
JOURNAL OF TIME SERIES ANALYSIS
J. Time Ser. Anal. 44: 418–436 (2023)
Published online 8 February 2023 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1111/jtsa.12680

ORIGINAL ARTICLE

GEOMETRIC ERGODICITY AND CONDITIONAL SELF-WEIGHTED
M-ESTIMATOR OF A GRCAR(P) MODEL WITH HEAVY-TAILED ERRORS

XIAOYAN LIa JIAZHU PANb* AND ANCHAO SONGc

aCollege of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China
bDepartment of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, UK

cSchool of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China

We establish the geometric ergodicity for general stochastic functional autoregressive (linear and nonlinear) models with
heavy-tailed errors. The stationarity conditions for a generalized random coefficient autoregressive model (GRCAR(p)) are
presented as a corollary. And then, a conditional self-weighted M-estimator for parameters in the GRCAR(p) is proposed. The
asymptotic normality of this estimator is discussed by allowing infinite variance innovations. Simulation experiments are car-
ried out to assess the finite-sample performance of the proposed methodology and theory, and a real heavy-tailed data example
is given as illustration.
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1. INTRODUCTION

Suppose that
{

yt, t ≥ 1 − p
}

are observations from the generalized random coefficient autoregressive (GRCAR)
model with order p defined by

yt = 𝜙t0 + 𝜙t1yt−1 + 𝜙t2yt−2 + · · · + 𝜙tpyt−p + 𝜀t, t = 1, 2, … (1)

where {(𝝓′t , 𝜀t)′ = (𝜙t0, 𝜙t1, … , 𝜙tp, 𝜀t)′, t ≥ 1} is a sequence of independent and identically distributed (i.i.d.)
random vectors with E𝝓t = 𝝓 = (𝜙0, 𝜙1, … , 𝜙p)′. Here, it is assumed that (𝝓′t , 𝜀t)′ is independent of t−1 =
𝜎(yt−1, yt−2, … , y1−p). We are interested in stationarity of the above model and estimation of unknown parameter
vector 𝝓 = (𝜙0, 𝜙1, … , 𝜙p)′ with its true value 𝝓0. Note that, in model (1), the random coefficients are permitted
to be correlated with the error process.

Model (1) with p = 1 (GRCAR(1)) was first introduced by Hwang and Basawa (1998), and it includes Marko-
vian bilinear model and random coefficient exponential autoregressive model as special cases. When Var(𝝓t) = 0,
model (1) becomes the ordinary autoregressive (AR(p)) model. There have been a lot of perfect theoretical achieve-
ments about it. For example, Ling (2005) proposed a self-weighted least absolute deviation estimator and showed
its asymptotic normality. The method has been used in many references, such as Pan et al. (2007), Pan and
Chen (2013), Pan et al. (2015). Wang and Hu (2017) proposed a self-weighted M-estimator for the AR(p) model
and established the asymptotic normality of this estimator. When Var(𝝓t) ≠ 0 with p = 1, and 𝝓t is independent
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of 𝜀t, model (1) becomes the first-order random coefficient autoregressive (RCAR(1)) model (see Nicholls and
Quinn (1982)), which has been frequently used to describe the random perturbations of dynamical systems in
economics and biology (see Tong (1990), Yu et al. (2011), Zhang et al. (2015), Araveeporn (2017)). As a gener-
alization of RCAR model and AR models, GRCAR model has become one type of important models in nonlinear
time series, since it allows dependence between random errors and random coefficients. Estimation of parame-
ters and asymptotic properties of GRCAR models have been studied in the literature. For instance, Hwang and
Basawa (1997) established the local asymptotic normality of a class of GRCAR models. Zhao and Wang (2012)
constructed confidence regions for the parameters by using empirical likelihood method. Zhao et al. (2013) con-
sidered the problem of testing the constancy of coefficients in a GRCAR model by empirical likelihood method.
Zhao et al. (2018) studied the variable selection problem in GRCAR models. Zhao et al. (2019) proposed a
weighted least squares estimate and empirical likelihood (EL) based weights through using some auxiliary infor-
mation for GRCAR models. Moreover, time series models with heavy-tailed errors, even when E(𝜀2

t ) is infinite, are
often found and studied in economic and financial modeling. Wu (2013) studied M-estimation for general ARMA
processes with infinite variance. Yang and Ling (2017) investigated the self-weighted least absolute deviation esti-
mation for heavy-tailed threshold autoregressive models. Fu et al. (2021) studied the asymptotic properties for the
conditional self-weighted M-estimator of GRCAR(1) model with possibly heavy-tailed errors. However, general
easy-to-check conditions for stationarity and limiting distributions of robust parameter estimators for statistical
inference of GRCAR(p) with heavy-tailed errors are still open problems.

This article aims to reach two targets. First, we establish the geometric ergodicity of general stochastic func-
tional autoregressive (linear and nonlinear) models with possibly heavy-tailed error terms under a mild moment
condition. Moreover, the stationarity conditions for GRCAR(p) are implied as a corollary of our general result.
Second, motivated by Yang and Ling (2017), Ling (2005), Wang and Hu (2017) and Fu et al. (2021), we prove
the asymptotic property of a self-weighted M-estimator (SM-estimator) for GRCAR(p) with possible infinite vari-
ance, and show that the limiting distribution of SM-estimator is asymptotically normal. Simulation results and a
real data example are given to support our methodology.

The contents of this article are organized as follows. Section 2 presents the main results. Section 3 reports the
simulation results. Section 4 shows a real data example. All proofs of our main results are given in Section 5.

2. MAIN RESULTS

2.1. Geometric Ergodicity

We first establish geometric ergodicity of general stochastic functional autoregressive models (including linear
and nonlinear) under a mild moment condition. Then the geometric ergodicity which can imply the stationarity
conditions of model (1) is given as a corollary of the main theorem.

Consider a general stochastic functional autoregressive model defined as follows

{
yt = 𝜑t(yt−1, … , yt−p) + 𝜀t, t ≥ 1

(y0, y−1, … , y−p+1)′ ∈ p
,

(2)

where {𝜑t} is a sequence of i.i.d. stochastic functions such that
{
(𝜑t(⋅), 𝜀t)′

}
being of i.i.d. random vectors,

and (𝜑t(⋅), 𝜀t)′ is independent of t−1 = 𝜎(yt−1, yt−2, … , y1−p). It can be seen that both linear and nonlinear
autoregressive models are included. This model can be rewritten in vector form as follows:

{
Xt = 𝚽t(Xt−1) + 𝜀tU, t ≥ 1,

X0 ∈ p
,

(3)

where𝚽t(Xt−1) =
(
𝜑t(yt−1, … , yt−p), yt−1, … , yt−p+1

)′
,Xt =

(
yt, … , yt−p+1

)′
,U = (1, 0, … , 0)′ Under the above

conditions, model (3) is a homogeneous Markov chain. It is easily seen that stationarity for
{

yt, t ≥ 1 − p
}

is
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equivalent to that for
{

Xt, t ≥ 0
}

. Furthermore, the geometric ergodicity for model (2) is equivalent to that for the
model (3).

Theorem 2.1. Suppose model (3) satisfies

(i) There exists some norm ‖⋅‖v on the p-dimensional vector space,constants 0 < 𝜌 < 1, 0 < 𝛿 < 1 and c ≥ 0,
such that

E‖‖𝚽t(x)‖‖
𝛿

v ≤ 𝜌‖x‖𝛿v + c,∀x ∈ p; (4)

(ii) The density function of 𝜀t is continuous and positive everywhere,and E||𝜀t
||
𝛿

<∞ for 𝛿 in (i).
Then, model (3) is geometrically ergodic, which implies {yt} in model (2) is stationary and geometrically
ergodic.

Under the conditions of Theorem 2.1, more concretely, we have the following corollary.

Corollary 2.2. Suppose model (2) satisfies

(i) There exists a constant vector 𝜑 = (𝜑1, … , 𝜑p)′ and a 0 < 𝛿 < 1 satisfying

1 − 𝜑1z − · · · − 𝜑pzp
≠ 0, |z| ≤ 1 (5)

such that

lim
‖x‖→∞

E||𝜑t(x) − 𝝋′x||
𝛿

‖x‖
= 0 (6)

and for any K > 0,

sup
‖x‖≤K

E||𝜑t(x) − 𝝋′x||
𝛿

<∞. (7)

(ii) The density function of 𝜀t is continuous and positive everywhere,and E||𝜀t
||
𝛿

<∞ for 𝛿 in (i).
Then, {yt} in model (2) is stationary and geometrically ergodic.

In Corollary 2.2, when 𝜑t(x) = 𝜙t0 +
(
𝜙t1, … , 𝜙tp

)′
x, x ∈ p, we can get the stationarity conditions for

GRCAR(p) as another corollary of our general result.

Corollary 2.3. Suppose model (1) satisfies

(C.1)
(i) 1 − 𝜙1z − · · · − 𝜙pzp ≠ 0, for |z| ≤ 1;

(ii) E||𝜙ti − 𝜙i
||
𝛿

< ∞, i = 1, 2, … , p,E||𝜙t0
||
𝛿

< ∞, for a constant 0 < 𝛿 < 1;
(iii) The density function of 𝜀t is continuous and positive everywhere, and E||𝜀t

||
𝛿

< ∞ for 𝛿 in (ii).
Then, {yt} in model (1) is stationary and geometrically ergodic.

Remark 1. Theorem 2.1 establishes the geometric ergodicity of general stochastic functional autoregressive (lin-
ear and nonlinear) models with possibly heavy-tailed error terms under a mild moment condition. The stationarity
conditions for GRCAR(p) in Corollary 2.3 is a consequence of Theorem 2.1. In Corollary 2.3, the moment con-
dition is very weak. We only require a finite moment of order 𝛿(0 < 𝛿 < 1) about the error 𝜀t, which includes the
Cauchy distribution. The condition on random coefficients makes the model not too far away from the linear AR.
This is a reasonable requirement for any (non-parametric or parametric) AR-type model.

Remark 2. We note that the GRCAR is a quite broad kind of models for time series data. A special case of this
type of models can be used to describe conditionally heteroscedastic structure. For example, consider the model
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defined as: yt = (𝜙0 + 𝛽0𝜀t) + (𝜙1 + 𝛽1𝜀t)yt−1 + 𝜀t, 𝜀t ∼ N(0, 𝜎2). The conditional mean and conditional variance
of this model are

E(yt|t−1) = 𝜙0 + 𝜙1yt−1;
Var(yt|t−1) = 𝜎

2(1 + 𝛽0 + 𝛽1yt−1)2.

It is shown that this very special case of the GRCAR has similar function to AR(1)–ARCH(1), but we don’t need
to restrict the parameters 𝛽0 and 𝛽1 to be non-negative. Furthermore, if the assumption on the distribution of error
is changed to 𝜀t ∼ t2, the model becomes a model with infinite variance.

2.2. Conditional Self-weighted M-estimation

Denote Xt−1 = (1, yt−1, … , yt−p)′. Then the model (1) becomes yt = 𝝓
′
tXt−1 + 𝜀t, where 𝝓t = (𝜙t0, 𝜙t1, … , 𝜙tp)′.

Define the objective function

Ln(𝝓) =
n∑

t=1

𝜔t𝜌(yt − 𝝓
′Xt−1), (8)

where 𝝓 = E(𝝓t) = (𝜙0, 𝜙1, … , 𝜙p)′ and 𝜔t is a positive function which is measurable to t−1 = 𝜎(yt−1, yt−2, …)
and 𝜌(⋅) is assumed to be a suitable nonnegative convex function. The conditional self-weighted M-estimator ̂𝝓SM

of 𝝓 is defined by

̂𝝓SM = arg min
𝝓∈Θ

Ln(𝝓)

where Θ ⊂ p+1 is the parameter space containing the true value 𝝓0.

2.3. Asymptotic Normality of SM-estimation

To derive the asymptotic property of ̂𝝓SM , we need the following assumptions:

(C.2) Let 𝜌(⋅) be a convex function on R with left derivative 𝜓− and right derivative 𝜓+. Choose a function 𝜓

such that 𝜓− ≤ 𝜓 ≤ 𝜓+.
(C.3) Suppose that G(t) ∶= E𝜓(𝜀1 + t) exists, G(t) has a derivative 𝜆 > 0 at t = 0 and G(0) = 0 .
(C.4) E𝜓2(𝜀1) = 𝜏 < ∞ and E(𝜓(𝜀1 + t) − 𝜓(𝜀1))2 → 0, as t → 0 .
(C.5) 𝜔t = g(yt−1, … , yt−p) is a measurable and positive function on Rp such that E(𝜔t+𝜔

2
t )(||Xt||+||Xt||2) < ∞,

where ||v|| denotes the Euclidean norm of a vector v.

Theorem 2.4. Under the (C.1)–(C.5),we have

√
n(̂𝝓SM − 𝝓0)

L
−−→N

(
0,

𝜏

𝜆
2
𝚺−1𝛀𝚺−1

)
(9)

where 𝚺 = E(𝜔tXtX
′
t), 𝛀 = E(𝜔2

t XtX
′
t) and

L
−−→ denotes convergence in distribution.

Remark 3. Assumption (C.1) does not rule out the possibility that 𝜀t has an infinite variance, and even E|𝜀t| is
infinite. Theorem 2.4 establishes the asymptotic property of SM-estimators for parameters in GRAR(p) models
with possible heavy-tailed errors.

Remark 4. It is worth mentioning that Assumptions (C.2)–(C.4) are traditional assumptions for an M-estimation
in a linear model, which can be found in many references, for examples, Bai et al. (1992), Wu (2007) and Wang
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and Zhu (2018). Examples of 𝜌(x) satisfying assumptions include 𝜌(x) = x2
, 𝜌(x) = |x| and 𝜌(x) = 1

2
x2I(|x| ≤

m) + (m |x| − 1

2
m2)I(|x| > m), which then correspond to the conditional self-weighted least-squares estimator,

conditional self-weighted least absolute deviation estimator and conditional self-weighted Huber estimator respec-
tively. Assumption (C.5) is standard on the weight 𝜔t for the self-weighted method in IVAR models which allows
Ey2

t to be infinite by properly choosing weight function 𝜔t. Firstly, the purpose of the weight 𝜔t is to downweight
the leverage points in Xt such that the covariance matrices 𝛀 and 𝚺 in Theorem 2.4 above are finite. Secondly,
the 𝜔t allow us to approximate Ln(̂𝝓n) by a quadratic form. In addition, Theorem 2.4 generalizes the results of
Ling (2005), Wang and Hu (2017) and Fu et al. (2021).

Remark 5. For the case 𝜌(x) = x2 and E𝜀2
1 = 𝜎

2
<∞, taking 𝜓(x) = 2x, 𝜆 = 2. Applying Theorem 2.4, we have

√
n(̂𝝓SM − 𝝓0)

L
−−→N(0, 𝜎2𝚺−1𝛀𝚺−1) (10)

which shows the asymptotic property of the conditional self-weighted least-squares estimator of parameters in a
GRCAR(p) model with finite variance.

For the case 𝜌(x) = |x| and E𝜀2
1 = ∞, taking 𝜓(x) = sign(x). Suppose that the errors 𝜀t have zero median with

a density f (x) satisfying sup
x∈R

|f ′(x)| < ∞. Then 𝜆 = 2f (0) and 𝜏 = 1. Using Theorem 2.4, we have

√
n(̂𝝓SM − 𝝓0)

L
−−→N

(
0,

1
4f (0)2

𝚺−1𝛀𝚺−1
)

(11)

which shows the asymptotic property of the conditional self-weighted least absolute deviation estimator for a
GRCAR(p) model with infinite variance.

For the case 𝜌(x) = 1

2
x2I(|x| ≤ m)+(m |x|− 1

2
m2)I(|x| > m), taking 𝜓(x) = −mI(x < −m)+xI(|x| ≤ m)+mI(x >

m), and

𝜆 =
∫

m

−m

dF(x), 𝜏 = m2 −
∫

m

−m

(m2 − x2)dF(x). (12)

Using Theorem 2.4, we have

√
n(̂𝝓SM − 𝝓0)

L
−−→N

(
0,

𝜏

𝜆
2
𝚺−1𝛀𝚺−1

)
(13)

which includes the asymptotic property of the conditional self-weighted Huber estimator for a GRCAR(p) model
with finite variance or infinite variance.

3. SIMULATION STUDIES

We conduct some simulation studies in finite samples through Monte Carlo experiments. What we are interested in
are the accuracy and sampling distribution of the proposed estimator. The results show that our method performs
well.

Data are generated from the following GRCAR (p) models:
Model A: yt = (𝜙0 + 0.1𝜀t) + (𝜙1 + 0.1𝜀t)yt−1 + 𝜀t. Consider 𝜀t ∼ N(0, 1) and 𝜀t ∼ t2.
Model B: yt = (𝜙0 + 0.1ut) + (𝜙1 + 0.1ut)yt−1 + 𝜀t, where ut ∼ N(0, 1). Consider 𝜀t ∼ N(0, 1), 𝜀t ∼ t2 and

𝜀t ∼ Cauchy(0, 1).

The true values of parameters in model A are (𝜙0, 𝜙1) = (0, 0.5), and (𝜙0, 𝜙1) = (0,−0.5) in model B. In
model A, the random coefficients are correlated with the error process. The random coefficients are independent

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 44: 418–436 (2023)
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Table I. Bias, SDs and ADs of the SM estimators for model A

𝜀t ∼ N(0, 1) 𝜀t ∼ t2

̂
𝜙

SM1

0
̂
𝜙

SM2

0
̂
𝜙

SM1

1
̂
𝜙

SM2

1
̂
𝜙

SM1

0
̂
𝜙

SM2

0
̂
𝜙

SM1

1
̂
𝜙

SM2

1

wt1 n = 200 Bias 0.000 0.000 −0.006 −0.005 0.001 0.001 −0.004 −0.005
SD 0.103 0.084 0.093 0.077 0.123 0.118 0.066 0.065
AD 0.116 0.075 0.103 0.067 0.137 0.077 0.076 0.043

n = 400 Bias 0.001 0.001 −0.003 −0.002 0.001 0.000 −0.002 −0.003
SD 0.072 0.059 0.065 0.053 0.086 0.082 0.044 0.043
AD 0.079 0.053 0.070 0.047 0.093 0.054 0.051 0.030

wt2 n = 200 Bias 0.001 0.001 −0.002 0.000 0.000 0.002 −0.008 −0.007
SD 0.111 0.090 0.090 0.111 0.132 0.125 0.105 0.099
AD 0.125 0.081 0.151 0.098 0.114 0.082 0.076 0.064

n = 400 Bias 0.002 0.002 0.001 0.001 0.002 0.002 −0.003 −0.002
SD 0.078 0.064 0.064 0.076 0.092 0.086 0.044 0.065
AD 0.086 0.057 0.101 0.068 0.076 0.057 0.051 0.044

wt3 n = 200 Bias −0.001 −0.001 −0.003 −0.004 0.000 0.001 −0.004 −0.005
SD 0.110 0.089 0.095 0.078 0.141 0.134 0.078 0.075
AD 0.126 0.081 0.107 0.069 0.162 0.090 0.090 0.050

n = 400 Bias 0.000 0.001 −0.002 −0.002 −0.001 0.000 −0.002 −0.002
SD 0.078 0.064 0.067 0.055 0.099 0.093 0.053 0.052
AD 0.086 0.057 0.073 0.049 0.110 0.063 0.061 0.035

wt4 n = 200 Bias −0.002 −0.001 −0.004 −0.004 −0.001 0.002 −0.004 −0.005
SD 0.118 0.096 0.094 0.078 0.152 0.144 0.072 0.070
AD 0.135 0.087 0.106 0.069 0.174 0.096 0.082 0.046

n = 400 Bias 0.000 0.001 −0.002 −0.002 −0.001 0.000 −0.002 −0.002
SD 0.083 0.068 0.066 0.054 0.106 0.100 0.048 0.048
AD 0.093 0.061 0.073 0.048 0.119 0.068 0.056 0.032

of the error process in model B. Here three distributions are given for reference: N(0, 1) has finite expectation
and finite variance; t2 has finite expectation but infinite variance; Cauchy(0,1) only have a finite moment of order
𝛿(0 < 𝛿 < 1). We set the sample sizes n = 200 and n = 400. The number of replications is 2000.

Tables I and II list the biases, standard deviations (SD) and asymptotic standard deviations (ADs) of the condi-
tional self-weighted least absolute deviation estimator (SM1) and conditional self-weighted Huber estimator (SM2)
with the following choice of weight functions respectively:

w1t =
⎧
⎪
⎨
⎪
⎩

1, |yt−1| ≤ K,

K3

|yt−1|3 , |yt−1| > K,

w2t = I{|yt−1| ≤ K},

w3t =
1

1 + y2
t−1

,

w4t =
1

(1 + yt−1)2

where K is the 0.9 quantile of data
{
|y1|, … , |yn|

}
. The weight w1t is similar to Ling (2005). The weights w2t,w3t

and w4t were considered by Yang and Ling (2017). The tuning parameter of Huber estimator is taken as m = 1.5.

J. Time Ser. Anal. 44: 418–436 (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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Table II. Bias, SDs and ADs of the SM estimators for model B

𝜀t ∼ N(0, 1) 𝜀t ∼ t2 𝜀t ∼ Cauchy(0, 1)

̂
𝜙

SM1

0
̂
𝜙

SM2

0
̂
𝜙

SM1

1
̂
𝜙

SM2

1
̂
𝜙

SM1

0
̂
𝜙

SM2

0
̂
𝜙

SM1

1
̂
𝜙

SM2

1
̂
𝜙

SM1

0
̂
𝜙

SM2

0
̂
𝜙

SM1

1
̂
𝜙

SM2

1

wt1 n = 200 Bias 0.001 −0.001 0.006 0.006 0.001 0.000 0.005 0.004 0.000 0.000 0.003 0.003
SD 0.095 0.075 0.092 0.076 0.110 0.106 0.068 0.064 0.127 0.133 0.045 0.044
AD 0.109 0.075 0.106 0.073 0.131 0.076 0.079 0.046 0.156 0.077 0.045 0.022

n = 400 Bias 0.000 0.001 0.003 0.003 0.000 0.001 0.002 0.002 −0.002 −0.002 0.002 0.002
SD 0.066 0.053 0.065 0.053 0.078 0.075 0.048 0.045 0.090 0.095 0.031 0.031
AD 0.074 0.053 0.072 0.051 0.089 0.054 0.054 0.032 0.106 0.055 0.031 0.015

wt2 n = 200 Bias 0.002 0.000 0.006 0.006 −0.002 0.000 0.005 0.004 −0.001 −0.001 0.005 0.005
SD 0.102 0.081 0.136 0.110 0.117 0.112 0.097 0.093 0.133 0.138 0.064 0.064
AD 0.118 0.081 0.155 0.107 0.139 0.081 0.117 0.069 0.161 0.081 0.070 0.035

n = 400 Bias −0.001 0.001 0.005 0.004 0.000 0.001 0.003 0.003 −0.002 −0.002 0.003 0.003
SD 0.071 0.058 0.095 0.076 0.083 0.079 0.070 0.067 0.093 0.100 0.044 0.045
AD 0.080 0.057 0.105 0.074 0.094 0.057 0.080 0.048 0.110 0.057 0.048 0.024

wt3 n = 200 Bias 0.000 −0.001 0.006 0.005 −0.002 −0.001 0.004 0.002 0.000 0.000 0.004 0.005
SD 0.101 0.079 0.094 0.077 0.125 0.121 0.079 0.073 0.164 0.175 0.076 0.073
AD 0.116 0.079 0.107 0.074 0.150 0.087 0.089 0.052 0.200 0.102 0.072 0.036

n = 400 Bias −0.001 0.001 0.002 0.002 −0.003 −0.001 0.001 0.001 0.000 0.000 0.002 0.002
SD 0.070 0.057 0.065 0.053 0.090 0.086 0.055 0.051 0.115 0.124 0.051 0.050
AD 0.079 0.056 0.073 0.052 0.102 0.062 0.061 0.037 0.136 0.072 0.049 0.026

wt4 n = 200 Bias 0.000 −0.001 0.006 0.005 −0.003 −0.001 0.003 0.002 0.001 0.001 0.004 0.005
SD 0.108 0.085 0.094 0.077 0.136 0.131 0.074 0.068 0.176 0.188 0.066 0.062
AD 0.125 0.085 0.107 0.074 0.161 0.094 0.082 0.048 0.215 0.109 0.060 0.030

n = 400 Bias −0.001 0.001 0.002 0.002 −0.004 −0.002 0.001 0.001 0.001 0.001 0.002 0.002
SD 0.075 0.061 0.065 0.053 0.097 0.092 0.051 0.048 0.125 0.134 0.044 0.043
AD 0.085 0.060 0.073 0.052 0.110 0.067 0.056 0.034 0.146 0.077 0.041 0.021

We define

̂𝚺 = 1
n

n∑

t=1

𝜔tXtX
′
t ,
̂𝛀 = 1

n

n∑

t=1

𝜔

2
t XtX

′
t ,

𝜏 = 1
n

n∑

t=1

𝜓

2(𝜀t), ̂G(r) =
1
n

n∑

t=1

𝜓(𝜀t + r), (14)

̂
𝜆 is the derivative of ̂G(r) at r = 0 and

{
𝜀t

}
is the sequence of residuals in GRCAR(p). The ADs are calculated

by (10)-(14). We estimate f (0) by

̂fn(0) =
1

𝜎
𝜔

bnn

n∑

t=1

𝜔tK

(
yt − ̂𝝓

′
nXt−1

bn

)

where 𝜎
𝜔

= 1

n

∑n
t=1𝜔t,K(x) = e−x∕(1 + e−x)2 and bn = 1.06 × n−1∕5. For the choice of the optimal bandwidth and

its motivation, we refer to Silverman (1986,p.40)and Pan et al. (2007). Tables I and II show that all the biases are
very small and all the SDs and ADs are very close no matter E𝜀2

t is finite or infinite and no matter the random
coefficients are correlated with the error process or independent of the error process. All the biases, SDs and ADs
become smaller, when n increases from 200 to 400. And the SM2 estimators perform better than the SM1 estimators.
All of the estimators based on w1t are more efficient than the others.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 44: 418–436 (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12680
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GRCAR MODELS WITH HEAVY-TAILED ERRORS 425

Figure 1. The sampling distribution for model A

To get an overall view on the sampling distributions of the SM1 estimators and the SM2 estimators, we simulate
2000 replications for the case 𝜙1 = 0.5 and n = 400 when the error distributions are N(0, 1) and t2 for model A,
and for the case 𝜙1 = −0.5 and n = 400 when the error distributions are N(0, 1), t2 and Cauchy for model B.
Denote Nn1 =

√
n(̂𝜙SM1

1 − 0.5)∕𝜎SM1
,Nn2 =

√
n(̂𝜙SM2

1 − 0.5)∕𝜎SM2
; Nt1 =

√
n(̂𝜙SM1

1 − 0.5)∕𝜎SM1
,Nt2 =

√
n(̂𝜙SM2

1 −
0.5)∕𝜎SM2

;Nc1 =
√

n(̂𝜙SM1

1 − 0.5)∕𝜎SM1
,Nc2 =

√
n(̂𝜙SM2

1 − 0.5)∕𝜎SM2
, when the error distribution is N(0, 1), t2 and

Cauchy respectively, where 𝜎SM1
and 𝜎SM2

are the SDs of ̂
𝜙

SM1

1 and ̂
𝜙

SM2

1 respectively. Figure 1 shows the density
curves of model A. The density curves of model B are presented in Figure 2. We can see that the density of N(0, 1)
is approximated reasonably well by those of Nn1,Nn2, Nt1,Nt2 and Nc1,Nc2 in both model A and model B.

In conclusion, the numeric results show that the conditional self-weighted M-estimators perform well in finite
sample no matter with finite variance or infinite variance.

4. REAL DATA ANALYSIS

The proposed methodology is applied to modeling a real dataset. We consider the Hang Seng Index (HSI) for
the stock market which is the most influential index in the Hong Kong stock market and one of the most impor-
tant indices in the Asian financial markets as well. This index has been extensively investigated in the literature.
Our dataset consists of the daily Hang Seng closing index from 7 May 2020 to 31 December 2021, which was
downloaded at https://cn.investing.com/. There are 412 available observations in total, which are denoted by
x1, x2, … , x412. The first 392 data are selected as the training sample to build model, and next 20 data are used as
test sample to evaluate the model. We take the following steps to analyze this dataset by the GRCAR model and
method proposed in this article.

Step 1. Data transformation: The sample time plot for the data {xt} is shown in Figure 3(a). It can be seen
that the time series is not stationary because of various levels. To get a stationary time series, let yt = 100 ×
(log(xt∕xt−1)). The sample path plot for the data {yt} is shown in Figure 3(b). Figure 3(b) indicates that {yt} is
close to stationarity.
Step 2. Model identification: The plot of sample autocorrelation function (ACF) and sample partial autocor-
relation function (PACF) of {yt} are presented in Figure 3(c) and (d) respectively. Figure 3 can provide some
important information for tentative identification of the orders of a stable AR model. Based on the sample ACF
and PACF plots, it is reasonable to consider fitting an AR(3) autocorrelation structure to {yt}. Since stock data
are affected by various factors, the coefficients of the autoregressive model may also change randomly over

J. Time Ser. Anal. 44: 418–436 (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12680 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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426 X. LI, J. PAN AND A. SONG

Figure 2. The sampling distribution for model B

time, even the coefficients may be correlated with the error, so we can try to fit a GRCAR(3) model instead of
AR(3). However, we realize that the data may be heavy-tailed and how to determine the order of autoregression
for a time series with infinite variance is a problem which needs further study. Here we just use the sample
PACF to give a rough indication of the order in which a GRCAR model might be fitted.
Step 3. Heavy-tail test: To test whether {yt} has a heavy-tailed distribution, we use Hill’s estimator (see Drees
et al. (2000) and Resnick (2000)) to estimate the tail index of yt. Let y(1) > y(2) > · · · > y(n) be the order statistics
of yt, t = 1, … , n. The estimators of the right-tail and left-tail indices are defined as

H1k =

{
1
k

k∑

i=1

log

(
y(i)

y(k+1)

)}−1

,

H2k =

{
1
k

k∑

i=1

log

(
y(n−i+1)

y(n−k)

)}−1

,

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 44: 418–436 (2023)
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GRCAR MODELS WITH HEAVY-TAILED ERRORS 427

Figure 3. (a) Sample path of data xt, (b) sample path of data yt, (c) sample ACF of yt, (d) sample PACF of yt

respectively. Figure 4 displays the Hill estimates of the right-tail and left-tail indices when 1 ≤ k ≤ 200. From
Figure 4, we can see that both the right and left tail indices are most likely less than 2. Hence, yt should have
a heavy tail. Therefore, it may be more appropriate to suppose these data are generated from a process with
infinite variance rather than to assume this data have finite variance.

Based on the above discussion, we can fit a GRCAR(3) model to the data:

yt = (𝜙0 + 𝜀t) + (𝜙1 + 𝜀t)yt−1 + (𝜙2 + 𝜀t)yt−2 + (𝜙3 + 𝜀t)yt−3 + 𝜀t, 𝜀t ∼ t2. (15)

Step 4. Parameter estimation: The unknown parameters are estimated by different methods on the training
data. We calculated the mean absolute errors (MAEs) of predicted values for transformed data based on 1000
repetitions. The results are shown in Table III. From them, we can see that the self-weighted estimators perform
better, especially SM2. So we choose the SM2 for further analysis. The estimates are

(𝜙0, 𝜙1, 𝜙2, 𝜙3) = (0.0493, 0.0059, 0.0214,−0.1608),

whose corresponding asymptotic standard deviations are 0.0028, 0.0019, 0.0018, 0.0018 respectively.
Step 5. Model diagnostics: The absolute value of the eigenvalues for the corresponding matrix in model (15) are
0.5549, 0.5383 and 0.5383, which are all less than one. Therefore, this model satisfies the stationary conditions
of Corollary 2.3. Figure 5 presents the residuals of the fitted model (15), the normal Q–Q plot of the residuals,
the sample autocorrelation function (ACF) of the residuals and the sample ACF of the squared residuals. From
that, we can see the model (15) fits the data reasonably well.
Step 6. Prediction: We use the above model (15) to predict y393, y394, … , y412 in the test set. As the coefficient
of model (15) is random, the predicted values of Hang Seng Index from 3 December 2021 to 31 December
2021, x393, x394, … , x412, were calculated by taking the average of 1000 repetitions. We compare our GRCAR(3)
model with the AR(3) model and AR(3)-ARCH(2) model. The predictive performance of different models is
presented in Figure 6. We can see that the predicted value of model (15) captures the change trend of the real
value and most of the predicted values are very close to the true values. Figure 6 and Table IV also show that
the GRCAR(3) model performs better than AR(3) model and AR(3)–ARCH(2) model for this dataset.

J. Time Ser. Anal. 44: 418–436 (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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Figure 4. Hill estimates of the right tail index H1k(black) and the left tail index H2k(blue)

Table III. Mean absolute errors (MAE) of predicted values on the training set for transformed data

Methods SM1 SM2 LAD LS

MAE 0.9691 0.9529 0.9800 0.9996

Figure 5. (a) The residuals from the fitted GRCAR(3) model, (b) the normal Q–Q plot of the residuals, (c) the sample
autocorrelation function (ACF) of the residuals and (d) the sample ACF of the squared residuals

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 44: 418–436 (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12680
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Figure 6. The predictive performance of different models

Table IV. Some indicators of predictive accuracy on test set about the original data

Mean of residual SD of residual MAE

AR(3) −32.60 282.93 200.98
GRCAR(3) 8.07 279.34 176.75

In summary, our model and method perform well in analysis and forecasting of time series data with heavy-tailed
distributions.

5. PROOFS OF THEORETICAL RESULTS

This section presents the proofs of our theoretical results.

Proof of Theorem 2.1. It is easy to see that {Xt} defined by (3) is a homogenous Markov chain. By the conditions
of Theorem 2.1, this Markov chain is up-irreducible and aperiodic, and all bounded sets with positive up -measure
in Rp are small sets. Take the test function g(x) = ‖x‖𝛿v . It holds that

E
{

g(Xt)||Xt−1 = x
}
= E

{
g(𝚽t(x) + 𝜀tU)

}

= E‖‖𝚽t(x) + 𝜀tU‖‖
𝛿

v

≤ E‖‖𝚽t(x)‖‖
𝛿

v + E‖‖𝜀tU‖‖
𝛿

v

≤ 𝜌‖x‖𝛿v + c + (E||𝜀t
||
𝛿)‖U‖𝛿v

= 𝜌‖x‖𝛿v + c + c′

= 𝛼‖x‖𝛿v −
[
(𝛼 − 𝜌)‖x‖𝛿v − c − c′

]
,

where 0 < 𝜌 < 𝛼 < 1, c′ = (E||𝜀t
||
𝛿)‖U‖𝛿v . Let C =

{
x ∶ ‖x‖𝛿v ≤ k

}
, k > max

{
1, c+c′

𝛼−𝜌

}
, then C is a small set, and

E
{

g(Xt)||Xt−1 = x
}
≤ 𝛼‖x‖𝛿v − c1,∀x ∉ C,

E
{

g(Xt)||Xt−1 = x
}
≤ c2,∀x ∈ C,

where c1 = (𝛼 − 𝜌)k − c− c′, c2 = 𝜌k + c+ c′. By the Lyapunov shift criteria (see Meyn and Tweedie (1994)), the
model (3) is geometrically ergodic,which implies {yt} in model (2) is stationary and geometrically ergodic. ◾
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Proof of Corollary 2.2. We only need to verify the condition (i) of Theorem 2.1. Denote

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜑1 𝜑2 … 𝜑p−1 𝜑p

1 0 … 0 0

0 1 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 … 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The condition (5) of Corollary 2.2 is equivalent to 𝜆

p − 𝜑1𝜆
p−1 − · · · − 𝜑p ≠ 0, |𝜆| ≥ 1. It implies the roots

𝜆1, … , 𝜆p of |𝜆I − A| = 0 satisfy |𝜆i| < 1, i = 1, 2, … , p. Put 𝜌 = max{|𝜆i|, i = 1, 2, … , p}, then 0 < 𝜌 < 1.
Thus there exists a positively definite matrix Vp×p and 0 < 𝜌 < 1 such that A′VA ≤ 𝜌

2V (see Ciarlet (1982)).
Furthermore,

∀x ∈ Rp
, x′A′VAx ≤ 𝜌

2x′Vx.

Define a norm ‖⋅‖v as follows

‖x‖v =
(
x′Vx

)1∕2
,∀x ∈ Rp

.

Then

‖Ax‖v ≤ 𝜌 ‖x‖v ,∀x ∈ Rp
.

Let Ht(x) = 𝚽t(x) − Ax =
(
𝜑t(x) − 𝝋′x, 0, … , 0

)′
, where 𝝋′ =

(
𝜑1, … , 𝜑p

)
. By the norm equivalence, there is

a positive constant M such that

E‖‖Ht(x)‖‖
𝛿

v

‖x‖𝛿v
≤

ME‖‖Ht(x)‖‖
𝛿

‖x‖𝛿
=

ME||𝜑t(x) − 𝝋′x||
𝛿

‖x‖𝛿
. (16)

By (6), when ‖x‖ → ∞, the right-hand side of the above inequality tends to 0. Hence, there exists a constant K0

such that

E‖‖Ht(x)‖‖
𝛿

v ≤
1
2

(
1 − 𝜌

𝛿

)
‖x‖𝛿v

for ‖x‖𝛿v > K0. Therefore,

E||𝚽t(x)||𝛿v = E||Ax + Ht(x)||𝛿v

≤ ‖Ax‖𝛿v + E‖‖Ht(x)‖‖
𝛿

v

≤ 𝜌

𝛿‖x‖𝛿v + E‖‖Ht(x)‖‖
𝛿

v

≤

{
1

2
(1 + 𝜌

𝛿)‖x‖𝛿v , ‖x‖𝛿v ≥ K0,

𝜌

𝛿‖x‖𝛿v +M1, ‖x‖𝛿v < K0.

By (7) and (16), when ‖x‖𝛿v < K0, there exists a constant M1 ≥ 0 such that E‖‖Ht(x)‖‖
𝛿

v ≤ M1. This implies that the
condition (i) of Theorem 2.1 holds. By Theorem 2.1, we get the result of this corollary. ◾
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Proof of Corollary 2.3. We only need to verify the condition (i) of corollary 2.2.
Define

𝜑t(x) = 𝜙t0 +
(
𝜙t1, … , 𝜙tp

)
x, x ∈ Rp

.

Then

||𝜑t(x) − 𝝋′x||
𝛿 = |||𝜙t0 +

(
𝜙t1 − 𝜙1, … , 𝜙tp − 𝜙p

)
x|||

𝛿

≤ ||𝜙t0
||
𝛿 + |||

(
𝜙t1 − 𝜙1, … , 𝜙tp − 𝜙p

)
x|||

𝛿

.

Therefore

lim
‖x‖→∞

E||𝜑t(x) − 𝝋′x||
𝛿

‖x‖
≤ lim

‖x‖→∞

E||𝜙t0
||
𝛿

‖x‖
+ lim

‖x‖→∞

E|||
(
𝜙t1 − 𝜙1, … , 𝜙tp − 𝜙p

)
x|||

𝛿

‖x‖

≤ lim
‖x‖→∞

E||𝜙t0
||
𝛿

‖x‖
+ lim

‖x‖→∞

E‖‖‖
(
𝜙t1 − 𝜙1, … , 𝜙tp − 𝜙p

)′‖‖‖
𝛿

‖x‖𝛿

‖x‖

≤ lim
‖x‖→∞

E||𝜙t0
||
𝛿

‖x‖
+ lim

‖x‖→∞

E
(∑p

i=1
||𝜙ti − 𝜙i

||
𝛿

)
‖x‖𝛿

‖x‖

≤ lim
‖x‖→∞

E||𝜙t0
||
𝛿

‖x‖
+ lim

‖x‖→∞

∑p
i=1E||𝜙ti − 𝜙i

||
𝛿

‖x‖1−𝛿

= 0,

where the second inequality uses the Schwarz inequality, the third inequality uses the Triangle inequality, and the
last equation holds by the condition (ii) of Corollary 2.3. Also,

sup
‖x‖≤K

E||𝜑t(x) − 𝝋′x||
𝛿

≤ sup
‖x‖≤K

[

E||𝜙t0
||
𝛿 +

p∑

i=1

E||𝜙ti − 𝜙i
||
𝛿

]

<∞.

This implies that the condition (i) of Corollary 2.2 holds. By Corollary 2.2, {yt} in model (1) is stationary and
geometrically ergodic. ◾

In the following, we give two lemmas, which will be used frequently in the proof of Theorem 2.4. The first
lemma is directly taken from Davis et al. (1992).

Lemma 5.1. Let Vn(⋅) and V(⋅) be stochastic process on Rp+1 and suppose that Vn(⋅)
L
−−→V(⋅) on C(p+1) . Let

𝝃n minimize Vn(⋅) and 𝝃n minimize V(⋅). If Vn(⋅) is convex for each n and 𝝃 is unique with probability one, then

𝝃n

L
−−→ 𝝃 onp+1.

Proof. See Davis et al. (1992). ◾

Lemma 5.2. Under the conditions (C.1)–(C.5), we have, as n → ∞,

(a) 1

n

∑n
t=1𝜔tXtX

′
t

p
−−→𝛴, 1

n

∑n
t=1𝜔

2
t XtX

′
t

p
−−→Ω;

(b) for any fixed (p + 1) × 1 vector C such that C′ΩC > 0, max
1≤t≤n

|𝜔tC
′Xt|√
n

p
−−→ 0;

(c) 1

n

∑n
t=1𝜔tXt𝜓(𝜀t)

L
−−→N(0, 𝜏𝛺).
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Proof. By applying the conditions (C.1) with yt being stationary and ergodic, it is easy to get (a) and (b). So we
omit the proofs of (a) and (b), and only give the proof of (c). Put 𝜍nt =

1
√

n
𝜔tC

′Xt𝜓(𝜀t). Then

n∑

t=1

𝜍nt = C′ 1
√

n

n∑

t=1

𝜔tXt𝜓(𝜀t),

and 𝜍nt, 1 ≤ t ≤ n is a sequence of martingale differences with respect to t−1. By (a), it follows that

n∑

t=1

E
(1

n
𝜔

2
t C′XtX

′
tC𝜓

2(𝜀t)|t−1

)
= 1

n

n∑

t=1

(𝜔2
t C′XtX

′
tC)E𝜓

2(𝜀t)

= 𝜏

1
n

n∑

t=1

(𝜔2
t C′XtX

′
tC)

p
−−→ 𝜏𝜐, (17)

where 𝜐 = C′ΩC. Put 𝜉t = 𝜔tC
′Xt, then for any 𝜂 > 0, we have

n∑

t=1

E(𝜍2
ntI(|𝜍nt| > 𝜂)|t−1) =

1
n

n∑

t=1

𝜉

2
t E(𝜓2(𝜀t)I(|𝜉t𝜓(𝜀t)| > 𝜂

√
n)|t−1)

≤ max
1≤t≤n

E
(
𝜓

2(𝜀t)I(|𝜉t𝜓(𝜀t)| > 𝜂

√
n)|t−1

)1
n

n∑

t=1

𝜉

2
t . (18)

Notice that

I(|𝜉t𝜓(𝜀t)| > 𝜂

√
n) ≤ I(|𝜓(𝜀t)| > 𝜂M) + I

(
|𝜉t|√

n
>

1
M

)

for any fixed M > 0. It implies that, for 1 ≤ t ≤ n,

E

(

𝜓

2(𝜀t)I

(||||||

𝜉t𝜓(𝜀t)√
n

||||||
> 𝜂

)||||||
t−1

)

≤ E
(
𝜓

2(𝜀t)I
(||𝜓(𝜀t)|| > 𝜂M

))
+ E

(

𝜓

2(𝜀t)I

(
||𝜉t

||√
n
>

1
M

)||||||
t−1

)

≤ E
(
𝜓

2(𝜀1)I
(||𝜓(𝜀1)|| > 𝜂M

))
+ 𝜏 ⋅ max

1≤t≤n
I

(
||𝜉t

||√
n
>

1
M

)

≤ E
(
𝜓

2(𝜀1)I
(||𝜓(𝜀1)|| > 𝜂M

))
+ 𝜏 ⋅ I

(

max
1≤t≤n

||𝜉t
||√
n
>

1
M

)

. (19)

This leads to

max
1≤t≤n

E

(

𝜓

2(𝜀t)I

(||||||

𝜉t𝜓(𝜀t)√
n

||||||
> 𝜂

)||||||
t−1

)

≤ E
(
𝜓

2(𝜀1)I
(||𝜓(𝜀1)|| > 𝜂M

))
+ 𝜏 ⋅ I

(

max
1≤t≤n

||𝜉t
||√
n
>

1
M

)

. (20)
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Thus

E

{

max
1≤t≤n

E

(

𝜓

2(𝜀t)I

(||||||

𝜉t𝜓(𝜀t)√
n

||||||
> 𝜂

)||||||
t−1

)}

≤ E
(
𝜓

2(𝜀1)I
(||𝜓(𝜀1)|| > 𝜂M

))
+ 𝜏 ⋅ P

(

max
1≤t≤n

||𝜉t
||√
n
>

1
M

)

.

Notice E𝜓2(𝜀1) < ∞. Then for any 𝜀 > 0, there exists M = M(𝜀) such that

E
(
𝜓

2(𝜀1)I
(||𝜓(𝜀1)|| > 𝜂M

))
< 𝜀,

which implies that

E

{

max
1≤t≤n

E

(

𝜓

2(𝜀t)I

(||||||

𝜉t𝜓(𝜀t)√
n

||||||
> 𝜂

)||||||
t−1

)}

≤ 𝜏 ⋅ P

(

max
1≤t≤n

||𝜉t
||√
n
>

1
M

)

+ 𝜀. (21)

From (b) and (21), we have

lim sup
n→∞

E

{

max
1≤t≤n

E

(

𝜓

2(𝜀t)I

(||||||

𝜉t𝜓(𝜀t)√
n

||||||
> 𝜂

)||||||
t−1

)}

≤ 𝜀.

Then

lim
n→∞

E

{

max
1≤t≤n

E

(

𝜓

2(𝜀t)I

(||||||

𝜉t𝜓(𝜀t)√
n

||||||
> 𝜂

)||||||
t−1

)}

= 0.

Thus

max
1≤t≤n

E

(

𝜓

2(𝜀t)I

(||||||

𝜉t𝜓(𝜀t)√
n

||||||
> 𝜂

)||||||
t−1

)

= op(1), (22)

which, combining with (22) and (a), derives that, for any 𝜂 > 0,

n∑

t=1

E
(
𝜍

2
ntI(||𝜍nt

|| > 𝜂)||t−1

)
= op(1). (23)

Therefore, by applying the martingale central limit theorem, (18) and (23), we have

1
n

n∑

t=1

𝜔tXt𝜓(𝜀t)
L
−−→N(0, 𝜏𝛺).

The proof of the Lemma 5.2 is completed. ◾

Proof of Theorem 2.4. Denote ̂
𝛽n =

√
n(̂𝜙SM − 𝜙0) and

Vn(𝝁) =
n∑

t=1

𝜔t

(

𝜌

(

𝜀t −
1

√
n
𝝁′Xt

)

− 𝜌(𝜀t)

)

, (24)
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where ̂𝜷n is the value of 𝝁 that minimizes the convex objective function Vn(𝝁) and 𝝁 ∈ p+1. Put

An =
1

√
n

n∑

t=1

𝜔tXt𝜓(𝜀t),

Bt(𝝁) = 𝜔t
∫

− 𝝁′Xt√
n

0

(
𝜓(𝜀t + s) − 𝜓(𝜀t)

)
ds.

Then

Vn(𝝁) = −𝝁′An +
n∑

t=1

Bt(𝝁)

= −𝝁′An +
n∑

t=1

E(Bt(𝝁)||t−1) +
n∑

t=1

(
Bt(𝝁) − E(Bt(𝝁)||t−1)

)
. (25)

From the condition (C.3), we obtain

n∑

t=1

E(Bt(𝝁)||t−1) =
n∑

t=1

𝜔t
∫

− 𝝁′Xt√
n

0
E
(
𝜓(𝜀t + s)

)
ds

=
n∑

t=1

𝜔t
∫

− 𝝁′Xt√
n

0
𝜆s(1 + o(1))ds

=
𝜆𝝁′

2n

(
n∑

t=1

𝜔tXtX
′
t

)

𝝁(1 + o(1))

=
𝜆𝝁′

2

(
1
n

n∑

t=1

𝜔tXtX
′
t

)

𝝁 + op(1).

Note that
{

Bt(𝝁) − E(Bt(𝝁)||t−1), 1 ≤ t ≤ n
}

is a sequence of martingale differences. Then we get

n∑

t=1

E(B2
t (𝝁)||t−1) =

n∑

t=1

E
⎛
⎜
⎜
⎝
𝜔

2
t

(

∫

− 𝝁′Xt√
n

0

(
𝜓(𝜀t + s) − 𝜓(𝜀t)

)
ds

)2|||||||

t−1

⎞
⎟
⎟
⎠

≤

n∑

t=1

E

(

𝜔

2
t ∫

− 𝝁′Xt√
n

0
ds
∫

− 𝝁′Xt√
n

0

(
𝜓(𝜀t + s) − 𝜓(𝜀t)

)2
ds
||||||
t−1

)

≤

n∑

t=1

𝜔

2
t

||𝝁
′Xt

||√
n

||||||
∫

− 𝝁′Xt√
n

0
E
(
𝜓(𝜀t + s) − 𝜓(𝜀t)

)2
ds
||||||

= 𝝁′
(

1
n

n∑

t=1

𝜔

2
t XtX

′
t

)

𝝁 ⋅ o(1). (26)

From Lemma 5.1 and (26), we can obtain

n∑

t=1

EB2
t (𝝁) ≤ 𝝁

′

(
1
n

n∑

t=1

E𝜔2
t XtX

′
t

)

𝝁 ⋅ o(1) = 𝝁′𝛀𝝁 ⋅ o(1)→ 0.
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Therefore, we have
n∑

t=1

EB2
t (𝝁)→ 0.

Thus

E

(
n∑

t=1

(
Bt(𝝁) − E(Bt(𝝁)||t−1)

)
)2

=
n∑

t=1

E
(
Bt(𝝁) − E(Bt(𝝁)||t−1)

)2

≤ 2
n∑

t=1

EB2
t (𝝁)→ 0.

Hence (25) can be rewritten to be

Vn(𝝁) =
𝜆

2
𝝁′

(
1
n

n∑

t=1

𝜔tXtX
′
t

)

𝝁 − 𝝁′An + op(1). (27)

Because of Lemma 5.2, we can get

Vn(𝝁)
L
−−→V(𝝁) = 𝜆

2
𝝁′𝚺𝝁 − 𝝁′A,

where A ∼ N(0, 𝜏𝛀). Note that V(𝝁) has a unique minimum at 𝝁 = 1

𝜆

𝚺−1A almost surely and Vn(𝝁) has convex
sample paths due to the condition (C.2). Applying Lemma 5.1, we have

̂𝜷n =
√

n(̂𝝓SM − 𝝓0)
L
−−→ 1

𝜆

𝚺−1A ∼ N
(

0,
𝜏

𝜆
2
𝚺−1𝛀𝚺−1

)
.

So the proof of Theorem 2.4 is completed. ◾

6. CONCLUDING REMARKS

This article establishes the geometric ergodicity of general stochastic functional autoregressive models (includ-
ing linear and nonlinear) under a broad condition. Furthermore, the stationary conditions and a self-weighted
M-estimator for GRCAR(p) models with possibly heavy-tailed errors are proposed. The proposed estimator is
shown to be asymptotically normal. The simulation study and a real data example showed that our theory and
methodology perform well in practice. A general approach to stationarity and estimation for GRCAR models
with heavy-tailed errors is presented. The methodology and results could be extended further to other time series
models such as heavy-tailed GRCARMA models.
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