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Electron transport in molecular electronic devices is often dominated by a coherent mechanism in
which the wave function extends from the left contact over the molecule to the right contact. If
the device is exposed to light, photon absorption in the molecule might occur, turning the device
into a molecular photocell. The photon absorption promotes an electron to higher energy levels
and thus modifies the electron transmission probability through the device. A model for such a
molecular photocell is presented that minimizes the complexity of the problem while providing
a non-trivial description of the device mechanism. In particular, the role of the molecule in the
photocell is investigated. It is described within the Hückel method and the source-sink potential
approach [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)] is used to
eliminate the contacts in favor of complex-valued potentials. Furthermore, the photons are explicitly
incorporated into the model through a second-quantized field. This facilitates the description of the
photon absorption process with a stationary state calculation, where eigenvalues and eigenvectors are
determined. The model developed is applied to various generic molecular photocells. C 2016 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4944468]

I. INTRODUCTION

Photovoltaic devices constructed from molecules attached
to semiconductor surfaces are a focus of intense research
(for a review see, e.g., Ref. 1). A little explored variant2–5

of photovoltaic cells is derived from single molecules
(Fig. 1) and exhibits a predominantly coherent mechanism.
This mechanism is characterized by a wave function that
extends over the entire device and that determines its
properties. It has to be contrasted to the mechanism of
a conventional dye sensitized solar cell which typically
involves a sequence of steps that occur in a de-coherent
manner. In a de-coherent mechanism, the electron transfer
from the electrolyte to the molecule, for instance, is in
general not described by a wave function that also accounts
for the transfer of the excited electron to the conduction
band of the semi-conductor. In the theories of Grätzel cells
and in other examples for the interaction between light
and matter, the electromagnetic field is usually considered
in a semi-classical manner through the addition of suitable
time-dependent vector and scalar potentials to the molecular
Hamiltonian.6,7 Coherently controlled molecular junctions,
very similar to the systems considered here, have been studied
in detail by Peskin, Galperin, and co-workers.8–12 Also in
these examples, the field is described in the conventional
semi-classical manner. We adopt an alternative approach that is
less frequently employed2–5 and in which the electromagnetic
field is quantized and then coupled to the system consisting
of the molecule and the contacts. While this appears to be
more involved than the semiclassical variant, it enables us
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to describe the photon absorption as a stationary process,
avoiding a time-dependent approach. An eigenvalue equation
is solved instead with a suitable model Hamiltonian whose
construction we describe in detail. The quantized-field model
simplifies the description of the photocell from a conceptual
as well as computational perspective. These advantages
provide the motivation for the development of the model
rather than a need for a quantized description. In typical
photovoltaic devices, the number of photons is infinite and
there is no reason to believe that a semiclassical approach
would fail. On the other hand, considering elementary
processes involving states of well-defined photon numbers
is, of course, not wrong and it reveals the fundamental
steps.

In the most basic example discussed below, the photon
absorption is modeled as a superposition of two wave
functions, one in which the molecule is in its ground state and
where the system contains n photons, and a second one where
the molecule is in an excited state with n − 1 photons. These
two states are coupled to each other through the electric field
generated by the photons. Furthermore, the system consisting
of the molecule and photons is coupled to a left and a right
macroscopic contact (Fig. 1). Therefore, a photon induced
current can arise. To account for the interaction of the molecule
with the contacts, we rely on the source-sink potential (SSP)
method,13–15 which has been developed to describe molecular
electronic devices.16 As with the SSP method, the model
proposed here does not aim at a quantitative description
of the complicated steady state of a molecular photocell,
rather we want to provide a minimalistic, paper and pencil
description.

While coherent molecular photocells have not yet been
systematically investigated, their realization appears to be
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FIG. 1. Schematic representation of a coherent molecular photovoltaic cell. A very basic cell is chosen that reduces the requirements on the corresponding
model to a minimum while still retaining the essential elements of a coherent molecular photocell. The left (L) contact has only a valence band in the range of
energies relevant for the simple photocell. Similarly, on the right (R), the molecule couples to the conduction band exclusively. To obtain a current through the
device, a photon has to be absorbed. At a given total energy E , the incoming electron wave (ϕ+) of energy E −ω (~= 1 in atomic units) is partially reflected (ϕ−)
in the left contact. The corresponding reflection coefficient is r (E,ω). In the right contact, the outgoing electron wave (φ+) is multiplied by the transmission
amplitude τ(E,ω), where the energy of the outgoing wave is now increased by the photon energy ω to a value given by E . On the right, a sketch of the
transmission probability T (E,ω)= 1− |r (E,ω)|2 is shown with a maximum at the LUMO energy.

within the reach of modern experimental techniques.17 In
typical experiments on molecular junctions, some of the
coherent processes considered in our model might be blurred
due to coupling to external baths and due to averaging over
a range of photon and electron energies. However, we would
expect that experimental setups can be developed that preserve
the simple coherent mechanism described here. This optimism
is supported by theory and experiments (e.g., Refs. 13 and
18–22) on molecular junctions in which interference effects,
relying on coherent device wave functions, often dominate
the device mechanism. Our model requires an extension of
these interference effects to systems that interact with external
light sources. As demonstrated in the area of coherent control
theory,23 there are sophisticated experimental techniques that
enable a coherent interaction of light with molecules. On the
other hand, following the examples of Refs. 10 and 24, it
might also be possible to include decoherence effects in the
model developed here.

Finally we note that the photons in our theory can
be replaced by other quasi-particles such as phonons. The
corresponding model of electrons coupled to a quantized
phonon field has been developed in and applied to molecular
junctions.25

In Section II, we develop a model for the photocell and
in Section III, we provide various illustrations for our model.

II. DESIGN OF A MODEL FOR A COHERENT
MOLECULAR PHOTOCELL

The photocell (Fig. 1) can be subdivided into the left
contact (L), the molecule (M), and the right contact (R). In
addition, the photons have to be incorporated into the model
as well as the interactions between the four subsystems. We

address the subsystems one by one, starting with the electrons
in the molecule, and explain how to model them. Furthermore,
we discuss the coupling between the subsystems. We use
atomic units (~ = e2 = me = 1) throughout the article.

A. Electrons

To describe the electronic structure of the molecule,
we employ the Hückel approximation in which solely the
π-electron system created by the sp2 carbon atoms is
accounted for. Only nearest neighbor interactions are
considered and the coupling matrix element is denoted by
t. The zero-energy reference value can be chosen freely
and we shift the diagonal matrix elements of the Hückel
Hamiltonian to zero. To facilitate the description of the
coupling between photons and electrons, we do not employ
the Hückel matrix Hamiltonian directly, but represent it on the
basis of the molecular orbitals {ϕi}i=1, ...,N that are obtained
as eigenfunctions of the Hückel Hamiltonian. In a second
quantized representation, the electronic Hamiltonian Hel is
given by

Hel =

i

ϵ ib
†
ibi. (1)

In this Hamiltonian, the electron orbitals ϕi are associated
with creation and annihilation operators denoted by b†i and bi,
respectively.

The Hückel model has, of course, its limitations with
regard to the diversity of systems and phenomena that it
can describe. However, a past experience (see, e.g., Refs. 19
and 26) shows that it is surprisingly useful for a qualitative
description and often it suffices to explain key physical
properties.
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B. Photons

Following the presentation of Ref. 27, the electromagnetic
field is accounted for as a quantized field. Before switching
to a matrix representation which is used to perform the actual
calculations, the Hamiltonian of the photons Hph is most
conveniently written in second quantized form

Hph =

v⃗


d3k ω

k⃗
a†
k⃗, v⃗

a
k⃗, v⃗

, (2)

where v⃗ is a unit vector characterizing the photon polarization,
k⃗ is the photon wave vector, and ω

k⃗
= kc, where c is the speed

of light. a†
k⃗, v⃗

and a
k⃗, v⃗

are photon creation and annihilation
operators, respectively.

The photons are then coupled to the electronic degrees
of freedom through the introduction of the quantized vector
potential A⃗(r⃗) of the form

A⃗(r⃗) =

v⃗

v⃗


d3k


1

16π3ε0ωk⃗

(
e−ik⃗ ·r⃗a†

k⃗, v⃗
+ eik⃗ ·r⃗a

k⃗, v⃗

)
, (3)

where ε0 is the vacuum permittivity. Before the operator
in Eq. (3) is combined with the electronic Hamiltonian, we
perform various simplifications. First, we use the well known
fact that the product k⃗ · r⃗ is very small in the context of the
molecular systems considered. The product k⃗ · r⃗ indicates the
variation of the photon wavelength on the molecular scale.
The molecular size is in the range of Ångströms and the
photon wavelength is on the order of thousands of Ångströms.
Therefore the exponents eik⃗ ·r⃗ in Eq. (3) can be replaced by 1,
which corresponds to the well known dipole approximation.
Furthermore, to couple A⃗ to the electronic degrees of freedom,
we employ the conventional substitution p⃗ → p⃗ − A⃗. Then
since A⃗ is assumed to be negligible in relation to p⃗,
(p⃗ − A⃗)2 ≈ p⃗2 − A⃗ · p⃗. Here we employ the Coulomb gauge
for A⃗ so that p⃗ · A⃗ = 0. With these assumptions, the coupling
of the vector potential to the electronic Hamiltonian results in
an additive term in the Hamiltonian of the form

V =

v⃗


d3k C(k⃗)

(
a†
k⃗, v⃗
+ a

k⃗, v⃗

)
p⃗ · v⃗ , (4)

where C(k⃗) =


1
16π3ε0ωk⃗

. In Eq. (4), the vector describing

the photon polarization (⃗v) multiplies the electron momentum
operator p⃗. To couple the photons to the electrons, we combine
Eqs. (1), (2), and (4). The electronic degrees of freedom appear
in Eq. (4) through the electron momentum operator p⃗ that we
expressed in second-quantized form

Hel,ph =

i

ϵ ib
†
ibi +


v⃗


d3k ω

k⃗
a†
k⃗, v⃗

a
k⃗, v⃗

+

i, j, v⃗


d3k C(k⃗ )⃗v · p⃗i jb†ibj

(
a†
k⃗, v⃗
+ a

k⃗, v⃗

)
. (5)

The momentum operator appearing in this expression is
inconvenient. To replace it by the position operator, one
uses the well known commutator relation

ip⃗ = [r⃗ ,H]. (6)

Evaluating the matrix element of the commutator with two
molecular orbitals ϕi and ϕ j, we obtain

⟨ϕi |[r⃗ ,HM]|ϕ j⟩ = (ϵ j − ϵ i)⟨ϕi |r⃗ |ϕ j⟩. (7)

Combining Eqs. (6) and (7) yields

⟨ϕi |p⃗|ϕ j⟩ = −iΩi j⟨ϕi |r⃗ |ϕ j⟩, (8)

where Ωi j = ϵ j − ϵ i. With Eq. (8), the expectation value of
the momentum operator in Eq. (9) is eliminated to yield

Hel,ph =

i

ϵ ib
†
ibi +


v⃗


d3k ω

k⃗
a†
k⃗, v⃗

a
k⃗, v⃗

−

i, j, v⃗


d3k C(k⃗)Ωi j v⃗ · r⃗i jb†ibj

(
a†
k⃗, v⃗
+ a

k⃗, v⃗

)
. (9)

The limit in which the photons can be described through
a semiclassical approach is obtained28 if the photon state is
an eigenfunction of the destruction operator a

k⃗, v⃗
. This means

that the photon degrees of freedom can be factorized. As a
consequence, the electronic wave functions (e.g., the HOMO
and the LUMO) are linearly combined in the resulting device
wave function. Such a superposition is the expected behavior
for a molecule coupled to a classical electromagnetic field.

C. Contacts

Finally, the left (L) and right (R) contact are added to
the Hamiltonian Hel,ph. We assume one-dimensional contacts
whose states are labeled by the wave vector κL(R) in the left
(right) contact, respectively. There are two types of additional
terms that have to be added to Hamiltonian equation (9). The
first one accounts for the energies of the contact states (ϵκL(R)),

HL(R) =


dκL(R) ϵκL(R)b
†
κL(R)bκL(R) (10)

and the second term accounts for the coupling between the
molecule and the contacts,

HM,L(R) =

i


dκL(R)

× (βi,κL(R)b
†
ibκL(R) + β∗κL(R), ib

†
κL(R)bi). (11)

The complete device Hamiltonian is then

Hdevice = Hel,ph + HL + HR + HM,L + HM,R. (12)

While this operator appears to be rather cumbersome, in
Sec. II D, we will show that a suitable choice of basis set leads
to a fairly simple matrix representation.

D. Introduction of a finite tensor-product basis

In this section, the Hamiltonian of Eq. (12) is represented
on a basis of selected functions which are tensor products of
electron and photon states. The electron states are given in
terms of the molecular orbitals (ϕi) by

|ϕi⟩, i = 1,2, . . . ,N. (13)

We limit the discussion to monochromatic light and the
photon space that we consider is spanned by basis functions
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with n − 1 and n photons, respectively, of a given momentum
k⃗ and polarization v⃗ ,

|(n − 1)
k⃗, v⃗

⟩, |n
k⃗, v⃗

⟩. (14)

This choice of basis functions is motivated by the sketch in
Fig. 1. The outgoing state is one of (n − 1)

k⃗, v⃗
photons where

the LUMO is coupled to the right contact. The quantized
potential in Eq. (4) couples this state only to states with
n
k⃗, v⃗

and (n − 2)
k⃗, v⃗

photons. This is because this potential
is assumed to be weak and higher orders of it (describing

multiphoton transfers) are negligible. Similarly, the incoming
photon state with n

k⃗, v⃗
photons couples to (n ± 1)

k⃗, v⃗
ones.

Combining these findings shows that processes describing
electron transfer from the left to the right contact require the
states in Eq. (14) and in the interest of simplicity, we limit
the photon space through this minimal basis. The choice of
the actual value of n

k⃗, v⃗
specifies the strength of the coupling

matrix between the electronic states (see Eq. (18)).
The basis of the combined electron-photon space is then

given in terms of tensor products,

|ϕ1⟩ |ϕ2⟩ . . . |ϕN⟩
|(n − 1)

k⃗, v⃗
⟩ |ϕ1⟩


|(n − 1)

k⃗, v⃗
⟩ |ϕ2⟩


|(n − 1)

k⃗, v⃗
⟩ . . . |ϕN⟩


|(n − 1)

k⃗, v⃗
⟩

|n
k⃗, v⃗

⟩ |ϕ1⟩


|n
k⃗, v⃗

⟩ |ϕ2⟩


|n
k⃗, v⃗

⟩ . . . |ϕN⟩


|n
k⃗, v⃗

⟩
. (15)

Similarly, the left and right contact states are combined with the photon states through a tensorial product,

|ϕL
κ⟩ |ϕR

κ ⟩
|(n − 1)

k⃗, v⃗
⟩ |ϕL

κ⟩


|(n − 1)
k⃗, v⃗

⟩ |ϕR
κ ⟩


|(n − 1)

k⃗, v⃗
⟩

|n
k⃗, v⃗

⟩ |ϕL
κ⟩


|n

k⃗, v⃗
⟩ |ϕR

κ ⟩


|n
k⃗, v⃗

⟩
. (16)

The basis functions introduced in Eqs. (15) and (16) are then used to obtain a matrix representation of the second quantized
Hamiltonian of Eq. (12),

Hdevice =

*...........
,

HL ML,M

M†
L,M HM MM,R µ

M†
M,R HR

HL + ω ML,M

µ M†
L,M HM + ω MM,R

M†
M,R HR + ω

+///////////
-

. (17)

In this representation, the sub-matrix HL(R) represents the
left (right) contact. The blocks ML,M and MM,R describe the
coupling of the molecule to the left (right) contact. HM is the
Hückel matrix of the molecule and µi j is given by

µi j = −C(k⃗)Ωi j v⃗ · r⃗i j


n
k⃗, v⃗

. (18)

The energy shifts of the diagonal elements in Eq. (17) are
obtained as follows. Hel,ph in Eq. (9) shows that the photons
introduce energy shifts on the diagonal that are proportional to
number of photons in the corresponding subspace. Since we can
arbitrarily shift the energy, we choose it such that the photon
energy of the |(n − 1)

k⃗, v⃗
⟩ state is zero. This explains why the

subspace corresponding to n
k⃗, v⃗

photons acquires a shift of ω.
The subscript of ω has been dropped. As already mentioned,
the photon number n

k⃗, v⃗
also appears in the coupling matrix

elements µi j (see Eq. (18)) and determines their magnitude.
Now we further simplify the matrix representation of

Eq. (17). The boundary conditions that we employ stipulate
that an electron arrives from the left contact and that the
photon has not yet been absorbed. This means that the initial

state is

|ϕL⟩


|n
k⃗, v⃗

⟩. (19)

Similarly, on the right hand side, the outgoing state is

|ϕR⟩


|(n − 1)
k⃗, v⃗

⟩. (20)

We project the matrix in Eq. (17) onto the specified channels
and re-order the basis functions to obtain a more intuitive
representation

Hdevice =

*.....
,

HL + ω ML,M

M†
L,M HM + ω µ

µ HM MM,R

M†
M,R HR

+/////
-

. (21)

This Hamiltonian matrix describes a system with an electron
arriving in the left contact while there are n photons of a given
frequency and polarization. This state couples to one where a
photon has been absorbed and the electron has been excited.
The excited electron can then continue in the right contact.
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III. ILLUSTRATIONS

A. Molecule coupled to photons

To illustrate the various aspects of the photocell model,
we first consider a diatomic molecule. In the Hückel
approximation, the diatomic is described by a two by two
matrix,

HM = *
,

0 t
t 0

+
-
, (22)

where the diagonal elements are set to zero and the coupling
matrix element between the atoms is given by t. The matrix µ
(Eq. (18)), describing the coupling between the photons and
the electrons, is diagonal within the Hückel approximation,

µ = *
,

−µ 0
0 µ

+
-
. (23)

This is because the operator r⃗ in Eq. (18) does not couple
adjacent atoms. For simplicity, we assume v⃗∥r⃗ , ignore the
dependence of µi j on k⃗ and Ωi j and treat it as a parameter.
Using Eqs. (22) and (23), we combine the electronic and
photon degrees of freedom to obtain

Hel,ph =

*.....
,

ω t −µ 0
t ω 0 µ

−µ 0 0 t
0 µ t 0

+/////
-

. (24)

This matrix describes the molecule coupled to a quantized
photon field, it does not account for the contacts. We first
examine the physical implications of Hel,ph. For the purpose
of illustration, we arbitrarily set t = −1. Furthermore, for ω
we choose a value of ω = 2|t |, which means that the photon
energy corresponds to the HOMO-LUMO gap and that the
system is at resonance. The eigenvalues and eigenfunctions of
Hel,ph are given in Table I. We further assume that the electric
field (and thus µ) is small. The first eigenvalue describes a
state with an energy of E ≈ −1, predominantly composed of
the HOMO where the photon has been absorbed. Note that
the first two coefficients of the eigenvectors correspond to
the basis functions with n photons, whereas the third and
fourth coefficients correspond to basis functions with n − 1
photons. The fourth eigenvalue, with E ≈ 3, corresponds to
a wavefunction composed of the LUMO and n photons. The
second and third eigenvalues are the interesting ones for the
present purpose since they describe a resonance. At resonance,

TABLE I. Hückel eigenvalues and eigenvectors of a diatomic molecule cou-
pled to a quantized photon field.

Eigenvalue Eigenvector

1−


4+ µ2
(
− 2−
√

4+µ2

µ ,
2−
√

4+µ2

µ , 1, 1
)

1− µ (−1,−1,−1,1)
1+ µ (1,1,−1,1)
1+


4+ µ2

(
− 2+
√

4+µ2

µ ,
2+
√

4+µ2

µ , 1, 1
)

the HOMO and LUMO would be degenerate if not for the
coupling between them provided by µ. As shown in Table I,
the scalar |µ| is half the amount by which the two energy
levels, resulting from the combination of HOMO and LUMO,
are split. The associated eigenstates are superpositions of
HOMO and LUMO, with n and n − 1 photons, respectively.

B. Photovoltaic cell constructed
from a diatomic molecule

The system consisting of the molecule coupled to the
photons is now augmented by the contacts. The contacts are
accounted for through a very simple version of the source-sink
potentials.13,14 In more detail, we employ a source (ΣL) and
a sink (ΣR) potential that describe contacts in the wide band
limit,26

ΣL = −iβL
1 + r
1 − r

(25)

and

ΣR = iβR. (26)

ΣL and ΣR are added to the diagonal element of the atoms the
contacts are connected to, resulting in a model Hamiltonian
Hdevice for the total diatomic photocell,

Hdevice =

*.......
,

ω − iβL
1 + r
1 − r

t −µ 0

t ω 0 µ

−µ 0 0 t
0 µ t iβR

+///////
-

. (27)

This matrix is then used to calculate the reflection coefficient
r(E,ω) and thus the transmission probability T(E,ω)
= 1 − |r(E,ω)|2 of the photocell as a function of the energy E
of the outgoing electron and as a function of the photon energy
ω. For a given pair of E andω, the reflection coefficient r(E,ω)
can be simply obtained through solution of the equation

det(Hdevice(r,ω) − E) = 0. (28)

FIG. 2. Transmission probability (T (E,ω)) of a photovoltaic cell con-
structed from a diatomic molecule. The transmission probability depends
on the energy E of the outgoing electron and on ω, the energy of the
photon involved. Values of ω varying around the resonance energy (ωres= 2)
are considered. The LUMO energy is 1 and this is where the resonance is
observed on the E-axis. The coupling parameters for the contact-molecule
interaction are βL= βR=−0.1 and µ = 0.01.
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FIG. 3. Transmission probability (T (E,ω)) of a photovoltaic constructed
from a diatomic molecule weakly coupled to the external contacts. The weak
coupling gives rise to two sharp resonances that are separated by 2|µ |. The
coupling parameters for the contact-molecule interaction are βL= βR=−0.01
and µ = 0.01.

In Fig. 2, T(E,ω) is plotted for the photocell constructed
from the diatomic molecule. The photon energy is varied
as indicated in the figure, resulting in a family of curves.
At resonance (ω = 2|t |), there is a single peak that splits
into two when the photon energy deviates from the resonance
condition. The resulting two peaks separate more and more and
the peak height decreases rapidly with increasing |ω − ωres|.
The two peaks originate of course from the HOMO and
LUMO. Inspection of Eq. (21) shows that the HOMO
contribution to the device wave function is raised by the
energy of the photon, whereas the LUMO contribution remains
at its position upon variation of the ω. Next we reduce the
coupling of the molecule to the contacts by a factor of 10,
i.e., βL = βR = −0.01. The corresponding T(E,ω) is shown in
Fig. 3. The graphs reveal a number of interesting features. First
there are two maxima visible that obviously originate from
the two molecular levels. The splitting between the levels is
given by twice the coupling element |µ|. In a time-dependent
approach, this splitting equals the Rabi frequency7 which
determines how fast the system oscillates between the HOMO
and LUMO. Clearly, the split resonance in Fig. 3 is related to
the two resonant eigenstates with energies E = 1 ± µ, listed in
Table I. Another very interesting aspect of the weak-coupling
case is that the photo-induced transmission probability reaches
the maximum possible value of one. This is a characteristic
of the weak coupling limit in which the molecule represents
a Fabry-Pérot resonator that is completely transparent for
electrons with a wavelength corresponding to the LUMO
energy plus or minus µ.

Next we discuss the case where the molecule is strongly
coupled (βL = βR = t) to the contacts. As can be seen in
Fig. 4, broad maxima appear in which the Rabi splitting
is not visible anymore. The maximum is shifted down or
up in energy depending on whether the photon energy is
slightly below or above the resonance frequency, respectively.
Furthermore, the height of the resonances is reduced by three
orders of magnitude compared to the weak coupling case.
Note that the maximum value of T(E,ω) is not obtained for
ω = ωres. This is a consequence of the strong coupling to the
contacts.

FIG. 4. Transmission probability (T (E,ω)) of a photovoltaic cell con-
structed from a diatomic molecule strongly coupled to the contacts.
Broad resonances of weak transmission probability are observed. The cou-
pling parameters for the contact-molecule interaction are βL= βR=−1 and
µ = 0.01.

Finally, we discuss the dependence of the transmission
probability on µ. This dependence can be extracted
analytically for the photocell built with the diatomic molecule.
Using the Mathematica program to perform the algebra,
we find that T depends quadratically on µ. According
to Eq. (18), µ2 is proportional the number of photons,
i.e., to the energy density of the field. This is the expected
result.

C. Photovoltaic cell constructed
from the azulene molecule

Now we investigate a photovoltaic cell constructed with
the azulene molecule. Azulene is a blue colored compound
whose chemical structure is shown in Fig. 5. It is suitable for
the construction of conventional photovoltaic cells because of
its absorption spectrum in the visible range. Since azulene
does not exhibit spherical symmetry, the orientation of the
electric field is a factor that influences the transmission
probability. Azulene has C2v symmetry and the HOMO
and LUMO are antisymmetric or symmetric with respect
to the molecular axis, respectively. We focus on ω values
corresponding to the HOMO-LUMO gap, i.e., we consider
the system at resonance. The left contact is attached to atom
number 4 and the right contact to atom 10. Also in this
case, we set t = −1. To calculate µi j of Eq. (18), we equate
all the bond lengths and scale them so that they have a

FIG. 5. Molecular structure of azulene with the numbering scheme superim-
posed. We refer to the C2 axis as the molecular axis.
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FIG. 6. Transmission probability (T (E,ω)) of a photovoltaic cell con-
structed from an azulene molecule. The ω value considered corresponds to
the resonance energy (ωres≈ 0.878). The applied electric field is oriented
perpendicular to the molecular axis and the left and right contact are in the 4
and 10 position, respectively. A split resonance is obtained which arises from
the interaction of the HOMO and LUMO resulting in two admixtures that
are separated in energy because they are coupled through the photons. The
resonance appears at 0.4 on the energy axis which corresponds to the LUMO
energy of azulene.

value of 1. The corresponding additional scaling factor a
in Eq. (18) is then absorbed together with other factors in
the parameter µ, i.e., µi j = −aC(k⃗)Ωi j v⃗ · r⃗i j

n
k⃗, v⃗
= µ v⃗ · r⃗i j.

Furthermore, for the contact-molecule interaction, we employ
βL = βR = −0.1. In Fig. 6, T(E,ωres) is shown for an
electric field perpendicular to the molecular axis. In this
case the electric field couples the HOMO to the LUMO
and consequently, a resonance in the transmission profile
is observed. As in the case of the diatomic molecule with
weak coupling to the contacts, the resonance peak is split in
two.

To further illustrate our model for coherent molecular
photocells, we analyze the device wave function. In particular,
we focus on the molecular part of the wave function and note
that there are two such components since device Hamiltonian
equation (21) is a direct sum with two molecular Hamiltonian
matrices. One of these matrices describes a system where
the photon has not yet been absorbed and the other one a
system where it has been absorbed. We focus on ω = ωres

FIG. 8. Transmission probability (T (E,ω)) of a photovoltaic cell con-
structed from an azulene molecule. The ω value considered corresponds
to the resonance energy (ωres≈ 0.878). The electric field is oriented along
the molecular axis and the left and right contacts are in positions 4 and 10,
respectively. Overall a very small transmission probability is obtained that
vanishes exactly at E = ELUMO, where ELUMO is the energy of the LUMO of
azulene.

and choose E such that it corresponds to the first maximum
of T(E,ωres) in Fig. 6. In Fig. 7, we show the two molecular
components of the device wave function which correspond to
n
k⃗, v⃗

and (n − 1)
k⃗, v⃗

photons. The component in the left panel
resembles the HOMO, whereas the component in the right
panel resembles the LUMO. This is the expected structure
of the device wave function at resonance. Furthermore,
since this function describes electron transport, it is complex
valued. In the left panel of Fig. 7, the complex part is very
small and invisible on the scale of the plot. In the right
panel, small black and white disks are visible around the
atoms and they represent the imaginary part of the wave
function while the blue and red disks represent the real
part.

For an electric field oriented along the molecular axis
(Fig. 8), overall T(E,ωres) is very small. If the molecule were
isolated from the contacts, such a field would not couple
the HOMO to the LUMO at all. However, the presence of
the contacts reduces the symmetry and yields a non-zero
T(E,ωres). Interestingly, if the energy of the outgoing electron

FIG. 7. The molecular components of the device wave function of the first resonance in Fig. 6 (ω =ωres and E = 0.397). The first panel shows the component of
the wave function with an extra photon and the second panel shows the component where the photon has been absorbed. While the first component resembles the
HOMO, the second one resembles the LUMO. The blue and red disks represent the positive and negative real parts of the orbital coefficients, respectively. The
radii are proportional to the absolute values of the coefficients. Analogously, the white and black disks represent the imaginary parts of the orbital coefficients.
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is equal to the LUMO energy, the transmission probability
vanishes entirely.

IV. CONCLUSION

We provide a theory for a coherent molecular photocell
that is reduced to the essential elements of such a device.
The model accounts for the contacts, the molecule, and
the photons. Each of these components and the interactions
between them are described through as simple a means as
possible, resulting in a transparent formalism. To illustrate the
developed model, we focus on generic examples and show
how photon absorption can lead to significant transmission
probabilities that would otherwise vanish. The passage of the
electron through the molecule is accompanied by an increase
in the electronic energy and a decrease of the number of
photons. In the examples considered, several phenomena such
as Rabi oscillations and Fabry-Pérot resonances are observed
that are to be expected based on earlier studies using a
semiclassical approach.8–10 We also show that the transmission
probability depends on the photon polarization. While we
employ somewhat arbitrary parameters in the illustrations,
the model should nonetheless provide useful approximate
descriptions. As in our work on molecular electronics (see,
e.g., Refs. 13, 14, 18, and 19), we focus on qualitative
aspects that are largely independent of the actual values of the
parameters in the model.

In future work, we will explore various improvements and
extensions of the simple model presented here. For instance,
through the addition of a suitable sink potential,26 additional
electron channels can be added that account for the conduction
band of the left contact. Furthermore, the method developed
here within the Hückel approximation can be extended to
other effective one-particle pictures. For example, it should
be possible to employ Hartree-Fock theory to provide the
required orbitals.
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