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Abstract—Non-Intrusive Load Monitoring (NILM) describes
the extraction of the individual consumption pattern of a
domestic appliance from the aggregated household consump-
tion. Nowadays, the NILM research focus is shifted towards
practical NILM applications, such as edge deployment, to accel-
erate the transition towards a greener energy future. NILM
applications at the edge eliminate privacy concerns and data
transmission-related problems. However, edge resource restric-
tions pose additional challenges to NILM. NILM approaches are
usually not designed to run on edge devices with limited computa-
tional capacity, and therefore model optimization is required for
better resource management. Recent works have started inves-
tigating NILM model optimization, but they utilize compression
approaches arbitrarily without considering the trade-off between
model performance and computational cost. In this work, we
present a NILM model optimization framework for edge deploy-
ment. The proposed edge optimization engine optimizes a NILM
model for edge deployment depending on the edge device’s lim-
itations and includes a novel performance-aware algorithm to
reduce the model’s computational complexity. We validate our
methodology on three edge application scenarios for four domes-
tic appliances and four model architectures. Experimental results
demonstrate that the proposed optimization approach can lead up
to a 36.3% average reduction of model computational complexity
and a 75% reduction of storage requirements.

Index Terms—Edge inference, non-intrusive load monitoring,
quantization, pruning, optimization, resource management, green
computing.

I. INTRODUCTION

ON-INTRUSIVE Load Monitoring (NILM) refers to the
N process of analyzing the aggregated energy consumption
of a residential building to infer the individual consump-
tion pattern of domestic appliances [1]. In recent years,
NILM approaches have transversed from statistical analysis
methods to deep learning techniques due to their superior

Manuscript received 27 September 2022; revised 14 December 2022
and 22 January 2023; accepted 26 January 2023. Date of publication
13 February 2023; date of current version 21 August 2023. This project
has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement
No 955422. The editor coordinating the review of this article was C. Shen.
(Corresponding author: Stavros Sykiotis.)

Stavros Sykiotis, Sotirios Athanasoulias, Maria Kaselimi, Anastasios
Doulamis, and Nikolaos Doulamis are with the School of Rural, Surveying
and Geoinformatics Engineering, National Technical University of Athens,
15773 Athens, Greece (e-mail: stasykiotis@mail.ntua.gr).

Lina Stankovic and Vladimir Stankovic are with the Department
of Electronic and Electrical Engineering, University of Strathclyde,
Gl 1XW Glasgow, U.K.

Digital Object Identifier 10.1109/TGCN.2023.3244278

, Maria Kaselimi
, Member, IEEE, Lina Stankovic

, Anastasios Doulamis™, Member, IEEE,
, Senior Member, IEEE,
, Senior Member, IEEE

performance capabilities. However, most of the deep learning
NILM approaches are designed to be deployed in a central
server instead of performing inference on the edge due to
the increased computational needs [2], [3], [4]. This design
methodology assumes data transfer from the data source, i.e.,
the domestic house, to an external entity and impacts the wider
deployment scalability of NILM frameworks. Central data
storage has increased costs for the service provider since the
accumulation of large amounts of data requires an expanded
storage infrastructure. In addition, performing inference cen-
trally usually requires more computational resources, thus
increasing the energy required to run the service and increas-
ing the carbon footprint of the solution. Finally, apart from
the heavy reliance on a stable Internet connection for data
transmission, privacy concerns arise since sensitive customer
information can be inferred [5]. It can therefore be argued that
a transition to deploying NILM algorithms on the edge (i.e.,
at each domestic house equipped with a smart meter and a
device with restricted processing power) is a more attractive
solution that alleviates the issues of central data processing.

A. Our Contribution

In this study, we propose a performance-aware NILM
optimization framework for edge deployment that takes into
account the edge device characteristics. Our approach considers
multiple hardware limitations and, depending on the deployment
scenario, employs a different model optimization technique
to efficiently preserve the limited edge device resources,
resulting in an efficient resource management scheme. The
basic contributions of our work are summarized below:

o NILM Green Computing Edge-Inference Framework: We
propose an edge inference framework for NILM that
utilizes multiple model optimization techniques, taking
into account the edge device hardware characteristics to
enable an efficient edge green computing scheme.

o Model Optimization Metric: We introduce Pruning Gain,
an objective model optimization metric for NILM
algorithms that describes the trade-off between model
performance and computational complexity.

o Performance-Aware NILM Model Edge Optimization: We
present performance-aware pruning, an iterative algo-
rithm to determine which model parameters can be
removed from the network without severely impacting
model performance.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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o Application Specific NILM Model Edge Optimization:
We explore the impact of model optimization on vari-
ous NILM techniques (CNN, LSTM, Transformers) for
different appliances, and we experimentally prove that,
depending on the application scenario, a different level of
model optimization for resource management is tolerable
from a model performance perspective.

The rest of the paper is organized as follows. In Section II,
we present an overview of the existing work for deploying
NILM algorithms on edge devices. Section III mathemati-
cally formulates the problem of performance-aware NILM
model optimization, whereas Section IV describes in detail
the proposed NILM edge optimization framework. Finally,
Section V presents the experimental setup and results, while
Section VI summarizes the main outcomes of the paper and
potential future steps.

II. RELATED WORK

Since its official problem formulation [14], NILM has
received increasing research interest, backed by the expanded
availability of smart meter data. Earlier NILM approaches
were based on signal processing techniques, such as
Graph Signal Processing [15], [16] and Hidden Markov
Models [17], [18]. Since 2015, the research focus has shifted
towards utilizing deep learning techniques on low-frequency
data, with models such as Denoising Autoencoders [19], [20],
Recurrent Neural Networks [21], [22] and Convolutional
Neural Networks [23], [24], [25] being successfully applied
for energy disaggregation. Due to the rapid advancements
in deep learning, state-of-the-art network architectures such
as U-net [26], Generative Adversarial Networks [27], [28]
and Transformers [29], [30] have been employed to advance
NILM.

Recently, progress has been made towards the deploy-
ment of NILM and other energy-related applications on edge
devices, either as part of a Home Energy Management System
(HEMS) [31] or as standalone applications [32]. NILM edge
inference does not require the transmission of data to an exter-
nal server and, therefore, alleviates the aforementioned issues
of central data processing. Approaches to deploying NILM
models on the edge have been proposed, both on embedded
computers, such as Raspberry Pi, and on more resource-
constrained devices. Deployment on a Raspberry Pi has been
proposed [6], [7], but the deployed models either require
additional metadata, such as room occupancy or utilize high-
frequency features for energy disaggregation, which increases
data acquisition costs. In addition, NILM models on more
resource-constrained devices, such as microcontrollers [8], [9]
and FPGA [10] have also been proposed, but the respective
models only consider appliance state classification instead of
regression and require high-frequency data to operate.

Despite the great success of deep learning in diverse appli-
cations, neural networks often possess a vast number of
parameters, leading to significant challenges in deploying deep
learning systems to a resource-limited device [33], [34]. The
deployment of sensing devices with higher computational
power has been investigated [35], [36], but the devices have
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high cost and high power demands, thus making them imprac-
tical for commercialization [8]. Therefore, edge inference
requires compression and optimization of NILM deep learn-
ing models to account for the limited computational resources.
Quantization, parameter pruning, low-rank factorization, and
knowledge distillation [37], as well as combinations of one
or more techniques [38] are the main approaches employed
in the literature. Even though NILM-related deep learning
applications have utilized state-of-the-art architectures [30],
[39], [40], research on the constraints and methodology for
deploying NILM deep learning models on edge devices
remains limited. In [11], the quantization of a sequence-to-
point (seq2point) convolutional neural network (CNN) [25]
from 32-bit float model weights to 8-bit integer weights is
applied. The application of multiple pruning approaches on
the same seq2point [25] model has also been investigated [12],
and the methods have been tested on 2 appliances from the
REFIT [41] dataset. Finally, [13] explores model compres-
sion of a multi-class seq2point CNN using pruning and tensor
decomposition, while the evaluation is performed for three
appliances from the REDD dataset [42].

Even though the aforementioned works can be considered
as an initial entry-point towards low-frequency (<1Hz) NILM
inference on edge devices, there are several limitations. First,
these papers [11], [12], [13] do not take into consideration the
hardware characteristics of edge devices. This can be an issue
in quantization approaches, where some quantization protocols
are applicable only to specific chip architectures. Second, all
papers employ compression approaches on a specific model
architecture (seq2point CNN). Seq2point models are less
computationally efficient than sequence-to-sequence models
(seq2seq), since they produce only one timepoint prediction
instead of a whole window in the testing phase. As a result,
significantly more forward pass iterations are required to pro-
duce the same number of outputs seq2seq models, which leads
to a noteworthy increase in energy consumption. In addition,
the effects of model compression on different model architec-
tures, such as recurrent neural networks or Transformers, have
not been investigated. Furthermore, the works that investigate
more than one model compression strategy do not explore the
impact of their combination on model performance, which
can result in the optimization of different model aspects.
Finally, pruning is applied on an arbitrary basis, and no frame-
work has been proposed to interconnect performance loss after
compression with model complexity. A summary of the afore-
mentioned limitations of existing literature can be found in
Table L.

III. PROBLEM STATEMENT

Under a NILM framework [14], we can assume that the
aggregate consumption signal x of a domestic house with M
operational appliances, at any time point ¢, equals to the sum
of the individual appliance consumption loads y;,¢ =1--- M,
plus a noise term € [43]:

M
o(t) = vilt) +€(t) ()
=1
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TABLE I
SUMMARY OF EXISTING LITERATURE FOR EDGE NILM
‘Work Deployment Model Compression Limitations
Device Approach
Uttama et. al. [6] Raspberry Pi Combinatorial state complexity requires additional metadata (room occupancy
optimization reduction information)
Xu et. al. [7] Raspberry Pi Support Vector Feature reduction requires high frequency data
Machine
Tabanelli et. al. [8] Microcontroller Random Forest Feature reduction . .
Tabanelli et. al. [9] Microcontroller Random Forest Feature reduction -Requires high frequency data
Hernandez et. al. [10] FPGA Hardware- - -event-based NILM (classification)
oriented
- Hardware characteristics are not taken into
Ahmed et.al. [11] - seq2point CNN Quantization account
-Seq2point requires more forward passes
than seq2seq; computationally intensive
Barber et.al.[12] - seq2point CNN Pruning - Only 1 model architecture is considered
. - Different model compression approaches
Kukunuri et.al.[13] . Pruning are not jointly investigated
- seq2point CNN Tensor c Lo L
o - Compression is conducted arbitrarily and
decomposition
not connected to performance loss
1
Central Inference | Edqe |nference aggregate signal
| model compression -
| disaggregated signal
|
|
data storage I
vae—~  NILM model | ‘
computational
ower | l
' =
I —
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Fig. 1. Overview of the required infrastructure setup to perform inference centrally vs on the edge. Central inference requires upload and download of

consumption data to a central processing entity, as well as increased data storage capacity and computational power. On the contrary, performing inference on
the edge devices alleviates these limitations and only requires the compression of the models and their deployment on the edge device, while data exchange

takes place only between the edge device and the domestic house.

To extract the consumption signal of a selected appliance
a € {1,...,M}, NILM approaches are designed to filter
out all non-relevant appliance consumption signals y;Vi # a.
Depending on the chosen appliance a, the power signal y, may
showcase different statistical characteristics in terms of peaks,
sparsity, or duration of appliance activations, which is defined
as the consecutive time interval that the appliance is turned on.
As a result, not only may different model architectures have
different sensitivity to model optimization approaches, but also
the same model, trained to disaggregate different appliances,
may showcase different behavior related to compression. It
can therefore be argued that the optimization strategy must
be bound to model performance, with the goal of finding an
equilibrium between model complexity and performance loss.

Two different NILM infrastructure setups for central and
edge device deployment are illustrated in Figure 1. Even
though performing inference centrally theoretically allows for
the model to utilize larger amounts of computational power,

it can be easily seen that the complexity and drawbacks of
such an approach are significant. On the other hand, perform-
ing inference on edge devices alleviates the need to transmit
and receive data to an external server, with the only limita-
tion being the fact that the models need to be compressed and
optimized to run on resource-constrained devices.

To mathematically formulate the aforementioned approach,
let a NILM model f(z;w) : X — Y,w € RM have a
performance Py. Our goal is to obtain a lower-dimensionality
model h(z;0) : X — ), where 6 is some transformation
of w, ie., 8§ = T(w),0 € RC, C < N, to perform the same
task with performance Pj. In other words, we are trying to
minimize the following function:

L = min(|f (z; w) — h(z;0)[) 2

However, Equation (2) does not take into consideration
the performance loss that occurs as a consequence of model
optimization. The model should be optimized to match the
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Fig. 2. High-level overview of the proposed NILM edge optimization
framework.

deployment criteria only to the level that the performance loss
is acceptable. Therefore, Equation (2) needs to be constrained
with the condition that performance loss must not fall below a
tolerance threshold §. Therefore, a performance-aware model
compression framework can be written as:

Lpa = min(|f(v; w) — h(z;0)]) s.t. P — P, <3 (3)

IV. A GREEN EDGE RESOURCE MANAGEMENT
FRAMEWORK FOR NILM

Our proposed green computing framework for NILM model
edge optimization is illustrated in Figure 2. The backbone of
our approach is the edge optimization engine, which is respon-
sible for the optimization of a NILM model depending on
the edge deployment requirements. Since resource limitations
of the edge device may vary, the optimization engine first
receives the edge device characteristics, as well as any addi-
tional restrictions imposed by the user. Then, the trained NILM
model to be deployed is analyzed, and an optimization strategy
is set. The optimization strategy can either be static to reduce
the model’s storage requirements through model quantization
or performance-aware to apply complexity reduction through
weight pruning. Performance-aware optimization is defined as
the removal of insignificant model weights not arbitrarily but
by taking into consideration the respective impact on model
performance. In this case, complexity reduction is performed
incrementally until the edge deployment requirements are met,
under the condition that the trade-off between performance
loss and complexity reduction is satisfactory.

An overview of the optimization approaches employed for
memory and complexity reduction is depicted in Figure 3. The
following sections provide a detailed description of these tech-
niques, as well as the proposed performance-aware iterative
complexity reduction scheme.

A. Model Weights Quantization

Model quantization refers to the process where the model’s
weight type is changed to lower numerical precision to limit
the storage and memory space required for the model. In
essence, quantization can be formulated as an irreversible map-
ping function Q : w € RY — w’ € R?, Z C N that maps
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Fig. 3. Overview of the model optimization methods adopted in this study.

We explore model quantization by performing MinMax quantization of the
model weights, as well as histogram quantization for the activation function
outputs to minimize performance loss. We also integrate magnitude pruning in
our approach to remove weights with small L1-norm that contribute minimally
to the model’s predictions.

the model weights w, stored in a floating point format, to an
integer representation w’. The value range of w is divided into
bins and each value w; is mapped to the integer representing
the corresponding bin.

Quantization is either executed post-training, meaning that
an already trained model is compressed or during training,
in the sense that the quantized version of the model is taken
into account when the model is trained (quantization-aware
training). In this work, we focus on post-training model
quantization and apply a calibration phase on an indicative
dataset, during which the quantization parameters are fine-
tuned, resulting in a more accurate representation of the initial
model weights w. This additional calibration step also allows
for the quantization of activation function outputs.

To quantize the models, we quantize both model weights
and activation outputs to further avoid floating point mul-
tiplication operations [44]. Since the activation outputs are
fed to the next layer, a more sensitive quantization approach
is required to minimize model performance degradation.
Therefore, we have opted for min-max uniform quantiza-
tion for model weights and histogram quantization for the
activation outputs, where the activation values are recorded,
and a different range per bin is assigned, depending on the
corresponding probability distribution. An illustration of the
different quantization approaches can be seen in Figure 3.

B. Model Complexity Reduction

An alternative methodology for optimizing a deep learn-
ing model is the removal of synaptic connections between
model layers. This process, which is commonly referred to in
the literature as model pruning, assumes that a deep learning
network is over-parameterized and incorporates a subnet-
work that contains most of the information [45]. In other
words, model pruning is an approach to transform a model’s
weights w € R to a lower dimensionality representation
w' € RM M < N by removing non-informative model
connections.
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Different techniques on how to optimally remove model
connections with minimal information loss have been proposed
in the literature. Similar to quantization, pruning can either be
applied post-training [46] or in a compression-aware training
scheme [47]. The removal of weights is performed either on
the overall set of model weights or by eliminating predeter-
mined architectural blocks, such as convolutional filters [48].
In addition, different pruning approaches remove weights by
evaluating different metrics, such as weights magnitude, gra-
dients magnitude, intra-layer mutual information, or even by
introducing a learnable pruning threshold [49], [50], [51].

In this work, we implement magnitude pruning and remove
the model connections with the smallest contribution to the
model output. Let w = {w;Vi = 1,..., N} € RN be a vector
containing all model parameters. Then the magnitude-pruned
vector w’ is expressed in Equation (4):

F(||wil) }
L < Dthres (4)
SN F(lal) "

F(J|w;||) signifies the cumulative distribution function of
weight magnitudes. In other words, after magnitude pruning,
we only keep the weights with the highest 1 — pyj,.s % mag-
nitudes and discard the rest. Even though magnitude pruning
is usually executed only once in post-training pruning, in the
next section, we present an iterative variation that calculates
the optimal pyp,.s bound to the resulting model performance.

/ ’
w Cw,w ::{wiew

C. Iterative Performance-Aware Green Resource
Management Algorithm

Magnitude pruning removes a percentage of a model’s
lowest L!'-norm connections, according to a specified thresh-
old pipres- However, finding the optimal pruning threshold
Popt that represents the optimal tradeoff between model com-
plexity and performance is often a tedious procedure that
requires multiple experimentations, whose evaluation is, in
most cases, subjective. Therefore, we propose Performance-
Aware Optimized Pruning (PAOP), an iterative algorithm to
determine the optimal pruning threshold for NILM models.
Optimality must be bound in terms of performance, as stated
in Equation (3). Consequently, finding the optimal pruning
threshold pop¢ requires an objective metric that incorpo-
rates both the performance degradation of the reduced model
and the gain in terms of parameter reduction. Therefore,
the metrics utilized for model performance evaluation need
to be first defined. Since seq2seq disaggregation is primar-
ily a regression task and secondarily a classification task,
we record three widely used metrics for model evaluation,
namely, Mean Absolute Error (MAE) and Mean Relative Error
(MRE) for regression evaluation and F1-score for classification
performance, as shown in Equation (5).

1
MAE = ﬁZ\Z/} = ¥il
i=1
1 N
WZ\ZM = yil

i=1

MRE =
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- TP
- TP+ i(FP 4 FN)

where y and ¢ are the original and the predicted appliance
consumption load, respectively, and TP, FP and FN stand for
the True Positive, False Positive, and False Negative classified
time instances in the predicted signature.

For different pruning thresholds pyres, the model
performance on the test set will change. At the same time,
each metric should not be evaluated independently. Instead, all
metrics should be combined in a single term. Taking into con-
sideration all the aforementioned considerations, we propose
the Pruning Gain metric (PG) to quantify the tradeoff between
model complexity and performance, which is formulated in
Equation (6).

&)

_ MAE, MRE, F1, Npamm,b
- MAE, MREy, F1y Nparam,p

Pruning Gain measures the pruning-related change in a
given metric as the ratio of the baseline performance of the
model to the performance of the model after pruning. For met-
rics where a lower score is better, the terms of the ratio need
to be reverted (baseline/pruned). For each metric, we record
the ratio of baseline model performance (subscript b) and the
model performance after pruning (subscript p), and multiply
it by the ratio of change in the number of parameters of the
original model and the redacted version. The idea behind PG
is to combine the increase or decrease of the metrics recorded
to evaluate model performance with the reduction in model
size in a multiplicative way. This approach was selected to
emphasize the sensitivity of changes in model performance,
as an averaging operation of the individual terms would lead
to the phenomenon where a positive change in one metric
may envelop negative changes in the other ones. Even though
the separate metrics are in different scales, the ratio of each
metric captures the relative change between the baseline and
the pruned version, which regularizes each ratio separately. No
change results in a ratio of 1. A PG score greater than 1 means
that the performance loss from removing model weights is
beneficial, whereas a score smaller than 1 signifies that the
performance drop was more significant than the model com-
pression achieved. Therefore, the proposed metric captures
the relative changes between the metrics and can be used to
decide whether the impact of pruning on the NILM model was
negligible or not.

Utilizing PG, we are now able to perform iterative mag-
nitude pruning to optimally compress a NILM model. To
take the hardware characteristics of the edge device into
account, the expert needs to define computational cost goals
depending on the deployment scenario. Then, iterative model
optimization can begin. First, we define a selected range of
pruning threshold percentages [0, pyqz] that should be taken
into consideration, as well as an iteration step ps¢ep. Then, for
each pruning threshold p, we calculate the performance met-
rics, as well as the Pruning Gain PG. If Pruning Gain is, for
the given pruning percentage, higher than 1, then we assume
that the reduction of the weights dimensionality was beneficial
and that the model can be further compressed, in which case
we increment the pruning threshold with pstep%- We continue

PG

(6)
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Algorithm 1  Performance-Aware  Green  Resource

Management Algorithm
L2 costyoq): Expert-defined computational cost goals (MFLOPs)
2: p: pruning percentage
3: Define pmaz, PstepsPopt
4: for p in range (0, pstep, Pmaz) do
5: Calculate performance metrics (MAE, MRE, F1)
6: Calculate pruning gain PG
‘7.
8

if PG > 1 then

: Popt = P
9: else if PG < 1 then
10: Calculate costnew
11: if costpew < COStgoal then
12: break, optimal model found
13: else
14: break, model is not deployable
15: end if
16: end if
17: end for

TABLE I
TECHNICAL SPECIFICATIONS OF A RASPBERRY PI 3 MODEL B

Architecture ARM
Processing power | Quad Core 1.2GHz Broadcom BCM2837 64bit CPU
Memory size 1GB RAM
Connectivity Ethernet, WLAN
Storage SD Card

the aforementioned loop until the Pruning Gain falls below 1,
where the iteration stops. If the computational cost goals were
met, then the previous pruning percentage p is selected as the
optimal pruning for the given model. Otherwise, the model is
not deployable on the edge device. The iterative algorithm is
summarized in Algorithm 1.

V. EXPERIMENTAL SETUP AND RESULTS
A. Experimental Setup

The methodology to optimize a model for edge inference
should depend on the application scenario and the hardware
limitations inherent to the edge device. The deployment of
NILM models on the edge can be achieved by connecting
a smart meter that records the aggregate consumption with
a Raspberry Pi 3 Model b single-board computer. Raspberry
Pi is one of the most popular edge devices in IoT systems
and is commonly used as a gateway to enable the deploy-
ment of Al applications in real-world settings [52]. Therefore,
we have designed our methodology and experiments to use a
Raspberry Pi 3 as the edge device. Raspberry Pi’s run on an
ARM architecture and have limited storage space and compu-
tational power, but are easy to install and use. Their hardware
characteristics can be found in Table II.

The architecture to deploy the optimized models on the edge
device is depicted in Figure 4. The edge solution consists of 3
different services responsible for data collection and the NILM
inference service, which processes the collected data and pro-
duces the disaggregation results. The components of the data
collection process are described below:

o Z-Wave JS UI is an open-source dockerized service that

communicates with the aggregate consumption smart
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Optimized NILM on the edge setup Inference service flow diagram
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Fig. 4. Overview of the proposed edge NILM deployment architecture. The
edge setup consists of services for data collection and NILM inference (left),
which performs disaggregation once enough data are collected (right).

meter through Z-wave protocol and forwards the collected
data to the Z-Wave service through the MQTT protocol.

e Z-wave-service is a custom service that receives the col-

lected data from the Z-Wave JS UI through MQTT
protocol and forwards them to the data broker service
through an APL

o DataBroker-service is responsible for receiving the col-

lected data from Z-wave service and communicating with
the PostgreSQL database. DataBroker service is also
responsible to update (saving and deleting) the collected
data in the existing database.

The NILM inference service is included in a Docker con-
tainer that runs continuously on the edge device. This service
communicates directly with the database after a specified time
interval and checks if enough data are collected to produce the
disaggregation results.

Depending on the processor’s architecture, there are two
main quantization backend libraries that can be used, namely
FGBEMM [53] and QNNPACK [54]. The term backend
refers to reduced precision tensor matrix math libraries that
are utilized during model compression. FBGEMM can be
used to quantize a model to run on x86 architectures, while
QNNPACK supports ARM processor architectures. Since the
Raspberry Pi processing unit is based on an ARM architecture,
we have chosen QNNPACK as the quantization backend.

To evaluate our approach, we conducted experiments on dif-
ferent appliances from UK-Dale [57], and REDD [42] datasets.
Both datasets consist of aggregate and appliance level energy
consumption measurements from five different houses in the
United Kingdom and six different houses in the United States,
respectively. UK-Dale was generated at a sample rate of 1 Hz
for the aggregate and 1/6 Hz for individual appliances while
REDD was monitored at a sample rate of 1 Hz for the aggre-
gate consumption and 1Hz for the plug-level data. The data
were resampled at a sample rate of 1/6 Hz and pose the appli-
ance characteristics described in Table III. The models were
tested on unseen data from houses not included in the training
set, as shown in Figure 6. The reason for testing the models on
a house not used in the training set is due to the core concept
of NILM; if a house has smart meter data to record appliance
consumption, there is no point in deploying a NILM algorithm
to infer them, since they are already available to the con-
sumer. Therefore, the proposed approach is to perform NILM
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Model architecture for the four NILM models that were used to evaluate the impact of model compression on model performance and complexity.

The upper left subfigure describes a convolutional neural network [25], whereas the next two subfigures correspond to reccurent architectures with different
gating mechanisms (LSTM [55], GRU [56]). Finally, the lower right subfigure presents the Transformer-based architecture [30].
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Fig. 6. Train-test split for UK-Dale and REDD datasets. The models were

tested on unseen houses non included in the training set. In UK-Dale, houses
1,3,4 and 5 were used for training and house 2 for testing, while in REDD
house 2,3,4,5 and 6 were included in the training set and house 1 was kept
for model evaluation.

on smart meter aggregate readings from a house using pre-
trained models, for which ground truth in terms of submetering
was available for training on a centralized server, e.g., using
publicly available datasets. In UK-Dale, we focused on four
appliances (washer, kettle, fridge, dishwasher), while in REDD
on three appliances (microwave, washer, dishwasher). The set
of appliances selected represents single-state and multi-state
appliances with variable load fluctuations.

To diversify our experimental evaluation and test the gener-
alization capabilities of our performance-aware edge inference
optimization framework, the models are based on different
architectural philosophies. In particular, one convolutional

TABLE III
APPLIANCE CHARACTERISTICS FOR UK-DALE AND REDD DATASETS

Dataset Appliance Max On Min. On  Min. Off
Limit Thresh.  Duration Duration
W] [W] [s] [s]
Kettle 3100 2000 12 0
Washer 2500 20 1800 160
UK-Dale Fridge 300 50 60 12
Dishwasher 2500 10 1800 1800
Microwave 1800 200 12 30
REDD Dishwasher 1200 10 1800 1800
‘Washer-Dryer 500 20 1800 160
TABLE IV

SIZE ON DISK BEFORE AND AFTER MODEL QUANTIZATION

Model Size on disk (MB)
Original ~ Quantized
CNN 4.0 0.98
LSTM 4.6 1.15
GRU 3.6 0.90
ELECTRIcity 7.8 2.89

neural network [25], two recurrent architectures (LSTM [55],
GRU [56]), and a Transformer-based model [30] were cho-
sen for the evaluation of our approach, and their architectural
representations are illustrated in Figure 5. Even though all
models initially employ a 1-d convolutional filter for feature
extractions, the intermediate part of the model structure varies
significantly. The models were purposely trained and evaluated
on unbalanced data. The reason for not balancing the dataset
is that, to mitigate the negative aspects of central data stor-
age, model training should take place in a federated manner
on edge devices, where the possibility of data balancing is
limited by hardware constraints. We envision our work as part
of a wider NILM framework that enables the transition from
central data processing to all computations occurring on the
edge to increase the privacy of customers.

In our analysis, we diversify between three edge deploy-
ment scenarios based on different edge device limitations.
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TABLE V
PERFORMANCE METRICS OF OPTIMIZED MODELS -UK-DALE

Appliance Model Approach | MAE MRE F1 Appliance Model Approach | MAE | MRE F1
Baseline 7.03 0.0025 0.89 Baseline 10.45 0.02 0.58
CNN Quantized 7.55 0.0026 | 0.88 CNN Quantized 13.64 0.02 0.56
PAOP 871 | 0.0030 | 0.85 PAOP 977 | 0.02 | 059
PAOPQ | 897 | 0.0031 | 0.85 PAOPQ | 1243 | 002 | 0.57
Bascline | 12.18 | 0.0043 | 0.80 Baseline | 21.88 | 0.05 | 024
Quantized | 1220 | 0.0043 | 0.79 Quantized | 2351 | 0.11 | 0.13
LST™M PAOP | 1374 | 00048 | 0.76 LST™M PAOP | 1459 | 0.10 | 0.12
PAOPQ | 13.74 | 0.0048 | 0.76 - PAOPQ | 2351 | 0.11 | 0.13
Kettle Bascline | 12.93 | 0.0046 | 0.79 Washer Bascline | 19.29 | 0.05 | 0.24
GRU Quantized 12.93 | 0.0046 | 0.79 GRU Quantized | 20.02 0.08 0.18
PAOP 14.08 | 0.0050 | 0.77 PAOP 938 | 005 | 0.10
PAOPQ | 14.08 | 0.0050 | 0.77 PAOPQ | 2001 | 008 | 0.18
Baseline 9.26 0.0032 | 0.94 Baseline 3.65 0.01 0.85
.| Quantized | 926 | 0.0032 | 0.94 .| Quantized | 3.66 | 001 | 0.84
ELECTRIcity | “prop ™ | 1017 | 0.0036 | 092 ELECTRIcity | “prop | 521 | 001 | 073
PAOPQ | 10.18 | 0.0036 | 0.92 PAOPQ | 458 | 001 | 076
Baseline 31.86 0.78 0.64 Baseline 41.29 0.04 0.09
Quantized | 3445 | 075 | 0.62 Quantized | 4130 | 0.04 | 0.09
CNN PAOP | 3741 | 063 | 0.65 CNN PAOP | 4138 | 005 | 0.08
PAOPQ | 3945 | 0.63 | 0.64 PAOPQ | 4137 | 005 | 0.08
Baseline | 32.85 | 082 | 0.63 Baseline | 3125 | 0.03 | 0.65
Quantized | 33.07 0.82 0.62 Quantized | 32.74 0.13 0.28
LST™M PAOP | 3572 | 086 | 0.54 LST™M PAOP | 3301 | 004 | 0.57
Fridec PAOPQ | 3595 | 087 | 054 | \o0 PAOPQ | 3271 | 0.3 | 0.28
g Baseline 31.32 0.80 0.67 ’ : Baseline 31.43 0.03 0.62
Quantized | 3144 | 080 | 0.66 Quantized | 31.53 | 0.05 | 0.53
GRU PAOP | 3421 | 084 | 059 GRU PAOP | 3975 | 004 | 045
PAOPQ | 3438 | 084 | 0.58 PAOPQ | 3155 | 005 | 0.53
Baseline | 23.10 | 0.71 | 0.80 Baseline | 18.96 | 0.03 | 0.82
.| Quantized | 23.08 | 071 | 0.80 .| Quantized | 1893 | 003 | 0.81
ELECTRIcity | “prop 2761 | 076 | 073 ELECTRIcity | “prop ™ | 2475 | 003 | 0.79
PAOPQ | 2752 | 0.76 | 0.73 PAOPQ | 2440 | 004 | 0.71

First, the edge device has limited storage capacity, and the
edge optimization engine employs model quantization to limit
the required storage space of the model. In the second sce-
nario, the limitation is based on the edge device’s processing
power, and we optimize the models with Performance-Aware
Optimized Pruning (PAOP) to reduce their computational
complexity. Finally, we investigate the optimization scenario
where the edge devices have limited both storage space and
computational power. We apply a combination of performance-
aware optimized pruning to reduce the number of floating
point operations during a forward pass, followed by weight
quantization to reduce storage requirements. We call the com-
bination of both techniques Performance-Aware Pruning and
Quantization (PAOPQ). In the utilization of the proposed
performance-aware schemes, the model complexity reduction
ranged between [0, 70]%, with an increment step of 5%.
All optimization experiments were performed on an Apple
Macbook M1 Pro to take advantage of the ARM CPU
architecture to accurately simulate the deployment of the
aforementioned models on a real-world setting with Raspberry
Pi edge devices.

B. Results

1) Scenario 1 (Limited Storage Capacity): The first step
in our analysis is to examine how the aforementioned mod-
els were impacted by weight quantization. As can be seen in
Table IV, quantization of model weights leads to a significant
75% reduction in the size required to store the model on the

disk. At the same time, the effect of quantization on the dis-
aggregation performance, which is presented in Table V and
Table VI, varies across model architectures and appliances.
In UK-Dale results, recurrent neural networks (LSTM, GRU)
showcase minimal performance degradation when disaggre-
gating the kettle and fridge, with a performance reduction
of less than 0.5% for all metrics. However, they are sen-
sitive to weight quantization for appliances with sparse and
long appliance activations, such as the washing machine and
the dishwasher. The CNN model has a small performance
loss consistent across appliances, while the Transformer-based
model (ELECTRIcity) is robust to quantization, showcasing a
minimal performance degradation averaging across all appli-
ances (—0.01% MAE, —1.09% MRE and —0.29% F1). The
effects of quantization presented in UK-Dale are very sim-
ilar when the quantized models are evaluated on the REDD
dataset. Recurrent as well as Transformer architectures present
a minimal performance degradation across all the tested appli-
ances. In some cases, quantization could also lead to a
slight improvement in disaggregation results as it happens in
LSTM, GRU, and Electricity models on microwave appliance
as well as on Electricity model on washer with an average
improvement of 10.80% MAE, 8.57% MRE and 2.2% FI.

2) Scenario 2 (Limited Processing Power): Next, we would
like to evaluate how the models are affected by PAOP.
Applying the proposed iterative algorithm to find the optimal
pruning threshold, the average number of model parameters
can be decreased by 40.93% in UK-Dale and by 40% in
REDD dataset. The optimal pruning threshold for each model
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TABLE VI
PERFORMANCE METRICS OF OPTIMIZED MODELS-REDD

Appliance Model Approach | MAE | MRE F1
Baseline | 17.49 | 0.0558 | 0.38
CNN Quantized | 17.29 | 0.0558 | 0.37
PAOP 18.16 | 0.0562 | 0.21
PAOPQ | 1727 | 0.0557 | 0.37

Baseline 34.86 0.0923 0.31

Quantized 19.69 | 0.0622 | 0.33
LST™M PAOP | 3503 | 0.1065 | 028
Microwave PAOPQ | 17.04 | 03156 | 0.03
Baseline 19.35 0.0618 0.37
GRU Quantized | 1935 | 0.0618 | 0.38
PAOP 18.84 | 0.0588 | 0.24
PAOPQ 544 | 00348 | 0.18
Baseline 17.45 0.0562 | 0.42

. Quantized | 17.46 | 0.0562 | 0.43
ELECTRIcity | “paop | 2023 | 0.0667 | 0.52
PAOPQ | 11.16 | 0.0198 | 0.29
Baseline 5.83 0.0283 0.24
CNN Quantized 3.83 0.0125 | 0.00
PAOP 592 | 0.0346 | 0.22
PAOPQ 3.83 | 0.0125 | 0.12

Baseline 6.17 0.0288 0.21

Quantized | 6.19 | 0.0289 | 0.21
LST™M PAOP | 616 | 0.0287 | 0.20
PAOPQ 620 | 0.0299 | 0.20
Washer-Dryer Bascline | 538 | 0.0342 | 0.1
Quantized | 539 | 0.0344 | 0.18
GRU PAOP 561 | 00348 | 0.16
PAOPQ 539 | 0.0344 | 0.18

Baseline 15.98 0.0204 | 0.31
. Quantized 1598 | 0.0208 | 0.32
ELECTRIcity PAOP 11.17 | 0.0197 | 0.29
PAOPQ | 11.16 | 0.0198 | 0.29
Baseline 30.23 0.0784 | 0.12
CNN Quantized | 28.65 | 0.0768 | 0.12
PAOP 30.88 | 0.0810 | 0.06
PAOPQ | 29.54 | 0.0745 | 0.06

Baseline | 34.86 | 0.0923 | 031
Quantized | 34.83 | 0.0938 | 0.30
LST™M PAOP | 3503 | 0.1065 | 0.8
Dishwasher PAOPQ | 3498 | 0.1066 | 0.27
Baseline 49.33 0.0942 | 0.30
GRU Quantized | 49.37 | 0.0948 | 0.30
PAOP 48.37 | 0.0966 | 030
PAOPQ | 49.04 | 0.0991 | 0.29
Baseline | 17.35 | 0.0498 | 0.63

. Quantized | 17.36 | 0.0496 | 0.61
ELECTRIcity PAOP 11.17 | 0.0197 | 0.29
PAOPQ | 21.67 | 0.048 | 0.57

and appliance, as well as the number of baseline parame-
ters, are illustrated in Table VII. By comparing the obtained
optimal pruning threshold with the performance metrics, as
described in Table V, we observe that, in cases where the
baseline model does not perform well, indicated by the low
F1 score and the high MRE, our algorithm concludes to sug-
gest the highest pruning percentage p,q;, Whereas in cases
where the model performs well, the suggested optimal prun-
ing threshold coincides with a plausible value close to the
average. An indicative example of this finding is illustrated
during the pruning of the LSTM model for the disaggrega-
tion of the washing machine in the UK-Dale dataset. Since
the baseline performance is suboptimal, the ratio of baseline
performance to performance after pruning is very sensitive to
change and even though the MRE rises by 4.3% in absolute
value, the relative change is —83.22%. At the same time, how-
ever, the MAE is 33.28% better than the baseline, which can
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be explained by the fact that artifacts in the predicted appli-
ance signature are no longer being produced, and, multiplied
with the ratio of model parameter reduction, leads to a posi-
tive Pruning Gain value. In the example of ELECTRIcity for
the dishwasher appliance, we observe that 35% of the model
weights are removed without notable affecting the model’s
disaggregation performance. Overall, it can be concluded that
the utilization of our performance-aware model compression
strategy can reduce the computational complexity of a NILM
model without significantly affecting its performance. The
complexity reduction is validated through the reduced num-
ber of floating point operations (FLOPs) required to perform
a forward pass, as can be seen in Table VII. On average, PAOP
reduces the FLOPs of a NILM model by 36.3% in UK-Dale
and by 31.8% in REDD.

3) Scenario 3 (Limited Storage Capacity and Processing
Power): The last experiment that was conducted was the com-
bination of both aforementioned model compression approaches
(PAOPQ). To calculate the optimal pruning threshold in this
case, the model performance was evaluated after both schemes
were applied. Therefore, the optimal threshold obtained is dif-
ferent than in the case of pruning (see Table VII). It can be
easily noticed that the combination of both techniques toler-
ates significantly lower pruning percentages for most models.
On average, the optimal pruning threshold is 37.4% lower in
UK-Dale and 26.25% in REDD, compared to when weights
quantization is not utilized. Therefore, it can be concluded
that, without the proposed performance-aware optimization
scheme, the performance degradation of the models would be
significantly higher. The integration of both techniques in our
scheme results in 75% less size on disk for both UK-Dale
and REDD and, on average, 25.62% fewer model parame-
ters and 22% fewer FLOPs for UK-Dale and 21.51% fewer
model parameters and 21.09% fewer FLOPs for REDD, thus
reducing both storage requirements and model computational
complexity. Another interesting finding is that the optimal
thresholds for ELECTRIcity remain the same as in the case
of applying only parameter pruning and, in the case of the
dishwasher, the model tolerates a higher pruning percentage,
meaning that Transformer-based architectures are more robust
to model compression than convolution-based and recurrent
modeling approaches.

An illustration of the Pruning Gain metric values during
the application of the algorithm to find the optimal prun-
ing threshold pyps is illustrated in Figure 7. The upper part
of the figure showcases the Pruning Gain distribution when
only model pruning is applied, while the lower part demon-
strates the distribution when both pruning and quantization
are selected. The difference in both plots validates the obser-
vation that model performance is more sensitive to combining
both compression approaches and that the proposed metric can
accurately quantify the tradeoff between model performance
and computational complexity.

Finally, we recorded the CO2 emissions of each optimized
model through the CodeCarbon Python library, and the results
are presented in Table VIII. All optimization approaches
reduce CO2 emissions by ~17%. The only exception can
be found for recurrent architectures (LSTM, GRU), where
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TABLE VII
BASELINE MODEL PARAMETERS AND OPTIMAL PRUNING THRESHOLD, AS OBTAINED BY APPLYING ALGORITHM 1
Dataset | Appliance Model Baseline Pa-  Optimal pruning MFLOPs
rameters N threshold pop: (%)
PAOP PAOPQ Baseline PAOP  PAOPQ
CNN 996595 40 5 18.33 13.75 17.41
Kettle LSTM 1141777 30 30 16.71 12.50 12.50
GRU 887569 25 25 12.44 10.17 10.17
ELECTRIcity | 1938433 25 25 586.70  452.08  452.08
CNN 996595 70 70 18.33 10.00 10.00
Fridge LSTM 1141777 30 30 16.71 11.67 11.67
GRU 887569 25 25 12.44 8.67 8.67
UK-Dale ELECTRIcity | 1938433 40 40 586.70 37643  376.43
CNN 996595 10 5 1833 1579 17.41
Washer LSTM 1141777 60 5 16.71 7.50 15.86
GRU 887569 70 5 12.44 3.72 11.94
ELECTRIcity 1938433 60 50 586.70 268.18 283.73
CNN 996595 30 30 18.33 15.20 15.20
Dishwasher LSTM 1141777 35 5 16.71 10.80 15.86
GRU 887569 70 5 12.44 3.71 11.94
ELECTRIcity | 1938433 35 55 586.70  398.13  309.48
CNN 996595 70 5 18.33 10.45 17.82
Microwave LSTM 1141777 5 30 16.71 15.73 11.79
GRU 887569 45 45 12.44 7.60 7.60
ELECTRIcity | 1938433 70 70 586.70  220.04  220.04
CNN 996595 60 5 18.33 11.65 17.80
LSTM 1141777 5 5 16.71 15.72 15.72
Redd | Washer-Dryer gpyy 887560 70 5 1244 385 1181
ELECTRIcity 1938433 35 35 586.70 402.62 402.62
CNN 996595 60 60 18.33 11.94 11.94
Dishwasher LSTM 1141777 5 5 16.71 15.73 15.73
GRU 887569 20 15 12.44 10.40 10.91
ELECTRIcity | 1938433 35 35 586.70  403.27  403.27
PAOP TABLE VIII
4f —— CNN CO2 EMISSIONS[G] FOR THE BASELINE MODEL AND EACH
LSTM OPTIMIZATION METHOD FOR EDGE DEPLOYMENT
c
'S 3 GRU
g ELECTRIcity Dataset | Appliance ~ Model Base- Quanti- PAOP  PAOPQ
£2 line  zation
§ CNN 0.072  0.061 0.071 0.061
ol Kettle LSTM 0.083 0.178 0.081 0.177
GRU 0.070 0.185  0.068 0.186
o ELECTRIcity | 1.240 1.059 1.209 1.068
° 10 o 30 40 30 60 70 CNN 0.060 0.049 0.059  0.049
Pruning Threshold (%) 4 LSTM | 0068 0.145 0065  0.145
. PAOPQ 2 Fridge GRU 0057 0.151 0053  0.150
A ELECTRIcity | 1.246 1014 1134  1.025
£20 A CNN 0.060 0.050 0.057 0.050
S = Washing LSTM 0.067 0.145  0.065 0.145
— Machine GRU 0.056 0.150  0.055 0.150
E 1.0 ELECTRIcity | 1.257 1.016 1.157 1.014
3 CNN 0.060 0.049  0.059 0.049
a o5 Dishwasher LSTM 0.067 0.144 0.065 0.145
) GRU 0.056 0.150  0.055 0.150
00 + - = = = = - = ELECTRIcity | 1.235 1.030  1.187 1.052
Pruning Threshold (%) CNN 0.003 0.001  0.003 0.002
Microwave LSTM 0.002 0.002 0.002 0.002
. R . . . . . GRU 0.002 0.001 0.002 0.001
Fig. 7. Pruning Gain plot over different pruning thresholds during the appli- ELECTRIcity | 0.051 0032  0.051 0.032
cation of proposed iterative Algorithm 1 on the washing machine when the CNN 0.003 0001 0003 0.001
compression method is pruning (upper) vs pruning & quantization (lower). We 8 Washer- LSTM 0.002 0.002  0.002 0.002
observe that the curves of the pruning gain are significantly different depend- g‘J Dryer GRU 0.002 0.001  0.002 0.001
ing on the chosen model compression approach and that, if the model does ELECTRIcity | 0.051 0.032  0.051 0.032
not have a strong baseline performance (GRU), the Pruning Gain is gradually CNN 0.003 0.00I __ 0.003 0.002
increasing with further parameter reduction. . LSTM 0.002 0.002  0.002 0.002
Dishwasher —“Gpy 0.002 0001 0002  0.001
ELECTRIcity | 0.051 0.032 0.051 0.032

the C'O emissions are higher when quantization is involved.
This can be explained by the increased complexity of recur-
rent layer computations, where multiple activation functions
are utilized inside each memory cell. Since the outputs of

activation functions are dynamically quantized during infer-
ence, the increased energy needs to perform the quantization
is justifiable.
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Model Appliance MAE MRE F1
2 single 871 0.003 | 0.852
pruning O - Kettle .
thr  Kettle Fridge Washer Dishwasher 1forall| Kettle Fridge Washer Dishwasher 1 for all 1forall| 871 | 0.003 | 0.852
5 single | 37.41 | 0.627 | 0.647
Fridge
10 > 1forall| 30.74 | 0.754 | 0.665
z
o N
15 single 9.77 | 0.021 | 0.591
Washer
20 1forall| 10.98 | 0.033 | 0.468
single | 41.38 | 0.048 | 0.083
= Dishwasher s
120 1forall | 41.80 | 0.079 | 0.060
15 single | 13.74 | 0.005 | 0.763
Kettle
40 1forall| 16.28 | 0.006 | 0.697
5 single | 35.72 | 0.863 | 0.545
Fridge
50 é 1forall| 39.64 | 0.916 | 0.393
55 3 single | 14.59 | 0.095 | 0.123
Washer
60 1forall | 20.27 | 0.053 | 0.229
65 single | 33.01 | 0.042 | 0.567
Dishwasher
70 1forall| 34.19 | 0.044 | 0.535
single | 14.08 | 0.005 | 0.767
pruning GRU ELECTRIcity Kettle ng|
thr  Kettle Fridge Washer Dishwasher 1forall| Kettle Fridge Washer Dishwasher 1 for all 1forall| 28.53 | 0.010 | 0.000
5 single | 34.21 | 0.842 | 0.590
Fridge
10 - 1forall| 45.47 | 1.000 | 0.000
-4
S =
15 single | 9.38 | 0.049 | 0.098
Washer
20 1forall| 9.38 | 0.049 | 0.098
25 single | 39.75 | 0.045 | 0.447
Dishwasher
10 1forall| 39.75 | 0.045 | 0.447
15 single | 10.17 | 0.004 | 0.923
Kettle
40 1forall| 15.01 | 0.005 | 0.885
5 - single | 27.61 | 0.764 | 0.730
£ Fridge
50 S 1forall| 27.61 | 0.764 | 0.730
55 5 single | 5.21 | 0.014 | 0.734
= Washer
60 1forall| 4.10 0.012 | 0.835
65 single | 24.75 | 0.030 | 0.794
Dishwasher
70 1forall| 29.09 | 0.030 | 0.775

Fig. 8.

Comparison of optimal pruning threshold and performance between optimizing the models for each individual appliance (green) vs jointly (yellow).

Optimizing the models on the joint set of appliances (1 for all) leads to subpar optimization.

C. Discussion

As already mentioned, our approach suffers from certain
limitations. First, we have observed that models that do not
showcase good baseline performance tend to be overpruned
by our proposed iterative algorithm during the search for the
optimal pruning threshold. Even though such models should
not be deployed to perform inference, as the insights that
the consumer will get regarding energy consumption will
not be accurate, our approach should still take into consid-
eration such cases. The second limitation concerns the fact
that, in our approach, the models are optimized for each
different appliance. Therefore, to perform energy disaggre-
gation for multiple appliances, the deployment of multiple
NILM models is required. However, we have experimented
with model optimization for all appliances simultaneously, as
shown in Figure 8, and have found that optimizing the model
for all appliances at the same time leads to over/underpruning
and impacts the achievable performance. Averaging across
all appliances and models, this approach would lead to a
performance loss of 8.92% MAE, 7.32% MRE and 12.20% F1.

VI. CONCLUSION AND FUTURE WORK

In this work, we have proposed an efficient, performance-
aware model optimization framework for edge deployment
of NILM models that takes into account the edge device
characteristics. We have explored three different deployment

limitations, for which optimization of different model aspects
is required. Additionally, we proposed an objective model
optimization metric and a performance-aware model complex-
ity reduction algorithm that constrains model optimization
on performance loss. Experimental results validate that our
proposed method to bind model performance with model
compression, instead of performing it arbitrarily, allows for
the combined utilization of more than one compression
approaches on the same model without significantly affecting
model performance, thus enabling the efficient deployment of
NILM models on edge devices.

In future work, we would like to implement further tech-
niques, such as knowledge distillation or tensor decomposi-
tion, in our performance-aware compression scheme. Further
methods for weight quantization, as well as different magni-
tude pruning approaches (gradient-based magnitude pruning,
information-based pruning) and structured pruning, will also
be evaluated. We would also like to test our approach on
different model architectures, assess the difference on mod-
els trained with balanced datasets versus unbalanced datasets,
and adapt our proposed iterative scheme to account for
optimal model compression of models with subpar disaggre-
gation performance. In addition, we plan to utilize recent
advancements in sparse matrix computation on edge devices
to maximize the optimization potential of our methods [58].
Finally, our methodology has been structured around the lim-
itations of a real-world scenario, and we would like to deploy
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the compress models on Raspberry Pi devices, connected with
house smart meters, to evaluate whether the simulation exper-
iments that we have conducted are translated to real-world
conditions in the same way.
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