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a b s t r a c t

Short-term forecasts of energy consumption are invaluable for the operation of energy systems,
including low voltage electricity networks. However, network loads are challenging to predict when
highly desegregated to small numbers of customers, which may be dominated by individual behaviours
rather than the smooth profiles associated with aggregate consumption. Furthermore, distribution
networks are challenged almost entirely by peak loads, and tasks such as scheduling storage and/or
demand flexibility maybe be driven by predicted peak demand, a feature that is often poorly
characterised by general-purpose forecasting methods. Here we propose an approach to predict the
timing and level of daily peak demand, and a data fusion procedure for combining conventional and
peak forecasts to produce a general-purpose probabilistic forecast with improved performance during
peaks. The proposed approach is demonstrated using real smart meter data and a hypothetical low
voltage network hierarchy comprising feeders, secondary and primary substations. Fusing state-of-the-
art probabilistic load forecasts with peak forecasts is found to improve performance overall, particularly
at smart-meter and feeder levels and during peak hours, where improvement in terms of CRPS exceeds
10%.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Distribution networks are in a state of transition, with their
riginal remit of ‘fit and forget’ now supplanted by the potential
f massive increase in utilisation from electrified transport and
eat, and two-way power flow from embedded renewable gen-
ration. This has led to the emerging necessity of the Distribution
ystem Operator (DSO), who holds responsibility for balancing
ower flows under the transmission network [1]. While balancing
as been commonplace at transmission-level for decades and the
equisite forecasting and dispatch capabilities well understood,
here is not a direct translation from transmission to distribu-
ion. Going down the voltage levels in power networks makes
ndividual, low diversity, demand behaviours less predictable and
ence unsuited to the methods used at transmission and regional
evels. Short-term forecasts of load at all levels of the distribution
etwork will be essential to coordinate flexibility services from
istributed energy resources.
Load forecasting on the transmission network is a highly ac-

ive area of research, and has been a mature technology for
ecades. Research in recent years has been focused on proba-
ilistic forecasts, which communicate the uncertainty associated
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352-4677/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
with a forecast to end-users. There is a growing appetite for such
forecasts in industry, which are now used by both Transmis-
sion System Operators (TSOs) and energy traders in operational
decision making. Probabilistic load forecasting is extensively re-
viewed in [2], where the authors highlight the emergence of
household level forecasting in the context of hierarchical mod-
elling; an opportunity provided by newly available smart meter
datasets.

Forecasting at Low Voltage (LV) levels poses a different chal-
lenge to the conventional load forecasting problem at the trans-
mission level. As electricity is aggregated group behaviours
emerge which tend to change slowly and are therefore relatively
predictable. Disaggregated demand at the household level is
much more changeable and influenced by individual behaviours
and processes, as shown in Fig. 1. The effect of the signal to noise
ratio at the various voltage levels is discussed in much of the
following literature where it is suggested that new approaches
to forecasting are required and that should be developed with
end-use in mind.

Apart from the challenge of the lower signal to noise ratio
at the household level, there are also challenges relating to the
large number of nodes in LV networks where forecasts may be
required, limited coverage of monitoring, data quality, and data
privacy. These constraints affect the applicable methodologies for
forecasting; for instance the models must be computationally
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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fficient and the input features may not be location specific. Chal-
enges and opportunities for low voltage forecasts are discussed
n an extensive review of the literature [3,4], where the authors
utline recommendations for future research; such as the need
or probabilistic forecasting, handling limited observability, ro-
ust forecast verification, and avoiding widespread single-source
ata-bias in research projects.
The smart meter roll-out in Great Britain and around the globe

resents new opportunities in household load forecasting. This
rea has received the most attention in the literature around LV
orecasting, which has mainly focused on deterministic forecast-
ng [5,6]. The high penalisation of phase or ‘timing’ errors by
raditional point-wise deterministic metrics like mean absolute
rror is highlighted in [7], where a new evaluation measure based
n temporal permutation is proposed. The problem highlighted
s that typical evaluation metrics tend to reward a smoother
orecast on average compared to a forecast that may better rep-
esent the underlying process, that misses the precise timing
f a sharp increase in demand. Therefore, the importance of
redicting peaks in household (and LV) electricity demand has
een discussed extensively in the literature [4].
The volatility of household demand necessitates a probabilis-

ic approach to forecasting. Univariate probabilistic forecasts are
ypically communicated as full density forecasts, which are the
ost flexible for use in decision making, or in the form of multiple
iscrete quantiles at various probability levels. Interval forecasts
ith a specific coverage probability are also common [8]. In [9]
ensity forecasts are obtained using Kernel Density Estimation
KDE), but conditional on information such as time-of-day, with
boundary correction applied to account for the positive nature
f demand. Similarly, beta kernels are used in [10] to address
he same problem, with a focus on building a scalable forecast-
ng algorithm. Full density forecasts are generated as a bench-
ark model in [11], where the conditional density is assumed

o be Gaussian with variance conditional by time-of-day; this is
ompared to non-parametric forecasts produced using an LSTM
etwork for quantile regression, which outperforms the condi-
ional density approach for the quantiles considered. A quantile
egression approach based on boosting with additive models is
emonstrated in [12], where the additive models are flexible
nd benefit from automatic feature selection by nature of the
omponent-wise boosting procedure. Importantly, the quantile
orecasts at the smart meter level are shown to be more skilful
han an advanced parametric approach based on the Gaussian
istribution. Bernstein polynomials have also been proposed for
roducing non-parametric density forecasts in [13] which show
mprovement over Gaussian and Gaussian mixture density fore-
asts. Finally, multivariate forecasts are generated for a hierarchy
f smart meters in [14], where a coherency constraint is placed on
he samples of the multivariate distribution, i.e. lower levels must
um to higher levels of the hierarchy. This literature may give
he impression that only non-parametric densities are suitable
or household load forecasting, however, there have been no
tudies examining alternatives to the Gaussian distribution until
he present work.

Some of the works already discussed (e.g. [12,14]) also forecast
ow- and medium-voltage levels, i.e. feeder and substation load.
owever, the networks are hypothetical, in that they are gener-
ted from aggregated smart meter data. As discussed in [4], this
ecessarily excludes important elements on the distribution net-
ork such as commercial loads, street lighting, embedded gen-
ration, electrical losses, dependencies between customers, etc.
owever, there is a shortage of open-source data sets that con-
ain a satisfactory amount of nodes due to a lack of widespread
onitoring. An alternative option is to generate a synthetic LV

ataset from smart meter data and basic information on the local

2

Fig. 1. Half-hourly demand during one week in 2013 averaged across an
increasing number of households from 1 to 1000. Group behaviours become
more apparent as the aggregation level increases.

network architecture [15]. In [16] several probabilistic methods
(quantile regression, KDE) are evaluated using a dataset compris-
ing of 100 real LV feeders where there was no clear best forecaster
at all feeders, however, autoregressive type models performed
well, and (forecast) temperature was shown to have negligible
influence on the forecast skill.

Peak demand is typically the limiting factor in the capacity
of distribution networks, set by the maximum power a cable
of transformer can handle. Additionally, for a lot of flexibility
applications the main goal is to reduce, flatten, or shift the daily
peak demand in the LV network. Therefore, day-ahead forecasts
of the daily maximum at the different nodes are valuable from
both utilities perspective (e.g. in setting dynamic prices) and the
consumers perspective (e.g. for scheduling battery or EV charg-
ing) [1]. The level of the daily peak is only half of the issue
however, forecasting the time-of-peak is also relevant. There is
little published in this specific area for the LV network to the
best of our knowledge; related work [17] focuses on Extreme
Value Theory and peaks over a defined threshold, which are by
definition rare.

In this paper, we consider a four-level hierarchy: a primary
substation (33 kV–11 kV), secondary substations (11 kV–4151 kV),
feeders (415 kV), and households (230V, single phase). Methods
for generating sharp and calibrated probabilistic forecasts of
demand for the day-ahead are developed, including non-Gaussian
parametric density forecasting at the household level, which
is innovative in and of itself. We also investigate probabilistic
daily peak forecasting, as in the daily maximum average energy
demand, in terms of both peak intensity and timing. Finally, a
method for combining (or blending) the daily bivariate (level and
timing) peak forecasts and the half-hourly demand forecasts is
described, which is termed forecast fusion. While methods for
combining forecasts of varying spatial and/or temporal resolution
have been proposed, combining forecasts of related yet distinct
quantities has not been explored before, to the best of our
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nowledge. The case study presented is based on a hypothetical
etwork generated using the Low Carbon London dataset, and
he proposed forecasts are robustly verified against benchmark
odels.
Probabilistic load forecasting is introduced in Section 2, fol-

lowed by the concept of forecast fusion in Section 3. State-of-
the-art methods for conventional day-ahead load forecasting are
presented in Section 4.1, followed by proposed methods for daily
peak intensity and timing forecasting in 4.2 and 4.3, respectively.
An extensive, fully reproducible, case study based on the Low
Carbon London dataset [18] and a hypothetical LV network is
then presented where forecasts for load at household, feeder,
secondary substation and primary substation levels are analysed
in detail. Finally, brief conclusions are drawn in Section 6.

2. Probabilistic forecasting

In this section the probabilistic forecasting framework is for-
malised and the flexible statistical learning framework employed
to generate forecasts throughout the work is introduced. We
are typically interested in the predictive density or cumulative
distribution function (CDF) of random variable Yt at time t . The
predictive CDF is defined as

F̂t (yt ) = P(Yt ≤ yt ) (1)

where F̂ is a strictly increasing function. Here we consider time
in half-hour periods, as this is the resolution of electricity me-
tering in Great Britain, but other this is not a restriction on the
methodology. A density forecast provides maximum flexibility as
quantiles or intervals can easily be extracted from the forecast,
and no need to approximation are necessary, such as interpo-
lating between quantiles. Additionally, the full distribution may
be described by a smaller number of parameters, which may be
functions of explanatory variables. One drawback is that a suit-
able conditional parametric family must be found for the forecast.
Kernel density estimation provides a non-parametric alternative
but can be less flexible and more computationally demanding and
therefore less scalable — critical for DSOs where the number of
assets is large.

2.1. Generalised additive models for location, scale, and shape

Generalised Additive Models for Location, Scale, and Shape
(GAMLSS) [19], are semi-parametric models. This is because a
parametric distribution is assumed for the target variable, and
the parameters that define the assumed distribution may depend
on non-parametric smooth functions of explanatory variables.
The framework is an extension of the more familiar Generalised
Additive Model (GAM) [20], such that any parameter of the distri-
bution can be a function of input features, not just the conditional
mean.

If we have observations y, in this case demand at a particular
location on the LV network, the conditional density typically
f (y|θ) depends on up to four parameters; these are the location
(θ1), scale (θ2), and shape parameters (θ3, θ4). An additive regres-
sion model is generated for each distribution parameter θi for i =
, . . . , 4. Let xi be the pool of Ni input features in the sub-model

for θi, and gi(·) the link function, then the model formulation of a
GAMLSS is

gi(θi) = β0,θi +

Ni∑
n=1

fn,θi (xi,n), i = 1, . . . , 4 (2)

here the function fn,θi is the effect of explanatory variable n on
the distribution parameter θi, which can be linear or non-linear
functions, such as penalised smoothing splines, linear coefficients,
3

Fig. 2. Day-ahead example probabilistic forecasts as fan plots for the primary
substation (ps1 top left), a secondary substation (ss1 top right), a feeder
(ss1_fdr1, bottom left), and a household (N1174) on 17-10-2013. The widest
and lightest coloured interval has a coverage probability of 98% and the
measurement is overlaid in black for reference.

surfaces, etc; β0,θi are the intercepts of each sub-model. These
models may be estimated numerically using a combination of
maximum likelihood, and successive back-fitting of the predictor
functions for each parameter [19].

In Fig. 2 four example density forecasting models are visu-
lised in a fan plot, where probability intervals are extracted
rom the conditional distribution at each lead time. Load fore-
asts are shown at different levels of aggregation. In general,
orecast uncertainty is greater the further load is disaggregated.
n particular, the possibility of large peaks is clearly quantified by
igh quantiles of the household-level forecast, which would not
e captured by point forecasts.
Importantly, demand can approach zero in households al-

hough in our case study framework cannot be negative (net-
emand, demand less embedded generation, is reserved for fu-
ure work). This removes some parametric families for the fore-
asts from consideration, such as the Gaussian distribution. In
ig. 2, the Generalised Beta Prime distribution [21] is used for
isaggregate demand and the Gaussian distribution is used for
he three other aggregated levels. This small example is indicative
f the approach throughout, which was to model the aggregate
nd household levels in the network distinctly; the forecasting
odels at the household level have to be simple, computationally
fficient, and be suitable for right-skewed data.

. Forecast fusion

In this paper, we hypothesise that better forecast skill can be
chieved by fusing a bespoke forecast of the daily peaks in de-
and, in terms of both the timing and intensity of the event, with
state-of-the-art half-hourly resolution forecast, both produced
ne day-ahead. This technique is very similar to forecast combi-
ation (or blending, expert mixtures, etc.), but distinct in that we
re combining forecasts of two different types: the demand for a
articular half-hour and day yd,h and the daily peak in demand
(p)
d . A forecast of the timing of the peak, i.e. the number of half-
ours from midnight until the daily peak h(p)

d , is also used in the
ethod.
Consider the fusion of the two forecasts as a linear combina-

ion of the two distribution functions,

˜ (y) = (1− w )F̂ (y)+ w F̂ (p)(y) (3)
d,h d,h d,h d,h d
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ith weights wd,h that may also be forecasts,or otherwise cho-
sen, for each half-hour. This formulation respects the fact that
a probabilistic forecast of the daily peak intensity (maximum
value) is not sufficient in most applications and that the timing
of the peak is also relevant. In this paper the weights are derived
from probabilistic forecasts of the time-of-peak. If we define the
random variable H = {1, 2, . . . , 48} to be the number of half-
hours to each daily maximum in demand from midnight h(p)

d , then
he weights are found via a forecast probability mass function

d,h = f̂d,h(h) = P(H = h) (4)

since forecasts are typically issued for discrete blocks of energy.
Therefore, estimating the weights is re-framed into a discrete
time-to-event prediction problem. Note that the sum of the prob-
abilities f̂d,h(h) over the total number of blocks in each day should
be 1. If the conventional forecast were a prediction of load condi-
tional on there not being a peak at d, h, this could be interpreted
as a statement of the law of total probability. While it may be
possible to produce such a forecast, we choose to proceed using
conventional day-ahead forecasts so that the fusion method is as
applicable as possible,

Forecast fusion is related to techniques found in probabilistic
forecast combination [22,23], blending [24], expert mixtures [25],
linear pools [26,27], and so on. Empirically it was found that im-
portant concepts in forecast combination, such as re-calibration
of a linearly combined forecasts, were not necessary in the fol-
lowing case study. A beta-transformation of the combined fore-
cast, following [26], reduced the forecast skill in cross-validation;
further work on forecast combination may yield benefits here.
However, all the aforementioned methods are based on combin-
ing forecasts of the same type (e.g. hourly resolution, day-ahead
forecasts), hence the distinct terminology here, which highlights
the similarity with the broader topic of data fusion.

Data fusion can be defined as the combination of multiple
sources to obtain improved information in terms of quality, ex-
pense, and/or relevancy [28]. This is typically applied to combin-
ing data from multiple sensors and sources. In [29] multi-model
forecast combination is discussed in terms of data fusion, how-
ever, the method entails combining forecasts of the same variable
much like the literature discussed previously. In this work, we
propose the fusion of conventional load forecasts with forecasts
of peak load. These two forecasts exist in different temporal
domains, hence this is a fusion problem not the usual practice of
forecast combination or blending. We hypothesise that this will
improve forecast skill overall as well as at peaks specifically, simi-
lar to how reconciliation of temporal hierarchies have been found
to improve the skill across the different temporal domains [30].

4. Day-ahead load forecasting

In this section, the approach for generating the day-ahead
probabilistic forecasts of half-hourly load, peak intensity and peak
timing are detailed. Throughout, different approaches are used
depending on the level of aggregation in the LV network, includ-
ing model specifications and input features. The household level
is treated as one group, and feeder level and above as the other,
referred to as ‘aggregated’ levels. This prevents the framework
from becoming too complex but is not a strict constraint. Com-
mon to all base probabilistic forecasts generated (the half-hourly
forecasts F̂d,h(y), the daily peak intensity forecasts F̂ (p)

d (y), and the
peak timing forecasts f̂d,h(h)) is the GAM framework, where both
half-hourly and peak demand forecasts utilise GAMLSS.
4

4.1. Half-hourly forecasts

The half-hourly forecasts at the aggregated levels of the LV
network are described by fd,h(y|θ1d,h; θ2d,h ) where we assume the
onditional distribution is Gaussian. The model is formulated as
ollows at each aggregate node

1(θ1d,h ) = β0 + β1yd−1,h + β2yd−7,h + β3y
(p)
d−1+

48∑
j=1

αjHj(h)yd−1,h +

48∑
j=1

γjHj(h)y
(p)
d−1+

fpvc(h,D(d))+ fpbc(d)

(5)

nd for the scale parameter, the formula is reduced to only
epend on time-of-day for robustness

2(θ2d,h ) = β0 + fpb(h) (6)

here fpvc(·) is a varying coefficient penalised spline, fpbc(·) is a
cyclic penalised spline, and fpb(·) is a penalised spline. There are
wo dummy variables for each half of the day Hj(h), and period of
he week D(d) which is split into day type (Weekday, Saturday,
nd Sunday). So the load forecast is dependent on lags of the
emand, a lag of peak demand, and interactions between yester-
ay’s lags for each half-hour of the day. We also model the diurnal
rend via the varying coefficient spline which changes according
o day-type. Finally the annual seasonality is included, although
n practice this spline is constrained to be very smooth to prevent
nterpolation of the data (in the case study we only have one year
f data). Other formulations were tested; a full exploratory anal-
sis can be found in the supplementary material [18]. However,
his model formulation produced skilful forecasts relative to the
enchmarks averaged over all time periods as well as during daily
eaks, thanks to the interaction terms and the simple formula for
he scale parameter.

Due to the complexity and sheer number of households, the
alf-hourly forecast models for the household level have to be
ore simple and robust than those at the aggregate levels. This

s to prevent over-fitting and for computational efficiency. They
re given by fd,h(y|θ1d,h; θ2d,h; θ3d,h; θ4d,h ) where we assume the
onditional distribution follows the Generalised Beta Prime dis-
ribution. The model is formulated as

1(θ1d,h ) =β0 + β1yd−1,h + β2yd−7,h +

7∑
j=1

αjDj(d)+

fpb(h)+ fpbc(d)

(7)

nd for the scale parameter, the formula is similar to the aggre-
ated levels

2(θ2d,h ) = β0 + fpb(h) (8)

nd the two shape parameters of the distribution are constants
o be estimated. Here the dummy variable Dj(d) is for each of the
periods of the week.

.2. Daily peak intensity

For the daily peak intensity forecasting, data exploration re-
ealed seasonal trends and a high correlation in the lag depen-
ency variables, as shown in Figs. 3 and 4 respectively, in the
ypothetical LV network. Albeit the strength of the relationships
re much weaker at the household level, again due to the low sig-
al to noise ratio. An important consideration when creating the
orecasting models here is the reduced size of the data set, since
here is only one data point per day. Therefore, we reduce the
umber of features and categories in each formulation compared
o half-hourly forecasting.
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Fig. 3. Example time series of the daily peak intensity for primary substation
(ps1), a secondary substation (ss1), a feeder (ss1_fdr1), and a household
(N1174), from the hypothetical LV network. The peak demand shows seasonality
at the aggregated levels, but again is more volatile at this household.

Fig. 4. Lag dependency plots of the daily peak intensity at four levels in a
hypothetical LV network. This includes all nodes at each level and shows the
motivation for using autoregressive based models for peak intensity forecasting,
especially at the aggregate levels.

The peak intensity forecasts at the aggregated levels of the LV
etwork are described by f (p)d (y|θ1d; θ2d ) where we assume the
onditional distribution is Gaussian. The model is formulated as
ollows at each aggregate node

1(θ1d ) = β0 + β1y
(p)
d−1 + β2y

(p)
d−7 + β3σyd−1 + fpbc(d)+

β4D1(d)+ β5D2(d)
(9)

and for the scale parameter, the formula is

g2(θ2d ) = β0 + β1D1(d)+ β2D2(d)+ β3σyd−1 (10)

where period of the week Di(d) is now reduced simply to either
weekday or weekend categories, and σyd−1 is yesterday’s standard
deviation of the half-hourly demand time-series.

An important feature at the household level for model robust-
ness is the ‘empty house’ feature I(d). We include lags of this
variable, which defined an empty house by look at run-lengths
of the daily standard deviation of the half-hourly demand. If this
value dropped to approximately zero for a period of at least 7
days then the empty house feature is active. Note that the house-
hold had to have at least 30 days of emptiness for the feature to
be included. This is because we want to identify houses here that
are regularly empty for a reasonable period of time, rather than
capture things such as holidays, public holidays, etc. which are
5

Fig. 5. Histograms of the daily peak timing at the four different aggregations of
the hypothetical LV network. The peak timing becomes more dispersed at the
lower aggregations on the network. At the primary substation level the peak
timing during the analysis was consistently in the evening, except one data
point which corresponds to the ‘turkey peak’ during Christmas day.

reserved for future work. So, the daily peak intensity forecasts at
the household level are described by fd(y|θ1d; θ2d; θ3d; θ4d ) where
e assume the conditional distribution follows the Generalised
eta Prime distribution. The model is formulated as follows at
ach household

1(θ1d ) = β0 + β1y
(p)
d−1 + β2y

(p)
d−7 + fpb(d) +

β3D1(d)+ β4D2(d)+ β5I(d− 1)
(11)

and for g2(θ2d ) = β0 + β1I(d − 1), g3(θ3d ) = β0 + β1I(d − 1),
the formula for the fourth moment of the distribution is kept
constant. So the scale and shape parameters are only dependent
on the empty house feature to make the forecasts more robust to
overfitting.

4.3. Daily peak timing

A key component of the forecast fusion method is the weight-
ing. In this study we choose to forecast the weights by defining
them as the probability of the peak demand timing over the
discrete blocks of energy in a day. Histograms showing the dis-
tribution of the peak timing at different levels on a hypothetical
LV network are shown in Fig. 5, which shows that as expected
the time of the daily peaks become more variable as demand
becomes disaggregate. The timing of the peak demand, specially
at the higher aggregations, is dependent on the time-of-year; it
is widely understood during the winter the peak daily demand
tends to be earlier in the evening (and the level of the peak
becomes higher, an example of which is shown in Fig. 3) on
the GB network. However, complex seasonal interactions were
observed in the time-of-peak data, especially at the feeder and
secondary substation levels of aggregation.

The process is framed as a discrete time-to-event problem,
where with suitable transformations of the time-of-daily peak
time series h(p)

d , a GAM framework can be applied to gener-
ate forecasts [31]. This means we can leverage the powerful
smoothing capabilities of a GAM to capture complex seasonal
interactions between input features at the daily peak timing.
The framework is relatively unique in terms of time-to-event or
survival analysis, in that due to the framework there must be an
event (i.e. peak) for every subject (i.e. day) for each experiment
(i.e. node), and the domain of the peak timing in the analysis is
h(p)

∈ {1, 2, . . . , 48}.
d
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Fig. 6. Day-ahead example probability forecasts for the time of the daily peak
at the same four nodes as Fig. 2 and for the same day. The measurement is
represented by the dashed red vertical line in each panel for reference. These
forecasts correspond to the weights used in the forecast fusion for each discrete
time period of this day.

The discrete hazard function is the conditional probability at
time interval h

λ(h|x) = P(H = h|H ≥ h, x) (12)

hich gives the conditional probability of a peak in interval h
given that the peak happens at time H ≥ h. To model this
hazard rate, we use a time varying linear predictor with a GAM
framework

λ(h|x) = g−1
[
β0h +

N∑
n=1

fn(xnh)
]

(13)

here the link function here g(·) is the logit link. In this case
or the aggregated levels in this case we use a tensor interaction
erm for the period of day and day of year as the input features as
ell as a dummy variable for the day type (weekday/weekend).
t the household level a more simple approach is needed for
omputational efficiency; two separate smooth splines for each
f the input features are used. The discrete survival function is
efined as

(h|x) = P(H > h|x) =
h∏

s=1

(1− λ(h|x)) (14)

rom which the discrete cumulative distribution function is found
(h) = 1− S(h), and then the probability mass function for each

day fh(h) = P(H = h) is easily calculated. For estimating the
regression model, an indicator variable for each daily recorded
value of h(p) is defined as the target variable which is zero for
each discrete block of time until the event is recorded where
the indicator variable is 1. For more information on the data
transformation the reader is referred to [32,33]. Note that the
final peak timing probability forecast could similarly be obtained
via a simple logistic regression/classification method, but the dis-
crete time-to-event setting gives the proposed method a stronger
theoretical foundation. In Fig. 6 four probability forecasts are
hown for the same LV nodes as Fig. 2 and for the same day; this
constitutes the weights wd,h, i.e. the last component required to
fuse the half-hourly and daily peak intensity forecasts together.

5. Case study

The methodology is tested using data from the Low Carbon
London trial [34]. Households which are on a variable price tariff
6

Fig. 7. Diagram of the hypothetical LV network hierarchy used in the case study
where the central node represents the primary substation and so on down to
the household level at the end nodes. The size of the primary substation is small
compared to reality in the GB distribution network due to the limited number
of smart meters used. However, as shown in Fig. 1, group behaviours begin to
emerge quickly at high levels of aggregation.

are first removed, and then households which have regular com-
munication issues and/or suspect data are removed, and finally
only households which have a complete record of measurements
during 2013 are retained. This represents quite a strict data clean-
ing process in which we are left with 742 smart meters; however,
addressing challenges due to missing-data and forecasting dy-
namic price tariff households are beyond the scope of this study.
Data from this experiment is anonymised which means location
specific effects, such as temperature, are necessarily excluded
from the analysis.

The households are sampled (without replacement) to cre-
ate a hypothetical LV network, albeit given the amount of the
available smart meters, the primary substation level (i.e. the top
aggregation) is smaller than perhaps you would find in practice.
However, as shown in Fig. 1, group behaviours begin to emerge
quickly. The sampling process was configured whereby each sec-
ondary substation comprises of between 4–7 feeders and each
feeder contains around 16–45 smart meters. The hypothetical LV
network is illustrated in Fig. 7 showing all the different levels
of aggregation. As discussed in [4] there is a severe lack of real
open-access LV network data available. Therefore, this approach
is effectively a compromise because we implicitly cannot ac-
count for street furniture, embedded generation, and potential
correlations between nodes in a real life network.

For the regression problems, the coverage of the dataset is
January 2013 to December 2013 inclusive. To compare the fore-
cast performance, each month is partitioned into thee blocks
of approximately 10 days, depending on month. The first two
blocks of every month compromise the training data, on which
cross-validation is also carried out to generate out of sample
forecasts covering the full year. The last block in each month
constitutes the testing data, i.e. not used anywhere for model
estimation or tuning. All methods are implemented in R [35]
using the package ProbCast [36], developed by the authors for the
modelling, evaluation, and visualisation of probabilistic forecasts.
The wrapper functions for GAMLSS for the regression models [19]
are used extensively here.

A two pronged approach is necessary to assess probabilistic
forecasts performance; calibration (or reliability) is the necessary
condition that predicted probabilities are unbiased, and sharp-
ness is a measure of forecast uncertainty, i.e. the spread of the
predictive distribution. Combined, these allow for the ranking of
competing forecasting methods by sharpness subject to calibra-

tion [37]. For the full predictive cumulative distributions in this
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ase study, the Continuous Ranked Probability Score (CRPS) [37,
8] is used to measure both sharpness and calibration

rps =
1
N

N∑
t=1

∫
∞

−∞

{F̂t (y)− 1(y ≥ yt )}2dy (15)

where 1(·) is the indicator function. The CRPS for a single forecast
observation pair is therefore the area between the squared dif-
ference of the forecast and observation CDF, where the latter is a
step-function from 0 to 1 at the observed value. For the discrete
probability forecasts of the peak timing, the Ranked Probability
Score (RPS) is used for verification, which is the discrete form of
CRPS [39].

The Probability Integral Transform (PIT) histogram is used to
verify the calibration of the forecasts

ut = F̂ (yt ) (16)

whereby, if the forecasts are well calibrated and the sample is
sufficiently large, u ∼ U(0, 1), which is inspected visually via a
histogram with a certain number of (typically 20 [39]) bins. One
limitation with this approach is that is becomes time consuming
to verify all nodes in a large network. So, in this case the calibra-
tion checked within grouped network levels (e.g. smart meters,
feeders, etc.). Reliability diagrams [40] are used as an alternative
to check the calibration of quantiles of the distribution at individ-
ual nodes in the supplementary material [18]. The calibration of
the discrete probability forecasts is not presented here for brevity,
but are shown in the supplementary material via multi-category
reliability diagrams [18,41].

5.1. Benchmarks & skill scores

A set of benchmark models have been chosen for case study,
with models chosen depending on the forecasting task and level
in the LV network. There a limited literature on benchmarks for
probabilistic forecasts in general, and none established for LV load
forecasting.

For the half-hourly forecasts a simple auto-regressive model
is used and implemented in the GAMLSS framework for the
aggregated levels

g1(θ1d,h ) = β0 + β1yd−1,h + β2yd−7,h + fpb(h) (17)

with and the scale parameter and distribution family the match-
ing the proposed advanced model. At the household level three
benchmark models are employed; two are based on Kernel Den-
sity Estimation (KDE) using zero-truncated Gaussian kernels. In
the first separate KDE models are defined for each for each half-
hour of the day, and in the second separate KDE models are
defined for each half-hour and day type (weekday, Saturday,
Sunday). Both of these are similar to a previously published
method [9]. The third is a simplified version of the GAMLSS model
used at the household level, with the same Generalised Beta
Prime family, where only the location and scale parameters vary
smoothly with time-of-day.

For the peak intensity forecasts a very simple autoregressive
based GAMLSS model is used for the aggregated levels, with the
Gaussian conditional distribution and formula

g1(θ1d ) = β0 + β1y
(p)
d−1 + β2y

(p)
d−7 (18)

where the scale parameter is a constant. At the household level,
again three benchmark models are employed. The first is a very
simple unconditional KDE estimate, the second is a KDE estimate
conditional on day type (weekday/weekend), and finally a sim-
ple location-only autoregressive GAMLSS model, i.e. the same as
Eq. (18) except using the Generalised Beta Prime family as the

conditional distribution. o

7

Fig. 8. Skill scores averages of the peak intensity forecasts at the household
level of the network relative to KDE1, where the Full model is a component
of the Fusion model. The sample distribution is found via bootstrap averages.
The peak intensity forecasts at the household level are as skilful as those at the
aggregate levels relative to the benchmark.

For the peak timing probability forecasts the same simple
seasonal climatology model is used at all points of the network.
This is a competitive benchmark because seasonality is the only
effect used in our more advanced model.

Forecast evaluation is reported via the relative change of the
score of the proposed model S̄ to a benchmark S̄ref via skill scores.
If the perfect score is zero, as in the cases considered here, then
the skill score is

skill = 1−
S̄

S̄ref
(19)

nd in the following the terms skill score, percentage improve-
ent, and relative change are used interchangeably. Bootstrap

e-sampling is used as a simple non-parametric method for es-
imating the significance in forecast improvement [40]. Forecast
arget times are sampled with replacement with a length equal
o the original length of the set, and then skill scores are calcu-
ated. This process is repeated a large number of times until the
ampling variation of the result is determined, which are then
ypically presented via boxplots [40].

.2. Daily peak intensity evaluation

In Fig. 8 the skill of the peak intensity forecasts is demon-
trated at the household level against three benchmarks, an un-
onditional KDE, KDE conditional on day type (weekday/
eekend), and a simple GAMLSS model, based on autoregressive

eatures for the location parameter only. The full model is used
s a component in the fused forecasts, and as you can see on
verage results in improved forecasts of over 15% relative to the
ost simple benchmark in testing. This validates the motiva-

ion for using a bespoke model for predicting the peaks alone.
here is some variability in the skill between households and
his is skewed towards improved skill, as detailed in [18] and
iscussed in Section 5.5. Some households show over a 50%
mprovement in CRPS in cross-validation and testing compared
o the unconditional KDE estimate and few showing negative
kill below −5%. The improvement between the two GAMLSS
odels validates the inclusion of the smooth day of year, day type

weekday/weekend), and empty house features.
The skill scores are similar across all levels of the network from

eeder to Primary Substation, in contrast to peak timing and half-
ourly forecasts which are generally more skilful at higher levels
f aggregation than lower. The breakdown by individual nodes is
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resented in [18] and we find that skill is positive and statistically
ignificant in the majority of cases on the test data, but also
ote that the sample variation is greater due to the reduced data
olume. This is also reflected in how the nodes where Fusion
hows the greatest/least skill are not the same between the
ross-validation and test results, although the overall behaviour
s similar.

.3. Daily peak timing evaluation

In this subsection we evaluate in more detail the weights used
n the fusion forecast, wd,h, which is defined as the probability
f the daily peak at each node occurring in each discrete block
f energy throughout the day. At the aggregate levels, the skill
cores of the discrete time-to-event probability forecasts, where
he reference is seasonal climatology, are range from 0% (for
our feeders) to over 20% for the Primary Substation. Detailed
esults may be found in [18]. There is a clear trend for greater
mprovement at higher levels in the hierarchy. This is because
he peak timing is less variable and more smoothly dependent
n seasonal, which is easily modelled. Whereas, even at the
eeder level during testing some of the nodes have similar or
ess skill than the benchmark, although there is a skew generally
or positive skill scores. At the feeder levels the time of peak
s clearly dependent on more complex behaviours than can be
escribed by time of day and day of year. Additionally, the general
hange in skill between cross-validation and testing is worth
urther investigation at all the levels; ideally more data would be
vailable when learning complex seasonal interactions between
ay of year and time of day which may be leading to overfitting.
This problem is also evident at the smart meter level. The

ime-to-event based forecast is only marginally more skilful in
esting than the benchmark with a CRPS skill score of under 0.5%.
his highlights the difficulty in predicting the peak timing at the
ousehold level and that the predictions of the time-to-event
ased model are close to seasonal climatology on average. The
ariability in skill has been investigated, shown in [18]. There is
ariation in skill between households, which ranges from ±10%;

some households are apparently more predictable than others.
Teasing out relationships between node type, the skill of the

timing probability forecasts, and drivers of predictability is an
interesting aspect of future work. Stakeholders could use this
information to gauge locations for the provision of flexibility in
the LV network. Finally, further analysis of the forecasts could
give an understanding as to which nodes are likely to reach their
daily peak at the same time as the more aggregated nodes higher
up the network. This information could be valuable for revealing
which households or nodes to leverage for peak demand shifting
via (for example) time-of-use tariffs.

5.4. Forecast fusion evaluation

In the following subsections we first evaluate the forecast
fusion methodology. To this end, we evaluate the forecasts using
CRPS skill scores averaged over all time periods, and also inspect
the calibration directly. However, to demonstrate the improved
forecast skill for the daily peak demand we also retrospectively
select periods where the daily peak demand is recorded and
evaluate the fused forecast averaged over these time periods only.
Due to the double penalty effect [7], an advanced (and smoother)
forecast might produce improved skill on average compared to
a benchmark, but fail predict peak demand well. Therefore, the
structure of this evaluation is aimed to demonstrated the skill of
the forecast on average and during the daily peak demand.
8

Fig. 9. Skill scores averages of the three half-hourly forecasting methods
employed at the aggregated levels of the network relative to the ‘Simple’ model.
The sample distribution is found via bootstrap averages, where all available
samples are included at the primary substation (ps), secondary substation (ss),
and feeder (fdr) levels.

5.4.1. Aggregate levels
At the aggregate levels, the two advanced forecasting methods

show similar improved skill over the benchmark at the primary
substation (ps), secondary substation (ss), and feeder (fdr) lev-
els in the network. This is true for both cross-validation and
testing, as shown in Fig. 9. So we can conclude that the forecast
fusion method is at least as skilful as the full half-hourly model.
This is encouraging since the latter is a key component in the
fused forecast. More generally, we can see the skill improve-
ments possible from adding seasonal features and interactions in
the regression model, as evidenced by the ≈10% improvement
in forecast skill during testing across the aggregated network
compared to the simple autoregressive benchmark.

Rather than metrics at each level of the network, in Fig. 10
he skill scores of the Fusion method are plotted at each single
ode of the aggregated network. Clearly there is variability in
mprovement between nodes, especially at the feeder level which
s hidden in Fig. 9. This plot also emphasises that during cross-
alidation the improvement is increasing with the aggregation
or voltage) level. However, during testing the skill scores are
ar closer between the levels which could indicate that the test-
ng data is more difficult to predict at the aggregate levels, the
enchmark models are improved relative to the advanced models
ith more training data, or the advanced models are over-fitting
lightly, or a combination of all three.
If we evaluate the forecasts only during the periods when the

aily peak demand is recorded the skill of the three forecasting
ethods looks very different. Fig. 11 shows that the full model
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Fig. 10. Skill scores averages of the Fusion forecasting method at the aggregated
levels of the network relative to the ‘Simple’ model. The sample distribution is
found via bootstrap averages, where all available samples are included at each
node.

is similar in skill during testing to the benchmark. In fact, during
the data exploration and tuning of the models, it proved difficult
to find a suitable feature set which performed equally well to
the benchmark model during the peak half-hours, as evidenced
in the supplementary material [18]. However, the Fusion method
is again ≈10% better at forecasting the daily peak during testing
across the aggregated network compared to the benchmark. This
is a key result of the paper and shows that by fusing a be-
spoke forecast of the daily peaks to a state-of-the-art half-hourly
forecasts, it is possible to achieve skilful forecasts on average
and during the daily peak demand. We have also investigated
the variation in forecast performance across individual nodes of
the aggregated network. While there is again variability between
nodes, all show improvement from forecast fusion of between 5%
and 15%. Bootstrap skill scores by node are illustrated in [18].

The calibration of the advanced GAMLSS and fusion models
is shown in Fig. 12 where essentially the average calibration at
the aggregated levels is shown. Importantly, the Fusion method
is at least as well calibrated as the Full model, if not marginally
better calibrated. Clearly, the right tail of the distribution could
be improved at most of the levels to account for large peaks in
demand. However, this is reserved for future work. Additionally,
the calibration of both models at the feeder level is relatively poor
on average. Using distribution free regression approaches might
be beneficial here as well as accounting for holiday and special
events. The key result here is that the forecasts are reasonably
well calibrated and the fusion methodology did not introduce
calibration issues via the linear combination, an issue that is
widely discussed in forecast combination [26].
 3

9

Fig. 11. Skill scores averages of the three half-hourly forecasting methods
employed at the aggregated levels of the network relative to the ‘Simple’
model. The sample distribution is found via bootstrap averages, where only
samples which correspond to the daily peak demand are included at the primary
substation (ps), secondary substation (ss), and feeder (fdr) levels.

Fig. 12. PIT histograms of two forecast models at the aggregated levels of
the network. Note that except from the primary substation (ps) level, these
histograms show the average calibration of all the nodes. The fused forecast is
similarly calibrated at all levels and across both data partitions.

5.4.2. Household level
Recall that there are three benchmarks for household level

forecasts, two variations on KDE and a very simple GAMLSS
model based only on time-of-day. An interesting result, shown
in Fig. 13 is that using autoregressive and seasonal terms it
s possible to achieve better skill than simple benchmarks, by
%–4% during testing in this case study. As well, the Fusion
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Fig. 13. Skill score averages of the five half-hourly forecasting methods em-
loyed at the household level of the network relative to KDE1. The sample
istribution is found via bootstrap averages, where all available samples are
ncluded.

ethodology is marginally better than the advanced GAMLSS
odel in both cross-validation and testing. The Simple GAMLSS
odel is the worst performing out of the methods tested. At
ome nodes (8 out of 742) the Full model failed to converge and
he performance of the resulting forecasts was very poor dur-
ng cross-validation. Further inspection revealed issues at these
ouseholds such as structural changes in the time-series and so
n. At these 8 nodes, the Simple model was therefore used in
lace of the Full. Additional detail on this can be found in the
upplementary material [18].
As one would expect, the relative performance of the bench-

ark and Fusion methods varies between households. Unlike the
ggregated level where there was consistent improvement at all
odes for the proposed Fusion methodology, at the household
evel forecast fusion provides improvement for 80% of house-
olds relative to KDE1, and 70% relative to the sophisticated Full
AMLSS benchmark. This is due to the diversity of behaviours
t the household level and perhaps at some nodes the model
s imply over-parameterised given the information in the time
eries which suggests perhaps boosting or regularisation would
e beneficial in the model fitting if computationally feasible.
owever, the density is clearly skewed towards improvement as
ou would expect from Fig. 13. Supplementary results on this
opic are provided in [18].

Again, when evaluated during the periods when the daily peak
emand is recorded the ranking of the different forecasters is
ery different. As shown in Fig. 14, the simple and advanced
AMLSS models are now significantly worse than even the simple
ime-of-day KDE benchmark by ≈1%–5% during testing, which
emonstrates the double penalisation effect reported in the lit-
rature. However, the fusion model remains the most skilful
orecast, and is significantly better than the more advanced KDE
odel averaged over both cross-validation and testing. Although

he skill score is not as large as the aggregated levels detailed
bove, there is still a large and significant improvement from the
ull model, which is one of the inputs to the fused forecast, of
pproximately 6% during testing.
In terms of calibration, the PIT histogram for all the households

s shown in Fig. 15. Although it is not possible to distinguish
ndividual nodes in this case the plot shows that both the ad-
anced GAMLSS and forecast fusion method are reasonably well
alibrated across this level of the hierarchy, with some evidence
f over-confidence. However, given the nature of smart me-
er demand and that we are using a parametric assumption
10
Fig. 14. Skill scores averages of the Fusion forecasting method at the household
level of the network during peaks relative to KDE1. The sample distribution is
found via bootstrap averages, using only samples which correspond to the daily
peak demand are included at each node.

Fig. 15. PIT histograms of two forecast models at the household level of the
network, which show the average calibration of all the nodes. The fused forecast
is similarly calibrated at all levels and across both data partitions, except for the
right tail of the two methods.

for the predictive distribution, the calibration is better than ex-
pected. There are some differences between the calibration of the
GAMLSS and Fusion forecast now however, with the right tail of
the distribution going from too narrow to too wide on average.
This indicates a possible area of improvement for the forecasts.

5.5. Results summary and discussion

To summarise, at aggregated and household levels, fusion of
peak and conventional forecasts provides a significant improve-
ment in CRPS relative to both simple and advanced benchmarks
methods during peak hours. The improvement relative to ad-
vanced methods ranges from 6% to 9%. This comes with no
penalty to overall performance, which is also improved but only
marginally. Average CRPS is reported for each aggregation level
in Table 1, though we refer the interested reader to the earlier
figures and supplementary material where we verify that this
improvement is largely consistent across individual households,
feeders and substations, which differ in size and variability.

Finally, we have investigated whether there is any relation-
ship between the variability of load (at substations, feeders and
households) and forecast improvement of the fusion method
relative to benchmarks. We have compared the skill scores with
the coefficient of variation for all individual substations, feeders
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Table 1
Summary of the mean CRPS from the test set for the Simple and Advanced
(Adv.) half-hourly forecasts, and Fusion forecasts. Scores are presented for All
periods and Peak periods. Skill scores are for the Fusion forecasts relative to the
Advanced benchmark.

Aggregation Simple Adv. Fusion Skill

All
time

Primary 7.04 6.32 6.31 0.2%
Secondary 1.92 1.77 1.77 0.2%
Feeder 0.69 0.64 0.64 0.0%
Household 0.08 0.08 0.08 0.4%

Peaks
only

Primary 8.94 8.80 8.30 5.7%
Secondary 3.08 3.09 2.81 9.0%
Feeder 1.54 1.53 1.40 8.2%
Household 0.47 0.47 0.44 6.0%

Fig. 16. Forecast skill of the fusion forecast relative to benchmark (KDE1 for
households, Simple half-hourly forecast for aggregations) against coefficient of
variation for each substation, feeder and household.

and households, illustrated in Fig. 16. There is no apparent re-
lationship between variability and skill for any aggregate level,
which all have positive skill. Of course we have few examples
of primary and secondary substations, but skill at these levels is
comparable to individual feeders. For households, however, we
observe a negative correlation between variability and forecast
skill, although there is a large amount of variation, and positive
skill for 80% of households. Furthermore, only households with
a relatively low coefficient of variation exhibit very high forecast
skill. This highlights the importance of considering forecast skill
for individual households, as ‘average’ performance across multi-
ple households will mask this variation in forecast performance.
For most applications, we believe that significant improvement
at 80% of households is more than sufficient to justify a slight
increase in the complexity of the forecasting process.

6. Conclusions

Forecasting methods that are effective across all voltage levels
of distribution networks will be essential as Distribution Net-
work Operators take on new responsibilities for managing energy
balancing and ancillary services. This paper presents a novel
approach to probabilistic load forecasting that addresses deficien-
cies of existing methods caused by peak loads, and is shown to
improve forecast skill across distribution networks from house-
hold to primary substation level by as much as 10% overall, and
more during peaks. The skill of forecasts during peaks is particu-
larly important in many use-cases, including network constraint
management, peak shaving, and battery and demand response
scheduling.

The approach we propose combines forecasts of daily peak
timing and intensity with conventional load forecasts. By fore-
casting peaks specifically, we compensate for the tendency of
11
conventional methods to be too smooth and under-forecast peaks.
Probabilistic forecasts are combined or ‘fused’ using a simple
weighting scheme inspired by the more general practice of data
fusion. A comprehensive case study based on open data is pre-
sented where we find that while sophisticated methods for con-
ventional forecasts may provide skill overall with respect to
competitive benchmarks, they add little value during peaks. Fu-
sion of conventional forecast with a peak forecast marginally
improves performance overall, and greatly improves performance
during peaks. Average improvement during peaks ranged from 6%
at household and Primary substation level, and 8%–9% at Feeder
and Secondary substation level in our case study.

Additionally, we have proposed a method for producing para-
metric density forecasts at the household level based on the Gen-
eralised Beta-Prime distribution and the GAMLSS framework. This
is in contrast to non-parametric methods that have dominated
the literature to date and are far less parsimonious. The proposed
method produced an average improvement of approximately 5%
relative to methods based on Kernel Density Estimation across
the 742 households in our case study.

However, forecasting capabilities require further development
to meet the expected future needs of DSOs. Not least, consid-
eration should be given to embedded generation, storage, and
demand response. Furthermore, to be of maximum practical use,
forecasting models should be applicable to feeders/substations
they have not been trained on, known as ‘global’ forecasting
models as proposed in [42]. As distribution networks feature
tens-of-thousands of LV feeders, the use of domain adaptation via
transfer learning would take a pre-trained model and adapt it to
any feeder given minimal adjustment, but certainly not retrain-
ing. Development of forecasting models that are adaptive to track
changes in load behaviours, structural breaks in particular, should
also be considered. Another aspect to consider and potentially
exploit is the hierarchical nature of electricity demand. Encoding
this structure in forecasting models can help improve accuracy
and enable more coordinated decisions at different levels of the
network.
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