal Peierls coupling, as well.62−64 Further-
more, the introduction of the effect of short-range exchange
(Dexter65,66) and super-exchange interactions have led to new
types of aggregates, e.g., the segregated “Hj”-aggregates where
the first and second letters indicate the signs of the long- and
short-range couplings, respectively, while the upper/lower case
is indicative of the relative magnitude of the couplings.67−69

Examples of experimentally known segregated aggregates are
conjugated polymer π-stacks,70−72 crystalline terrylene deriv-
ative 7,8,15,16-tetraazaterrylene,68 and naphthobisoxadiazole-
based copolymer films.73 The interested reader is referred to
excellent reviews, e.g., refs.36,74 for extended discussion on
theory generalizations.
Exciton physics in realistic materials is further complicated

by the complex network of excitonic couplings (extending to
three dimension) which cannot be captured by simple low-
dimensional models.75−83 As a consequence, despite the
considerable progress in the theory generalizations, under-
standing the characteristic parameters of excitons is yet far
from complete. Particularly, the limits of the excitonic
bandwidth, an important parameter which has a significant
impact on exciton coherent properties, as discussed in
experimental and theoretical studies, is still among the
interesting questions in the field.84−89 Experimental measure-
ments and accurate calculations have shown excitonic
bandwidths of as large as ∼0.8−1 eV, e.g., in samples of
OPVn, OTn, and para-nitroaniline,24,90−93 however, due to the
lack of experimental/theoretical studies on a large set of
structures, the limit of the exciton bandwidth is not fully
understood. Excitonic effects are remarkable when the
coupling between excitations localized on different molecules
are strong. These strong couplings are mainly due to
Coulombic interactions and involve coupling between optically
allowed (bright) excited states. Thus, molecular crystals
containing molecules with a bright first excited state (S1)
offer an ideal set of systems to study Frenkel excitons beyond
simple low-dimensional models. In this set of systems, the
excitonic couplings are larger than the abovementioned
interactions (i.e., local electron-vibrational coupling, off-
diagonal Peierls coupling, short-range exchange, and super-
exchange interactions), and accordingly, optical spectra can be
modeled to the first order of approximation due to interacting
localized excitations (one per molecule).94−96 Most exper-

imentally relevant features can be captured by such a model
(e.g., super-radiancy, exciton effective mass, and low energy
emission) and other effects can be seen as introducing higher
order corrections. Therefore, the aim of the present work is to
provide a survey of the optical properties of a large set of
known molecular crystals whose lowest excited states are
dominated by Frenkel excitons. We will derive a useful
classification of materials with strong excitonic character in
terms of their bands’ dimensionality, their aggregation type,
and the presence of Davydov splitting in their absorption
spectra. We will use this classification to discuss the presence
of technologically relevant properties within the data set such
as super-radiancy and low-energy emissions.

■ METHODS AND COMPUTATIONAL DETAILS
Data Set. Our initial database is a set of 40,000 molecular

semiconductors extracted from the Cambridge Structural Database
(CSD) for which the excited state energy calculation in their X-ray
geometries are performed at the M06-2X/def2-SVP level of theory, as
implemented in Gaussian 16,97 in a recent work from our group.97 In
ref.,98 a comparison between a set of computed and experimental
excitation energies was also used to extract a linear calibration
between the two set of data and provide a robust set of molecular
excitation energies which are calibrated for spectra in solution and are
therefore corrected for the effect of high frequency dielectric
screening. This database was recently used to identify novel thermally
activated delayed fluorescence materials.99 For the purpose of the
present study we have reduced the database to a set of materials for
which S1 is optically allowed and very bright (oscillator strength larger
than 0.5), which are expected to generate broad excitonic bands,
leading to 2227 crystalline structures.

Excitonic Hamiltonian. The excitonic Hamiltonian in the
absence of couplings to the vibrational modes known as the standard
Frenkel exciton model can be expressed as follows in a tight-binding
form,100,101

H a a J a a a a( )
i

N

i i i
i

N

j i

N

i j i j
1 1 1

ij∑ ∑ ∑ε= + +
=

+

= = +

+ +

(1)

with εi being the excitation energy of the ith molecule in the material,
Jij the excitonic coupling between the ith and the jth molecules, and
ai
+(ai) the creation (annihilation) operator for an excited state on the
ith molecule in the material. The excitation energies εi can be extracted
directly from the TDDFT calculation output. Our analysis reveals that
the difference in computed excitation energies of unit cell molecules is
negligible (on average ∼0.0034 eV), and accordingly, we use the same
excitation energy for all the molecules which will be denoted as ε0
hereafter. In these calculations, the coupling with higher excited states
is neglected and excitonic couplings Jij are computed using the
transition density cube method.102 Using the Multiwfn package,103

transition density matrices are discretized into average transition
densities for small cubic spatial regions that span the volume
encompassing each molecule. The couplings were then calculated
as,102,104
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with ρ(ri)= ρi being the value of the transition density of the localized
Frenkel exciton. The dielectric constant ϵ is set to 1,105 unless
otherwise stated, and while discussing the results, one can keep in
mind that the energy bandwidths should be scaled down by the value
of this parameter in the bulk crystal.106 Within this method, we
calculate the excitonic couplings between all nonequivalent pairs of
molecules in van der Waals contact,107 e.g., molecules such that at
least one distance between any two atoms i and j is shorter than 1.2 ×
(ri + rj) with ri and rj being the van der Waals radii from ref.108 and
also those for which the distance between their mass centers is shorter
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than 10 Å. Diagonalizing the Hamiltonian enables one to compute the
oscillator strength f i for each transition from the ground to the ith

excited state of the molecular aggregate as,109

i
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k
i
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2

∑ μ=
= (3)

with μ being the transition dipole moment of the isolated molecule, N
the total number of molecules, Ei the excitation energies of the
aggregate, and ci the eigenstate expansion coefficients. We consider
supercells of size 20 × 20 × 20 (with periodic boundary conditions
applied for the supercells) to compute the electronic absorption
spectrum as EA( )= f E E( )i ii δ∑ − which is normalized by the total
number of molecules in the supercell to yield the absorption per
molecule. The Hamiltonian parameters from which all the results of
this work can be reproduced are given in a searchable format in a
GitHub repository.110

■ RESULTS AND DISCUSSION
Excitonic Bands. The first analysis of the data was

performed to identify the structure sustaining 1-, 2-, and 3D
excitonic bands. To this aim and in order to collect the results
in an appropriate way, to each excitonic coupling, a vector R is
assigned which connects the mass centers of the interacting
molecules. The largest and the second largest excitonic
couplings in the absolute value whose R vectors are not
parallel are denoted as J1 and J2. Our results indicate that 4.3%
of all materials are those with |J1| < 0.05 eV, and they are
characterized by extremely narrow bands. Since we have
selected molecules with bright excited states, this can only
happen where the molecules are distant or the transition
dipoles are perpendicular to each other. As shown in Figure S1
of the Supporting Information (SI), for about 95% of the cases
the dipole−dipole interaction JDD is also very small; however,
in 5% of the structures, JDD is larger than 0.1 eV while J1
remains below 0.05 eV that is due to the fact that in these
structures the higher multipole terms are dominating. We have
labeled these structures as 0D excitons as they have very small
excitonic bandwidth and retain most of the molecular
characteristics. It has to be noted that, for 0D excitons, the
main assumption of this work, namely, that the excitonic
coupling is stronger than the other couplings of the
Hamiltonian, is not valid and this set of structures are
excluded from further analysis. To classify the remaining
structures in terms of their 1-, 2-, or 3D delocalization, we
compute the excitonic band structure considering all the
excitonic couplings. If removal of all couplings outside the
plane defined by J1 and J2 reduces the bandwidth by more than
10%, the excitonic band is defined to be 3D. Among the
remaining structures, to differentiate between 1D and 2D
materials, we compute the excitonic bands considering all the
couplings lying on the plane defined by J1 and J2. If removal of
the excitonic couplings except J1 reduces the bandwidth by
more than 10%, the excitonic band is defined to be 2D and
otherwise is 1D. Accordingly, as shown in the pie chart of
Figure 1 (top left), we find that 5.8% of the structures possess
1D excitonic bands, 67.5% have bands in 2D, and 22.4% are
3D. As such, in evaluating photophysical properties, consid-
ering the real structure of materials rather than relying on
simple low-dimensional models is essential. A few examples of
each category represent the adjustment of the molecular pairs
and their transition dipole moments.
Material Aggregation Types. Before providing some

statistical analysis on the excitonic state of the database we

illustrate some typical examples that will help to define our
statistical measures. First, we consider the relation between
density of excitonic states (DOS), computed as

E E EDOS( ) ( )ii δ= ∑ − and the absorption maximum
which, in the simple 1D case and in the absence of vibronic
couplings, is associated with pure H- and J-character
representing peaks at the top or bottom of the band,
respectively. As can be seen in Figure 2, the aggregation type
in molecular solids is not limited to the well-known pure H-
and J-aggregates (shown in top right and left panels) and there
are materials with an “intermediate” aggregation type for which
the bright state can be still slightly red(blue)-shifted from the
uncoupled molecule but not at the band edges (as in the
middle panel).
The second important feature is the presence of Davydov

splitting, a common occurrence in structures possessing two or
more translationally inequivalent molecules in the unit cell
with a relatively strong coupling between the molecules with
different transition dipole moments,111,112 in many of the
considered structures. The commonly studied cases in the
literature24,113,114 often depict double peaks (DPs) in their
absorption spectrum (in the absence of vibronic couplings)
while in this work we also identify examples of structures with
three peaks (TPs). As such, our analysis shows that 53.1% of
the structures, being all 2D and 3D, display Davydov splitting
(45% possess two peaks and 8.1% three peaks) and obviously
they are not classifiable as pure H- or J-aggregates. There are
rare examples of TPs in the literature, e.g., refs.,115,116 and it is
shown that the positions and the relative intensities of the
Davydov peaks depend on the stacking type and the strength
of the couplings.111,117,118

Examples of DP and TP absorption spectra alongside the
adjustment of the molecular pairs and their transition dipole
moments are shown in Figure 3.
The next step is to provide a statistical description of the full

set of 1-, 2-, and 3D crystals considering the position of the
absorption peak with respect to the DOS and the number of
peaks. To this aim, we define a parameter β as the energy

Figure 1. Pie chart representing the percentage of materials with
excitonic bands in 0D, 1D, 2D, and 3D alongside representative
examples of each category. The structures are labeled with their CSD
identifiers and the transition dipole moments are shown by black
arrows. The blue arrows indicate the three largest excitonic couplings
J1, J2, and J3.
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difference between the “center” of the absorption in the solid
ES = ∑ f iEi/ ∑ f i and the energy of molecule absorption ε0
divided by half of the excitonic bandwidth W,

E
W

2 ( )S 0β
ε

=
× −

(4)

As such, for a pure H-aggregate, the parameter β is equal to
+1 and it is −1 in a pure J-aggregate. The distribution of this
parameter shown in Figure 4 (left panel) gives an idea of the
number of structures with different aggregation types. As can
be seen, 24.1% of the structures are J-like aggregates with β ≤
−0.5, 11.2% are of H-like aggregation types with β ≥ +0.5, and
64.7% are intermediate aggregates and lay outside this
classification. In the figure inset, the variation range of β
among the structures depicting single-, double-, and triple-

peaks in their electronic absorption spectrum is shown in a
series of box plots. A comparison between the distribution of
the boxes highlights the fact that the materials with Davydov
splitting tend to be more of J-like aggregates and the trend
becomes more evident in the TP structures (i.e., the median
value is closer to −1). It is interesting to note that a well-
known class of structures that can be classified within the
intermediate aggregates are the so-called segregated HJ-
aggregates, described in ref.36 These aggregates are two-
dimensional structures with one molecule per unit cell where
both H- and J-like interactions coexist, leading to a bright state
in the band interior. As such, increasing the J(H)-interactions
shifts the peak toward the lower (upper) band edge and
cancellation between these interactions leads to a bright state
at the band center similar to that of the uncoupled molecule.
In the middle and the right panels, the distribution of energy

splitting between the Davydov peaks (ΔEDS) for DP and TP
structures are shown. In TP structures, ΔEDS is computed as
the energy difference between the two peaks which are the
farthest. As can be seen, the median and maximum values of
ΔEDS in TP structures are slightly larger than that of the DP
structures. Therefore, in the absence of vibronic couplings, one
can anticipate well-separated absorption peaks in the TP
structures.
The other important parameter that can be explored within

this large set of data is the excitonic bandwidth which is shown
to strongly affect the exciton delocalization length and
relaxation dynamics.84,89,119,120 According to the distribution
of W (before scaling by the dielectric constant ϵ), shown in
Figure 5, there are many materials with wide excitonic
bandwidths and it is particularly interesting to investigate
their common characteristics. First, we note that there is no
correlation between W and β (rank correlation ∼0.05). The
wide bandwidths are more likely found in 2D and 3D excitonic
materials, as shown in the inset of Figure 5. There are,
however, differences between the 2D and 3D excitonic bands.
As such, although the median of W in 2D and 3D bands
(respectively, 0.94 and 1.25 eV) are relatively close, the larger
values of W is only seen in 3D bands. Furthermore, our results
indicate that in materials with 3D bands, there is a strong

Figure 2. (Top row) Overlapped plot of DOS (shown in black) and the electronic absorption spectra of the single molecule and solid for various
aggregation types. Both DOS and absorption are given per molecule. The Gaussian shape function is utilized and the broadening parameter is set to
0.2 ×largest excitonic coupling of the considered structure. The legend shown in the first panel is valid for the other panels as well. The examples
are shown among those without Davydov splitting (i.e., possessing only one absorption peak in the electronic absorption spectrum). (Bottom row)
Examples of (from left to right) J-, intermediate-, and H-aggregates labeled with their CSD identifiers.

Figure 3. (Top row) Overlapped plot of DOS (shown in black) and
the electronic absorption spectra of the single molecule and the solid
for examples of materials depicting DPs and TPs in their electronic
absorption spectrum. The Gaussian shape function is utilized and the
broadening parameter is set to 0.2 ×largest excitonic coupling of the
considered structure, and the parameters are given per molecule.
(Bottom row) Two representative examples of materials (labeled with
their CSD identifiers) depicting DPs and TPs in their electronic
absorption spectrum.
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correlation of strength +0.64 between the values of the
excitonic bandwidth and J3 (i.e., the largest coupling outside
the plane defined by J1 and J2). Our results also show that
increasing values of the molecular volume and the length of
side chains negatively affect the excitonic bandwidths, because
of the larger intermolecular distances which lead to smaller
excitonic couplings (Supporting Information Figure S2), with
correlations of moderate strength −0.29 and −0.35,
respectively. Furthermore, we could not find a meaningful
correlation with the chemical fingerprints. It is known that the
transition dipole moment is a nonlocal property which is only
marginally affected by the functional groups and depends
mostly on the full topology of the π-conjugated core. The
crystal packing is notoriously difficult to predict;121,122

therefore, the only chemical conclusion that can be drawn
from this study is that bulky functional groups not participating
to the lowest energy excitation decrease the importance of all
excitonic effects. It is also important to note that the
abovementioned criteria for incorporating the neighbors
seem adequate because expanding the cut-off to 30 Å for
selected crystals, as shown in the Supporting Information
(Figure S3), does not change the results significantly.
The presented values of the excitonic bandwidth are

obtained with a dielectric constant set to 1. As shown in
ref.,123 the range of the averaged relative dielectric constant of
the molecular semiconductors is mainly in the interval of
2.55−3.34. Considering the mean value of this range (i.e.,
2.95) leads to a median bandwidth 0.32 eV and an interquartile
range 0.27 eV (Supporting Information Figure S4), which are

in excellent agreement with the values reported in
refs.47,124−127 Furthermore, the attained maximum bandwidth
1.16 eV (considering the top 5% of the data) is in conformity
with the theoretical calculations and experimental measure-
ments reported, e.g., in refs.24,90,128 and clearly the extreme
cases are simply a reflection of the larger data set considered.
It has to be noted that the presented simple scaling by the

dielectric constant is only a semiquantitative approach to
estimate the effect of dielectric screening and for a more
detailed investigation, the distance dependence of ϵ should be
also taken into consideration as shown, e.g., in refs.129−131 In
addition, the effect of dielectric anisotropy is also not
considered in our calculations. The range of dielectric
anisotropy for different materials is shown to be broad. The
mean value of the difference between dielectric constants in
perpendicular directions, collected from 12 different exper-
imental reports on 9 different crystals (see Supporting
Information Table S1),132−143 is Δϵ= 1.32, which can be
used as a guide to evaluate the error incurred in assuming the
isotropic dielectric response as this work and others, e.g.,
refs.,114,144−146 have done. Studies focusing on a more limited
number of cases would benefit from the inclusion of such
corrections as shown, e.g., in refs.147,148

Super-Radiant Materials and IR-Emitters. Super-
radiance, the spontaneous radiation emitted from a set of
molecules which is faster and stronger than the emission of an
independent molecule, is the other important property that
this database is screened out for. This phenomenon, which is
due to a spontaneous phase-locking of the dipoles,149,150

initially was known as a signature of molecular J-aggre-
gates,151−153 but then, it was also observed in molecular
crystals depicting Davydov splitting such as anthracene25 and
tetracene,5,154,155 highlighting the fact that this property is not
limited to pure J-aggregates and can be seen in J-like aggregates
as well. Accordingly, we consider all the 512 structures
recognized as J-like aggregates in this work to find out the
super-radiant structures. We define super-radiant character
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with f 0 being the oscillator strength

of the uncoupled molecule. The weighing by the Boltzmann
factor is considered in the S definition due to the fact that the
emission more likely originates from the thermalized excitonic
density of states. Our analysis indicates that the majority of the
strong super-radiant structures have multidimensional bands,
as such, respectively, 71.1% are 2D, 21.4% possess 3D excitonic
bands, and only 7.5% are 1D. This is in good agreement with

Figure 4. (Left) Distribution of parameter β which indicates the aggregation type. The variation range of β among the materials with single-,
double-, and triple-peaks in their electronic absorption spectrum is shown in the inset. The box limits represent the first (Q1) and third quartiles
(Q3), with a line and a small circle representing the median and mean value, respectively. (Middle and Right) Variation range of ΔEDS among the
materials with double- and triple-peaks in their electronic absorption spectrum.

Figure 5. Distribution of the excitonic bandwidth (before scaling by
the relative dielectric constant ϵ). The variation range of the
bandwidth among the materials with 1-, 2-, and 3D bands is shown
in the inset.
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the observed relation between super-radiancy and the exciton
delocalization reported in the literature.156,157 The distribution
of S and representative examples with S> 0.85 are given in
Figure 6. The full list of super-radiant structures with S> 0.5
can be found in the GitHub repository.110

It is also interesting to search for novel far-red/NIR (with
emission energy in the interval 650−1000 nm (1.24−1.91 eV))
emitters in this large set of data. In recent decades, NIR
luminescence has become an increasingly popular research
field.158−160 This has been driven by, on the one hand, the
availability of more affordable and sensitive NIR detectors and,
on the other hand, the expansion of technological fields where
NIR luminescence is an essential tool for analytical detection
and transmission of information, for instance, imaging in
biological environments,161 as well as telecommunications via
fiber optics.162 Polymethine dyes such as cyanines, pyrrolo-
pyrrole cyanines, squaraines, borondipyrromethenes, and
rhodamines are among the experimentally known organic
NIR emitters, and expanding the emitter spectrum exploring/
designing new compounds is one of the current objectives in
the field.163−165 At this stage, to make predictions more
accurate, we also consider the impact of the dielectric constant
by setting it to the above explained averaged value 2.95. As
stated above, the environment effect is not explicitly
considered in molecular excitation energy calculations.
However, since the optical dielectric constants of solvents
and that of solids are similar, using the calibrated values of S1
energies to reproduce the absorption in solution (as we have
done here) will at the same time correct inaccuracies in the
computed excitation energy and take into account the effect of
the dielectric environment. The results indicate that, as a
consequence of forming molecular aggregates, the emission
energy of three molecular crystals falls on the red edge of the
visible spectrum (i.e., emission energy smaller than 2.10 eV)
but not yet in the NIR spectral range. These three structures
(being all 2D and 3D) are of J-like aggregates and as our
results show, their super-radiancy character lies in the interval

of top 30−50% values of S. The emission energies of the single
molecule and the solid alongside the electronic absorption
spectrum of special interesting cases of super-radiant materials,
i.e., all these three structures emitting at low energies, with
their molecular structures are given in Figure 7. The

distribution of the difference in molecular and solid emission
energies is represented in the Supporting Information (Figure
S5) showing a median value 0.11 eV with a maximum,
considering the top 5%, 0.56 eV (with the extreme maximum
being 1.42 eV). As such, the results are in accordance with the
majority of values reported in the literature, e.g.,
refs.6,32,166−168 Therefore, according to these results, one can
expect to achieve a red shift of ∼0.6 eV in properly engineered
molecular solids with strong excitonic characters and such shift
can be used to design low-energy emitters starting with
molecules with low excitation energy in solution.
For verification of the findings of this work against

experimental measurements, a comparison with experimental
spectra is provided in Figure S6 (Supporting Information).
However, as our model does not include vibronic coupling, the
comparison is not sufficiently stringent to validate our results.
We have therefore compared the excitonic coupling computed
in this work with those extracted from other theoretical work
that, by including vibronic coupling, have successfully
reproduced experimental spectra or other observables. We
have reported such comparison in Table S2 (Supporting
Information) and the results are fully satisfactory. This
observation, alongside the already satisfactory conditions
concerning the bandwidth and the extent of red shift, confirm
that the results presented in this work are of acceptable
precision and the identified materials with intriguing optical
properties constitute a robust set of structures to be considered
for experimental evaluations.

Figure 6. Distribution of super-radiant character S and examples of
materials with strong super-radiant character.

Figure 7. Distribution of emission energy of single molecules and
their solid form alongside the electronic absorption spectra of
materials emitting at the red edge of the visible spectrum and their
molecular diagram labeled with their CSD identifiers.
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■ CONCLUSIONS

We evaluated the optical properties of a large set of known
molecular crystals (extracted from the Cambridge Structural
Database) with their main feature being to possess optically
allowed S1 with a large oscillator strength. We classified these
structures in terms of their bands’ dimensionality, the position
of their absorption peak with respect to the excitonic DOS, and
the number of peaks. Our results indicated that the formation
of one-dimensional aggregates is a rare occurrence in molecular
crystals, and therefore, in evaluating photophysical properties,
it is essential to consider the real structure of a material rather
than relying on simple low dimensional models. In addition,
the wider bandwidths are mainly found in materials with
multidimensional excitonic bands particularly in those with
smaller intermolecular distances. We also provided a detailed
analysis of materials with Davydov splitting observing double-
and also triple-peaks in the electronic absorption spectra of
structures possessing numerous translationally inequivalent
unit cell molecules where, in the absence of vibronic couplings,
TP structures presented well-separated absorption peaks. The
super-radiancy and low-energy emissions, as interesting yet less
evaluated technologically relevant properties, were also
searched in this database. As such, we could identify a large
set of super-radiant materials displaying diverse structures that
could be potentially exploited not only in respective
optoelectronic applications but also to initiate new lines of
investigations. While the screening did not reveal any structure
emitting sharply at the NIR spectral region, the observed
possible large energy difference between the molecular and
solid emission energies is promising as it indicates that the
maximum allowable red shift can be developed in properly
engineered materials with strong excitonic character. We
believe these insights with the associated searchable data-
base110 provide a very broad overview of this class of materials
offering practical guidelines for designing materials with useful
optical properties.
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