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ABSTRACT

Background: Diabetes is one of the fastest-growing health emergencies of the 21*
century, placing a severe economic burden on many countries. Current management
approaches have improved diabetic care, but several limitations still exist, such as
decreased efficacy, adverse effects, and the high cost of treatment, particularly for
developing nations. There is, therefore, a need for more cost-effective therapies for
diabetes management. The evidence-based application of phytochemicals from
plants in the management of diseases is gaining traction.

Methodology: Various plants and plant parts have been investigated as antidiabetic
agents. This review sought to collate and discuss published data on the cellular and
molecular effects of medicinal plants and phytochemicals on insulin signaling
pathways to better understand the current trend in using plant products in the
management of diabetes. Furthermore, we explored available information on
medicinal plants that consistently produced hypoglycemic effects from isolated cells
to animal studies and clinical trials.

Results: There is substantial literature describing the effects of a range of plant
extracts on insulin action and insulin signaling, revealing a depth in knowledge of
molecular detail. Our exploration also reveals effective antidiabetic actions in animal
studies, and clear translational potential evidenced by clinical trials.

Conclusion: We suggest that this area of research should be further exploited in the
search for novel therapeutics for diabetes.

Subjects Biochemistry, Cell Biology, Diabetes and Endocrinology
Keywords Medicinal plants, Insulin action, Diabetes, Glucose transport, Akt, Insulin signaling,
Phytochemicals

INTRODUCTION

Statement of the problem

Diabetes mellitus is a metabolic disorder characterized by sustained hyperglycemia with
numerous macrovascular and microvascular complications (Kharroubi, 2015; Stadlbauer
et al., 2021; Zheng, Ley ¢ Hu, 2018). Depending on the etiology, diabetes has been
classified broadly into type 1 diabetes mellitus (T1DM), resulting from a deficiency in
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insulin production, and type 2 diabetes mellitus (T2DM), a defect in insulin action
(Kharroubi, 2015). TIDM accounts for around 10% of cases, while T2DM accounts for
about 90%. T2DM and its complications have contributed to a significant decrease in life
expectancy (Zheng, Ley & Hu, 2018; Ogurtsova et al., 2017). The latest data suggests that 1
in 10 adults are living with diabetes, of which almost half are undiagnosed (Zheng, Ley ¢
Hu, 2018), representing around 537 million citizens, and diabetes contributes to 1 in 9
deaths (Stadlbauer et al., 2021). These figures are projected to continue to rise. It is
estimated that most countries devote 5-20% of healthcare expenditure to diabetes (Lin
et al., 2020). The global spending to treat diabetes and its complications was US$760 billion
in 2019, projected to increase to US$825 billion by 2030 (Stadlbauer et al., 2021; Modi,
2007). The disturbing increase in the prevalence of diabetes is a call for an augmented
approach to the management of T2DM (Stadlbauer et al., 2021; Williams et al., 2020).

The conventional management of diabetes involves lifestyle modifications to control
contributing factors such as obesity, hypertension and hyperlipidemia, based on the
patient’s awareness (Pernicova ¢ Korbonits, 2014; Proks et al., 2018; Farzaei et al., 2017;
Soccio, Chen ¢ Lazar, 2014), and the use of hypoglycemic agents by healthcare providers
(Hedrington & Davis, 2019; Mogensen, 2007; Hinnen et al., 2006). Approaches to using
antihyperglycemic agents to control hyperglycemia in diabetic patients involve different
targets. For example, the sulfonylureas (e.g., chlorpropamide) and newer secretagogues
(e.g., glipizide) increase insulin output by blocking the K*-ATPase channel of the
pancreatic B-cell (Hedrington ¢ Davis, 2019; Wajcberg & Tavaria, 2009; Bailey, 2015).
The biguanides (e.g., metformin) act through inhibition of hepatic gluconeogenesis and
promoting glycogenesis with increased insulin sensitivity (Hedrington & Davis, 2019;
Hinnen et al., 2006; Bailey, 2015). Insulin sensitizers (e.g., thiazolidinediones) potentiate
insulin action on muscle, adipocytes, liver and other tissues by selectively binding to
peroxisome proliferator-activated receptor gamma (PPARy) (Hedrington ¢ Davis, 2019;
Triggle & Ding, 2014). Others include a-glucosidase inhibitors (e.g., acarbose), which
competitively inhibits intestinal a-glucosidase and pancreatic a-amylase with a resulting
decrease in postprandial plasma glucose (Hedrington ¢ Davis, 2019; Cetrone, Mele &
Tricarico, 2014; Campbell, 2000). Incretin mimetics (e.g., exenatide) control postprandial
insulin secretion by binding to the pancreatic glucagon-like peptides-1(GLP-1) receptors
leading to increased glucose-dependent insulin secretion from the B-cells (Mogensen, 2007;
Campbell, 2000; Harding et al., 2019). Exenatide also restores first-phase insulin secretion
in patients with T2DM and promotes B-cells proliferation and islet neogenesis (Harding
et al., 2019; Ogurtsova et al., 2017). The use of insulin for immediate glycemic control has
been reserved for emergency situations (Mogensen, 2007; Bommer et al., 2017).
Undoubtedly, these approaches have improved diabetic care over time, but several
limitations still exist, such as decreased efficacy, adverse effects, and high cost of treatment
(Michel, Abd Rani ¢ Husain, 2020; Verma, 2014).

Medicinal plants as medicines in diabetes treatment
The global worsening of morbidity and mortality from diabetes (Zheng, Ley ¢ Hu, 2018;
Chaudhury et al., 2017; Modi, 2007; Md Sayem et al., 2018; Schreck & Melzig, 2021; Siintar,
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2020) justifies the need for more diversified research for new therapies. Throughout
human history, medicinal plants have been used for the prevention and treatment of both
human and animal diseases (Balunas ¢ Kinghorn, 2005; Majolo et al., 2019; Khazir et al.,
2014; Ahmad et al., 2015). Medicinal plants have been recognized as a stable source for
drug discovery since ancient times (World Health Organization, 2019; Singhal, Bangar &
Naithani, 2012; Mathew & Subramanian, 2014; Martins & Brijesh, 2018) and The World
Health Organization has reported an increased patronage of natural and medicinal plant
drug products (World Health Organization, 2019). Many modern drugs are obtained from
medicinal plants and further purified or optimized using structure-activity relationship-
driven drug design and pharmacokinetic parameters (Singhal, Bangar ¢ Naithani, 2012;
Setorki, 2020; Sekhon-Loodu & Rupasinghe, 2019).

Evidence-based application of phytochemicals from plants in the management of
diseases has received wide acceptability (Chukwuma et al., 2019; Mathew ¢ Subramanian,
2014). For example, several reports of medicinal plants with anticancer activities have been
published (Rabiei, Solati ¢ Amini-Khoei, 2019; Sadino, 2018; Khan et al., 2012).
Ethnopharmacological surveys of plants and phytochemicals with antihypertensive
activities (Joseph ¢ Jini, 2013; Shih, Lin ¢ Lin, 2008; Al-Amin et al., 2006) have been well
documented. There is also substantial literature of their utility in treatment of other
chronic diseases such as Alzheimer’s (Son, Miura ¢ Yagasaki, 2015; Morakinyo, Akindele
& Ahmed, 2011), depressive disorders (Lai et al., 2015; Chien et al., 2009), Parkinson’s
disease (Rabiei, Solati & Amini-Khoei, 2019) and diabetes (Bailey, 2015; Ogunbolude et al.,
2009; Kanetkar, Singhal & Kamat, 2007).

Various plants and plant parts have been investigated for their hypoglycemic activities
as potential medicine in the treatment of diabetes mellitus (Farzaei et al., 2017). By way of
examples, phytocompounds from the fruit of Momordica charantia (bitter lemon) have
been extensively studies for antidiabetic effects (Tiwari, Mishra ¢ Sangwan, 2014; Kuroda
et al., 2003; Shori, 2015). The roots of Zingiber officinale (ginger) exert antidiabetic and
hypolipidemic effects on streptozotocin-induced diabetic rats (James, Stockli & Birnbaum,
2021; Garvey et al., 1998; Ahmad, Choi & Lee, 2020). Bidens pilosa has been shown to
reduce fasting blood glucose level and hemoglobin Alc (HbAlc) in clinical trials (Lai et al,
2015); three variants of B. pilosa were shown to possess anti-diabetic properties (Chien
et al., 2009). The hydroethanolic extract of the seed of Parinari curatellifolia reduces
plasma glucose levels and low-density lipoproteins in diabetic rats (Saini, 2010; Galochkina
et al., 2019; Ogbonnia et al., 2009). The blood sugar reducing effects of Gymnema sylvestre
popularly known as ‘gurmar’ (‘sugar destroyer’) has been widely studied (Kanetkar,
Singhal & Kamat, 2007; Tiwari, Mishra ¢ Sangwan, 2014). Phytochemical constituents of
Glycyrriza uralensis (licorice) have been found to exhibit profound antidiabetic properties
in experimental animals (Kuroda et al., 2003). While some studies do consider the
potential molecular or cellular mechanisms of the antidiabetic effects (Ogurtsova et al.,
2017; Vlavcheski et al., 2018), others focus on potential properties such as antioxidant
(Ahmad, Choi & Lee, 2020; Galochkina et al., 2019) and anti-obesity (Kadan et al., 2018,
Kamatou, Ssemakalu ¢ Shai, 2021) effects without direct discussion of mechanism.
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This review aims to collate, discuss, and present published data on the cellular and
molecular effects of medicinal plants and phytochemicals on insulin signaling pathways to
better understand the current trend in the use of plant products in the management of
T2DM (Fig. 1). Furthermore, we have explored available information on the cell-biology of
these medicinal plants that consistently produced hypoglycemic effects, with the intention
of providing a reference point for the molecular basis of some of the more commonly used
anti-diabetic plant extracts. We explored how these plant products might affect known
insulin signaling systems and insulin effectors, and then extended our review into known
effects on animal models and explored clinical trials of these compounds with the intention
of providing a summary-view of related studies and a holistic overview of their use in
rodent models or clinical trials. We conclude that plant products should be considered a
vital tool in the armory for development of low-cost, effective anti-diabetic therapies.

The pathway from plant extract to effective therapy involves many steps. Plants, often
identified from local knowledge/use, are a source of extract prepared using a range of
approaches and the extracts screened using simple cell-based models such as Caco-2 cells
or L6 skeletal myotubes for in vitro effects. Signaling pathways and effectors are used as
surrogate assays for potential antidiabetic effects (e.g., glucose transport). Further work
involves an examination of effects using rodent models of diabetes and clinical trials.

METHODOLOGY

We used a range of search terms to scan Google Scholar, PubMed, Science Direct, NIH
National Library of Medicine and Scopus to retrieve published literature on medicinal
plants and phytochemical effects on insulin signaling and effector pathways. Search terms
focused on known signaling systems involved in propagating insulin signals (e.g.,
proteingrynm_32 kinase-B/Akt (hereafter referred to as Akt); phosphoinositide-3 kinase
(PI3K); glycogen synthase kinase-3 (GSK-3); AMP-activated protein kinase (AMPK);
protein tyrosine phosphatase 1 B (PTP1B)); known effector molecules or processes (e.g.,
glucose transporters (GLUT) and GLUT4 storage vesicles (GSVs; also known as
GSC-GLUT4 storage compartment); glucokinase (GCK)); glucagon secretion; lipolysis;
lipogenesis; hepatic glucose output; and other molecules implicated in insulin action of
insulin sensitivity, such as peroxisome proliferator-activated receptor gamma (PPARy).
Searches were performed between December 2021 and April 2022. We excluded articles
not in English and not freely available via our institution (in this case the University of
Strathclyde; <0.2% of articles retrieved) and no time limitation for publication date was
employed. Our searches aimed to capture papers which described a potential effect on
either signaling systems (e.g., PI3K, Akt efc.) or a biological output (e.g., glucose transport,
GLUT4 mRNA). This was subsequently extended into whole animal studies and clinical
trials.

Throughout we use the scientific and common names of the medicinal plants, and
describe the chemistry used in the extraction process-a key consideration for studies of
this type. In all tables, extracts are alphabetized by species unless multiple different species
were used in the same study, in which case these are placed arbitrarily at the top of each
table for clarity.
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Figure 1 Schematic representation of antidiabetic development from plant to clinical trial. The
pathway from plant extract to effective therapy involves many steps. Plants, often identified from local
knowledge/use, are a source of extract prepared using a range of approaches and the extracts screened
using simple cell-based models such as Caco-2 cells or L6 skeletal myotubes for in vitro effects. Signaling
pathways and effectors are used as surrogate assays for potential antidiabetic effects (e.g., glucose
transport). Further work involves an examination of effects using rodent models of diabetes and clinical
trials. Full-size K&l DOT: 10.7717/peerj.14639/fig-1

RESULTS

Studies using cell lines

Effects of medicinal plants and phytochemicals on glucose transport and
glucose transporters

Defective insulin-stimulated glucose transport is hallmark of T2DM (Ogurtsova et al,
2017; Nandabalan, Sujatha & Shanmuganathan, 2010; Drissi et al., 2021; Stadlbauer et al.,
2016). Glucose transporters (GLUT) of the facilitative diffusion type are a multi-gene
family of proteins which function to move glucose across cell membranes (Ogurtsova et al.,
2017; World Health Organization, 2019; Singhal, Bangar ¢ Naithani, 2012). Among the
facilitative GLUT isoforms, GLUT4 is particularly important as it is expressed
predominantly in skeletal and adipose tissues and accounts for post-prandial glucose
disposal in these tissues (World Health Organization, 2019; Nandabalan, Sujatha &
Shanmuganathan, 2010). Skeletal muscle contribute largely to a greater part of the total
body mass in humans and it regulates several physiological processes including up to 85%
of insulin-mediated glucose up-take through GLUT4 (Ahmad, Choi ¢ Lee, 2020). Many
studies have utilized this for therapeutic management of diabetes and in particular the role
of extracellular matrix (Ahmad, Choi ¢ Lee, 2020). Skeletal muscle contraction during
exercise improves GLUT4 translocation to the cell membrane for glucose uptake and
insulin-sensitivity (Jiang et al., 2013). Also, altered muscle glycogen synthesis play a major
role in insulin resistance, and glycogen synthase, hexokinase, and GLUT4 are the major
culprit involved in the skeletal muscle pathogenesis of type 2 dibetes (Petersen ¢ Shulman,
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2002; Saini, 2010). GLUT2 and GLUTS5 are responsible for intestinal glucose and fructose
uptake (Schreck ¢ Melzig, 2021), while GLUT1 is present ubiquitously in all the body
tissues (Galochkina et al., 2019). The dominant glucose transporters found in the small
intestine are sodium-glucose linked transporter 1 (SGLT1) which accumulates glucose into
adsorptive epithelial cells against its concentration gradient and GLUT2 which mediates
movement of glucose from the epithelial cells into the blood (Schreck ¢ Melzig, 2021);
inhibition reduces the amount of glucose absorbed into the body. The hemodynamic
activities of the glucose transporters have been extensively researched (Ogurtsova et al.,
2017; World Health Organization, 2019; Singhal, Bangar & Naithani, 2012; Nandabalan,
Sujatha & Shanmuganathan, 2010). Medicinal plants’ products and phytochemicals that
modify the action of the glucose transporters could significantly contribute to the search
for effective drugs in the management of diabetes. Table 1 is a collation of studies of
medicinal plants known to modulate glucose transport in cell lines. Some notable
highlights of this extensive literature are discussed briefly below.

In one of the most comprehensive studies, Schreck ¢ Melzig (2021) used Caco-2 cells
exposed to a range of plant extracts to identify potential inhibitors of glucose transport.
They reported between 40% to 80% reduction using the methanolic extracts of a range of
plants including the fruits of Aronia melanocarpa, Valcheva-Kusmanova et al. (2007)
Cornus officinalis, Crataegus pinnatifida, Lycium chinense, and Vaccinium myrtillus; the
leaves of Brassica oleracea, Juglans regia, Peumus boldus, and the roots of Adenophora
triphylla. The authors also reported 50% to 70% reduction by aqueous extract from the
bark of Eucommia ulmoides and fruit skin of Malus domestica. These effects are likely
acting via inhibition of GLUT1, the predominant transporter in these cells.

One of the key facets of insulin action is to drive the delivery of GLUT4 molecules from
intracellular stores to the surface of fat and muscle cells, a process called ‘translocation’.
Stadlbauer et al. (2021) used CHO-KI1 cells expressing GLUT4 and total internal reflection
microscopy to identify GLUT4 translocation-inducing effects of some thirty plant extracts.
Though the taxonomy of some of the plants were not fully defined, they included Hoodia,
Sapindus mukorossi, Quillaja saponaria, Papaver, Castanea, Bitter orange (genus and
species not specified), Oregon grape (genus and species not specified), Common daisy
tflowers, Rosebay willowherb leaves and Goldenrod flower as potential compounds that
could be exploited as potential anti-hyperglycemic agents in the treatment of T2DM via
effects on GLUT4 redistribution.

While the above study used a non-classical insulin target tissue (for good experimental
reasons), others have focused upon more physiological cell systems. Through
bioassay-guided fractionation, Kanaujia et al. (2010) reported two chebulinic acid
derivatives from Capparis moonii with significant stimulatory effects on glucose uptake
effects concomitant with increased IR-p, Insulin receptor substrate-1 (IRS-1)
phosphorylation, and mRNA expression of GLUT4 and PI3K in L6 muscle cells. Carnosol
from rosemary extract stimulated AMPK-dependent GLUT4 translocation with no effect
on Akt phosphorylation in L6 myotubes (Viavcheski et al., 2018). Methanolic extract of
Gundelia tournefortii potentiated insulin-stimulated GLUT4 translocation to the plasma
membrane in skeletal muscle L6 cells (Kadan et al., 2018). An aqueous extract of Cassia
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Table 1 Medicinal plant active on glucose transporters. Shown are studies in which the indicated plants have been shown to drive a change in
glucose transport. Where possible these have been alphabetized, but studies in which multiple plant species or extracts were used in a single study are
shown at the top of the table.

Medicinal plant Phytochemistry Key Summary References
effectors
Aronia melanocarpa, Cornus officinalis, Methanolic extract of SGLT 1 and Inhibition of intestinal SGLT1 and (Schreck & Melzig, 2021)
Crataegus pinnatifida, Lycium the leaves, roots, GLUT2. GLUT?2 in Caco-2 cells.

chinense, Vaccinium myrtillus, Brassica  aqueous extract from
oleracea, Juglans regia, Peumus boldus,  the bark, and fruit

Adenophora triphylla, Eucommia skin.
ulmoides, and Malus domestica
Hoodia, Sapindus mukorossi, Quillaja Plant extracts. GLUT4 Stimulation of GLUT4 translocation in  (Stadlbauer et al., 2021)
saponaria, Papaver, Castanea, Bitter CHO-KI and 3T3-L1 cells and plasma
orange, Oregon grape, Saposhnikovia membrane insertion of GLUT4 in Hela
divaricata, Sponge gourd, Black radish, cells.

Asparagus, Neem, Uzara, Reetha B,
Chelidonium majus, Teasel, Tetradium
ruticarpum, Southern wax myrtle,
Bistort, Indian tobacco, Figwort,
Rangoon creeper, Peruvian rhatany,
Chinese rhubarb, Poppy capsule and
flowers, Ivy, Common daisy leaves and
flowers, Rosebay willowherb, and

Goldenrod.
Trigonella foenumgraecum, Urtica 50% ethanol extract of GLUT4 Increased translocation of GLUT4 to the (Kadan et al., 2013)
dioica, Atriplex halimus, and the various parts. plasma membrane in L6-GLUT4myc
Cinnamomum verum rat muscle cells.
Rhododendron groenlandicum, Alnus Leaf, bark, and whole GLUT4 Increased total membrane expression of (Shang et al., 2015)
incana, Sarracenia purpurea plant, respectively. GLUT4 and phosphorylation of AKT
and AMP in C2C12 and H4IIE cell
lines.
Strawberry and Apple Polyphenols, phenolic GLUT?2, Inhibition of GLUT2 and SGLT1 in (Manzano &
acid, and tannins. SGLT1 human intestinal Caco-2 cells. Williamson, 2010)
Annona stenophylla Aqueous root extract. GLUT4 Enhanced GLUT4 and gene expression (Taderera et al., 2019)
in C2C12 muscle cell lines.
Apios americana Glycosides from the =~ MAPK and  Restores glucose uptake, glucose (Yan et al., 2017)
leaves. glucose consumption, and glycogen content in
uptake HepG2 cells via MAPK and Nrf2
pathways.
Capparis moonii Gallotannins from GLUT4 Increased phosphorylation of IR-B, IRS- (Kanaujia et al., 2010)
hydro-alcoholic fruit 1, and GLUT4, PI3K mRNA
extract. expression in L6 myotube cells.
Cassia abbreviate Aqueous leaf, seed, GLUT4 Enhanced GLUT4 translocation and (Kamatou, Ssemakalu &~
and bark extract. gene expression in C2C12 mouse Shai, 2021)
skeletal muscle cells.
Cinnamomum burmannii Water extract and GLUT4 Increased expression of mRNA GLUT4, (Cao, Polansky ¢
polyphenols. GLUT1 IR, GLUT1in mouse 3T3- adipocytes. Anderson, 2007; Cao,
Graves & Anderson,
2010)
Cinnamomum cassia Cinnamic acid from a GLUT4 Increased GLUT4 mRNA and inhibition (Lakshmi et al., 2009)
hydroalcoholic bark of PTP1B activity in L6 myotubes.
extract.
(Continued)
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Table 1 (continued)

Medicinal plant Phytochemistry Key Summary References
effectors
Citrullus colocynthis Fruit and seed extracts GLUT4 Enhancement of insulin-induced (Drissi et al., 2021)

Costus igneus (insulin plant)

Dandelion powder

Folium sennae

Gundelia tournefortii

Kigelia pinnata

Mangifera indica

Maydis stigma [corn silk]

Mitragyna speciosa

Momordica balsamina

Momordica charantia

Moringa concanensis

and solvent fractions.

Leaf extract

Chloroform extract.

Ethanol extract.

Hexane and methanol
extract of the aerial
part.

Isolated
phytochemicals from
ethanol extract of
K. pinnata twigs.

Ethylacetate extract
and 3p-taraxerol.

Extracted
polysaccharides.

Water, methanol
extract, and
mitragynine [a
principal
constituent].

ethanol, ethyl acetate,
and n-hexane fruit
extract

Aqueous and
chloroform extract of
the fruit.

Leaf extract

GLUT4 translocation in adipocytes.

Glucokinase/ Increased glucokinase activity, insulin,

GLUT2

GLUT4

GLUT4

GLUT4

GLUT4

GLUT4

GLUT4

GLUT1

GLUT2

GLUT4

GLUTH4 via
PPARy
effects

and GLUT2 gene expression but
inhibition of glucose-6-phosphatase
activity in human hematopoietic stem
cells (HSCs) showing p-like cells
action.

C. igneus contained insulin-like
proteins (ILP) with hypoglycemic
activities in insulin-responsive cell line
RIN 5f.

Increased GLUT4 expression and
membrane translocation via the
AMPK pathway in L6 cells.

Promotes membrane translocation and
mRNA of GLUT4 via AMPK, AKT,
and G protein-PLC-PKT pathways and
internalization of C** in L6 cells.

Enhanced translocation of GLUT4 to the
plasma membrane by the methanol
extract than the hexane extract in L6
myotube cells.

Increased GLUT4 translocation to the
skeletal muscle cell surface in skeletal
muscle cells.

GLUT4 translocation and glycogen
synthesis in 3T3-L1 adipocytes.

Membrane translocation of GLUT4 in
rats L6 skeletal muscle and regulation
of PI3K/AKT pathways.

Increased GLUT]1 content in rat L6
myotubes.

Increased GLUT?2 gene expression

Increased glucose uptake with GLUT4,
PPARY, and PI3K mRNA gene
expression in L6 myotube cells.

3T3-L1 adipocytes, enhanced GLUT4
gene expression

(Kattaru et al., 2021;
Joshi et al., 2013)

(Zhao et al., 2018b)

(Zhao et al., 2018a)

(Kadan et al., 2018)

(Faheem et al., 2012)

(Nandabalan, Sujatha &
Shanmuganathan,
2010)

(Guo et al., 2019)

(Purintrapiban et al.,
2011)

(Kgopa, Shai & Mogale,
2020)

(Kumar et al., 2009)
(Balakrishnan,

Krishnasamy ¢ Choi,
2018)
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Table 1 (continued)

Medicinal plant Phytochemistry Key Summary References
effectors
Morus alba Ethanol leaf extract. ~ GLUT4 Stimulation of glucose uptake and (Naowaboot et al., 2012)

GLUT4 translocation to the plasma
membrane via activation of PI3K in rat

adipocytes.
Nymphaea nouchali Seed extracts GLUT4 via  Increased GLUT4 mRNA expression (Parimala et al., 2015)
PPARy
effects

Ocimum basilicum Methanol, hexane, and GLUT4 Elevated GLUT4 translocation to the (Kadan et al., 2016)
dichloromethane are plasma membrane HepG2 and rat L6
extracts of the stem, muscle cells.
leaf, and flowers.

Panax ginseng [black ginseng] Ethanolic extract of ~ GLUT4 Increased phosphorylation of AMPK,  (Kang et al., 2017)
black ginseng. increased upregulation of GLUT2 in

the liver and GLUT4 in the muscle.
Pinus pinea [pine] Bark extract MAPK and  Activation of p38MAPK, which in turn (El-Zein ¢ Kreydiyyeh,
glucose activates SGLT1 and GLUT2 in Caco-2  2011)
uptake cells.
Portulaca oleracea and Coccinia grandis Plant extract. GLUT4 PI3K mediated GLUT4 translocation in (Stadlbauer et al., 2016)
insulin-sensitive CHO-K 1 cells and
adipocytes.

Rosemary Carnosol [diterpene]  GLUT4 AMP-dependent increase GLUT4 (Vlavcheski et al., 2018)
found in Rosemary. translocation in L6 skeletal muscle

cells.

Salacia oblonga Hot water extract of ~ GLUT4 GLUT4 and concomitant (Giro et al., 2009)
the root, stem, and phosphorylation of 5>’AMP-activated
mangiferin, the protein kinase in L6 myotubes and
bioactive compound. 3T3- adipocytes.

Selaginella tamariscina Selaginellins and PTP1B and  Glucose uptake and inhibition of PTP1B (El-Zein ¢» Kreydiyyeh,
bioflavonoids from glucose in 3T3-L1 adipocytes 2011; Giro et al., 2009;
methanol extract. uptake Nguyen et al., 2015a)

Sinocrassula indica Berge Ethanolic extract GLUT1, Increased glucose uptake in L6 myotubes (Yin et al., 2009)

GLUT4 and H4IIE hepatoma cells
Gymnema sylvestre Methanolic leaf extract GLUT4 Enhanced glucose uptake in L6 (Kumar et al., 2016)

myotubes cells

abbreviata induced a two-fold increase in GLUT4 translocation in C,C;, (mouse) skeletal
muscle cells probably via activation of the canonical PI3K/Akt pathway (Kamatou,
Ssemakalu & Shai, 2021).

Naowaboot and colleagues reported the mechanism of antihyperglycemic effects of
Morus alba leaf extract, including increasing glucose uptake via activation of the PI3K
pathway and the plasma membrane translocation of GLUT4 in rat adipocytes (Naowaboot
et al., 2012). Ethyl acetate extract and 3p-taraxerol isolated from Mangifera indica
promoted increased GLUT4 translocation and glycogen synthesis in 3T3-L1 adipocytes
(Nandabalan, Sujatha & Shanmuganathan, 2010). The study also noted the effect on
glycogen synthesis was due to PI3K-dependent activation of Akt with subsequent
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inactivation of glycogen synthase kinase 3B (GSK3[) phosphorylation (discussed further
below). The fruit of Citrullus colocynthis enhanced insulin-induced GLUT4 translocation
and Akt phosphorylation in 3T3-L1 adipocytes (Drissi et al., 2021).

Stadlbauer et al. (2016) screened further natural products as alternatives to insulin
through quantitation of GLUT4 translocation in insulin-sensitive CHO-K1 and
importantly extended their remarkable study into commercial adipocyte cells. Of the seven
medicinal plants tested, Portulaca oleracea and Coccinia grandis were found to induce
GLUT4 translocation together with increased glucose concentration uptake likely
mediated by PI3K/Akt pathway in adipocytes (Stadlbauer et al., 2016).

Such findings, together with the many others noted in Table 1 and which space preclude
detailed discussion of here, suggest natural products can drive re-distribution of GLUT4 to
the plasma membrane in an insulin-mimetic manner. However, the effects are not
confined to GLUT4. For example, Kang and colleagues reported upregulation of GLUT2 in
the liver (and up-regulated GLUT4 in muscle) as the possible mechanism of the
antidiabetic effects of Panax ginseng (black ginseng). Manzano ¢ Williamson (2010)
investigated the glucose uptake inhibition of polyphenols, phenolic acid, and tannins from
strawberry (var. Abion) and apple (var. golden delicious) in Caco-2 intestinal cell
monolayers and reported increased inhibition of GLUT2 and SGLT1 and reduced glucose
intestinal bilayer transport. Enhancement of glucose uptake by mitragyna speciosa and
mitragynine in rat L6 myotubes is associated with increased GLUT1 protein content
(Purintrapiban et al., 2011). And the glucose uptake (GLUT4) enhancement activity of
G. sylvestre in L6 myotubes alongside the amelioration of insulin resistance in the 3T3-L1
adipocytes cells have been reported (Kumar et al., 2016). One further study of note is the
report that the methanol extract of the aerial part of Selaginella tamariscina enhanced
glucose uptake in 3T3-L1 adipocytes, possibly by inhibition of PTP1B (El-Zein ¢
Kreydiyyeh, 2011; Giro et al., 2009). Collectively, these studies reveal that medicinal plants
have a range of action on glucose transport across multiple tissues of relevance to the
treatment of diabetes.

Medicinal plants and phytochemical effects on PI3K and Akt activity

In the canonical insulin signaling pathway controlling glucose homeostasis, insulin
receptor substrates are phosphorylated on tyrosine residues which then act as docking sites
for downstream signaling molecules. Of particular note, IRS-1 recruits phosphoinositide 3-
kinase (PI3K) (Petersen ¢ Shulman, 2018). PI3K phosphorylates phosphatidylinositol
4,5-biphosphate to form phosphatidyl-inositol 3,4,5-trisphosphate that in turn promotes
Akt phosphorylation and activation (World Health Organization, 2019; Luna-Vital &
De Mejia, 2018). Akt is an important nexus on the insulin signaling cascade because

of its multi-substrate activities (Naowaboot et al., 2012; Nandabalan, Sujatha &
Shanmuganathan, 2010; Tonks et al., 2013; Huang et al., 2018). Phosphorylation of Akt
initiates a cascade of downstream events through many substrates, including
phosphorylation of Akt substrate of 160 kDa (AS160), a RabGAP (GTPase activating
protein); this in turn leads to GLUT4 translocation in muscle and adipose cells
(Matschinsky, 2005; Sharma et al., 2021). Defects in Akt phosphorylation, as seen in
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Table 2 Medicinal plants modifying PI3K/Akt activity. Shown are studies in which the indicated plants have been shown to drive activation of the
canonical insulin signalling molecules PI3K and Akt. Table is constructed in alphabetical order of plant species.

Medicinal plant  Phytochemistry Target Summary References

Anemarrhena Monosaccharides PI3K  Activation of PI3K/AKkt, IRS-1 signaling pathway, and (Chen et al., 2022)
asphodeloides inhibition of a-glucosidase activity in HepG2 cells.
Bunge

Broussonetia A flavan [Kazinol B] purified the Akt Improved insulin sensitivity via Akt and AMPK activation (Lee et al., 2016)
kazinoki root. in 3T3-L1 adipocytes.

Dendrobium Polysaccharide PI3K  Increased PI3K/Akt phosphorylation in insulin-resistant ~ (Wang et al., 2018)
officinale HepG2 cells.

Folium sennae Ethanol extract. Akt Increased AMPK, Akt, and PKC phosphorylation in L6 rat (Zhao et al., 2018a)

skeletal muscle.
Grifola frondosa ~ Heteropolysaccharide of the PI3K  Increased mRNA of IRS1/PI3K, and downregulation of  (Chen et al., 2018)
fruiting body. JNK1 signaling in HepG2 cells.

Juniperus a- Methyl artoflavano coumarin Akt PI3K/Akt and inhibition of PTP1B in HepG2 cells. (Jung et al., 2017)
chinensis from Juniperus chinensis.

Mangifera indica  Ethyl acetate extract [EAE] and PI3K  Increased PI3K level and GLUT4 translocation in 3T3-L1 (Nandabalan, Sujatha &

3B-taraxerol phytochemistry. adipocytes. Shanmuganathan, 2010)

Maydis stigma Maydis stigma [corn silk] Akt A dose-dependent increase in expression of p-Akt/Akt in (Guo et al., 2019)
[corn silk] extract. L6 skeletal muscle myotubes.

Nigella Alkaloids from the seeds. PI3K  Increased PI3K/Akt pathway together with inhibition of  (Tang et al., 2017)
glandulifera PTP1B.

Nigella Norditerpenoid alkaloids of the Akt PI3K/Akt pathway, inhibition of PTP1B, increased (Tang et al., 2017)
glandulifera seeds. glycogen synthesis with hexokinase activity in L6

myotubes

Sargassum Homogeneous polysaccharides. PI3K  Upregulation of PI3K, GS, and IRS-1 gene expression in  (Cao et al., 2019)
pallidum insulin-resistant HepG2 cells.

Zhenjiang Polyphenol-rich extract. PI3K  Activation of PI3K/Akt pathway in IR-HepG2 cells. (Xia et al., 2021)
aromatic
vinegar

impaired insulin activation, are associated with development of muscle and adipose insulin
resistance in obesity and T2DM (Naowaboot et al., 2012; Joshi et al., 2013; Luna-Vital & De
Mejia, 2018; Kim et al., 1999). The insulin PI3K/Akt pathway has been widely targeted in
T2DM pharmacotherapy (World Health Organization, 2019; Naowaboot et al., 2012;
Luna-Vital ¢ De Mejia, 2018) and is important in the pathophysiology and therapy of
other diseases (Nurcahyanti et al., 2021). Evidence of medicinal plants and phytochemicals
modifying PI3K/Akt actions have been documented and are presented in Table 2. Some
examples are briefly outlined below.

An ethyl acetate extract and 3B-taraxerol of Mangifera indica significantly activate
GLUT4 translocation via a PI3K dependent pathway in 3T3-L1 adipocytes (Nandabalan,
Sujatha & Shanmuganathan, 2010). Polysaccharides from corn silk (Maydis stigma)
increased phosphorylation of Akt in a dose-dependent manner in L6 skeletal muscle
myotubes (Guo et al., 2019). Similarly, phosphorylation of Akt in response to an extract of
Folium sennae was described, together with a significant enhancement of GLUT4
translocation (Zhao et al., 2018a). Antidiabetic effect of alkaloids from the seeds of Nigella
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glandulifera increased the activity of the PI3K/Akt pathway in L6 myotubes with a
concomitant increase in glycogen synthesis and hexokinase activity (Tang et al., 2017).
Four C21 steroidal glycosides A-D from G.sylvestre promoted GLUT4 translocation to the
plasma membrane in L6 cells via activation of PI3K/AKT (Li et al., 2019a). These and
other studies (Table 2) point to a significant number of useful PI3K/Akt modulators within
medicinal plants.

Many studies have examined effects of medicinal plants in hepatoma cells, as liver is
a key site of post-prandial glucose disposal with a notable emphasis on PI3K/Akt
signaling (Table 2). Heteropolysaccharides of Grifola frondosa (edible mushroom)
increased IRS1/PI3K mRNA levels and enhanced insulin sensitivity (Chen et al., 2018).
Polysaccharides of Dendrobium officinale increased the activity of PI3K and Akt and
partially ameliorated symptoms in diabetic mice, pointing to a clear effect in a complex
organism rather than simply in cell culture models (Wang et al., 2018). Inhibition of
phosphorylated insulin receptor substrate-1(IRS-1), but activation of PI3K/Akt in
insulin-resistant HepG2 cells by polyphenol-rich extract of Zhenjiang aromatic vinegar has
been documented (Xia et al., 2021). Homogeneous polysaccharides from Sargassum
pallidum ameliorate insulin resistance by upregulation of PI3K, Glycogen synthase
(GS), and IRS-1 expression in insulin-resistant HepG2 cells (Cao et al., 2019).
Monosaccharides from Anemarrhena asphodeloides Bunge exhibited hypoglycemic
effects by activating PI3K/Akt, IRS-1signaling pathway, and inhibiting a-glucosidase
activities in insulin-resistant-HepG2 cells (Chen et al., 2022). A natural flavonocoumarin
(a-Methylartoflavonocoumarin) isolated from Juniperus chinensis was reported to activate
PI3K/Akt pathway in insulin-resistant HepG2 cells (Jung et al., 2017). Thus, effects are
evident both at the level of gene expression and activity mediated by a range of extracts.

Activity of medicinal plants and phytochemicals on glucokinase

Glucokinase (GCK) is important in the regulation of glucose metabolism in liver and
pancreas. GCK is essential for pancreatic insulin secretion and hepatic insulin action via
phosphorylation of glucose to glucose 6-phosphate (Naowaboot et al., 2012; Balakrishnan,
Krishnasamy & Choi, 2018). Low GCK levels have been observed in T2DM (Haeusler et al.,
2015) and could serve as a potential drug target for therapeutic intervention (Kim et al.,
2013; Yang, Jang & Hwang, 2012). GCK is currently being targeted as therapeutic for
T2DM (Matschinsky, 2009; Matschinsky & Wilson, 2019). Glucokinase activators have
been advocated as an alternative approach to restoring and improving glycemic control in
T2DM (Zhou et al., 2001; Towler ¢ Hardie, 2007; Toulis et al., 2020). Several medicinal
plants and phytochemicals with glucokinase activities have been recognized (Sharma et al.,
2021). We have focused on the cellular and molecular glucokinase activities of medicinal
plants in tissue culture models (Table 3).

Glucokinase activation by the leaf extract of Costus igneus (known in India as the
‘insulin plant’ for its purported anti-diabetic action) was examined in differentiated human
hematopoietic stem cell (HSCs) as a model of B-cells. The extract increased GCK and
inhibited of glucose-6-phosphatase activity by C. igneus, thereby improving glucose
sensing, insulin production, and decreased gluconeogenesis (Kattaru et al., 2021). It was
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Table 3 Medicinal plants with activities on glucokinase (GCK). Shown are studies in which the indicated plants have been shown to drive changes
in glucokinase activity or expression. Table is constructed in alphabetical order of plant species.

Medicinal Phytochemistry Summary References
plant
Costus igneus  Leaf extract. Increased glucokinase activity, insulin, and GLUT2 gene expression but inhibition (Kattaru et al., 2021;
(insulin of glucose-6-phosphatase activity in human hematopoietic stem cells (HSCs) Joshi et al., 2013)
plant) showing f-like cells action.
C. igneus contained insulin-like proteins (ILP) with hypoglycemic activities in
insulin-responsive cell line RIN 5f.
Momordica Ethanol, ethyl acetate, and Increased GCK and GLUT2 mRNA gene expression in RIN-m5F cells. (Kgopa, Shai &
balsamina n-hexane fruit extract. Mogale, 2020)
Zea mays Anthocyanins from the  Activation of GCK in HepG2 cells decreased glucose uptake in Caco-2 cells and (Luna-Vital & De

(Purple corn)

pericarp. increased glucose-stimulated insulin secretion in iNS-1E in the pancreas. Mejia, 2018)

also reported that C. igneus profoundly increased insulin receptor and GLUT2 gene
expression (Table 1). Insulin-like proteins (ILP) purified from C. igneus also showed
hypoglycemic activity in insulin-responsive cell line RIN 5f cells (Joshi et al., 2013).
Activation of free fatty acid-receptorl (FFAR1) and GCK by anthocyanin-rich extract
from the pericarp of purple corn was demonstrated in HepG2 cells (Luna-Vital ¢» De
Mejia, 2018). Significant elevations in glucokinase gene expression in response to ethanol,
ethyl acetate, and n-hexane fruit extract of Momordica balsamina, were reported in
RIN-m5F cells (Kgopa, Shai ¢» Mogale, 2020).

Medicinal plants modifying activity of glycogen synthase kinase-3 (GSK-3)
GSK-3 inhibits glycogen synthase activity. Insulin phosphorylates GSK-3 and prevents
glycogen synthase inactivation (Nabben ¢ Neumann, 2016). This role of GSK-3 in the
insulin signaling pathway provides a mechanistic approach to the use of GSK-3 inhibitors
in the treatment of insulin-resistant diabetes. Two studies are worthy of comment.
Ethanolic extract of Shilianhua (Sinocrassula indica Berge) was found to induce GSK-3
phosphorylation similarly to insulin in 3T3-L1 preadipocytes and rat skeletal L6
myoblasts, indicating a possible mechanism of antidiabetic activity (Yin et al., 2009). This
extract also enhanced insulin-stimulated glucose consumption in L6 myotubes and H4IIE
hepatocytes, and insulin-independent glucose uptake in 3T3-L1 adipocytes. The result also
showed increased GLUT1 protein expression in 3T3-L1 and GLUT4 protein expression in
L6 myotubes cells (Yin et al., 2009). Hot water reduction from the root of Sarcopoterium
spinosum increased glycogen synthesis via induction of GSK-3 B phosphorylation in L6
myotubes (Sahuc, 2016). S. spinosum also enhanced basal insulin secretion in the
pancreatic B-cells and inhibited isoproterenol-induced lipolysis in 3T3-L1 adipocytes
(Sahuc, 2016).

Peroxisome proliferator-activated receptor-gamma (PPARy) and medicinal
plants

Peroxisome proliferator-activated receptor gamma (PPARYy) is a member of the nuclear
receptor super-family which play integral roles in glucose and lipid metabolism (Mirza,
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Table 4 Medicinal plants modifying activities of peroxisome proliferator-activated receptor-gamma (PPARy). Shown are studies in which the
indicated plants have been shown to mediate effects probably via PPRy. Table is constructed in alphabetical order of plant species. Where possible
these have been alphabetized, but studies in which multiple plant species or extracts were used in a single study are shown at the top of the table.

Medicinal plant Phytochemistry Summary References
Yeongyang korea Ethanol extract. Increased PPARy and AMPK phosphorylation in C2C12 (Yang, Jang & Hwang,
(Korea red pepper), myotubes. 2012)
Capsicum annuum
Boehmeria nivea Ethanol leaf extract. Increased mRNA levels of PPARy in C2C12 myotubes cells. (Kim et al., 2013)
Miconia sp. Ethanol extract of the aerial Increased PPARy mRNA and GLUT4 in 3T3-L1 adipocytes. (Ortiz-Martinez et al.,
part. 2016)
Momordica charantia Chloroform extract of the Increased mRNA gene expression of PPARy in L6 myotube (Kumar et al., 2009)
fruit. skeletal muscle cells, as well as GLUT4 and PI3K.
Moringa concanensis  Leaf extract. Upregulation of mRNA of PPARy, GLUT4, FAS, Tsrebp, DAG, (Balakrishnan,
and Akt signaling in 3T3-L1 adipocytes. Krishnasamy & Choi,
2018)
Nymphaea nouchali  Seed extract. Increased mRNA of PPARy and GLUT4 in 3T3-L1 adipocytes.  (Parimala et al., 2015)
Punica granatum Flower aqueous extract and  Increased mRNA PPARy gene and protein expression in TPH-1- (Huang et al., 2005)
ethyl acetate fraction. derived macrophage cell line.

Althagafi & Shamshad, 2019). These receptors are targets for diabetes therapy and also for
the treatment of cardiovascular disease, cancer, and inflammation (Mirza, Althagafi ¢
Shamshad, 2019). We present the effects of various medicinal plants on PPARYy activity
and gene expression (Table 4).

Chloroform extract of the fruit of Momordica charantia has been reported to
significantly increase PPARY gene expression 2.8-fold, comparable to the insulin sensitizer
rosiglitazone (2.4-fold) in L6 myotube skeletal muscle cells (Kumar et al., 2009). Huang
et al. (2005) demonstrated that Punica granatum flower extract and ethyl acetate fractions
enhanced PPARYy gene expression and protein levels in a macrophage cell line. Increased
mRNA of PPARY (and GLUT4) by Nymphaea nouchali seed extract in 3T3-L1 adipocytes
as the possible mechanism of its anti-hyperglycemic effect was reported (Parimala et al.,
2015). Exposure of 3T3-L1 adipocytes to an ethanol extract of Miconia increased mRNA of
PPARy by 1.4-fold and inhibited a-amylase and a-glucosidase. The extract also increased
lipid accumulation by around 30% as a possible anti-diabetic mechanism of action
(Ortiz-Martinez et al., 2016). Upregulation of PPARY together with GLUT4, SREBP and
FAS expression was observed in 3T3-L1 adipocytes treated with the leaf extract of Moringa
concanensis (Balakrishnan, Krishnasamy ¢» Choi, 2018). Effects in muscle models have also
been reported: Kim et al. (2013) reported increased transcription activity and mRNA levels
of PPARy in C,C;, myotubes by Boehmeria nivea ethanol leaf extract and Korean red
peppers (Yeongyang korea) increased glucose uptake in C,C,, via increased transcriptional
activity of PPARy (Yang, Jang ¢ Hwang, 2012).

AMP-activated protein kinase (AMPK)

AMP-activated protein kinase (AMPK) is a known energy sensor for metabolic
homeostasis (Steinberg ¢ Carling, 2019) which plays a central role in regulating lipid and
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protein metabolism together with fatty acid oxidation and muscle glucose uptake
(Sathishsekar & Subramanian, 2005). AMPK plays a crucial role in insulin sensitivity,
which explains its place as a potential drug candidate for T2DM therapy (T asic et al., 2021;
Hawkins et al., 2021). AMPK systems have been said to be partly responsible for the health
benefits of exercise and AMPK is an important downstream effector of metformin. It has
also been proposed as a possible target for novel drugs in managing obesity, type 2
diabetes, and metabolic syndrome (Hu, Zeng & Tomlinson, 2014; Hosseini et al., 2014; Kim
et al., 2016). Ethnopharmacological investigators have reported that several medicinal
plants modulate the activity of AMPK in cell models, and we have summarized these
reports in Table 5, and highlight a few notable studies below.

Ethanolic extract and phytochemical compounds from Cimicifuga racemosa
mediate increased AMPK activity in fully differentiated HepaRG cells and is a possible
mechanism of antidiabetic activity (Moser et al., 2014). Yuan ¢ Piao (2011) reported
activation of AMPK by the petroleum ether fraction of Artemisia sacrorum in HepG2 cells.
They showed increased phosphorylation of AMPK (on T172), acetyl-CoA carboxylase
(ACG; reside S79), and GSK-3p and reported concomitant downregulation of
phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pase).
Similarly, Zheng et al. (2016) exploring the anti T2DM activity of Entada phaseoloides
in primary mouse hepatocytes and HepG2 cells, reported suppression of hepatic
gluconeogenesis via activation of the AMPK signaling pathway and Akt/GSK-3p. Extract
of Rosmarinus officinalis significantly increased glucose consumption in HepG2 cells via
increased phosphorylation of AMPK and ACC and potentially increased liver glycolysis
and fatty acid oxidation (Tu ef al, 2013). Thus, numerous examples of medicinal plants
exerting effects via AMPK in hepatoma cell lines have been described (Table 5).

Effects mediated via AMPK have been reported in other cell types. These include an
alcoholic extract of Artemisia dracunculus enhanced insulin release from B-cells isolated
from mouse and human islets via activation of AMPK and suppressed LPS/IFNy-induced
inflammation. Effects on glucose transport in muscle lines include an extract of Crocus
sativus (saffron) which increased glucose uptake and insulin sensitivity in C,C;, myotubes
by increased phosphorylation of AMPK in a dose and time-dependent manner (Kang
et al., 2012) and compounds isolated from the seed of Iris sanguinea was reported to be via
AMPK and ACC phosphorylation in the same cell type (Yang et al., 2017).

Ethanolic extract and isolated compound (B-sitosterol) from Malva verticillata seed
significantly increased activation of AMPK as the molecular mechanism for glucose uptake
in L6 myotubes (Jeong ¢» Song, 2011). Triterpenoids from the stem of Momordica
charantia have been reported to overcome insulin resistance in FL83B and C2C12 via
AMPK activation (Cheng et al., 2008). Hence, the effects of such compounds on AMPK is
an active and vigorous area of research.

Studies in animal models

The process of drug development encompasses pre-clinical experimentation (in vitro,

in silico, and in vivo) leading ultimately to clinical trials in humans. To understand if there
is ongoing vertical research towards developing antidiabetic agents from these medicinal
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Table 5 Medicinal plants regulating AMP-activated protein kinase (AMPK). Shown are studies in which the indicated plants have been shown to
mediate effects via AMPK activity. Table is constructed in alphabetical order of plant species.

Medicinal plant  Phytochemistry Summary References
Artemisia Alcoholic extract (PMI-5011). Increased insulin secretion through AMPK activation in NIT-1 cells.
dracunculus
Artemisia Petroleum ether fraction. Decreased glucose production via the AMPK-GSK-CREB pathway in HepG2 (Yuan & Piao,
sacrorum cells. 2011)
Aspalathus 80% ethanol extract. Amelioration of insulin resistance in C2C12 via activation of AMPK and Akt (Mazibuko
linearis pathway. et al., 2013)
Cimicifuga Ethanol extract and Phyto- Increased AMPK activity in HepaRG cells. (Moser et al.,
racemosa compounds. 2014)
Crocus sativus Methanol extract. Increased glucose uptake and insulin sensitivity via AMPK phosphorylation (Kang et al,
[Saffron] in C2C12 mouse myotubes cells. 2012)
Entada Total saponin extract. Suppression of hepatic gluconeogenesis via AMPK and Akt/GSK3p in (Zheng et al.,
phaseoloides Primary hepatocytes and HepG2 cells. 2016)
Iris sanguinea Isolated compounds from Increased glucose uptake via activation of ACC and AMPK in mouse C2C12 (Yang et al,
methanol extract of the seeds. skeletal myoblast. 2017)
Malva verticillata  Ethanol extract and compound Increased glucose uptake via AMPK phosphorylation in L6 myotubes. (Jeong &
isolate [p-sitosterol]. Song, 2011)

Momordica Triterpenoids from the stem. Overcome insulin resistance via AMPK activation in FL83B and C2C12 cells. (Cheng et al,
charantia 2008)
Psidium guajava  Flavonoids from the leaves. AMPK phosphorylation in rat L6 myotubes and L02 human hepatic cells.  (Li et al.,
2019b)
Rhodiola Methanol extract. Inhibition of gluconeogenesis in human hepatic HepG2 cell via activation of (Lee et al.,
crenulata AMPK. 2015)
Rosmarinus Dichloromethane-methanol Regulate glucose and lipid metabolism through activation of AMPK and (Tu et al,
officinalis extract. PPAR pathways in HepG2 cells. 2013)
Sechium edule Water and polyphenol extract of Inhibition of lipogenesis and stimulation of lipolysis via AMPK activation (Wu et al.,
the shoot. and decreased lipogenic enzymes in HepG2 cells. 2014, 2020)
Stauntonia Triterpenoid saponins. Increased glucose uptake in HepG2 insulin-resistant cells via AMPK (Hu et al.,
chinensis phosphorylation and IR, IRS-1, PI3K/Akt pathways 2014)
Toona sinensis Leaf extract. Increased glucose uptake in C2C12 myotubes due to AMPK activation. (Liu et al.,
2015)
Vigna angularis ~ Extract Increased phosphorylation of AMPK and Akt in HepG2 cells. (Sato et al.,
(Azuki bean) 2016)

plants, we reviewed their exploitation in experimental animal models as summarized in

Table 6. Some highlights are discussed below.

Aronia melanocarpa fruit juice was found to mediate a dose-dependent decrease in

plasma glucose and triglyceride levels in streptozotocin-induced hyperglycemic rats

(Lee et al., 2016; Mazibuko et al., 2013), corresponding to the observations on glucose

transport in Caco-2 cells alluded to above (Table 1) (Schreck ¢ Melzig, 2021). Similarly, the
antidiabetic and hyperlipidemic effects of Crataegus pinnatifida were investigated in high
fat-fed mice. The results showed decreased glucose production and triglyceride synthesis
via induction of AMPK phosphorylation (Shih et al., 2013), compared with inhibition of
SGLT1 and GLUT?2 in Caco-2 cells (Schreck ¢» Melzig, 2021). These provide a good
example of studies in cell lines being translated into animal models.
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Table 6 Medicinal plants having antidiabetic activity in tissue culture and whole animal biology. Studies of medicinal plants with demonstrated
anti-diabetic properties are listed. Plants are arranged in alphabetical order. The animal model studies are cross-referenced to cellular studies of the
same extract/plant wherever possible.

Medicinal Phytochemistry ~ Animal Summary Animal Cell study
plants model study
Yeongyang Seed extract. Mice Improved glycemic control, decreased (Kim et al., 2020) (Yang, Jang & Hwang,
korea (Korea hepatic gluconeogenesis, and increased 2012)
red pepper), FOXO1 and AMPK phosphorylation.
Capsicum
annuum
Anemarrhena  Glycosides Mice Inhibition of hepatic gluconeogenesis/ (Nakashima et al., 1993) (Nurcahyanti et al.,
asphodeloides glycogenolysis. 2021)
Annona Aqueous root Rats Decreased glucose level. (Taderera, Gomo & (Taderera et al., 2019)
stenophylla extract. Shoriwa Chagonda,
2016)
Apios Flower or Mice Decreased plasma glucose level. (Kawamura et al., 2015) (Yan et al., 2017)
americana methanolic
extract of the
flower.
Aronia Fruit juice. Rats Decreased plasma glucose and triglycerides (Lee et al., 2016; (Schreck & Melzig, 2021)
melanocarpa in diabetic rats. Mazibuko et al., 2013;
Mu et al., 2020)
Artemisia Ethanolic extract.  Mice Lowered glucose and PEPCK (Ribnicky et al., 2006)
dracunculus concentrations.
Aspalathus Tea extract. Mice Improved impaired glucose tolerance. (Kawano et al., 2009) (Mazibuko et al., 2013)
linearis
Boehmeria Methanol extract ~ Wistar rats  Restore normal glucose, lipids, and (Sancheti et al., 2011) (Kim et al., 2013)
nivea of the root. antioxidants level.
Brassica Raw sprouts. Rats Decreased blood glucose, glycated (Sahai & Kumar, 2020) (Schreck & Melzig, 2021)
oleracea hemoglobin, and hepatoprotection.
Cimicifuga Rhizomes and root Mice Reduced body weight, plasma, glucose, and (Moser et al., 2014) (Moser et al., 2014)
racemosa extract. increased insulin sensitivity.
Cinnamomum  Bark extract. Diabetic Decreased blood glucose and triglycerides (Kim, Hyun & Choung, (Lakshmi et al., 2009)
cassia mice levels. 2006)
Citrullus Fruit ethanol Albino rats  Reduced blood glucose and improved (Oryan et al., 2014) (Drissi et al., 2021)
colocynthis extract. pathology.
Costus igneus ~ Powdered leaves.  Rats Decreased fasting and postprandial glucose (Shetty et al., 2010) (Kattaru et al., 2021)
(insulin level
plant)
Crataegus Fruit extract. Mice Decreased glucose production and (Shih et al., 2013) (Schreck & Melzig, 2021)
pinnatifida triglyceride synthesis via AMPK
phosphorylation.
Crocus sativus  Hydroethanolic Rats Reduced blood glucose and improved (Ouahhoud et al., 2019) (Kang et al., 2012)
extract of aerial diabetic complications.
parts.
Curcuma longa Curcuminoids and Mice Decreased blood glucose levels and (Nishiyama et al., 2005) (Kim et al., 2010)
sesquiterpenoids stimulation of adipocyte differentiation.

from rhizome
solvent fractions.

Dendrobium Stem extract. Rats Reduced blood glucose, total cholesterol,  (Chen et al., 2020) (Wang et al., 2018)
officinale triglycerides, and LDLP-C.

(Continued)
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Table 6 (continued)

Medicinal Phytochemistry ~ Animal Summary Animal Cell study

plants model study

Entada Entagenic acid Mice Improved blood glucose, insulin resistance, (Xiong et al., 2018) (Zheng et al., 2016)
phaseoloides  from seed kernel. and changes in pancreatic islets.

Eucommia Leaves Rats and Hypoglycemia and hypolipidemic effects in (Nakashima et al., 1993; (Schreck ¢ Melzig, 2021)
ulmoides Mice streptozotocin-induced hyperglycemia. Taderera, Gomo &

Shoriwa Chagonda,
20165 Park et al., 2006;
Lee et al., 2005)

Gundelia Water extract. Mice Decreased blood glucose level, body (Sancheti et al., 2011; (Kadan et al., 2018)
tournefortii weight, triglycerides, and cholesterol, but  Sahai & Kumar, 2020;
increased renal protection. Mohammadi &

Zangeneh, 2018; Azeez
& Kheder, 2012)

Juglans regia Leaves and ridges. Mice Decreased blood glucose, hepatic (Kamyab et al., 2010; (Schreck & Melzig, 2021)
Rats phosphoenolpyruvate carboxykinase, Liu et al., 2015; Sato
glycogen phosphorylase activity, et al., 2016)

glycosylated hemoglobin, LDL,
triglycerides, and total cholesterol.

Juniperus Berries ethanol Rats Improved blood glucose level and other (Ju et al., 2008) (Jung et al., 2017)
chinensis extract. diabetic parameters.

Kigelia pinnata Methanolic extract Rats Decreased blood glucose, serum (Kumar, Kumar & (Faheem et al., 2012)

of the flower. cholesterol, and triglycerides. Prakash, 2012)

Malva Tea Mice Decreased blood glucose, LDL-C, and total (Bano ¢» Akhter, 2021)  (Jeong ¢ Song, 2011)

verticulata cholesterol and increased HDL-C and
leptin.

Mangifera Aqueous extract of Rats Decreased fasting blood glucose level. (Madhuri & (Nandabalan, Sujatha &

indica the leaves. Mohanvelu, 2017) Shanmuganathan,
2010)

Momordica Aqueous seed Rats Reduced blood glucose, glycosylated (Sathishsekar & (Kumar et al., 2009)

charantia extract. hemoglobin, lactate dehydrogenase, Subramanian, 2005)

glucose-6-phosphatase, fructose-1,6-
biphosphatase, and glycogen
phosphorylase, but increases the activities
of glycogen synthase and hexokinase.

Momordica Saponins Rats Decreased fasting blood glucose, (Jiang et al., 2020) (Cheng et al., 2008)
charantia triglycerides, total cholesterol, and
increased insulin content and sensitivity.
Morus alba Polysaccharides Rats Reduced blood glucose and lipid levels. (Jiao et al., 2017) (Naowaboot et al., 2012)
from fruit.
Ocimum Aerial parts. Rats Inhibition of glycogenolysis. (Ezeani et al., 2017) (Kadan et al., 2016)
basilicum
Opuntia ficus- Powder or water ~ Rats It inhibits a-glucosidase and reduces blood (Hwang, Kang & Lim,  (Leem et al., 2016)
indica extract of the glucose levels. 2017)
stem.
Panax ginseng Ethanol extract of Obese Increased insulin-stimulated glucose (Attele et al., 2002; (Kang et al., 2017)
the seed. diabetic disposal, energy expenditure, and Shalaby &
mice reduced cholesterol levels. Hammouda, 2013)
Peumus boldus Boldine alkaloid Rats Dose-dependent decrease in oxidative (Jang et al., 2000) (Schreck & Melzig, 2021)
from the leaves markers and mitochondrial protection
and bark.
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Table 6 (continued)

Medicinal Phytochemistry ~ Animal Summary Animal Cell study
plants model study
Portulaca Aqueous extract.  Male Wistar Decreased Hb A1C, serum glucose level,  (Ramadan, Schaalan & (Stadlbauer et al., 2016)
oleracea rats TNF-«, and IL-6. Tolba, 2017)
Psidium Leaf extract. Rats Antidiabetic (Mazumdar, Akter & (Li et al., 2019b)
guajava Talukder, 2015)
Punica Fruit aqueous Wistar rats ~ Reduces fasting blood glucose and lipid ~ (Gharib & Kouhsari, (Huang et al., 2005)
granatum extract. levels. 2019)
Rhodiola Methanol root Mice Decreased postprandial blood glucose. (Yue et al., 2022) (Lee et al., 2015)
crenulata extract.
Rosmarinus Water extract. Rats Decreased blood sugar level and oxidative (Khalil et al., 2012) (Vlavcheski et al., 2018)
officinalis stress markers.
Salacia Water extract of  Obese Improved interstitial and perivascular (Li et al., 2004) (Giro et al., 2009)
oblonga the root. Zucker rats  fibrosis and inhibition of postprandial
hyperglycemia.
Sapindus Fruit Rats Decreased glucose and lipid levels. (Verma et al., 2012) (Stadlbauer et al., 2021)
mukorossi
Sarcopoterium Aqueous extract.  Mice Prevents diabetes progression. (Smirin et al., 2010) (Elyasiyan et al., 2017)
spinosum
Sechium edule Methanol and ethyl Rats Antidiabetic and antioxidant. (Siahaan et al., 2020) (Wu et al., 2014)
acetate fraction.
Selaginella Total flavonoids Rats Decreased plasma FBG, HbAlc, (Zheng et al., 2011) (Nguyen et al., 2015b)
tamariscina triglycerides, total cholesterol, FFA with
increased insulin, HDL-C, and C-
peptides.
Stauntonia Total saponins Mice Hypoglycemic and hypolipidemic. (Xu et al., 2018) (Hu et al., 2014)
chinensis from the stem.
Toona sinensis Quercetin from the Mice Antidiabetic and antioxidant. (Zhang et al., 2016) (Liu et al., 2015)
leaves.
Trigonella Seed powder. Female Reduced elevated fasting blood glucose and (Raju et al., 2001) (Chen et al., 2022)
foenum- Albino rats  enzyme levels.
graecum
Urtica dioica  Aqueous extract of Wistar rats  Decreased glucose level in oral glucose (Bnouham et al., 2003)  (Chen et al., 2022)
the aerial parts. and Swiss tolerant test [OGTT].
mice
Vaccinium Fruit Rats Decreased total cholesterol, LDL-C, VLDL- (Asgary et al., 2016) (Schreck & Melzig, 2021)
myrtillus C, and triglycerides in alloxan-induced
hyperglycemic rats.
Vigna Hot water extract Mice and Reduced FBG, an triglycerides, but (Zheng et al., 2011; Xu  (Sato et al., 2016)
angularis and Rats increased HDL-C, and reduction in et al., 2018; Itoh et al.,
polysaccharides diabetes progression. 2009)
from the leaves.
Zea mays Extract Mice Decreased fasting blood glucose, HbAlc, (Huang et al., 2015) (Luna-Vital & De Mejia,
(Purple corn) and PEPCK, increased insulin secretion, 2018)
AMPK and GLUT4 in diabetic mice.
Gymnema Phytoconstituents  Rats Reduced hyperglycemia via through PI3K/ (Li et al., 2019a) (Retz & Glucose, 2021)
sylvestre AKT activation
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The fruit of Vaccinium myrtillus was reported to significantly reduce serum glucose,
total cholesterol, low density lipoprotein cholesterol, and very low density lipoprotein
cholesterol, and triglycerides in alloxan-induced hyperglycemic adult male Wistar rats
(Asgary et al., 2016).

Juglans regia extracts reduce blood glucose levels in diabetic mice (Kamyab et al., 2010),
ameliorated streptozotocin-induced diabetic peripheral neuropathy in rats (Nasiry et al.,
2017), and significantly decreased blood glucose, glycosylated hemoglobin, LDL,
triglycerides, and total cholesterol in Wistar rats (Mohammadi et al., 2011). An aqueous
extract of the seeds of Momordica charantia reduced blood glucose level, glycosylated
hemoglobin, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-biphosphatase,
and glycogen phosphorylase but increased the activities of glycogen synthase and
hexokinase in streptozotocin-induced diabetic rats, providing clear evidence of a
systematic and programmed action on key metabolic activities (Sathishsekar ¢
Subramanian, 2005). Similarly, polysaccharides of Dendrobium officinale reduced blood
glucose level, glycated serum protein, total cholesterol, LDL-C, and increased HDL-C in
type 2 diabetic rats (Chen et al., 2020). Cimicifuga racemosa extracts from rhizomes and
roots reduced body weight, plasma glucose, improved glucose metabolism, and increased
insulin sensitivity in obese diabetic mice (Moser et al., 2014). Tarralin™, an ethanolic
extract of Artemisia dracunculus, significantly lowered blood glucose concentrations and
PEPCK in diabetic KK-AY mice (Ribnicky et al., 2006). Li et al. (2019a) described the effects
of Gymnemic acid isolated from G. sylvestre on insulin signalling pathways in the type 2
diabetic rats as activation of PI3K/AKT together with AMPK phosphorylation. Such
studies exemplify the power of medicinal plants in the amelioration of metabolic
disturbances, and Table 5 summarizes the wide array of studies relevant to diabetes
research.

Medicinal plants in clinical trials

The process of drug discovery necessitates that a drug molecule or product that has
successively passed through the preclinical stage of drug development is carefully tested in
clinical trials. We reviewed those plants that progressed to clinical trials and present our
findings in Table 7. As this area is particularly important, we have provided some detail of
key studies in the sections below.

Prospective open-label clinical trials of Alixir 400 PROTECT® (standardized extract of
Aronia melanocarpa) in 143 patients demonstrated controlled glycemia, blood pressure
improvement, and beneficial effects on LDL-C, triglycerides and total cholesterol, and was
of significant (p < 0.05) overall benefit in diabetic hypertensive patients (Tasic et al., 2021).
Similarly, a meta-analysis of controlled clinical trials carried out on Aronia melanocarpa
daily supplementation revealed significant (p < 0.05) decreases in total cholesterol, blood
pressure and a reduction in cardiovascular and diabetic risk factors, clearly supporting a
useful role in therapy (Hawkins et al., 2021).

Lipid lowering effects are also a common feature of clinical trials with medicinal plants.
Hu, Zeng ¢ Tomlinson (2014) demonstrated the beneficial effects of a multi-herb formula
containing Crataegus pinnatifida for dyslipidemia in a randomized double-blind,
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Table 7 Medicinal plant antidiabetics from cell-biology to clinical trial. Studies in which the indicated plants were examined in clinical trials.

Medicinal Phytochemistry Clinical trial References

plants Product

Aronia Alixir 400 PROTECT® Prospective open-label trial of 148 patients. (Tasic et al., 2021)
melanocarpa [Standardized extract]

Cinnamomum
cassia

Citrullus
colocynthis

Crataegus
pinnatifida
Curcuma longa

Gundelia
tournefortii

Juglans regia

Mangifera
indica

Momordica
charantia

Morus alba

Ocimum
basilicum

Opuntia ficus-
indica

Panax ginseng

Portulaca
oleracea
Punica
granatum
Salacia
oblonga
Trigonella
foenum-
graecum

Urtica dioica

Gymnema
sylvestre

Extract and 1,000 mg capsule.

Fruit capsule.
Multi-herb

500 mg/day

250 mg of hydroalcoholic
extract of the aerial parts.

Leaf extract 100 mg twice daily

and a hydroalcoholic leaf
extract.

Low dose [0.5 g/kg] and high

dose [1 g/kg] of the leaf
extract.

2,000 mg/day of dried powder of

fruit.
300 mg extract.

Raw and processed seeds.

Nopal [Opuntia ficus-indica
preparation].

Extract of fermented root and

Korean red ginseng
preparation.

Seeds

Dried flower mouth wash.

Extract [240, 480 mg/kg]

Seed capsule.

Ethanolic extract.

Leaf water extract

Randomized-placebo control of 70 patients and another study of 19 (Hasanzade et al., 2013,

subjects.

Randomized clinical trial of 50 T2D patients.
Randomized double-blind, placebo-controlled trial of 40 patients.

Randomized double blind, placebo-controlled trial of 71 patients
Randomized double-blind, placebo-controlled trial of 38 patients.

Randomized double-blind, placebo-controlled trial of 61 and 50
patients.

Clinical investigation of 26 T2DM patients.

Randomized, double-blind, placebo-controlled trial of 24 patients.

Randomized clinical trial of 60 type 2 diabetic patient [T2DM].

45 days clinical trial using convenient sampling.
Clinical study.

Randomized clinical trial of 42 subjects and double-blind
randomized crossover design of 19 subjects.

Clinical study of 30 patients and randomized trial of 74 subjects.
Randomized trial of 80 diabetes patients with gingivitis.
Randomized double-blind crossover trial of 60 patients.

Multicenter randomized, placebo-controlled, double-blind, add-on
clinical trial of 154 T2D patients. Another 12 weeks trial of 12
patients.

Double-blind, randomized trial of 50 diabetic women.

22 non-insulin dependent diabetic patients

Mustafa et al., 2017)
(Jang et al., 2008)

(Hu, Zeng & Tomlinson,
2014)

(Neta et al., 2021)

(Hajizadeh-Sharafabad
et al., 2016)

(Taghizadeh et al., 2022;
Lopez-Romero et al., 2014)

(Waheed, Miana ¢ Ahmad,
2006)

(Cortez-Navarrete et al.,
2018)

(Taghizadeh et al., 2022)

(Arivuchudar, Nazni &
Uvaraj, 2022)

(Lépez-Romero et al., 2014)

(Vuksan et al., 2008)

(El-Sayed, 2011; Darvish
Damavandi et al., 2021)

(Sedigh-Rahimabadi et al.,
2017)

(Williams et al., 2007)

(Verma et al., 2016; Najdi
et al., 2019)

(Amiri Behzadi,
Kalalian-Moghaddam &
Ahmadi, 2016)

(Baskaran et al., 1990)

placebo-controlled trial, reporting decreased plasma lipids, glucose levels, HbAlc, and
LDL-C at 95% CI. A randomized, double-blind placebo-controlled trial of Juglans regia
leaf extract resulted in a significant decrease (p < 0.05) in fasting blood glucose levels,

triglycerides, total cholesterol and HbAlc compared with placebo (Hosseini et al., 2014).
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Similar beneficial effects were reported in further trials (Rabiei et al., 2018) including
beneficial effects in patients with coronary artery disease with significant decreases

(p = 0.04) in total cholesterol, BMI, and LDL (Hajizadeh-Sharafabad et al., 2016). A
clinical investigation of oral administration of Portulaca oleracea seeds in 30 T2DM
subjects revealed a significant decrease (p < 0.001) in serum levels of triglycerides, total
cholesterol, LDL-C, and liver enzymes, but increased (p > 0.001) levels of HDL-C and
albumin (E-Sayed, 2011). Purslane (Portulaca oleracea capsule) also drove a significant
difference (p > 0.01) in the triglycerides, liver enzymesand fasting blood glucose in 74
people with T2DM in a randomized double-blind, placebo-controlled clinical trial.

An improvement in both insulin resistance, and LDL-C levels was also reported (Darvish
Damavandi et al., 2021).

Decreased blood glucose levels are often used as a key outcome. A 14-day clinical
investigation involving 26 people with T2DM on a low (0.5 g/kg) and high (1 g/kg) doses of
aqueous and alcoholic extract of the powdered leaves of Mangifera indica showed a
significant decrease in blood glucose levels in all groups (Waheed, Miana & Ahmad, 2006).
Similarly, both raw and processed seeds of Ocimum basilicum in patients with diabetes and
dyslipidemia revealed beneficial effects including decreased blood glucose, a reduction in
body mass index, triglycerides, LDL-C, and decreased HDL-C at 5% and 1% levels of
significant (Arivuchudar, Nazni ¢ Uvaraj, 2022). A significant decrease (p < 0.05) in the
fasting blood glucose and HbA1c¢ levels were observed in people with T2DM after 2 month
treatment with the fruit capsule of Citrullus colocynthis (Jang et al., 2008).

In a randomized, double-blind, crossover study of 60 diabetic subjects receiving Salacia
oblonga extract, Williams et al. (2007) reported significant decrease (p < 0.05) in glyceamia
and insulinemia in patients after high carbohydrate meal. A 4-week randomized double-
blind, placebo-controlled clinical trial of fermented red ginseng (Panax ginseng) involving
42 patients with impaired fasting glucose or T2DM also showed significant decrease
(p < 0.01) in postprandial glucose levels and increased postprandial insulin levels
compared to the placebo group (Oh et al., 2014). A further study supported these
conclusions (Vuksan et al., 2008).

Many other studies, highlighted in Table 7, have shown pronounced and beneficial
effects.

Not all data are conclusive. The results of a 60-day randomized-placebo clinical trial by
Hasanzade and colleagues using Cinnamomum cassia in 70 people with T2D revealed no
significant difference (p > 0.05) between the test and placebo (Hasanzade et al., 2013).
On the other hand, Hoehn and Stockert in a smaller trial reported significant decrease in
blood sugar levels of the patients taking 1,000 mg Cinnamomum cassia capsule for 12
weeks (Hoehn & Stockert, 2012). An aqueous extract of G. sylvestre (GS4) 400 mg/day used
over 18 to 20 months supplementation drove significant decreases (p < 0.001) in blood
glucose, glycosylated haemoglobin and glycosylated plasma protein in 22 patients
(Baskaran et al., 1990). It should also be clearly noted that many of the clinical studies
performed to date include relatively small numbers of patients. Larger studies will provide
impetus for more work in this area.
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CONCLUSION AND FUTURE PERSPECTIVES

Diabetes mellitus-related morbidity and mortality continues to increase globally and
necessitates urgent action to identify and drive novel therapies which can be widely used in
under-developed economies. Our review reveals that antidiabetic drugs of herbal origin
can play a modulatory role in insulin signaling pathways and drive metabolically relevant
changes in insulin action, such as elevated glucose transport. Tissue culture systems have
provided key insight into the molecular mechanisms of the phytochemicals beneficial to
diabetic patients and have contributed both mechanistic insight and facilitated the
development of more clinically-facing treatments. Among the plants we reviewed in tissue
culture systems, close to half (45%) have been investigated for their antidiabetic activities
in mammals (rats, mice, and rabbits) and 4% have been tested in human clinical trials.
The positive outcomes reported in these clinical trials should be recognized as providing a
new impetus to phytobiology research as an effective treatment for insulin resistance and
diabetes. In future, larger-scale clinical trials are clearly warranted given the largely positive
effects of many of these natural products. There is a need to screen larger numbers and
citizens of different genetic backgrounds to identify potential population-specific benefits.
Similarly, the coupling of phytochemical studies to genomic data may offer a powerful
means to develop combination therapies and more personalized medicine approaches.

LIST OF ABBREVIATIONS
ACC Acetyl-CoA carboxylase
Akt Protein kinase B

AMPK Adenosine monophosphate-activated protein kinase
AS160 Akt substrate 160 kDa
ATPase  Adenosine triphosphatase

CI Confidence interval

GCK Glucokinase

GLP-1 Glucagon-like peptides-1

GLUT Glucose transporter

GSK-3 Glycogen synthase kinase 3

GSV Glucose storage vesicle

HbAlc Hemoglobin Alc

HDL High-density lipoprotein

HSC Hematopoietic stem cell

IFN Interferon

IR Insulin receptor

IRS Insulin receptor substrate

LDL Low-density lipoprotein

LPS Lipopolysaccharide

PEPCK  Phosphoenolpyruvate carboxykinase
PI3K Phosphoinositide-3 kinase

PPARy Peroxisome proliferator-activated receptor gamma
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PTP1B Protein tyrosine phosphate 1B
SGLT1 Sodium-glucose linked transporterl
T1DM Type 1 diabetes mellitus

T2DM Type 2 diabetes mellitus
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