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Abstract

Oscillating and chaotic regimes of honeycomb patterns and dark cavity solitons are studied in a

cavity displaying electromagnetically induced transparency. Considering a three-level atomic sys-

tem in Λ configuration, transition to chaotically oscillating honeycombs is numerically investigated

and their dynamical behavior is detailed in different control parameter values. We show that a

branch of oscillating dark cavity solitons coexists with the honeycomb patterns. These oscillating

cavity solitons are studied individually and in mutual interaction. In particular, it is shown that

mutually coherent oscillating dark cavity solitons can be obtained by choosing an appropriate sep-

aration distance. Finally, we introduce a novel regime of chimera states consisting of multitude of

identically and non-locally coupled dark cavity solitons in which regions of in-phase and anti-phase

coherence separated by incoherent areas coexist and are stationary. We discuss the unique features

of these structures and categorize them as static multihead dual chimera state. We believe that this

is for the first time that such chimeric states are reported in a photonic system hosing oscillating

and chaotic structures.

I. INTRODUCTION

Nonlinear spatially extended systems can form a variety of spatiotemporal structures

from regular patterns to disordered, chaotic and turbulent structures in different scientific

disciplines [1–3]. In nonlinear optics, these have supplemented with localized solutions such

as propagation solitons, cavity solitons (CSs), light bullets (LBs) and even optical rogue

waves (RWs) [4, 5]. In optical cavities, spatial coupling through diffraction or dispersion

accommodates the system with a large number of transverse or longitudinal spatial modes

whose presence and interactions are the source of interesting dynamical behaviors. The

nonlinear nature of these interactions results in instabilities and bifurcations which can lead

to self-pulsing and excitable dynamics [6–9] as well as extended turbulence with possible

generation of 2D RWs, optical vortices, and spatio-temporal chaos [10–17]. After the early

observations of regular and stationary patterns and localized structures, the introduction of

oscillatory patterns and their analysis via secondary bifurcations paved the way for under-

standing the possible routes for chaos and symmetry breaking mechanisms [18–20]. It has
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been reported in [19] that the interplay between spatial and temporal degrees of freedom

leads to a series of bifurcations showing spatial-period multiplying and quasi-periodicity

for hexagonal optical patterns. It has also been shown that spatial order is completely lost

through series of instabilities which cause the system to enter a regime of optical turbulence.

In another study in the same system, a Kerr cavity with self-focusing nonlinearity pumped

by an external field, they have found strong correlation between intensity fluctuations of any

arbitrary pair of wave vectors of the pattern [18].

To date, not much work has been done about the dynamics of CSs in oscillatory and

chaotic regimes. Bright (dark) CSs are isolated intensity peaks (dips) sitting on a homoge-

neous low (high) intensity background and play a key role in photonic devices that are at

the base of novel technologies such as all-optical information bits, switches and frequency

combs [21–34]. Dynamical regimes of CSs, e.g. oscillatory and chaotic, are therefore impor-

tant from both the fundamental and the application point of view. These topics have been

covered in a variety of broad-area systems from driven nonlinear optical cavities to configu-

rations of vertical-cavity surface-emitting lasers (VCSELs) and cavities displaying quantum

coherent phenomena in [6, 35–41].

Collective behavior of oscillating CSs is also an important topic of investigation due to

their emergent properties. For example, it has been shown in [37] that the transition from

stationary to oscillating CSs can lead to an enhancement of the soliton interaction strength.

Mutually interacting oscillating CSs have been shown to exhibit regimes of synchronized,

anti-synchronized (or anti-phase synchronization) and de-synchronized dynamics with in-

teresting consequences in terms of mutual correlation and coherence [42, 43]. Moreover,

while coupled non-identical oscillators have long been known to exhibit complex dynamical

phenomena like frequency and phase locking, partial synchronization and complete incoher-

ence, coupled identical oscillators were believed to either synchronize in phase or to remain

incoherent indefinitely [44]. Observation of coexisting regions of coherent (phase and fre-

quency locked) and incoherent (drifting) oscillations by Kuramoto and Battogtokh when

all of the oscillators were identical surprised, however, many researchers in the nonlinear

dynamics community and excited numerous research topics [45–47]. Among them are the

so-called chimera states, spatiotemporal patterns in which a system of identical oscillators

is split into coexisting regions of coherent and incoherent oscillations. In other words, some

of the oscillators synchronize while others remain incoherent. At the time of its discovery,
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this behavior was at odds with the common belief that moving from complete incoherence

to (partial) coherence required changes of coupling strengths. Their coexistence in chimera

states could only be attributed to the heterogeneities in the natural frequencies [47].

Over the years, a wide variety of chimeric features have been reported with new definitions

and classifications (see [48] and references therein). Different features of chimera states are

specific to certain types of models due to the different type of oscillators, initial conditions

[49], geometries, and coupling. The latter can include discrete dissipative coupled systems

as, for example, reported in [50]. For a useful list of systems where chimeras have

been analysed in a variety of different topological settings, i.e. different ge-

ometries and/or coupling functions, see the Appendix of Ref. [47]. Some chimera

features, such as simultaneous presence of in-phase and anti-phase order, their multiplicity,

separation by disorder, and persistence were thought to be impossible to be displayed by a

single physical system [48, 51]. Therefore, observation of a state with a collection of chimeric

features in a single physical system can paint a different and interesting picture. Here we

report a first study (to the best of our knowledge) of 1D and 2D chimera states in a nonlinear

optical cavity hosting interacting oscillating cavity solitons, which is a hybrid of different

specifications listed above.

We consider here a 3-level medium in a cavity capable of displaying electromagnetically

induced transparency (EIT) via multi-level quantum interference. In this system, we study

oscillating and chaotic regimes of extended patterns and CSs. This model has already been

shown to support multistability of patterns and CSs, extended optical turbulence and RWs

in 2D diffractive regimes [10, 41, 52–54] and, more recently, domain walls, temporal CSs and

even cavity Stimulated Raman adiabatic passage (STIRAP) with no input pulses [34]. In

particular, temporal CSs can lead to frequency combs in 1D dispersive regime via quantum

interference [34]. In this contribution we focus on the transition dynamics from homoge-

neous state to stable honeycombs (HC) and to chaotic HC patterns. Formation of dark

cavity solitons (DCSs) in an appropriate parameter region is also studied and their oscillat-

ing dynamics are investigated in different control parameter values. We also investigate the

interaction of two DCSs in the oscillating regime where mutual correlations and coherence

are parameter dependent. We report a novel regime of static multihead dual chimera state

where non-locally coupled oscillating DCSs form clusters of in-phase and anti-phase coherent

states (phase locked) that remain separated by incoherent (phase unlocked) regions.
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Details of the three-level cavity model appear in section 2, the dynamical properties of os-

cillating and chaotic HC patterns are discussed in section 3 and those of DCSs and their

interaction in section 4. Coupled DCSs forming chimera states are discussed in section 5.

Conclusions and final remarks are contained in Section 6.

II. THE MODEL

We consider a ring cavity, Fig. 1(a), filled with three-level atoms in Λ config-

uration, Fig. 1(b), under the action of two pump beams fulfilling the conditions

for coherent population trapping (CPT) and EIT [34, 52–54]. In a Λ atomic

configuration we consider three separate energy levels, the ground state |1 >, a

long lived intermediate ground state |2 >, and an excited state |3 > with |1 >

and |2 > of same parity so that the transition |1 >⇔ |2 > is not dipole allowed.

Two laser beams of frequencies close to the atomic frequencies of the |1 >⇔ |3 >

and |2 >⇔ |3 > transitions complete the Λ scheme as displayed in Fig. 1(b). A

pump beam of real amplitude P and detuned by ∆ = −0.2 from the |1 >⇔ |3 >

transition (red detuned case) is injected into the cavity. This pump beam P is

also mistuned from the cavity resonance frequency by θ = −1 while the second

field, E2, referred to as the coupling field in EIT literature, is at resonance with

the |2 >⇔ |3 > transition and is not resonated in the cavity. The mean field equation

for a beam propagating in such a cavity is [52]:

∂tE = P − (1 + iθ)E + 2iCρ13 + i∇2E (1)

ρ13 = χE = −∆|E2|2 (|E2|2 + |E|2 − i∆)

(|E2|2 + |E|2)3
E , (2)

where ρ13 is the off-diagonal density matrix element which is proportional to the field am-

plitude E via Eq. 2 obtained under the condition of ∆2 ≪ |E2|2. The real (dispersion)

and imaginary (absorption) parts of the susceptibility χ are shown in Fig. 2(a) in terms of

the material detuning where the vanishing absorption close to the medium resonance clearly

evidences the EIT phenomenon. 2C is the co-operative parameter directly proportional to

the atomic density na, the square of the dipole moment of the given transition µ2, the wave
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FIG. 1. (a) The cavity configuration under the action of the pump P and coupling E2 fields. (b)

The Λ atomic scheme with two ground states |1 >, |2 >, a single excited level |3 >

and two laser beams (red arrows). Note that in experiments where atomic ground

states and optical fields have small frequency differences (few GHz), polarizing beam

splitters are used so that the coupling beam E2 is not resonated in the cavity. BS,

PBS, and M stand for beam splitter, polarizing beam splitter and mirror, respectively.

number k of the field E and the length of the cavity L, being inversely proportional to

the reduced Planck constant ℏ, the atomic linewidth γ⊥ and permittivity of free space ϵ0

normalized by the cavity transmittivity T

2C = (naµ
2kL)/(2ℏγ⊥ϵ0T ) . (3)

Both 2C and P are considered as the control parameters in our simulations. Diffraction is

described by the Laplacian operator ∇2 in two transverse dimensions (X and Y )and time is

normalized to the photon lifetime. Details of the derivation of the diffractive and dispersive

Maxwell-Bloch Eq. 1 for the case of a two-level medium are provided in [34, 52, 55, 56].

The split-step method is adopted for the simulation of the system and consists of a Runge-

Kutta algorithm for the time evolution and Fast Fourier Transform (FFT) for dealing with

the diffraction term. We consider transverse domains of side w (typically in the range of

0.1−10 mm). Depending on the structure under study, we have used N×N grid points with

N = 64, 128, 256, 512 and same size w. In order to ensure proper stability and convergence

of the algorithm, time step of 10−3 and transverse size of 10λc in normalized units have been

used where λc = 2π/kc with kc being the critical wave vector of
√
−θ as used in [53].

Bistability of the homogeneous stationary solutions (HSS) and multistability of the spatial

structures have already been shown for a saturable Kerr case and the generalized model

close to EIT respectively in [52] and [53, 54]. In this paper, we consider parameter values

6

Oscillatory and chaotic regimes of patterns and dark cavity solitons in cavities displaying EIT: 
static multihead dual chimera states



FIG. 2. (a) The imaginary (red dashed) and real (black solid) parts of the complex susceptibility χ

(Eq. 2) for |Es|2 = |E2|2 = 1. (b) Intensity input/output diagram and (c) Turing instability

domain responsible for pattern formation for fixed values of ∆ = −0.2, θ = −1, 2C = 30, and

|E2|2 = 1. (d) Map of (c) on the 2C −K space (K being the transverse wavevector) for |Es|2 = 1.

(e) Chromatic dispersion Re(ρ13) and (f) absorption Im(ρ13) versus the material detuning ∆ for

the |1 >⇔ |3 > transition for θ = 0, |E2|2 = 1, and P = 2.75. Solid black (red dashed) corresponds

to low (high) intensity branch of the bistable HSS.

leading to red-detuned nonlinearity where HCs and DCSs are expected to form. It is

possible to perform a linear stability analysis of the homogeneous steady states

where the second derivative term becomes a linear term in the magnitude square

of the transverse wavevector K. By determining the eigenvalues with zero or

positive real parts via a characteristic equation, unstable transverse wavevectors

are obtained. These wavevectors rule the periodicity of the incoming pattern

in a mechanism typical of Turing pattern formation [1, 55, 57]. In conservative

systems like the nonlinear Schrödinger equation, similar instabilities have been

7

Oscillatory and chaotic regimes of patterns and dark cavity solitons in cavities displaying EIT: 
static multihead dual chimera states



FIG. 3. (a) Intensities of spatio-temporal structures in a 2C scan when keeping the HSS intensity

fixed at the value 1 (horizontal line, dashed for Turing unstable and solid for stable parts). Stable

(oscillating) HCs correspond to filled (empty) triangles resulting from the adiabatic increase of

the control parameters starting from below the Turing threshold. Intensity minima of dark cavity

solitons correspond to filled circles. (b) Values of P versus 2C when keeping the HSS intensity fixed

at the value 1 as in (a). The linear fit P = a+(2C)b provides a = 1.34 and b = 0.047. (c) Branches

of solutions versus P 2 obtained by an adiabatic scan of the pump intensity for fixed 2C = 30. We

note that this value of 2C does not support DCSs. For the cases of oscillating/chaotic HCs the

mean value of intensities is considered. HC and OSC stand for the terms ”honeycomb”

and ”oscillating”, respectively. For other parameter values see Fig. 2.

called modulational instabilities. Our complex equation 1 is, however, dissipative

and the presence of diffraction makes it mathematically equivalent to typical

Turing diffusive systems as demonstrated in [57].

We show in Fig. 2(b)-(d), the intensity input/output diagram along with the Turing

instability domains (where at least one linear stability eigenvalue with wavevector

K different from zero is positive) with respect to both the stationary intensity |Es|2 and

2C. It is seen that the lower intensity branch of the input/output diagram is affected

by the Turing instability which confirms the possibility of DCS formation. In Fig. 2(e) and

(f) we show the chromatic dispersion and absorption properties of the transition |1 >⇔

|3 > of the Λ system for the two bistable HSS at cavity resonance when changing ∆. In

[10, 41, 53, 54] we have shown that the system is extremely sensitive to different values

of the control parameter with several and distinct bifurcations that lead to different sets

of possible solutions. For the regime considered here, sensitivity to parameter values and

initial conditions results in having two branches of solutions in the Turing unstable region
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FIG. 4. Snapshots from numerical simulations of Eq. 1 along the solution branches shown

in Fig. 3. (a) Honeycomb pattern for 2C = 31.5 and P 2 = 7.70, (b) bistable roll-honeycomb

structure for 2C = 31.5 and P 2 = 6.60, (c) roll pattern for 2C = 31.5 and P 2 = 5.20 and (d)

oscillating dark cavity soliton for 2C = 32.8 and P 2 = 8.32.

with distinct properties. By choosing the initial value of the control parameter 2C less than

the bifurcation point (2C = 18.8) and adiabatically following the increase of 2C value, it is

possible to catch a secondary bifurcation point at 2C = 32.50 beyond which a stable HC

pattern starts to oscillate and eventually we achieve a regime of chaotic HC. However, by

choosing the initial value of the control parameter in the Turing interval and starting from

noise a branch of stable HCs are obtained with no evidence of oscillations. In Fig. 3(a)

we show the branches of different solutions in a 2C scan where the intensity of the HSS is

kept constant at the value 1 by changing the pump P as shown in Fig. 3(b). The relation

between P and 2C is basically linear for a wide range of parameter values. Fig. 3(c) instead

shows them in P 2 scan where the fixed value of 2C = 30 is used. Other than the stable

and oscillating HC patterns depicted in Fig. 3(a), stable roll and bistable roll-honeycomb

patterns can also be obtained in this scan in the absence of CS solutions. Examples of these

pattern solutions and DCSs are shown in Fig. 4.
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FIG. 5. Time evolution of the intensity in an arbitrary point of the HC pattern for different

control parameter values. From top to bottom: 2C = 32.25, P 2 = 8.17; 2C = 32.50, P 2 = 8.24;

2C = 34.00, P 2 = 8.65; and 2C = 35.15, P 2 = 8.98. Other parameter values in Fig. 2.

III. OSCILLATING AND CHAOTIC HONEYCOMBS

Adiabatic scans reveal a wide range of 2C values leading to pattern solutions extending

from 2C = 18.8 up to 35.15 (see upper curve in Fig. 3(a)). This is due to a secondary

bifurcation point from stable HCs to oscillating HCs. As depicted in Fig. 3(a), part of the

branch that corresponds to oscillating HCs in an adiabatic scan is bistable with homogeneous

solutions. The interval begins at 2C = 31.25 and ends at 32.82. This implies that one can

excite oscillating HCs from a homogeneous background by transient switching pulses of an

appropriate width.

Fig. 5 displays the intensity time trace of an arbitrary point on the HC pattern for different

values of the control parameters 2C and P 2. Fig. 6 displays the corresponding trajectories

in an intensity-phase plot and their power spectra. Transition to chaos is evident starting

from a limit cycle around an unstable fixed point and then its break up displayed in Fig. 6(a)

to Fig. 6(d) when increasing the control parameter value from 2C = 32.25 to 35.15. This is

consistent with the changes taking place in the power spectra from Fig. 6(e) to Fig. 6(h).

Transition to chaos is better understood by noting that the number of frequency components

included in the oscillations evolves from two frequencies around 0.17 and 0.34 to many
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FIG. 6. Trajectories in the intensity-phase sub-space for Fig. 5 (a-d) and their power spectra (e-h).

components around these two central peaks. This appears to be the typical scenario of the

quasi-periodic route to chaos [58].

IV. OSCILLATING DARK CAVITY SOLITONS AND THEIR INTERACTION

By injecting a transient pulse into the cavity in the bistable region and with the appropri-

ate phase a DCS of the kind seen in Fig. 4(d) can be excited. Depending on the value of the

control parameters, the excited DCS may oscillate in time and in a variety of fashions. The

range of 2C values supporting oscillating DCSs is from 32.15 to 32.82. Dynamical behavior

of DCSs for different values of the control parameters is shown in Fig. 7 where time traces of

the intensity in the centre of the DCS are presented. Here, the value of 2C is decreased from

top to bottom to illustrate the change in the dynamics. Uniform oscillations of the DCS
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FIG. 7. DCS intensity versus time for 2C = 32.8, P 2 = 8.32; 2C = 32.4, P 2 = 8.21; and 2C = 32.1,

P 2 = 8.13 from top to bottom.

FIG. 8. (a) The complex plane orbit for a single oscillating DCS at the same parameter values

corresponding to the top row of Fig. 7. (b)-(d) Intensity variations of the two interacting DCSs

with respect to each other at different separation distances: (b) d=w/6, (c) w/4, and (d) d=w/1.5.

Parameter values are: 2C = 32.5 and P 2 = 8.24.

intensity are observed with decreasing amplitude and increasing frequency when reducing

the parameter 2C. An example trajectory for a single DCS in the Argand plane is depicted

in Fig. 8(a).

Depending on the distance between two oscillating DCSs, different degrees of mutual

correlation and coherence are possible. In Fig. 8(b-d), we show the intensities of two

interacting oscillating DCSs plotted versus each other for different separation distances d.

It is clearly seen that by increasing the separation distance, from (b) to (d) in Fig. 8, the

DCSs move from full correlation at the minimum possible separation distance, d=w/6, to
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FIG. 9. Left panels: time-average of near-field intensity output profile for d=w/6 and w/1.5

respectively from top to bottom. Right panels: time-average of the associated far-field profiles:

interferogram presents no fringes for d=w/1.5 (the picture at the bottom right) indicating the

absence of mutual coherence between far located DCSs. Parameter values the same as in Fig. 8.

lack of correlation at a larger separation distance, for example d=w/1.5. Phase relationship

between the interacting oscillating DCSs can be detected in the far field via an interference

pattern which allows for measuring the spatial coherence of the binary structure. We show

these interference patterns in Fig. 9 for the same mutually interacting DCSs and separation

distances in Fig. 8. The two oscillating DCSs turn into coherent sources of radiation when

the separation distance between them is small enough for complete (or partial) correlation.

On the other hand, for large separation distances for which the two DCSs are uncorrelated

the interference pattern fades away as it happens for two incoherent sources.

V. STATIC MULTIHEAD DUAL CHIMERA STATES

Almost two decades after the discovery of the so-called chimera states that started with

mainly mathematical models, their extension to physical systems has been limited, see [59–

61]. Chimera states are spatiotemporal patterns in which a system of identical oscillators is

split into coexisting regions of coherent and incoherent oscillations. For a long time, research

on these states were restricted to either phase oscillators or to the cases of weak coupling for
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FIG. 10. 3D snapshot of the output in intensity (left) and phase (right) for the diagonal stripe of

interacting oscillating DCSs. Anti-phase and in-phase locked DCSs are circled by dashed and solid

lines respectively. The separation distance between DCSs is w/12. The control parameter values

are 2C = 32.8, P 2 = 8.32.

which approximations to phase oscillators is possible. In later studies where phase reduction

was not used, the amplitudes of the individual oscillators vary only slightly around their

average value and thus the analysis was still limited to the weak coupling case, see [48] for

a comprehensive review. When these states were reported in regimes of strong coupling,

the name amplitude-mediated chimera was adopted [62] and later studies showed that they

survive small diffusion and can be extended to two-dimensional cases [63]. Due to the wide

variety of chimeric features, researchers have tried several classification schemes based on,

for example, the type of coupling and geometry [47, 64], spatial and temporal coherence [65],

number of coherent and incoherent clusters [66, 67], and their dynamical behavior [51, 68–

70]. Here we report the first observation of a collective behavior corresponding to coexistent

regions of spatial and temporal coherence and incoherence in the output of a nonlinear cavity

hosting interacting oscillating DCSs and try to illustrate their exotic properties along the

lines of the aforementioned classifications.

To begin with, we simulate a diagonal stripe of length w/0.8 containing 14 oscillating

DCSs with equal separation distance of w/12 (the minimum available to guarantee a full

correlation), as shown in Fig. 10. The DCSs are switched simultaneously using intense

transient Gaussian pulses of equal amplitudes (= 20) and widths (= w/42). The scenario is

no different for even longer stripes containing more interacting DCSs as we shall see later.
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FIG. 11. Intensity values of the interacting oscillating DCSs in the diagonal stripe of Fig. 10.

DCS3 to DCS6 and DCS11 to DCS12 experience anti-phase locking while in-phase locking occurs

for DCS13 and DCS14. The remaining DCSs form turbulent regions and separate the locked areas.

We aim to exhibit the formation of a static multihead dual chimera state: ’static’ since

the coherent and incoherent regions do not move along the stripe of DCSs, i.e. the DCSs

that adopt correlated (or uncorrelated) oscillations in the stripe keep the same dynamics

over time [65], ’multihead’ due to the presence of several incoherent regions (heads) which

separate the coherent areas [71, 72], and ’dual’ signalling coexisting regions of in-phase and

anti-phase synchrony [51]. We note that the background away from the tails of the DCSs

has fixed intensity and phase values in time.

Despite having a large amplitude of oscillations, DCSs in our chimera (no matter if they

are in phase, or out-of-phase, or independent) follow the same trajectory in the complex

plane of individual (uncoupled) DCS as shown in Fig. 8(a) implying a regime of weak
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coupling. This is unique compared to previously reported chimera states with relatively

weak coupling but with amplitudes of individual oscillators deviating only a few percent

from their average values [48, 73]. In Fig. 11 we show the mutual interaction of oscillating

DCSs in the diagonal stripe in terms of their intensities plotted against each other while

evolving in time. This leads to the formation of multiple anti-phase and in-phase coherent

regions (circled by dashed and solid lines, respectively, in Fig. 10) separated by areas where

the DCS oscillate incoherently with each other (corresponding to the panels in Fig. 11 with

scattered dots).

We further check the robustness of these results about chimera states by simulating stripes

containing more interacting oscillating DCSs in horizontal and vertical lines, instead of

diagonal lines, and in simulations with 512 × 512 grid points. In Fig. 12 and 13, we show

snapshots at fixed time intervals separated by the oscillation period of the locked DCSs.

Domains of in-phase and anti-phase synchrony are clearly distinguishable by the fixed phase

values of the respective DCS (see panels (a),(c), and (e) in Fig. 12 and Fig. 13) and the

unlocked regions are evident by their scattered values in these sequential snapshots.

Finally we have checked that chimeras with static regions of correlated and uncorrelated

oscillations of DCSs survive when expanding the stripes in a direction perpendicular to the

stripe itself. These correspond to two dimensional chimera states. The results are shown

in Fig. 14 in terms of phase plots in three sequences separated by the oscillation period of

DCSs. In-phase coherent DCSs are inside solid boxes and those of anti-phase inside dashed

boxes in these phase plots. Their intensities are shown in Fig. 15 (b) and (c) along with

an example of uncorrelated oscillations in Fig. 15 (a) corresponding to the first and second

DCSs in the same line.

VI. CONCLUSION

By considering a three-level medium displaying EIT in a cavity under the action of a

transversally extended pump, the transition from homogeneous states to stationary and

oscillating HC structures has been investigated. By increasing the value of the control pa-

rameters, stationary HC patterns start to oscillate first periodically and then chaotically

through a quasi-periodic rout to chaos. Dark cavity solitons are also shown to reach a
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FIG. 12. Horizontal stripe of 21 coupled oscillating DCSs featuring both in-phase and anti-phase

lockings coexisting with unlocked DCSs. (a,b), (c,d), and (e,f) are the phase and intensity plots

at fixed time intervals equal to 28 time units respectively. In-phase coherent DCSs are inside solid

boxes and those of anti-phase DCSs inside dashed boxes in the phase plots. The remaining DCSs

are unlocked. Parameter values are the same as in Fig. 10.
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FIG. 13. Vertical stripe of 21 coupled oscillating DCSs featuring both in-phase and anti-phase

lockings coexisting with unlocked DCSs. (a,b), (c,d), and (e,f) are the phase and intensity plots at

fixed time intervals equal to 28 time units respectively. In-phase coherent DCSs are marked with

solid boxes and those of anti-phase DCSs with dashed boxes in phase plots. The remaining DCSs

are unlocked. Parameter values are the same as in Fig. 10.
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FIG. 14. Mansour, is the phase/pi plotted here? If so, you need to say that. Please

change the scale of phase/pi from -0.45 to 0.4, to -0.6 to 0.6 as in Fig.13 so that

there will be much less blinding red in the snapshots. Update the caption (note that

the time separation between (a)-(b)-(c) are not given) and write this in the reply to

the referee. Thanks. Temporal snapshots of two dimensional chimera states of DCSs. On the

middle horizontal line, in-phase DCSs are inside solid boxes and those of anti-phase oscillations

inside dashed boxes. The remaining DCSs in the line are unlocked. Parameter values are the same

as in Fig. 10

FIG. 15. Intensity values of the interacting oscillating DCSs in the middle horizontal line of 2D

chimera of Fig. 14. (a) The intensity of DCS2 versus that of DCS1 shows uncorrelated oscillations,

(b) the intensity of DCS5 versus that of DCS4 shows anti-phase oscillations and (c) the intensity

of DCS6 versus that of DCS5 shows in-phase coherent oscillations. Parameter values are the same

as in Fig. 10

regime of multi-frequency oscillations by changing the control parameter values. Mutual

interaction of two oscillating dark cavity solitons results in different correlated and uncor-

related oscillations in their intensity and phase depending on their separation distances.

Small separation distances correspond to strong coupling and coherence of the oscillations.

Oscillation coherence is lost at large distances of the dark cavity solitons.
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In arrays of equally spaced oscillating dark cavity solitons novel chimera states formed by in-

phase and out-of-phase regions have been found in our nonlinear optical system. We showed

that chains of coupled dark cavity solitons, identical in principle, can form coexisting station-

ary regions of in-phase and anti-phase coherence along with incoherent oscillations. These

chimera states fall into the category of static multihead dual chimera states [48]. Here,

symmetry breaking in the dynamics of the coupled DCSs is not due to background inho-

mogeneities and occurs in different spatial regions depending on the initial condition. Yet,

once settled, the chimera state is stable with regions of coherent (synchronous) coupling and

regions with incoherent coupling remaining unaltered in size and position in the long term.

Chimera states are robust and survive in fully two dimensional regions of dark cavity solitons

on a square grid. We believe that this complex behavior can be attained in experimental re-

alizations of EIT media in optical cavities where they can shed light on fundamental aspects

of collective behavior in complex systems. Although Eq. 1 contains some standard

approximations, the results of this work can find general application in a va-

riety of nonlinear devices displaying EIT such as pilydimethyl-siloxane-coated

silica resonators [74], microtoroids coupled with microspheres [75] and cavities

containing Rubidium gases [76]. Moreover, EIT induced chimeras as presented

here are expected in the presence of dispersion instead of diffraction [34] and in

media with V or ladder energy level configurations.
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