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Abstract

This paper considers the problem of the dynamic modelling
of macroslip in spherical roller bearings. By revisiting the fun-
damental physics which drive these systems, potential issues
in existing models have been identified. Furthermore, in pure
rolling conditions it was found that governing differential
equations become “stiff”, requiring the use of implicit meth-
ods of time integration. The problem of individual roller
macroslip in a wind turbine main bearing is then investigated
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.
using a simplified representation of system dynamics. Model
results indicate clear links between slip/friction and the oper-
ational thrust strategy of the wind turbine, as well as signifi-
cantly higher frictional effects in the downwind main bearing
row. Due to modelling simplifications, these results should
not yet be considered conclusive; further work is required.

Keywords: Rolling bearing, slip, dynamics, main bearing, wind
turbine

1 Introduction

Wind turbine main bearings are receiving increased research scrutiny
due to higher than expected failure rates [1–3], the root cause or
causes of which have not yet been conclusively identified [4]. As wind
turbines grow in size and wind farms move further offshore, compo-
nent reliability becomes increasingly important in the context of the
levelised cost of energy. Most main bearing failures are problematic
in this regard, since they lead to significant loss of revenue from tur-
bine downtime and necessitate the use of expensive jack-up vessels to
remove and support the wind turbine rotor during changeovers. Fur-
thermore, as turbines grow in size, the main bearing will increasingly
become part of the load-carrying structure [3]. Access and replace-
ment will thus be more difficult, meaning cost implications of failures
are more severe. The above indicates that the identification and
investigation of key underlying mechanisms of premature main bear-
ing failures could result in significant improvements to main bearing
reliability and design practises, in turn reducing the levelised cost of
wind energy.

Slip, the presence of relative motion at contacting surfaces, can
be a driver for a number of damage mechanisms in rolling element
bearings. For example:

• Slip introduces frictional shear stresses which increase bulk stress
values and pull the maximum stress closer to the surface, height-
ening the risk of surface-initiated fatigue[5].

• Slip is known to be a contributing factor to white etching cracks
(WECs) in gearbox bearings [6], with WECs in main bearings now
also being reported [7, 8].
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• Smearing/adhesive wear may occur if slip coincides with asperity
contact [8, 9].

Slip may occur at a micro-level, as a result of contact geometries
under load, or at a macro-level, as a result of system dynamics. The
focus of the current study is dynamically induced macroslip. Cage
slip refers to instances where macroslip is such that the full rolling
element set orbits the bearing centre at a speed which differs from
that of pure rolling (therefore resulting in a cage speed which also
differs). Macro-level individual roller slip also occurs, in addition to
cage slip, as rollers enter and exit the loaded zone [8] or are otherwise
affected by changes in system loading and speed. Importantly, indi-
vidual roller slip will still occur in the absence of cage slip. A recent
study investigated cage slip in the main bearing of an operational
wind turbine as a possible contributor to premature failures [10].
The analysis concluded that levels of cage slip appeared negligible,
likely as a result of high loads and single-cage design between bear-
ing rows, but it was emphasised that individual roller slip may still
be present. The current study seeks to build on this previous work
by investigating individual roller macroslip in a wind turbine main
bearing under realistic operating conditions, in which rapid varia-
tions in main bearing load magnitudes and directions are known to
occur [11]. In order to computationally analyse this phenomenon, it is
necessary to first develop an appropriate dynamic model. As will be
described, this transpires to be non trivial. A detailed model deriva-
tion, along with careful treatment of some subtleties which arise, is
therefore the initial focus of this paper. Results under realistic wind
turbine operating conditions are then presented and discussed.

2 Background

2.1 General equations of motion for the rotation
of a rigid body

Roller orbital dynamics in the developed model will be captured
using rigid-body equations of motion. Note, this approximation is
applied only with respect to the dynamic equations themselves. In
contrast, all load and contact evaluation aspects of the model do
incorporate elastic deflections using Hertzian theory (see Section
3.2). The rigid-body approximation in the context of dynamic
equations is valid since the elastic deformations occurring in such
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bearings are several orders of magnitude less than the geometric
dimensions which determine inertia and momentum.

The fundamental equation of motion governing the rotation of a
rigid-body is, ∑

i

Mi =
dL

dt
, (1)

where the Mi are moments and L is the body’s angular momentum
(both vector quantities). However, this is the case only in an iner-
tial frame of reference. As will be seen, it can often be beneficial to
express L in a reference frame whose orientation changes in time,
i.e. a rotating (non-inertial) reference frame. In such cases, the time-
rate-of-change of the reference frame basis vectors must be taken
into account. The body’s angular momentum, L, is the product of its
3×3 moment of inertia tensor, I, with its angular velocity vector, ω.
In a non-rotating frame, I will in general be non-diagonal and time-
dependent. If, instead, the reference frame rotates such that its axes
maintain the same alignment with respect to the body’s mass dis-
tribution throughout, I (as observed in the rotating frame) remains
constant. If, in addition, this alignment coincides with the body’s
principal axes of inertia, I will also be diagonal here, I = Ip. Let Γ
denote a choice of reference frame angular velocity which achieves
both of these outcomes. It can be shown that,

dL

dt
= Ip

(
dω

dt
− Γ× ω

)
+ Γ× L. (2)

Expressing all vector/tensor quantities in the inertial (non-rotating)
reference frame which has the same orientation as the rotating frame
at each given instant in time (in this orientation I = Ip):

Mi =

Mi,1

Mi,2

Mi,3

 , ω =

ω1

ω2

ω3

 ,
dω

dt
=

ω̇1

ω̇2

ω̇3

 , Γ =

Γ1

Γ2

Γ3

 , L = Ipω =

I1ω1

I2ω2

I3ω3

 .

(3)
Combining Equations 1 and 2, the equations of motion for rigid-body
rotation under these circumstances are therefore,∑

i

M1,i = I1ω̇1 − I2Γ3ω2 + I3Γ2ω3 − I1 [Γ× ω]1 (4)∑
i

M2,i = I2ω̇2 − I3Γ1ω3 + I1Γ3ω1 − I2 [Γ× ω]2 (5)
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.∑
i

M3,i = I3ω̇3 − I1Γ2ω1 + I2Γ1ω2 − I3 [Γ× ω]3 (6)

One possible suitable rotating frame can be obtained by fixing the
frame in the rigid body so they rotate together in all dimensions. In
such cases Γ = ω, Γ × ω = ω × ω = 0, and Equations 4–6 reduce
to the well known Euler’s equations of rigid-body rotation. However,
in the current problem, it transpires that it is convenient to define a
rotating frame for which Γ ̸= ω.

2.2 Angular momentum decomposition and the
parallel axis theorem

The angular momentum, L, of a rigid body with respect to the origin,
O, of an inertial reference frame may be shown to decompose as
follows [12],

L = LCoM + L̃, (7)
where LCoM is the angular momentum of the body’s centre of mass
relative to O1, and L̃ is the angular momentum of the rigid body rela-
tive to its centre of mass. Consider the simple case of rotation within
a single plane, where an object (of mass m and in-plane moment of
inertia I about its centre of mass) spins about its own centre of mass
with angular velocity ω, while orbiting the stationary system origin
(at a distance r) with angular velocity Ω. The above decomposition
in this instance becomes,

L = mr2Ω+ Iw. (8)

A related result is the parallel axis theorem. This states that the
moment of inertia of a rigid body about a given axis is equal to the
sum of 1) its moment of inertia about the parallel axis which passes
through the body’s centre of mass, and 2) the product of the body’s
mass and the square of the distance between parallel axes [12]. For
the simple case considered above, the parallel axis theorem gives,

IO = mr2 + I. (9)

This theorem deals with strict rigid-body rotation about the given
axis. The implication being that for a parallel axis located outside of

1More specifically, LCoM is the angular momentum (relative to O) of a point mass
with mass equal to that of the rigid body, and with position and velocity equal to the
body centre of mass at each point in time.
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the body, the body maintains its initial orientation with respect to
the origin at all times2. In cases where this occurs, the parallel axis
theorem actually follows as a specific case of Equation 8, since one
may easily show that ω = Ω here. Crucially, the parallel axis theorem
is not applicable in more general cases where the orbiting body may
experience ω ̸= Ω. In such instances the general form, Equation 7 or
8, must be used.

2.3 Bearing slip modelling in the literature

Much work on the modelling and analysis of slip in roller bearings
has been undertaken in the literature [13–18]. This is usually in the
context of cage slip. Particularly relevant to the current work is [13],
where an efficient model is presented for the purposes of studying
ball-bearing slip behaviour in wind turbine gearboxes. It is this pre-
vious paper on which the current modelling work is broadly based. A
drawback of the model in [13] is the use of the parallel axis theorem,
to arrive at the differential equation governing ball-bearing orbital
speeds, since this theorem does not apply to bearing balls or rollers
which themselves have independent velocity components about an
axis parallel to that they are orbiting (see Section 2.2). It appears
that the true angular momentum in the system was thus not being
accounted for. The formulation used in [13] allows orbital motion and
roller spin to be decoupled, greatly simplifying the solving process.
However, considering the total system angular momentum (Equation
7 or 8) reveals that these quantities are in fact not decoupled. Simi-
lar issues related to system angular momentum characterisation and
the coupling/decoupling of orbit and spin appears to be present in a
number of models presented in the literature [14–17].

2.4 Numerical integration

The dynamic equations to be integrated in this work are second
order. Such equations may be reformulated as a system of first-order
differential equations for solving. Such systems are of the form,

dY

dt
= f(Y, t). (10)

Integration may then be undertaken using any of a variety of numer-
ical procedures of varying complexities, stabilities and accuracies.

2An example of such an orbit being that of our tidally locked moon.
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With respect to stability, if a system of ordinary differential equations
is “stiff” [19], explicit methods of integration are unstable unless
the time step is made prohibitively small. In such cases, an implicit
method must be used. The most basic numerical integrators falling
into each category are the (explicit) Euler method,

Y(t+ dt) = Y(t) + dt · f(Y(t), t), (11)

and (implicit) backward Euler method,

Y(t+ dt) = Y(t) + dt · f(Y(t+ dt), t+ dt). (12)

In backward Euler, Y(t+dt) appears on both side of the equation. As
such, each integration step requires an additional numerical proce-
dure to solve for the Y(t+dt) which satisfies Equation 12. Improved
stability therefore comes at a computational cost.

3 Methodology

3.1 Equations of motion for a spherical roller
bearing

Reference frames used in the current work are shown in Figure 1. The
bearing-centre frame is denoted by X0, Y0, Z0. Roller-centric frames
are denoted by x, y, z. Subscript “0” (e.g. x0) indicates axes which
translate with the roller centre, but which do not rotate and so main-
tain their initial orientation with the bearing-centre axes. The x, y, z
axes (no sub- or super scripts) translate with the roller centre, while
also rotating such that the y-axis remains aligned with the line from
the bearing centreline to the centre of the roller. Primed axes (e.g.
y′, y′0) are obtained from their unprimed counterparts by applying a
rotation of α (the bearing contact angle) about the corresponding x-
axis (x or x0). Assuming no skewing or tilting of rollers occurs, and
approximating the contact angle as remaining constant, a constant
and diagonal moment of inertia tensor is seen in the described (rotat-
ing) x′, y′, z′ frame. Note, a rotating frame is necessary to achieve
this, as demonstrated by the changing mass distribution observable
in the x′

0, y
′
0, z

′
0 frame (see Fig. 1c) as the roller orbits the bearing

centreline. Other notation is as follows: ω (appropriately subscripted)
will denote roller angular velocity in the various x, y, z frames. Γ will
denote the angular velocity of the roller-centric rotating frame in the
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Fig. 1 Spherical roller bearing reference frames shown for a single row and roller.

various x, y, z frames. Ω will denote the orbital angular velocity of
the roller centre in the X0, Y0, Z0 frame.

Each roller in the bearing will rotate about its own centre,
while also orbiting the bearing centreline. The roller is assumed to
rotate freely (subject to moments in the system) only about z′,
and the roller centre is assumed to rotate only about Z0. Rota-
tion of the roller about other axes is assumed to be that which
ensures the roller follows its design trajectory. The radius of orbit
is assumed to remain constant throughout, as is the contact angle
α. From the orientation described for the x, y, z frame, it follows
that this frame is rotating with angular velocity Γxyz = [0, 0,ΩZ0

]T .
It follows that the x′, y′, z′ frame is rotating with angular velocity
Γx′y′z′ = [0,− sinα ΩZ0

, cosα ΩZ0
]T . Approximating the roller as a

cylinder, the diagonal moment of inertia tensor in this frame is,

Ix′y′z′ =

 1
4mr2 + 1

12ml2 0 0
0 1

4mr2 + 1
12ml2 0

0 0 1
2mr2

 , (13)

where m is roller mass, r is the roller centreline radius and l is roller
length. For roller slip analysis, ωz′ is the critical angular velocity
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component. Since off-design skew and tilt are both assumed not to
occur, the roller angular velocity components ωx′ and ωy′ are pre-
determined, since they must be such that the roller follows its design
trajectory and orientation while orbiting the bearing centreline. Since
the roller experiences a constant contact angle, α, it follows that
ωx′ = 0 throughout. ωy′ is nonzero, and a function of ΩZ0

and bearing
geometry. But, as will be shown, ωy′ turns out not to be needed.
Since ωx′ and ωy′ may be considered known, only a single differential
equation is required to be solved, that of ωz′ (Equation 6). It has
been shown that,

ωx′y′z′ =

 0
ωy′

ωz′

 and Γx′y′z′ =

 0
− sinα ΩZ0

cosα ΩZ0

 , (14)

hence,

Ix′x′Γy′ωx′ = Iy′y′Γx′ωy′ = Iz′z′ [Γx′y′z′ × ωx′y′z′ ]z′ = 0. (15)

The roller-centric differential equation to be solved in this case is
therefore much simplified,∑

i

Mz′,i = Iz′z′ ω̇z′ . (16)

Note, while this equation initially appears to be independent of
the roller orbital speed, ΩZ0

, and the inner-raceway/shaft angular
velocity, Ωin, both quantities will influence ωz′ values through the
moments acting on the roller. This will be shown explicitly in a later
section. The roller’s orbital motion about the bearing centreline,
ΩZ0

, is governed by a second differential equation, obtained using
Equation 8 and roller velocity projections onto the z-axis. This takes
the form,∑

i

MZ0,i = mr2Ω̇Z0
+ Izz

(
cos(α)ω̇z′ − sin(α)ω̇y′

)
, (17)

where Izz is the lower diagonal element of Ix′y′z′ after transfor-
mation (using rotation matrices) to the x, y, z frame. Equation 17
shows explicitly the coupling between “roller orbit” and “roller spin”
components.

Dynamic modelling of slip in a wind turbine spherical roller main bearing

9



Springer Nature 2021 LATEX template

.
3.2 Moments acting on a roller

Integrating rotational equations of motion requires the moments act-
ing on the system to be resolved at each time step. Bearing roller
moments are caused by tractive/friction forces which result from
normal forces at roller-raceway and roller-cage contacts. The various
forces acting on the roller are shown in Figure 2. These are as follows:

Outer race

Inner race

Cage spar

F

F F

F

F

F F

F

F

t,o

n,o
c

d

n,cage

t,cage

n,i

t,i g

ωz'

ΩZ0

Fig. 2 Forces acting on an individual roller.

1. Gravitational force, Fg. In the roller frame,

Fg,x′ = mg cosϕ (18)

Fg,y′ = −mg cosα sinϕ (19)

Fg,z′ = −mg sinα sinϕ (20)

where m is roller mass, g is acceleration due to gravity, α is the
roller contact angle, and ϕ is the roller orbital position (see Fig.
1).

2. Centrifugal force, Fc. In the roller frame,

Fc,x′ = 0 (21)

Fc,y′ = mΩ2
Z0
r̃ cosα (22)

Fc,z′ = mΩ2
Z0
r̃ sinα, (23)

Dynamic modelling of slip in a wind turbine spherical roller main bearing
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where r̃ is the vertical height from the bearing centreline to the
roller centre (see Fig. 1).

3. Fluid (lubricant) resistance drag, Fd. In the roller frame,

Fd,x′ = sign(v)
1

2
ρϵv2CDA (24)

Fd,y′ = 0 (25)

Fd,z′ = 0, (26)

where v = ΩZ0
r̃ is the roller tangential velocity in the bearing

frame, ρ is lubricant density, ϵ = 0.7 is a fill factor, A is the cross-
sectional area of the roller, and CD is the drag coefficient (taken
to be 1 based on approximate Reynolds numbers for the system).

4. Inner- and outer-raceway normal contact forces, Fn,i and Fn,o,
respectively. These forces consist of a y′ component only, and
are approximated as follows: first a Hertzian contact model
(essentially identical to that of [11], but containing discrete repre-
sentations of rollers) of the bearing is used to perform a static load
balance which determines the normal load on each roller required
to balance the current bearing load; second, the magnitude of
the unbalanced resultant y′ body force, Fg,y′ + Fc,y′ , is added to
the appropriate raceway to balance all non-tractive forces along
y′. Hertzian theory is then used to determine the resulting con-
tact patch and pressure distribution, if present, at each contact
location (required for traction force estimation).

5. The form of the cage normal force, Fn,cage, will differ depending
on the model implementation. In the current work, the normal
cage force will be used to act as a “control” in the system since,
ultimately, it will be assumed that it acts to balance all roller
forces along x′ (see Section 3.3). Similar to raceway normal forces,
Hertzian theory is used to evaluate the contact patch and pressure
distribution between roller and cage. The cage is assumed to con-
form to the roller with the same geometry as between roller and
raceways in the lateral direction. In the rolling direction the cage
is assumed to also conform to the roller with equal percentage
conformity to that defined laterally. Note, in the applied formu-
lation the cage tractive force represents an unbalanced y′ force in
the system; however, testing has revealed this unbalanced force to
be acceptably small.

6. Elastohydrodynamic tractive forces (Ft,i, Ft,o, Ft,cage) at inner-
raceway, outer-raceway and cage contacts, respectively. These are

Dynamic modelling of slip in a wind turbine spherical roller main bearing
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generated from shearing of the lubricant film when slip is present
which, in turn, results in surface-stress distributions over each
contact patch. At the point (x′

p, z
′
p) in a contact patch, the shear

stress (τ ) in a Newtonian fluid separating the two surfaces may
be approximated as [20],

τ(x′
p, z

′
p) =

η(x′
p, z

′
p)∆u

hc
, (27)

where η is the lubricant dynamic viscosity (both pressure and
temperature dependent), ∆u is the slip speed, and hc is the cen-
tral film thickness. Since the main focus here is macro-level slip,
microslip effects are not included in the current form of this
model. macroslip, ∆u, was estimated at the roller centre based
on unloaded bearing geometry (see below), with slip values across
the contact patch approximated as being equal to this value. The
viscosity across the contact patch is affected by local pressure vari-
ations and frictional heating which results from lubricant shearing.
A closed-form approximation of viscosity variations under these
conditions was derived by Crook [20] and also applied in [13].
The same approach is used again here, allowing shear stress val-
ues throughout the contact to be evaluated. Equation 27 is then
integrated over the contact patch in order to obtain an estimate
of the resultant surface tractive force at that interface. Lubrica-
tion analysis used a Barus law pressure-viscosity coefficient of 21
GPa−1, a temperature-viscosity coefficient of 0.056 C−1, lubri-
cant thermal conductivity of 0.125 Jkg−1K−1, and a lubricant
specific gravity of 0.9. The lubricant contact-inlet temperature
was set at 35 C throughout. Other lubrication/bearing parame-
ters match that of [21]. The central film thickness, hc is evaluated
using an equivalent line contact representation [21, 22] and a cen-
tral film thickness formula which accounts for surface roughness
[23]. Denoting roller and raceway/cage surface tangential veloc-
ities as u1 and u2, respectively. The above formulation requires
both entrainment velocity, ue = 1

2 | u1 + u2 | and slip speed,
∆u = u2 − u1, to be evaluated at each contact. For convenience,
surface tangential velocity expressions were identified such that
positive slip values result in a positive rotational acceleration of
the roller in its local frame and, hence, generate roller moments

Dynamic modelling of slip in a wind turbine spherical roller main bearing
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with the same sign as ∆u. These velocities are as follows,

u2,in = −(Ωin − ΩZ0)r̃in (28)

u2,out = (Ωout − ΩZ0)r̃out (29)

u2,cage = 0 (30)

u1,in = u1,out = u1,cage = ωz′r (31)

r is the roller centreline radius. The bearing in question has a
stationary outer-raceway, so Ωout = 0.

Having calculated the traction forces as described above for each
case, the moments acting on the roller at each point in time are
Mt,i = rFt,i, Mt,o = rFt,o, and Mt,cage = rFt,cage.

3.3 Model implementation

Previous sections highlight the complexity of dynamics in the full
system being considered, including the presence of coupled differen-
tial equations for ωz′ and ΩZ0

. Previous work outlined in Section 1
indicates that some simplification may be possible since, due to the
absence of cage slip, it appears reasonable to assume roller orbital
trajectories are maintained at that of pure rolling3 via cage normal
forces (neglecting clearance between cage spars and rollers). How-
ever, even then one would have to ensure that forces/moments are
such that both Equation 16 and 17 remain satisfied throughout, a
task which is not obviously straightforward. Furthermore, under high
loads which (locally) drive rollers at their pure rolling speed, it has
been found that governing differential equations become stiff, requir-
ing an additional solving procedure at each time-step. Based on the
above difficulties, which would require complex nested iterative solv-
ing to handle all aspects of the real-world problem, it was deemed
sensible to first consider a simplified version of the system which
is analogous, but not identical, to the original. We therefore con-
sider the case where rollers are subject to identical loading, contact
geometries, entrainment speeds and surface tangential velocities as
those seen in the main bearing (as per Section 3.2), but where all
of this occurs for rollers travelling in a straight line at velocity ΩZ0

r̃
(for ΩZ0

set equal to the orbital speed under pure rolling) between
parallel raceways, as opposed to orbiting a bearing centre. In this

3The benefit of this being that at “pure rolling” the orbital speed becomes a simple
function of shaft speed, similar to a gear-speed equation [11, 21].

Dynamic modelling of slip in a wind turbine spherical roller main bearing
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simplified case, there is no longer an orbital component to angular
momentum, and hence Equation 17 falls away, leaving the single dif-
ferential equation, Equation 16, to be integrated. While not identical
to the real-world problem, it is believed that analysis of this simpli-
fied case will still provide insights into the key mechanisms at play
in such systems. Additionally, wind turbine rotors have large rota-
tional inertia, and so is it assumed that Ω̇Z0

r̃ is small/negligible. The
cage normal force for each roller is therefore specified such that it
balances the other forces acting along x′,

Fn,cage =| Fg,x′ + Fd,x′ + Ft,i − Ft,o | . (32)

Rollers in this system are therefore independent of one another, since
they interact with their adjacent cage spars only. Thus, dynamic
analysis may be undertaken considering just a single roller in the
system. Applied load balancing via the Hertzian model still requires
knowledge of the orbital position of all rollers, but (since ΩZ0

is
now that of pure rolling) orbital position over time may be easily
determined, for example see [11].

This model implementation was undertaken using the main bear-
ing and 1.5 MW wind turbine aeroelastic model applied in previous
work [11, 21]. Simulated wind conditions contained a shear exponent
of 0.2, and aeroelastic simulations were performed at three levels of
kinematic turbulence (high - A, medium - B and low - C, as speci-
fied by IEC-61400 design standards). Simulations at each turbulence
level were performed for turbulent wind fields with mean wind speeds
of 12–24 m/s. In total, analysis of individual roller dynamics was
therefore undertaken across 21 10-min turbine simulations. Note, all
simulations fall within the turbine’s second constant speed region,
wherein pitch action is attempting to maintain the shaft speed at its
set ratedlevel. The roller differential equation, Equation 16, remains
stiff. Stable time integration was therefore achieved using the back-
ward Euler method (an example of instability observed for an explicit
integrator is provided in Appendix A).

3.4 Analysis metrics for individual roller slip

Appropriate metrics with which to analyse individual roller slip
results are now considered. Importantly, each of the damage mecha-
nisms described in Section 1 are not dependent on slip in isolation,
but rather a combination of slip and surface friction. Indeed, if slip

Dynamic modelling of slip in a wind turbine spherical roller main bearing
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occurs in the absence of friction then no damage will result. Anal-
ysis metrics should ideally reflect this reality, while also facilitating
convenient comparative analyses across a range of simulations.

Occurrences of smearing damage within a contact have been
linked to large instantaneous frictional power values [8], P (t), where,

P (t) =| Ft(t) ·∆u(t) | . (33)

Related to this, WEC damage has been shown to correlate with the
cumulative frictional energy, E(t), at an interface [24, 25], where,

E(t) =

∫ t

t0

P (t) dt =

∫ t

t0

| Ft(t) ·∆u(t) | dt. (34)

The above two quantities both fulfill the outlined criteria regard-
ing useful metrics for roller slip analysis. Both E(t) and P (t) will
therefore be used to analyse results. The cumulative energy is a
particularly convenient measure, since it neatly summarises a full
simulation’s worth of results into a single number. Cumulative energy
results presented in the following section will consider the total cumu-
lative energy, i.e. Etot = Ein + Eout + Ecage. As will be described,
Etot values were found to be dominated by Ecage here. Frictional
power results will also be considered, in the form of the maximum
power occurring per roller orbit. Within a single roller orbit, the
maximum power is taken to be the largest value across all interfaces,
i.e. Pmax = max (Ein,max, Eout,max, Ecage,max).

It is reiterated that the focus of this paper is model development
for individual roller slip in a wind turbine main bearing. As such, the
above metrics are applied in order to facilitate a contextually appro-
priate analysis of model outputs, rather than necessarily seeking to
assess the risk of any particular form of slip induced damage.

4 Results

Figure 3a shows the roller rotational speed, ωz′ , solution having
applied the model under conditions of a static downward load and
constant speed, each set to the mean load and speed seen in the
14m/s mean wind speed case with turbulence level B. Roller rota-
tional speeds can be seen to remain at pure rolling throughout the
load zone. This is expected due to high contact forces. As the roller
exits the load zone, the braking action of cage contact decelerates the
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Fig. 3 a) Roller rotational speed and normalised cumulative frictional energy
under constant load and speed, b) Roller rotational speed and normalised cumu-
lative frictional energy under time-varying conditions.

roller. An inflexion point in rotational speed is visible. This occurs
as the roller passes over the top of the bearing, where briefly no
gravitational component is acting to push the roller into the cage.
Upon reentering the loaded zone, the roller can be seem to rapidly re-
accelerate to the pure-rolling speed. The total cumulative frictional
energy from across all contacts (cage, inner- and outer-raceway) is
also shown. This variable increases fairly steadily throughout the
roller’s orbit. As there is essentially no slip at inner- and outer-
raceways towards the centre of the load zone, energy accumulation
there is due to roller-cage interaction. Figure 3b provides results
under time-varying conditions. Note, in this case the cumulative fric-
tional energy values were around 2 orders of magnitude greater than
in the static case. Here, the roller can be seen to track the slowly
changing pure-rolling speed when loaded. Note, the bearing applied
load is also changing in both magnitude and direction throughout.
The majority of energy may be seen to accumulate towards the cen-
tre of the loaded zone. Again, this energy accumulation is dominated
by friction between the roller and cage, resulting from (brief) differ-
ential traction forces at inner- and outer-raceways acting to force the
roller into the cage spar. These raceway traction forces are present
due to the slow variations in shaft speed, which in turn are changing
the pure rolling speed. Traction forces therefore develop which drive
the roller towards the new pure-rolling ωz′ value.

Cumulative frictional energies were compared across the wind
speeds and turbulence levels, as shown in Fig. 4a. Frictional energy
is seen to be highest at the lowest considered wind speeds of 12 and
14 m/s. This observation can be explained as resulting from turbine
operation/control, since once rated power is reached at around 12

Dynamic modelling of slip in a wind turbine spherical roller main bearing

16



Springer Nature 2021 LATEX template

.

12 14 16 18 20 22 24

Mean windspeed (m/s)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
N

o
rm

a
lis

e
d
 c

u
m

u
la

ti
ve

 e
n
e
rg

y 
(-

)
High turb.
Med turb.
Low turb.

12 14 16 18 20 22 24

Mean windspeed (m/s)

7

8

9

10

11

12

13

14

C
u
m

u
la

ti
ve

 e
n
e
rg

y 
ra

ti
o
 (

-)

High turb.
Med turb.
Low turb.

a) b)

Fig. 4 a) Normalised cumulative frictional energies in the downwind row for
each turbine simulation. Results are normalised against the 12 m/s, turbulence
C result, b) Ratios of frictional energy results in the downwind versus upwind
main bearing row, Edown/Eup.

m/s, excess energy and loads at higher wind speeds are shed by
the control system pitching the blades. This results in design thrust
loads which are maximal at about 12 m/s, and then fall continuously
for higher wind speeds. As a result, higher frictional energies might
well be expected at points of higher thrust loading. Further analysis
is required before any definite links between frictional energy and
turbulence level might be established. Discussions with wind farm
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Fig. 5 a) Mean and standard deviation values for the maximum frictional power
per roller orbit in the downwind row. Results are normalised against the 14 m/s,
turbulence A result. Note, results are staggered about each mean wind speed
for clarity, b) Ratios of mean values of max frictional power per orbit in the
downwind versus upwind main bearing rows.

operators indicate that main bearing failures tend to occur in the
downwind main bearing row. Frictional energy results were therefore
consider for one roller in the downwind and one roller in the upwind
row, to determine if any differences were predicted by this model.
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.
Ratios of the downwind to upwind frictional energy values at each
operating point are shown in Fig 4b. As shown, frictional energies
across all wind speeds and turbulence levels were found to be around
one order of magnitude higher in the downwind row, compared to
the upwind row. This is likely due to the fact that the downwind
row is more highly loaded in general as a result of supporting thrust
[11, 26].

Frictional power values at contact interfaces were also analysed
by extracting the maximum frictional power (across all three con-
tact points) from each roller orbit about the main bearing, within
a given simulation. Figure 5a shows means and standard deviations
of the maximum frictional power per roller orbit in the downwind
row at each operating point (results are staggered about each mean
wind speed for clarity). In contrast to cumulative energy results, no
definite trend is discernible. This indicates that large values of instan-
taneous frictional power may occur at any of the operating points
considered here. The standard deviations of these results indicate
that there are high levels of variability in the maximum power occur-
ring per roller orbit. Differences between the frictional power seen
in the downwind versus upwind row were also considered. Figure 5b
shows ratios of the mean values of maximum frictional power per
roller orbit in the downwind versus upwind main bearing rows. Here,
a clear trend is present, with the highest bearing-row power discrep-
ancies occurring at 12 m/s wind speeds and dropping off thereafter.
As for the cumulative energy results, this appears to be linked to the
thrust operating strategy of the wind turbine. Maximum frictional
power values may be seen to be consistently as much as 5 times larger
for a roller in the downwind row, compared to a roller in the upwind
row.

It is emphasised that while the utilised model is arguably anal-
ogous to an operating main bearing, it is certainly not identical.
Results presented here must therefore be interpreted with this in
mind. In future work it will be important to consider the relevance
of microslip, compared to the macroslip analysed here, as well as
clearance between the rollers and cage spars. Consideration should
also be given to integrating the true (coupled) equations of motion,
Equations 16 and 17.
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.
5 Conclusions

This work has considered the dynamic modelling of macroslip in
spherical roller bearings. Equations of motion were presented in a
fully generalised form which allows for the utilisation of any suit-
able rotating coordinate frame. Fundamental concepts of angular
momentum characterisation in spinning-orbiting systems were also
presented. Careful application of this theory allowed for the correct
(coupled) system of dynamic equations to be identified, while also
highlighting apparent errors in existing models. A simplified model
for capturing individual roller macroslip behaviour in a wind turbine
main bearing was then presented, which accounts for elastic con-
tact and lubricant shearing effects. Additionally, it was demonstrated
that rolling bearing equations of motion become “stiff” under certain
conditions, requiring iterative approaches to time integration. The
presented model was implemented, using input data obtained from
turbulent aeroelastic wind turbine simulations, and results analysed
via cumulative frictional energy and instantaneous frictional power
metrics. Model results indicate clear links between slip/friction and
the operational thrust strategy of the wind turbine, as well as signif-
icantly higher frictional effects in the downwind main bearing row.
macroslip was predicted to be most directly relevant at roller-cage
contacts, driven by differential friction forces on raceways as the
roller tracks a slowly varying pure-rolling speed. Due to modelling
simplifications, these results should not yet be considered conclu-
sive. Further modelling and validation work is required, including the
addition of: micro-slip effects, roller-cage clearance and integration
of the fully coupled equations of motion for this system.
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Appendix A Stiff differential equation
example
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Fig. A1 Example of instability in the highly loaded zone when using Euler’s
method (red). Backward Euler (black) can be seen to avoid this instability issue.

References

[1] Hart, E., Turnbull, A., Feuchtwang, J., McMillan, D., Goly-
sheva, E., Elliott, R.: Wind turbine main-bearing loading and
wind field characteristics. Wind Energy 22(11), 1534–1547
(2019)

[2] Hart, E., Clarke, B., Nicholas, G., Kazemi Amiri, A., Stirling, J.,
Carroll, J., Dwyer-Joyce, R., McDonald, A., Long, H.: A review

Dynamic modelling of slip in a wind turbine spherical roller main bearing

20



Springer Nature 2021 LATEX template

.
of wind turbine main bearings: design, operation, modelling,
damage mechanisms and fault detection. Wind Energy Science
5(1), 105–124 (2020)

[3] Nejad, A.R., Keller, J., Guo, Y., Sheng, S., Polinder, H., Wat-
son, S., Dong, J., Qin, Z., Ebrahimi, A., Schelenz, R., et
al.: Wind turbine drivetrains: state-of-the-art technologies and
future development trends. Wind Energy Science 7(1), 387–411
(2022)

[4] Guo, Y., Bankestrom, O., Bergua, R., Keller, J., Dunn, M.:
Investigation of main bearing operating conditions in a three-
point mount wind turbine drivetrain. Forschung im Ingenieur-
wesen 85(2), 405–415 (2021)

[5] Kotzalas, M.N., Doll, G.L.: Tribological advancements for reli-
able wind turbine performance. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering
Sciences 368(1929), 4829–4850 (2010)

[6] Gould, B., Greco, A.: The influence of sliding and contact sever-
ity on the generation of white etching cracks. Tribology Letters
60(2), 1–13 (2015)

[7] Greco, A., Demas, N., Erck, R., Gould, B., Keller, J., Sheng, S.,
Guo, Y.: Wind turbine drivetrain reliability. Technical Report
PR–5000–84029, National Renewable Energy Lab.(NREL),
Golden, CO (United States) (2022). https://www.nrel.gov/
docs/fy23osti/84029.pdf

[8] Doll, G.: Surface engineering in wind turbine tribology. Surface
and Coatings Technology, 128545 (2022)

[9] Brizmer, V., Stadler, K., van Drogen, M., Han, B., Matta, C.,
Piras, E.: The tribological performance of black oxide coating in
rolling/sliding contacts. Tribology Transactions 60(3), 557–574
(2017)

[10] Bergua Archeli, R., Keller, J., Bankestrom, O., Dunn, M., Guo,
Y., Key, A., Young, E.: Up-tower investigation of main bear-
ing cage slip and loads. Technical report, National Renewable
Energy Lab.(NREL), Golden, CO (United States) (2021)

Dynamic modelling of slip in a wind turbine spherical roller main bearing

21

https://www.nrel.gov/docs/fy23osti/84029.pdf
https://www.nrel.gov/docs/fy23osti/84029.pdf


Springer Nature 2021 LATEX template

.
[11] Hart, E.: Developing a systematic approach to the analysis

of time-varying main bearing loads for wind turbines. Wind
Energy 23(12), 2150–2165 (2020)

[12] Rao, A.: Dynamics of Particles and Rigid Bodies: a Systematic
Approach. Cambridge University Press, ??? (2006)

[13] Jain, S., Hunt, H.: A dynamic model to predict the occurrence
of skidding in wind-turbine bearings. In: Journal of Physics:
Conference Series, vol. 305, p. 012027 (2011). IOP Publishing

[14] Tu, W., Shao, Y., Mechefske, C.K.: An analytical model to inves-
tigate skidding in rolling element bearings during acceleration.
Journal of mechanical science and technology 26(8), 2451–2458
(2012)

[15] Han, Q., Chu, F.: Nonlinear dynamic model for skidding behav-
ior of angular contact ball bearings. Journal of Sound and
Vibration 354, 219–235 (2015)

[16] Han, Q., Li, X., Chu, F.: Skidding behavior of cylindrical roller
bearings under time-variable load conditions. International
Journal of Mechanical Sciences 135, 203–214 (2018)

[17] Liu, Y., Chen, Z., Tang, L., Zhai, W.: Skidding dynamic perfor-
mance of rolling bearing with cage flexibility under accelerating
conditions. Mechanical Systems and Signal Processing 150,
107257 (2021)

[18] Guo, Y., Keller, J.: Validation of combined analytical meth-
ods to predict slip in cylindrical roller bearings. Tribology
International 148, 106347 (2020)

[19] Wanner, G., Hairer, E.: Solving Ordinary Differential Equations
II vol. 375. Springer, ??? (1996)

[20] Crook, A.: The lubrication of rollers III. A theoretical discussion
of friction and the temperatures in the oil film. Philosoph-
ical Transactions of the Royal Society of London. Series A,
Mathematical and Physical Sciences 254(1040), 237–258 (1961)

Dynamic modelling of slip in a wind turbine spherical roller main bearing

22



Springer Nature 2021 LATEX template

.
[21] Hart, E., de Mello, E., Dwyer-Joyce, R.: Wind turbine main-

bearing lubrication–part 2: Simulation-based results for a
double-row spherical roller main bearing in a 1.5 mw wind
turbine. Wind Energy Science 7(4), 1533–1550 (2022)

[22] Hart, E., de Mello, E., Dwyer-Joyce, R.: Wind turbine main-
bearing lubrication–part 1: An introductory review of elasto-
hydrodynamic lubrication theory. Wind Energy Science 7(3),
1021–1042 (2022)

[23] Masjedi, M., Khonsari, M.: Film thickness and asperity load
formulas for line-contact elastohydrodynamic lubrication with
provision for surface roughness. Journal of tribology 134(1)
(2012)

[24] Gould, B., Greco, A.: Investigating the process of white etching
crack initiation in bearing steel. Tribology Letters 62(2), 1–14
(2016)

[25] Vaes, D., Guo, Y., Tesini, P., Keller, J.A.: Investigation of roller
sliding in wind turbine gearbox high-speed-shaft bearings. Tech-
nical report, National Renewable Energy Lab.(NREL), Golden,
CO (United States) (2019)

[26] Guo, Y., Thomson, A., Bergua, R., Bankestrom, O., Erskine,
J., Keller, J.: Acoustic emission measurement of a wind turbine
main bearing. Technical report, National Renewable Energy
Lab.(NREL), Golden, CO (United States) (2022)

Dynamic modelling of slip in a wind turbine spherical roller main bearing

23


	Introduction
	Background
	General equations of motion for the rotation of a rigid body
	Angular momentum decomposition and the parallel axis theorem
	Bearing slip modelling in the literature
	Numerical integration

	Methodology
	Equations of motion for a spherical roller bearing
	Moments acting on a roller
	Model implementation
	Analysis metrics for individual roller slip

	Results
	Conclusions
	Acknowledgments

	Stiff differential equation example



