- 1 Stratigraphic context and age of hominin fossils from Middle Pleistocene Flores
- 2

3	Adam Brumm ^{1,2} *, Gerrit D. van den Bergh ³ * [#] , Michael Storey ⁴ , Iwan Kurniawan ⁵ *, ,
4	Brent V. Alloway ^{6,3} , Ruly Setiawan ^{7,3} , Erick Setiyabudi ⁵ , Rainer Grün ^{8,1} , Mark W.
5	Moore ⁹ , Dida Yurnaldi ^{7,3} , Mika R. Puspaningrum ³ , Unggul P. Wibowo ^{5,3} , Halmi
6	Insani ⁵ , Indra Sutisna ⁵ , John A. Westgate ¹⁰ , Nick J.G. Pearce ¹¹ , Mathieu Duval ¹² ,
7	Hanneke J.M. Meijer ¹³ , Fachroel Aziz ⁵ , Thomas Sutikna ^{3,14} , Sander van der Kaars ^{15,16} ,
8	Michael J. Morwood ^{3§}
9	
10	Author affiliations
11	¹ Research Centre of Human Evolution, Environmental Futures Research Institute,
12	Griffith University, Nathan QLD 4111, Australia.
13	² School of Earth & Environmental Sciences, University of Wollongong, Wollongong
14	NSW 2522, Australia.
15	³ Centre for Archaeological Science, School of Earth & Environmental Sciences,
16	University of Wollongong, Wollongong NSW 2522, Australia.
17	⁴ Quadlab, Natural History Museum of Denmark, University of Copenhagen, 12 DK-
18	1350 Copenhagen, Denmark.
19	⁵ Geology Museum, Bandung 40122, Indonesia.
20	⁶ School of Geography, Environment and Earth Sciences, Victoria University,
21	Wellington 6012, New Zealand.
22	⁷ Center for Geological Survey, Geological Agency, Bandung 40122, Indonesia.
23	⁸ Research School of Earth Sciences, The Australian National University, Canberra
24	ACT 2601, Australia.
25	⁹ Stone Tools and Cognition International Research Hub, School of Humanities,

- 26 University of New England, Armidale NSW 2351, Australia.
- ¹⁰Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1,
- 28 Canada.
- ¹¹Department of Geography & Earth Sciences, Aberystwyth University, Wales SY23
- 30 3DB, United Kingdom.
- 31 ¹²Geochronology, Centro Nacional de Investigación sobre la Evolución Humana
- 32 (CENIEH), Paseo de Atapuerca, 3, 09002-Burgos, Spain.
- ¹³University Museum of Bergen, University of Bergen, 5007 Bergen, Norway.
- ¹⁴National Research Centre for Archaeology (ARKENAS), Jakarta 12510, Indonesia.
- 35 ¹⁵Cluster Earth & Climate, Faculty of Earth and Life Sciences, Vrije Universiteit, HV
- 36 1081 HV Amsterdam, the Netherlands.
- 37 ¹⁶School of Earth, Atmosphere and Environment, Monash University, Clayton VIC
- 38 3800, Australia.
- 39 [§]Deceased
- 40 **These authors contributed equally*
- 41
- 42 [#]Correspondence and requests for information should be addressed to G.D.v.d.B.
- 43 (gert@uow.edu.au)
- 44

45 Recent excavations at the early Middle Pleistocene site of Mata Menge in the So'a

46 Basin of central Flores, Indonesia, have yielded fossils of hominins¹ attributed to

- 47 a population ancestral to Late Pleistocene *Homo floresiensis*². Here we describe
- 48 the context and age of the Mata Menge hominin specimens and associated
- 49 archaeological findings. The fluvial sandstone layer from which the *in situ* fossils
- 50 were excavated in 2014 was deposited in a small valley stream around 700

51	thousand years (kyr) ago, as indicated by 40 Ar/ 39 Ar and fission track dates on
52	stratigraphically bracketing volcanic ash and pyroclastic density current
53	deposits, in combination with coupled Uranium-series (U-series) and Electron
54	Spin Resonance (ESR) dating of fossil teeth. Palaeoenvironmental data indicates
55	a relatively hot and dry climate in the So'a Basin during the early Middle
56	Pleistocene, while various lines of evidence suggest the hominins inhabited a
57	savannah-like open grassland habitat with a strong wetland component. The
58	hominin fossils occur alongside the remains of an insular fauna and a simple,
59	'Mode 1'-like stone technology that is markedly similar to that of <i>H. floresiensis</i> .
60	
61	Mata Menge is located near the northwestern margin of the So'a Basin, a $\sim 400 \text{ km}^2$
62	geological depression in the interior highlands of central Flores (Fig. 1). The basement
63	substrate consists of the Ola Kile Formation (OKF), a >100 m-thick sequence of
64	indurated volcaniclastic deposits dominated by andesitic breccia and locally
65	alternating with lava flows, tuffaceous sandstones, and siltstones ^{3,4} . Zircon fission-
66	track (ZFT) age determinations date the upper part of the OKF to 1.86 ± 0.12 million
67	years ago (Ma) (ref. 4). The OKF is unconformably overlaid by the Ola Bula
68	Formation (OBF) ^{3,4} . The latter is up to 120 m thick, and comprises an intra-basinal
69	fossil- and stone artefact-bearing sequence deposited between 1.8 to 0.5 Ma. The ${\sim}5^\circ$
70	southward dipping volcanic breccias of the OKF are associated with a former volcanic
71	centre located on the northwestern edge of the basin. Inside the remnant of this 10 km
72	diameter caldera structure, known as the Welas Caldera, are well-formed intra-caldera
73	lake sediments punctuated by two intra-caldera basaltic cones that were the major
74	sources of primary and secondary basaltic volcaniclastic deposits within the OBF.
75	

76	Since the 1950s, palaeontological and archaeological research in the So'a Basin has
77	focused on the OBF ⁵⁻¹⁴ , which is composed largely of undistorted volcanic, fluvial,
78	and lacustrine sediments ^{3,4} . The volcaniclastic aprons that entered the central
79	depression from various directions, at times debouching into a lake, or series of small
80	lakes, were incised by erosional gullies during periods of volcanic quiescence, but
81	became sites of enhanced accretion following major volcanic influxes. Well-developed
82	paleosols and pedogenically altered fine-grained fluviatile deposits intervening
83	between variably textured pyroclastic (primary) and fluvio-volcaniclastic (secondary)
84	deposits document intermittent periods of landscape stability that alternated with rapid
85	depositional events triggered by major volcanic eruptions, generating airfall tephra,
86	ignimbrites, and associated mass-flow deposits (see SI Table 1). A basin-wide, thinly-
87	bedded lacustrine sequence, consisting of an alternation of thin-bedded micritic
88	freshwater limestones, clays, and with numerous basaltic tephra inter-beds - the 'Gero
89	Limestone Member' (GLM) – caps the basin infill and registers the formation of a
90	basin-wide lake ^{3,4} , which formerly extended into the Welas Caldera.
91	
92	The total preserved thickness of the OBF at Mata Menge, up to the top of an adjacent
93	hill northwest of the site, is 40 m (Fig. 1). The uppermost interval of the GLM, with a
94	thickness of 9 m, outcrops at the summit of a hill 600 m west (Excavation #35, or E-
95	35). The main fossil-bearing intervals at Mata Menge form part of a roughly NNW-
96	SSE trending palaeovalley dominantly occupied by a sequence of cut-and-fill
97	fluviatile and clay-rich mass-flow deposits. The hominin-bearing sedimentary layer
98	lies at the head of a modern dry stream valley at the base of a hill ($ht = 397m$). A slot-
99	trench excavated into the eastern side of this hill revealed an 18 m-thick sequence of
100	planar bedded lacustrine clays and micritic limestones containing oogonia and

101	diatoms, fluvial sandstone beds, massive tuffaceous clay-rich mass-flow (mudflow)
102	deposits, fine-grained well-developed clay-textured paleosols, and numerous
103	centimetre-thick basaltic tephra inter-beds, pertaining to the middle upper part of the
104	OBF. At the base of this slot-trench, a thin (<30 cm-thick) fossil-bearing fluvial
105	sandstone layer was exposed underlying a sequence of mudflow deposits (Layers Ia-f)
106	up to 6.5 m thick. This fossiliferous sandstone, named Layer II, represents the deposit
107	of a small stream channel that has an irregular lower bedding plane and was incised
108	into a well-developed, consolidated paleosol with prominent root traces (Layer III).
109	
110	We conducted a 50 m^2 excavation (E-32) into Layer II in 2013 (Fig. 1 and Extended
111	Data Figs. 1-2). The sandstone layer yielded fossils of the dwarfed proboscidean
112	Stegodon florensis ⁸ , and numerous well-preserved dental and skeletal remains of giant
113	rat (<i>Hooijeromys nusatenggara</i>) ¹⁵ , as well as teeth of Komodo dragon (<i>Varanus</i>
114	komodoensis) and crocodiles, and flaked stone artefacts (Fig. 2). In 2014, we exposed
115	Layer II over a larger area by extending the initial trench (E-32A) to the south (E-
116	32B/C) and west (E-32D/E). A separate excavation was also opened upstream of the
117	palaeo-channel to the north (E-32F). These excavations recovered six hominin teeth
118	and a hominin mandible fragment from Layer II (ref. 1). Another less diagnostic
119	hominin fossil comprises a 60 mm ² piece of a cranial vault. The hominin fossils
120	occurred at the stratigraphic interface between Layer II and the overlying mudflow
121	deposit, spread over a maximum linear distance of 15 m. The flow direction in the
122	sinuous stream tributary in which Layer II was deposited was from NNW to SSE,
123	based on the slight decrease in elevation of the top of this layer in the same direction
124	(i.e., 20 cm over a horizontal distance of 17 m). The fine- to medium-grained fluvial
125	sandstone has a maximum thickness of 30 cm, contains scattered pebbles, and occurs

126 13 m stratigraphically above the main (lower) fossil-bearing beds at Mata Menge,

127 which have a combined thickness of up to two metres (Fig. 1).

128

129 The mudflow sequence (Layers Ia-f) sealing in Layer II can be clearly related to 130 phreatomagmatic to magmatic eruptive activity occurring within the confines of the 131 Welas Caldera (then occupied by a lake). The formation of these multiple mudflow 132 events either relates to intermittent displacement of lake waters down adjacent 133 tributaries during cone construction, or, alternatively, failure of a lake outlet barrier 134 during and/or following intra-caldera eruptive activity. Four articulated thoracic 135 vertebrae of S. florensis were recovered from Layer II (Fig. 2k) near a concentration 136 of other vertebrae, ribs, and postcranial remains of a *Stegodon* carcass. These are the 137 only articulated stegodont elements so far recovered at Mata Menge, indicating 138 relatively limited post-mortem modification prior to burial by mudflows. We infer 139 that the artefacts and faunal remains, including the hominin elements, were exposed 140 to weathering on the ground surface, and could have been transported short distances 141 by the small stream, before a series of mudflows originating from the intra-caldera 142 lake system were channelized within adjacent stream tributaries, inundating these 143 valleys with metre-thick muddy debris. It is conceivable that the presence of elements 144 from multiple hominin individuals, including two juveniles, and several individual 145 stegodonts, could be the result of a volcanic event. However, other explanations are 146 also possible and more research into taphonomic factors is needed. 147

A total of four new radiometric determinations, with ages in sequential order and in
accordance with the stratigraphic sequence, as well as previously published estimates,
provide a robust chronological framework for the hominin fossils (Fig. 1; see also

151	Supplementary Information). Near the base of the OBF at Mata Menge, a widespread
152	ignimbritic marker bed (the Wolo Sege Ignimbrite; T-WSI) with an 40 Ar/ 39 Ar age of
153	1.01 ± 0.02 Ma (ref. 13; and see Fig. 1) is recognised on the combined basis of its
154	stratigraphic association, unique depositional architecture, and glass-shard major
155	element chemistry (see Extended Data Fig. 3). In addition, the hominin find-locality
156	in E-32 is situated 12.5 m stratigraphically above a ZFT date of 0.80 ± 0.07 Ma from
157	Mata Menge ⁴ . To verify this prior estimate ⁴ , we conducted Isothermal Plateau
158	Fission-Track (ITPFT) dating of glass shards from an inter-regional tephra marker
159	(T3) identified at several So'a Basin localities, including just above the T-WSI at
160	Mata Menge (in E-34/34B), returning a weighted mean age of 0.90 ± 0.07 Ma (based
161	on two independent age determinations) (see Extended Data Fig. 3). Moreover,
162	⁴⁰ Ar/ ³⁹ Ar single crystal dating of hornblende from the Pu Maso Ignimbrite (T-Pu)
163	located just above T3 in E-34/34B yielded a weighted mean age of 0.81 ± 0.04 Ma,
164	which is stratigraphically consistent with that of underlying T3 (Extended Data Fig.
165	4). These ages demonstrate that Layer II was deposited after ~ 0.80 Ma.
166	
167	To further constrain the age of the hominin fossils, we carried out ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ dating on
168	one basaltic tephra and one rhyolitic tephra from the GLM above Layer II (E-12 and
169	E-35). The GLM contains at least 85 crystal-rich tephra inter-beds of basaltic
170	composition, collectively named the Piga Tephra (the lower 56 tephras are
171	sequentially numbered PGT-1 to PGT-56). At Mata Menge, PGT-2 occurs 13.5 m
172	above Layer II, and produced a ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ weighted mean age of 0.65 ± 0.02 Ma from
173	single crystal dating of hornblende (Extended Data Fig. 5). This is in accordance with
174	the published ZFT age of a basaltic tephra inter-bed from the lower part of the GLM
175	$(0.65 \pm 0.06 \text{ Ma})^4$. Finally, a biotite-bearing vitric-rich ash of distinctive rhyolitic

176 composition (T6; see Extended Data Fig. 3) from the top of the GLM has an 40 Ar/ 39 Ar

age of 0.51 ± 0.03 Ma, based on the weighted mean of single grain feldspar analyses.

178 Thus, the hominin fossils constrained by the lowermost of these two radiometric dates

179 within the GLM have an established minimum age of ~ 0.65 Ma.

180

181 In order to demonstrate that the hominin fossils and associated faunal assemblage do 182 not reflect vertical displacement of chronologically more recent finds into older 183 sediments, we conducted laser ablation U-series analysis of a hominin tooth root 184 fragment from Layer II (specimen SOA-MM6), and combined U-series/ESR-dating 185 of two S. florensis molars excavated in situ from the same sedimentary context (see 186 Extended Data Fig. 7 and Supplementary Information). U-series dating of the hominin 187 tooth root independently confirms this specimen was deposited at least 0.55 Ma, 188 whereas combined U-series/ESR indicates minimum and maximum ages of around 189 0.36 Ma and 0.69 Ma, respectively, for the Stegodon molars. In sum, therefore, we 190 have used multiple dating methods to establish a secure age of ~ 0.70 Ma for the Layer 191 II hominin fossils. 192

193 Our systematic, high-volume excavations (~560 m²) at Mata Menge between 2010–15

194 have yielded a wealth of fossil vertebrate remains (see Supplementary Information).

195 To date, 75% of the >7000 vertebrate fossils recovered from E-32 have been

analyzed, and include S. florensis (23.7% of the number of identified specimens, or

197 NISP), V. komodoensis (0.6% of NISP), freshwater crocodiles (3.7% of NISP), frogs

- 198 (0.3% of NISP), murine rodents (15.6 % of NISP), and birds (0.5% of NISP), the
- remainder comprising unidentifiable bone fragments. From the lower fossil-bearing
- 200 interval (E-1 to 8 and E-11 to 31D) the remains of least 120 S. florensis individuals

are represented by dental elements spanning all ontogenetic stages¹⁶. The age profile
of the Mata Menge lower level death assemblage corresponds to that of a living
population, suggesting a mass death event. The lack of age-selective mortality does
not fit a pattern of hominin predation, such as in the *H. floresiensis* type-locality,
Liang Bua¹⁷. In Layer II, remains of juvenile, sub-adult, intermediate-aged, and very
old *Stegodon* individuals are also present, but the Minimum Number of Individuals is
too low to allow for the construction of a reliable age profile.

208

209 We conducted carbon and oxygen isotope analysis of tooth enamel samples collected 210 from several S. *florensis* and murine rodent individuals from the two fossil-bearing 211 levels at Mata Menge (Extended Data Fig. 8). The results indicate a diet heavily 212 dominated by C₄ grasses, suggesting both animals were grazers, and implying that 213 open grasslands were the major vegetation type in the So'a Basin. The recovery of 214 rare fossils of rails, swans, ducks, eagles, and eagle owls from the lower trenches 215 $(\sim 0.80 \text{ to } 0.88 \text{ Ma})$ further evidences the presence of a savannah-like biome with a strong wetland component, as well as scattered patches of forest¹⁸. Fossil pollen and 216 217 phytoliths from both fossil levels, while poorly preserved, offer additional evidence 218 that grasses dominated the Middle Pleistocene vegetation (SI Table 9). Abundant 219 moulds and casts of two species of freshwater gastropods (Cerithoidea) were 220 recovered from Layer II and the base of the overlying mudflow sequence, pointing to 221 the existence of permanent freshwater bodies in the ancestral stream valley. 222 223 Our excavations uncovered 149 in situ stone artefacts in E-32, including 47 artefacts

from Layer II, in direct association with the hominin remains (Fig 2; Extended Data

Fig. 9). Some of the artefacts from E-32 are lightly to heavily abraded from low-

energy water transport¹⁹, but 74.5% are in fresh, as-struck condition, suggesting 226 227 minimal dislocation from nearby stone-flaking areas. Hominins gathered coarse- to 228 fine-grained rounded volcanic cobbles from local fluvial gravels and struck them with 229 hammerstones to create sharp-edged flakes and cores. Reduction was mostly bifacial, 230 with blows struck to two faces of the stone from one platform edge (Fig 2a). Two 231 cores were rotated and a second bifacial platform edge was established, resulting in 232 multi-platform cores. Core platform surfaces or edge-angles were unprepared, and 233 core reduction was not intensive. The edges of flakes struck from these cores were 234 sometimes retouched for use, or possibly to produce additional flake tools. One 235 heavily abraded core was scavenged and further flaked. Overall, the E-32 assemblage 236 reflects a technologically straightforward core-and-flake approach to stoneworking²⁰. 237 The function of the implements is unknown; as yet, no butchery marks have been 238 conclusively identified on the faunal remains at Mata Menge, and the tools may have 239 been used for modifying other organic materials. 240

241 Notably, the tools and flaking technology in E-32 are nearly identical in size and 242 nature, respectively, to the assemblage dating some 110 kyr earlier at Mata Menge^{12,21-23}, including 1186 analysed stone artefacts from E-23 and E-27 excavated 243 244 between 2011–14 (Table S6). The E-32 assemblage is also technologically similar to the artefacts from Liang Bua, dating ~600 kyr later^{12,24} and associated with H. 245 *floresiensis*^{25,26}. The long persistence of this technical approach to stone-flaking on 246 247 Flores¹², together with the close anatomical similarities between the Mata Menge and 248 Liang Bua hominins¹, suggests remarkable stability in the behaviour of the *H*. 249 floresiensis lineage. In contrast, the only lithic assemblage thus far recovered in situ 250 below the T-WSI, which has a minimum age of 1.01 ± 0.02 Ma and is therefore the

251	earliest known stone technology from Flores ¹³ , whilst also 'Mode 1' in character,
252	features a typologically distinct element: large Acheulean pick-like implements ²⁷ that
253	in Lower Palaeolithic industries of Africa and western Eurasia are emblematic of
254	cognitively advanced tool-making ^{20,28-29} . The reason for the absence of these more
255	sophisticated components from the later technology of Flores remains unknown;
256	however, possible explanations include: i) a reduction in the behavioural flexibility of
257	<i>Homo erectus</i> due to island-dwarfing ¹ ; ii) by ~880 Ma the hominin population size
258	had dropped below a minimum threshold required to maintain cultural complexity ³⁰ ;
259	iii) the older, Acheulean-like artefacts were made by a separate hominin lineage.
260	
261	References
262	
263	1. van den Bergh, G. D. et al. Homo floresiensis-like hominin fossils from the Middle
264	Pleistocene of Flores. Nature (submitted).
265	
266	2. Brown, P. et al. A new small-bodied hominin from the Late Pleistocene of Flores,
267	Indonesia. Nature 431 , 1055–1061 (2004).
268	
269	3. Morwood, M. J. O'Sullivan, P. B., Aziz, F. & Raza, A. Fission-track ages of stone
270	tools and fossils on the east Indonesian island of Flores. Nature 392, 173–176 (1998).
271	
272	4. O'Sullivan, P. B. et al. Archaeological implications of the geology and chronology
273	of the Soa Basin, Flores, Indonesia. Geology 29, 607-610 (2001).
274	
275	
	5. Maringer, J. & Verhoeven, Th. Die Steinartefakte aus der Stegodon-Fossilschicht

- von Mengeruda auf Flores, Indonesien. *Anthropos* 65, 229–247 (1970).
- 277
- 278 6. Maringer, J. & Verhoeven, Th. Die Oberflächenfunde aus dem Fossilgebiet von
- 279 Mengeruda und Olabula auf Flores, Indonesien. *Anthropos* **65**, 530–546 (1970).
- 280
- 281 7. Sondaar, P. Y. et al. Middle Pleistocene faunal turn-over and colonisation of Flores
- 282 (Indonesia) by *Homo erectus. C.R. Acad. Sci.* **319**, 1255–1262 (1994).
- 283
- 284 8. Morwood, M. J. et al. Stone artefacts from the 1994 excavation at Mata Menge,
- 285 West Central Flores, Indonesia. Aust. Archaeol. 44, 26–34 (1997).
- 286
- 287 9. van den Bergh, G. D. The Late Neogene Elephantoid-Bearing Faunas of Indonesia
- 288 and their Palaeozoogeographic Implications. A Study of the Terrestrial Faunal
- 289 Succession of Sulawesi, Flores and Java, including Evidence for Early Hominid
- 290 Dispersal East of Wallace's Line (Scripta Geologica 117, Nationaal Natuurhistorisch
- 291 Museum, 1997).
- 292
- 293 10. van den Bergh, G. D. et al. Did Homo erectus reach the island of Flores? Bull.
- 294 Indo. Pac. Pre. Hi. 14, 27–36 (1996).
- 295
- 296 11. Morwood, M. J. et al. Archaeological and palaeontological research in central
- Flores, east Indonesia: results of fieldwork 1997-98. Antiquity 73, 273–286 (1999).

- 299 12. Aziz, F. & Morwood, M. J., in Pleistocene Geology, Palaeontology and
- 300 Archaeology of the Soa Basin, Central Flores, Indonesia (eds Aziz, F., Morwood, M.

- J. & van den Bergh, G. D.) 1–18 (Spec. Publ. 36, Geological Survey Institute, 2009).
 302
- 303 13. Brumm, A. *et al.* Early stone technology on Flores and its implications for *Homo*304 *floresiensis*. *Nature* 441, 624–628 (2006).

306 14. Brumm, A. *et al.* Hominins on Flores, Indonesia, by one million years ago. *Nature*307 464, 748–753 (2010).

- 309 15. Musser, G. G. The giant rat of Flores and its relatives east of Borneo and Bali. B.
- 310 Am. Mus. Nat. Hist. 169, 67–176 (1981).
- 311
- 312 16. van den Bergh, G. D. et al. Taphonomy of Stegodon florensis remains from the
- 313 early Middle Pleistocene archaeological site Mata Menge, Flores, Indonesia. Abstract
- book of the VIth International Conference on Mammoths and their relatives. S.A.S.G.,
- 315 Special Volume 102, 207–208 (2014).
- 316
- 317 17. van den Bergh, G. D. et al. The Liang Bua faunal remains: a 95 k.y.r. sequence
- 318 from Flores, East Indonesia. J. Hum. Evol. 57, 527–537 (2009).
- 319
- 320 18. Meijer, H. J. M. et al. Avian remains from the Early/Middle Pleistocene of the
- 321 So'a Basin, central Flores, Indonesia, and their palaeoenvironmental significance.
- 322 Palaeogeogr. Palaeocl. 440, 161–171 (2015).
- 323
- 324 19. Shea, J. J. Artifact abrasion, fluvial processes, and "living floors" from the Early
- 325 Paleolithic site of 'Ubeidiya (Jordan Valley, Israel). *Geoarchaeology* 14, 191–207

326 (1999).

327

- 328 20. Moore, M. W. The design space of stone flaking: implications for cognitive
- 329 evolution. World Archaeol. 43, 702–715 (2011).
- 330
- 331 21. Brumm, A. et al. Stone technology at the Middle Pleistocene site of Mata Menge,
- 332 Flores, Indonesia. J. Arch. Sci. 37, 451–473 (2010).
- 333
- 22. Moore, M. W. & Brumm, A. Stone artifacts and hominins in island Southeast
- Asia: new insights from Flores, eastern Indonesia. J. Hum. Evol. 52, 85–102 (2007).

336

- 337 23. Moore, M. W. & Brumm, A. in Interdisciplinary Approaches to the Oldowan (eds
- 338 Hovers, E. & Braun, D. R.) 61–69 (Springer, 2009).
- 339
- 340 24. Moore, M.W. et al. 2009. Continuities in stone flaking technology at Liang Bua,
- 341 Flores, Indonesia. J. Hum. Evol. 57, 503–526 (2009).
- 342
- 343 25. Morwood, M. J. et al. Archaeology and age of a new hominin from Flores in

344 eastern Indonesia. *Nature* **431**, 1087–1091 (2004).

- 345
- 346 26. Sutikna, T. et al. Revised stratigraphy and chronology for Homo floresiensis at
- 347 Liang Bua, eastern Indonesia. *Nature* (under review).
- 348
- 349 27. Brumm, A. & Moore, M. W. Biface distributions and the Movius Line: a
- 350 Southeast Asian perspective. Aust. Archaeol. 74, 32–46 (2012).

351	
352	28. Beyene, Y. et al. The characteristics and chronology of the earliest Acheulean at
353	Konso, Ethiopia. Proc. Natl Acad. Sci. USA 110, 1584-1591 (2013).
354	
355	29. Wynn, T. Archaeology and cognitive evolution. Behav. Brain Sci. 25, 389-402
356	(2002).
357	
358	30. Powell, A. et al. Late Pleistocene demography and the appearance of modern
359	human behavior. Science 324, 1298–1301 (2009).
360	
361	
362	Supplementary Information is available in the online version of the paper.
363	
364	Acknowledgments
365	The So'a Basin project was funded by an Australian Research Council (ARC)
366	Discovery grant (DP1093342) awarded to M.J.M. and A.B., and directed by M.J.M.
367	(2010-2013) and G.v.d.B. (2013-2015), while the Geological Survey Institute (GSI)
368	of Bandung, Indonesia, provided financial and technical support. G.v.d.B.'s research
369	was also supported by ARC Future Fellowship FT100100384. Quadlab is funded by a
370	grant to M.S. from the Villum Foundation. M.D. received funding from a Marie Curie
371	International Outgoing Fellowship of the EU's Seventh Framework Programme
372	(FP7/2007-2013), awarded under REA Grant Agreement No. PIOF-GA-2013-
373	626474. For permission to undertake this research, we thank the Indonesian State
374	Ministry of Research and Technology (RISTEK), the former Heads of the Geological
375	Agency (R. Sukyiar and Surono), the successive directors of the GSI (S.

376	Permanandewi, Y. Kusumahbrata [formerly] and A. Pribadi) and Bandung's Geology	
377	Museum (S. Baskoro and O. Abdurahman). Local research permissions were issued	
378	by the provincial government of East Nusatenggara at Kupang, and the Ngada and	
379	Nage Keo administrations. We also thank the Ngada Tourism and Culture and	
380	Education Departments for their ongoing support. In addition, we acknowledge	
381	support and advice provided by I. Setiadi, D. Pribadi and Suyono (GSI), the National	
382	Centre for Archaeology (ARKENAS) in Jakarta, and J.T. Solo of the provincial	
383	Culture and Tourism office in Kupang. Scientific and technical personnel involved in	
384	the fieldwork included: T. Suryana, S. Sonjaya, H. Oktariana, I. Sutisna, A. Rahman,	
385	S. Bronto, E. Sukandar, A. Gunawan, Widji, A.S. Hascaryo, Jatmiko, S. Wasisto,	
386	R.A. Due, S. Hayes, Y. Perston, B. Pillans, K. Grant, M. Marsh, D. McGahan, A.M.	
387	Saiful, Basran, M. Tocheri, A. R. Chivas and S. Flude. Sidarto (GSI) provided DEM	
388	data used in Fig. 1b. Geodetic surveys and measurements were conducted by E.E.	
389	Laksmana, A. Rahmadi and Y. Sofyan. J. Noblett constructed the Mata Menge 3D	
390	model, based on drone aerial photographs taken by K. Riza, T.P. Ertanto, and M.	
391	Faizal. The research team was supported by ~ 100 excavators and support personnel	
392	from the Ngada and Nage Keo districts. R.G. and M.D. thank L. Kinsley, RSES, The	
393	Australian National University, for his assistance with the mass spectrometric	
394	measurements.	

396

397 Author contributions

- A.B., G.D.v.d.B., I.K. and M.J.M. directed the Mata Menge excavations. M.S., B.A.
- and R.S. collected tephra samples and M.S. undertook 40 Ar/ 39 Ar dating.
- 400 G.D.v.d.B. described the site stratigraphy, with R.S., D.Y. and B.V.A., J.A.W.

	401	conducted ITPFT-dating of T3 with B.V.A.	. and comparative trace element analys	ses
--	-----	--	--	-----

- 402 of interregional markers (with N.J.P. & B.V.A.). E.S., F.A. and T.S. oversaw key
- 403 aspects of the field project. M.W.M. analysed the stone assemblage, and G.D.v.d.B.,
- 404 H.I., I.S., M.R.P. U.P.W. and H.J.M.M. analysed the fauna. M.P. conducted isotopic
- 405 analyses, R.G. and M.D. undertook U/Th and ESR analyses of faunal remains, and
- 406 S.v.d.K. carried out the palynological analysis. A.B. and G.D.v.d.B. prepared the
- 407 manuscript, with contributions from other authors.

- 409 **Figure legends (main text)**
- 410
- 411 **Figure 1:** Context and chronology of the hominin fossils at Mata Menge. **a-b**,

412 location of Flores and the So'a Basin; c, Digital Elevation Map of the So'a Basin,

413 showing the location of Mata Menge and other sites mentioned in the text. A single

414 outlet of the main river system (the Ae Sissa) drains the basin via a steep-walled

415 valley towards the northeast; **d**, stratigraphy and chronology of the main fossil-

416 bearing intervals and intervening Ola Bula Formation (OBF) deposits at Mata Menge.

417 Several basin-wide key marker tephra beds that are exposed in the hill flank on the

418 northern side of Mata Menge (trench E-34/34B) are eroded in the central part of the

419 stream valley, where they are replaced by a 4-5 m thick sequence of tuffaceous

420 mudflows with intervening fluvial lenses forming the lower fossil-bearing

421 paleovalley-fill sequence; e-f, context of the hominin fossils; f is a 3D image of Mata

422 Menge and surrounds, with excavated trenches outlined in red and labelled, and e is a

- 423 3D representation of the stratigraphy exposed by trench E-32A-E, with coloured ovals
- 424 denoting the positions of *in situ* hominin fossils (SOA-MM1, 2 and 4-6) excavated
- 425 from the fluvial sandstone unit, Layer II. Trenches E-1 to E-8 were excavated

426	between 2004-06, at the section originally excavated by Th. Verhoeven in the
427	1950s ^{5,6} . The remaining trenches were excavated between 2010 to 2015. Tephra codes
428	in d are as follows (top to bottom): T6 (upper inter-regional tephra); PGT-2 (Piga
429	Tephra 2); T-UMM (Upper Mata Menge Tephra); T-LMM (Lower Mata Menge
430	Tephra); T-Pu (Pu Maso Tephra); T3 (lower inter-regional tephra); T-T (Turakeo
431	Tephra); T-WSI (Wolo Sege Ignimbrite); T-W (Wolowawu Tephra). The original
432	published ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age for T-WSI is 1.02 ± 0.02 Ma (ref. 13); however, when
433	recalculated to the recently determined value for the age standard ACS-2 used in this
434	study (1.185 Ma; see SI ref. 25), T-WSI becomes 1.01 ± 0.02 Ma.
435	
436	
437	Figure 2: Stone artefacts and fossils from Mata Menge. All specimens are from the
438	hominin fossil find-locality (Layer II fluviatile sandstone, Trench E-32). a, bifacial
439	core (chlorite); b-c , chert flakes; d , chalcedony flake; e , rhyolite flake; f , right maxilla
440	fragment (M1-M3), Hooijeromys nusatenggara; g, left mandible fragment (m1-m3, i)
441	H. nusatenggara; h, right maxilla fragment, Varanus komodoensis; i, crocodile tooth;

- 442 **j**, right coracoid of a duck (cf. *Tadorna*); **k**, *Stegodon florensis* thoracic vertebrae in
- 443 articulation (still partially embedded in sandstone matrix). Scale bar lengths: $\mathbf{a} \cdot \mathbf{i} = 10$

444 mm; **j** = 100 mm.

- 445
- 446 Figure legends (extended data)
- 447

448 Extended Data Figure 1. Hominin fossil find-locality at Mata Menge. a, View of

449 Excavation 32 (trench E-32) in 2014, taken towards the north-north-west. The dip

450 slope visible in the background is the eastern flank of the Welas Caldera, which was

451 the source for many of the volcanic products deposited in the So'a Basin; b, E-32A-E 452 viewed towards the southwest, in October 2015; c, E-32D to E-32E viewed towards 453 the southwest. The irregular erosional upper surface of the reddish brown paleosol 454 (Layer III) formed the hardened bedding of a small stream. The sandy fossil-bearing 455 Layer II infills depressions formed on this bedding surface. A sequence of mudflows 456 (Layer I/a-f) rapidly covered the entire river bedding and its exposed banks; \mathbf{d} , Mold 457 of a freshwater gastropod (Cerithoidea) from a sandy lens in Layer II; e, Detail of the 458 locally developed, gradual boundary between sandy Layers II and muddy Layer I. 459 Note the abundance of muddy rip clasts around the transition. At other places, the 460 boundary is sharp; **f**, West baulk of E-32C. Large Stegodon florensis bones occur at 461 the boundary between Layers II and I.

462

463 Extended Data Figure 2: Plan and baulk profiles of Excavation 32A-F showing 464 distribution of finds. The horizontal plan (lower left corner) shows the horizontal 465 coordinates of individual fossil finds (green crosses) and stone artefacts (blue 466 diamonds). The original position of hominin fossils is indicated with red stars. In the 467 trench baulk profiles (top and right) only the projected positions of fossil finds 468 occurring within one meter of the baulks are plotted. All hominin fossils were 469 recovered from the top of sandy Layer II. The basal part of the mudflow unit (Layers 470 Ia-e) also contains fossils, stone artefacts, gastropods, and pebbles. The thick brown 471 dotted line indicates the western margin of the ancient streambed. 472 473 Extended Data Figure 3: ITPFT dating and glass chemistry analysis. a-c, 474 Selected major element compositions (weight percent FeO vs. K₂O and CaO and SiO₂ 475 vs. K₂O) of glass shards from key rhyolitic pyroclastic density current (PDC) and

476	airfall deposits at Mata Menge; d-h, Weight percent FeO versus CaO composition of
477	glass shards from key rhyolitic pyroclastic density current (PDC) and airfall deposits
478	at Mata Menge (in stratigraphic sequence - youngest to oldest) compared with
479	correlatives from adjacent So'a Basin sites. While the major element glass
480	compositions of T-WSI, T-T and T-Pu are all geochemically indistinguishable (i.e.,
481	they are most likely from the same eruptive source) the major element data for each of
482	the tephra consistently occupies different overlapping fields. Moreover, while subtle
483	geochemical differences exist between T-WSI, T-T and T-Pu, these tephra can also be
484	readily distinguished in the field by a combination of stratigraphic position and
485	association, as well as by morphological expression; i-j, Selected trace element
486	compositions Sr versus Th and Zr, and (k-m) Y versus Nb, Ce and Th of glass shards
487	from T3 correlatives at Mata Menge, Lowo Mali and Kopowatu as well as T6
488	(uppermost inter-regional marker) from Mata Menge. All trace element
489	concentrations are in ppm unless otherwise stated. This data is plotted against
490	equivalent elemental mean and standard deviation (represented as $\pm 1\sigma$ error bars)
491	reference data from potential distal tephra correlatives (i.e. Youngest Toba Tuff
492	[YTT], Middle Toba Tuff [MTT], Oldest Toba Tuff [OTT] and Unit E from ODP-
493	758) acquired on the same instrument using the same standards and under the same
494	analytical conditions ^{31,32} . Trace element data indicates that the upper (T6) and lower
495	(T3) inter-regional marker beds occurring at Mata Menge cannot be geochemically
496	related to any known Toba-sourced tephra. On this basis, the eruptive sources of T6
497	and T3 currently remain unknown. However, this absence of eruptive source certainly
498	does not diminish their importance within the overall So'a Basin stratigraphy.
499	

500 Extended Data Figure 4: ⁴⁰Ar/³⁹Ar dating results. a, Age probability plot for single

501	crystal laser fusion data for hornblende from the Pu Maso ignimbrite (sample FLO-	
502	15-15; SI Table 5); the vertical scale is a relative probability measure of a given age	
503	occurring in the sample ³³ . We applied an outlier-rejection scheme to the main	
504	population to discard ages with normalized median absolute deviations of >1.5 (ref.	
505	34) and these are shown as open circles. %40Ar* refers to the proportion of	
506	radiogenic 40Ar released for individual analyses. The weighted mean age of the	
507	filtered hornblende data for the Pu Maso ignimbrite is 0.81 ± 0.04 Ma (1 mswd =	
508	0.59, prob = 0.93; n = $23/29$). An inverse isochron plot (b) for these 23 analyses gives	
509	a statistically overlapping age of 0.78 ± 0.07 Ma (1 σ ; mswd = 0.6, prob. = 0.92). The	
510	40 Ar/ 36 Ar intercept of 303 ± 10 is statistically indistinguishable from the atmospheric	
511	ratio of 298.6 ± 0.3 (ref. 35), thus supporting the more precise weighted mean age	
512	result.	
513		
514	Extended Data Figure 5: ⁴⁰ Ar/ ³⁹ Ar dating results. a, Age probability plot for single	
515	crystal laser fusion data for hornblende from the PGT-2 tephra (sample T XII 252-	
516	261; SI Table 5). 40 Ar* ranges from < 10% to nearly 60%. The weighted mean age of	
517	the filtered hornblende data for the PGT-2 tephra is 0.65 ± 0.02 Ma (1 σ ; mswd = 0.78,	
518	prob = 0.71; n = $17/24$). An inverse isochron plot (b) gives a statistically overlapping,	
519	but less precise age of 0.61 ± 0.04 Ma (1 σ ; mswd = 1, prob. = 0.19).	
520		

521 **Extended Data Figure 6:** 40 **Ar**/ 39 **Ar dating results**. **a**, Age probability plot for single 522 crystal laser fusion data for anorthoclase from the T6 upper inter-regional rhyolitic 523 tephra (sample FLO15-09/2; SI Table 5). 40 Ar* ranges from 20% to nearly 100%. The 524 weighted mean age of the filtered feldspar data for the T6 tephra is 0.51 ± 0.03 Ma 525 (1 σ ; mswd = 0.20, prob = 0.94; n = 5/8). An inverse isochron plot (**b**) gives a statistically overlapping, but less precise age of 0.45 ± 0.04 Ma (1 σ ; mswd = 0.8,

527 prob. = 0.54).

528

529 Extended Data Figure 7: U-series and ESR samples and dating results. a,

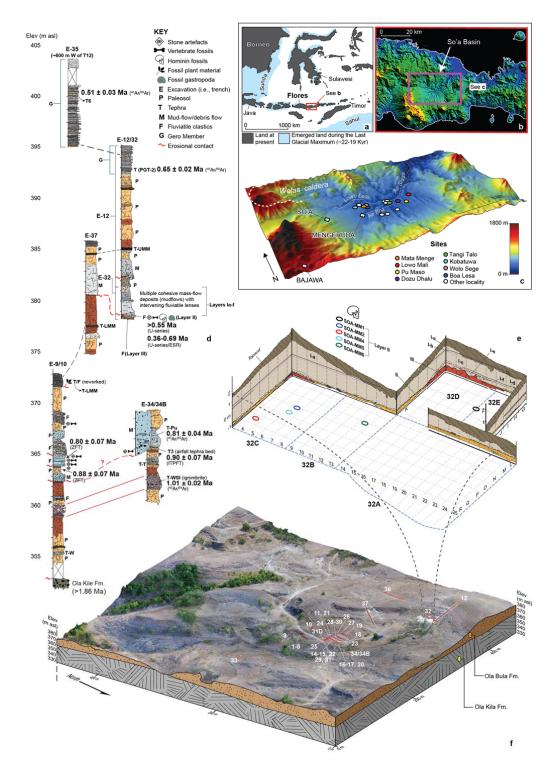
530 Hominin tooth root samples (#3543A and #3543B) from Layer II, Mata Menge; b, d,

531 U-series laser tracks for *Stegodon* molar samples from Layer II; e, f, Dose response

532 curves obtained for the two powder enamel samples from #3541 and #3544,

respectively. Fitting was carried out with a SSE function through the pooled mean

534 ESR intensities derived from each repeated measurement. Given the magnitude of the


535 D_E values, the correct D_E value was obtained for 5> D_{max}/D_E >10 (ref. 36).

536

537 Extended Data Figure 8. Carbon and oxygen isotope analysis of dental enamel. a, δ^{13} C and δ^{18} O values of *Stegodon florensis* and murine rodent tooth enamel. All but 538 one of the δ^{13} C ratios corresponds with a C₄ diet, indicating that both *Stegodon* and 539 540 murine rodents were predominantly grazers in both fossil-bearing horizons. The positive shift observed in δ^{18} O of the younger *Stegodon* samples (from the hominin-541 542 bearing Layer II) is more difficult to interpret with the limited data available, but 543 could mean a distinct source of drinking water (run-off versus lacustrine) and/or 544 warmer conditions; **b**, Benferroni corrected p values for a pairwise Mann-Whitney statistical analysis to test for similarity of δ^{13} C between subsamples; c. Benferroni 545 546 corrected p values for a pairwise Mann-Whitney statistical analysis to test for similarity of δ^{18} O between subsamples; p values showing significant differences in 547 548 median values are in bold. 549

552	Extended Data Figure 9: Analytical data for the Mata Menge stone technology. a,
553	Artefact counts and provenance, Trench E-32 (artefact definitions after ref. 37); b,
554	raw materials used to manufacture the stone tool assemblage, Trench E-32; c,
555	Platform types on flakes and modified flakes, E-32. Cortical: the blow was struck
556	onto the cortical surface of a cobble. Single-facet: the blow was struck on a scar
557	produced by previous reduction. Dihedral: the blow was struck on the ridge between
558	two scars produced by previous reduction. Multifacet: the blow was struck on the
559	surface of multiple small scars produced by previous reduction. Edge: the blow was
560	struck on the edge of the core and a platform surface is not retained on the flake; d,
561	Cortex coverage on the dorsal surface of complete unmodified flakes, E-32. Percent
562	cortex coverage refers to the proportion of the dorsal surface covered in cortex; e,
563	Artefact counts, Trenches E-32 and E-23/27 (artefact definitions after ref. 37); f, Sizes
564	of artefacts and attributes, E-32 and E-23/27; g, Raw materials used to manufacture
565	the stone tool assemblage, E-32 and E-23/27; h, Scatterplot of complete flake sizes,
566	E-32 (total sample size $[N] = 68$ complete flakes) and E-23/27 (N=443). With regards
567	to raw materials, coarse- and medium-grained materials include andesite, basalt,
568	rhyolite, and tuff. Fine-grained materials include silicified tuff, chalcedony, and opal.
569	
570	31. Pearce, N. J. G. et al. A compilation of new and published major and trace element
571	data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geost. Newslet.
572	21 , 115-144 (1997).

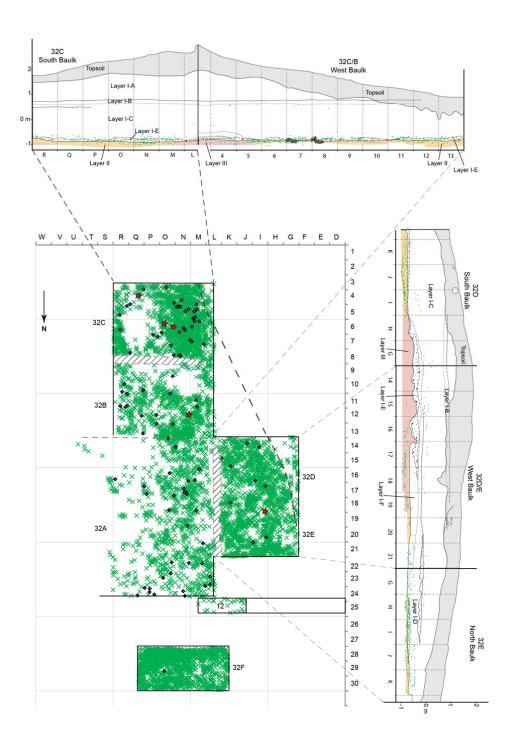

- 575 comprehensive chemical characterisation of single sub-10um volcanic glass shards.
- 576 *Quat. Int.* **246**, 57 81 (2011).
- 577
- 578 33. Deino, A. & Potts, R. Age-probability spectra for examination of single-crystal
- ⁴⁰Ar/³⁹Ar dating results: Examples from Olorgesailie, southern Kenya Rift. *Quat. Int.* **13–14**, 47–53 (1992).
- 581
- 582 34. Powell, R., Hergt, J. & Woodhead, J. Improving isochron calculations with robust
- 583 statistics and the bootstrap. *Chem. Geol.* **185**, 191–204 (2002).
- 584
- 585 35. Lee, J.-Y. *et al.* A redetermination of the isotopic abundances of atmospheric Ar.
- 586 Geochim. Cosmochim. Acta 70, 4507–4512 (2006).
- 587
- 588 36. Duval, M. & Grün, R. Are published ESR dose assessments on fossil tooth enamel
 reliable? *Quat. Geochron.* 31, 19–27 (2016).
- 590
- 591 37. Moore, M.W. et al. 2009. Continuities in stone flaking technology at Liang Bua,
- 592 Flores, Indonesia. J. Hum. Evol. 57, 503–526 (2009).
- 593
- 594
- 595
- 596
- 597
- 598

599

Figure 1: Context and chronology of the hominin fossils at Mata Menge. a-b,
location of Flores and the So'a Basin; c, Digital Elevation Map of the So'a Basin,
showing the location of Mata Menge and other sites mentioned in the text. A single
outlet of the main river system (the Ae Sissa) drains the basin via a steep-walled

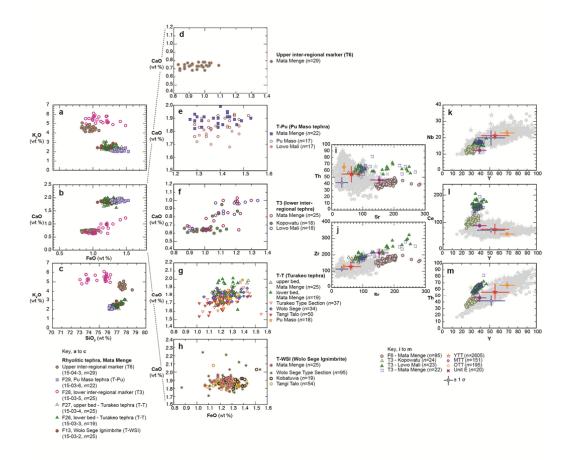
604	valley towards the northeast; d, stratigraphy and chronology of the main fossil-
605	bearing intervals and intervening Ola Bula Formation (OBF) deposits at Mata Menge.
606	Several basin-wide key marker tephra beds that are exposed in the hill flank on the
607	northern side of Mata Menge (trench E-34/34B) are eroded in the central part of the
608	stream valley, where they are replaced by a 4-5 m thick sequence of tuffaceous
609	mudflows with intervening fluvial lenses forming the lower fossil-bearing
610	paleovalley-fill sequence; e-f, context of the hominin fossils; f is a 3D image of Mata
611	Menge and surrounds, with excavated trenches outlined in red and labelled, and \mathbf{e} is a
612	3D representation of the stratigraphy exposed by trench E-32A-E, with coloured ovals
613	denoting the positions of in situ hominin fossils (SOA-MM1, 2 and 4-6) excavated
614	from the fluvial sandstone unit, Layer II. Trenches E-1 to E-8 were excavated
615	between 2004-06, at the section originally excavated by Th. Verhoeven in the
616	1950s ^{5,6} . The remaining trenches were excavated between 2010 to 2015. Tephra codes
617	in d are as follows (top to bottom): T6 (upper inter-regional tephra); PGT-2 (Piga
618	Tephra 2); T-UMM (Upper Mata Menge Tephra); T-LMM (Lower Mata Menge
619	Tephra); T-Pu (Pu Maso Tephra); T3 (lower inter-regional tephra); T-T (Turakeo
620	Tephra); T-WSI (Wolo Sege Ignimbrite); T-W (Wolowawu Tephra). The original
621	published ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age for T-WSI is 1.02 ± 0.02 Ma (ref. 13); however, when
622	recalculated to the recently determined value for the age standard ACS-2 used in this
623	study (1.185 Ma; see SI ref. 25), T-WSI becomes 1.01 ± 0.02 Ma.
624	
625	
626	
627	

630 Figure 2: Stone artefacts and fossils from Mata Menge. All specimens are from the 631 hominin fossil find-locality (Layer II fluviatile sandstone, Trench E-32). a, bifacial 632 core (chlorite); **b-c**, chert flakes; **d**, chalcedony flake; **e**, rhyolite flake; **f**, right maxilla 633 fragment (M1-M3), *Hooijeromys nusatenggara*; g, left mandible fragment (m1-m3, i) 634 *H. nusatenggara*; **h**, right maxilla fragment, *Varanus komodoensis*; **i**, crocodile tooth; 635 j, right coracoid of a duck (cf. *Tadorna*); k, *Stegodon florensis* thoracic vertebrae in 636 articulation (still partially embedded in sandstone matrix). Scale bar lengths: $\mathbf{a} \cdot \mathbf{i} = 10$ 637 mm; **j** = 100 mm. 638 639



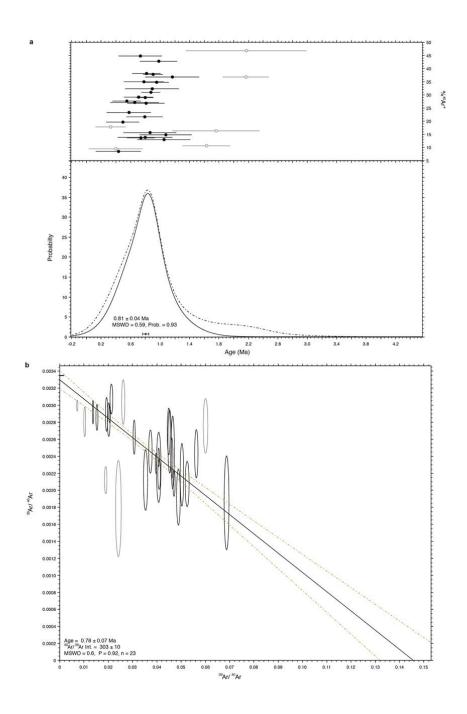
642

643 Extended Data Figure 1. Hominin fossil find-locality at Mata Menge. a, View of

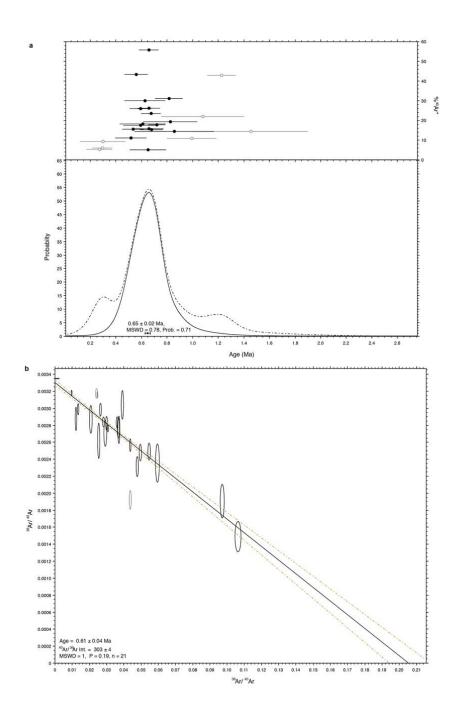

644 Excavation 32 (trench E-32) in 2014, taken towards the north-north-west. The dip

645	slope visible in the background is the eastern flank of the Welas Caldera, which was
646	the source for many of the volcanic products deposited in the So'a Basin; b , E-32A-E
647	viewed towards the southwest, in October 2015; c, E-32D to E-32E viewed towards
648	the southwest. The irregular erosional upper surface of the reddish brown paleosol
649	(Layer III) formed the hardened bedding of a small stream. The sandy fossil-bearing
650	Layer II infills depressions formed on this bedding surface. A sequence of mudflows
651	(Layer I/a-f) rapidly covered the entire river bedding and its exposed banks; d, Mold
652	of a freshwater gastropod (Cerithoidea) from a sandy lens in Layer II; e, Detail of the
653	locally developed, gradual boundary between sandy Layers II and muddy Layer I.
654	Note the abundance of muddy rip clasts around the transition. At other places, the
655	boundary is sharp; f, West baulk of E-32C. Large Stegodon florensis bones occur at
656	the boundary between Layers II and I.
657	
658	
659	
660	
661	
662	
663	
664	
665	
666	
667	
668	
669	

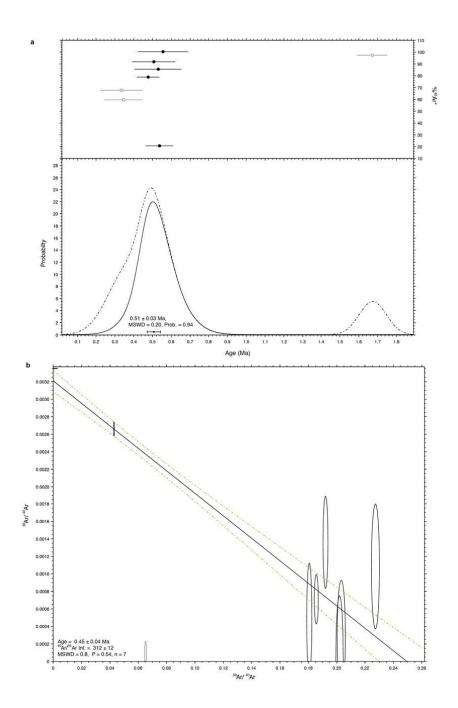
671 Extended Data Figure 2: Plan and baulk profiles of Excavation 32A-F showing
672 distribution of finds. The horizontal plan (lower left corner) shows the horizontal
673 coordinates of individual fossil finds (green crosses) and stone artefacts (blue


674	diamonds). The original position of hominin fossils is indicated with red stars. In the
675	trench baulk profiles (top and right) only the projected positions of fossil finds
676	occurring within one meter of the baulks are plotted. All hominin fossils were
677	recovered from the top of sandy Layer II. The basal part of the mudflow unit (Layers
678	Ia-e) also contains fossils, stone artefacts, gastropods, and pebbles. The thick brown
679	dotted line indicates the western margin of the ancient streambed.
680	

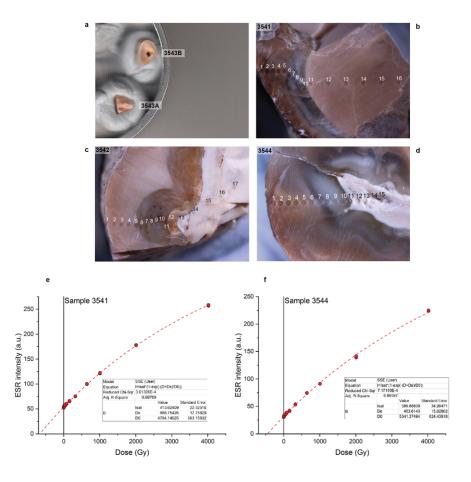
682 Extended Data Figure 3: ITPFT dating and glass chemistry analysis. a-c,


- 683 Selected major element compositions (weight percent FeO vs. K₂O and CaO and SiO₂
- 684 vs. K₂O) of glass shards from key rhyolitic pyroclastic density current (PDC) and
- 685 airfall deposits at Mata Menge; **d-h**, Weight percent FeO versus CaO composition of

686	glass shards from key rhyolitic pyroclastic density current (PDC) and airfall deposits
687	at Mata Menge (in stratigraphic sequence - youngest to oldest) compared with
688	correlatives from adjacent So'a Basin sites. While the major element glass
689	compositions of T-WSI, T-T and T-Pu are all geochemically indistinguishable (i.e.,
690	they are most likely from the same eruptive source) the major element data for each of
691	the tephra consistently occupies different overlapping fields. Moreover, while subtle
692	geochemical differences exist between T-WSI, T-T and T-Pu, these tephra can also be
693	readily distinguished in the field by a combination of stratigraphic position and
694	association, as well as by morphological expression; i-j, Selected trace element
695	compositions Sr versus Th and Zr, and (k-m) Y versus Nb, Ce and Th of glass shards
696	from T3 correlatives at Mata Menge, Lowo Mali and Kopowatu as well as T6
697	(uppermost inter-regional marker) from Mata Menge. All trace element
698	concentrations are in ppm unless otherwise stated. This data is plotted against
699	equivalent elemental mean and standard deviation (represented as $\pm 1\sigma$ error bars)
700	reference data from potential distal tephra correlatives (i.e. Youngest Toba Tuff
701	[YTT], Middle Toba Tuff [MTT], Oldest Toba Tuff [OTT] and Unit E from ODP-
702	758) acquired on the same instrument using the same standards and under the same
703	analytical conditions ^{31,32} . Trace element data indicates that the upper (T6) and lower
704	(T3) inter-regional marker beds occurring at Mata Menge cannot be geochemically
705	related to any known Toba-sourced tephra. On this basis, the eruptive sources of T6
706	and T3 currently remain unknown. However, this absence of eruptive source certainly
707	does not diminish their importance within the overall So'a Basin stratigraphy.
708	
709	


712 Extended Data Figure 4: ⁴⁰Ar/³⁹Ar dating results. a, Age probability plot for single
713 crystal laser fusion data for hornblende from the Pu Maso ignimbrite (sample FLO714 15-15; SI Table 5); the vertical scale is a relative probability measure of a given age

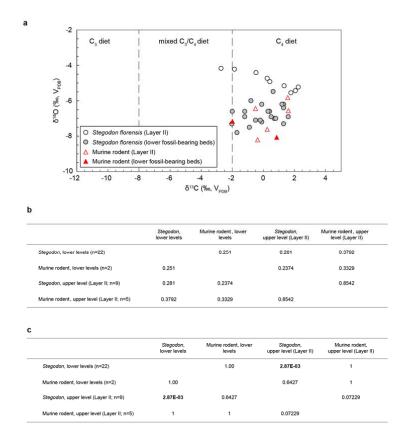
715	occurring in the sample ³³ . We applied an outlier-rejection scheme to the main
716	population to discard ages with normalized median absolute deviations of >1.5 (ref.
717	34) and these are shown as open circles. %40Ar* refers to the proportion of
718	radiogenic 40Ar released for individual analyses. The weighted mean age of the
719	filtered hornblende data for the Pu Maso ignimbrite is 0.81 ± 0.04 Ma (1 mswd =
720	0.59, prob = 0.93; n = 23/29). An inverse isochron plot (b) for these 23 analyses gives
721	a statistically overlapping age of 0.78 ± 0.07 Ma (1 σ ; mswd = 0.6, prob. = 0.92). The
722	40 Ar/ 36 Ar intercept of 303 ± 10 is statistically indistinguishable from the atmospheric
723	ratio of 298.6 ± 0.3 (ref. 35), thus supporting the more precise weighted mean age
724	result.


Extended Data Figure 5: ⁴⁰Ar/³⁹Ar dating results. a, Age probability plot for single
crystal laser fusion data for hornblende from the PGT-2 tephra (sample T XII 252-

- 730 261; SI Table 5). 40 Ar* ranges from < 10% to nearly 60%. The weighted mean age of
- the filtered hornblende data for the PGT-2 tephra is 0.65 ± 0.02 Ma (1 σ ; mswd = 0.78,
- prob = 0.71; n = 17/24). An inverse isochron plot (**b**) gives a statistically overlapping,
- but less precise age of 0.61 ± 0.04 Ma (1σ ; mswd = 1, prob. = 0.19).
- 734

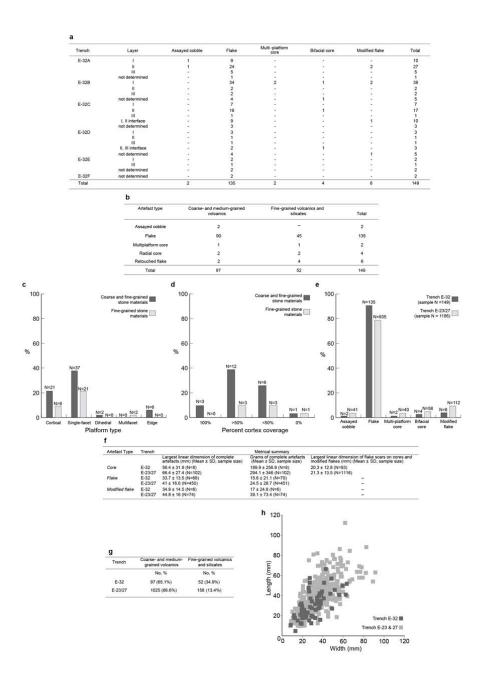
Extended Data Figure 6: ⁴⁰Ar/³⁹Ar dating results. a, Age probability plot for single
crystal laser fusion data for anorthoclase from the T6 upper inter-regional rhyolitic
tephra (sample FLO15-09/2; SI Table 5). ⁴⁰Ar* ranges from 20% to nearly 100%. The

- 740 weighted mean age of the filtered feldspar data for the T6 tephra is 0.51 ± 0.03 Ma
- 741 $(1\sigma; mswd = 0.20, prob = 0.94; n = 5/8)$. An inverse isochron plot (**b**) gives a
- statistically overlapping, but less precise age of 0.45 ± 0.04 Ma (1 σ ; mswd = 0.8,
- 743 prob. = 0.54).
- 744


746 Extended Data Figure 7: U-series and ESR samples and dating results. a,

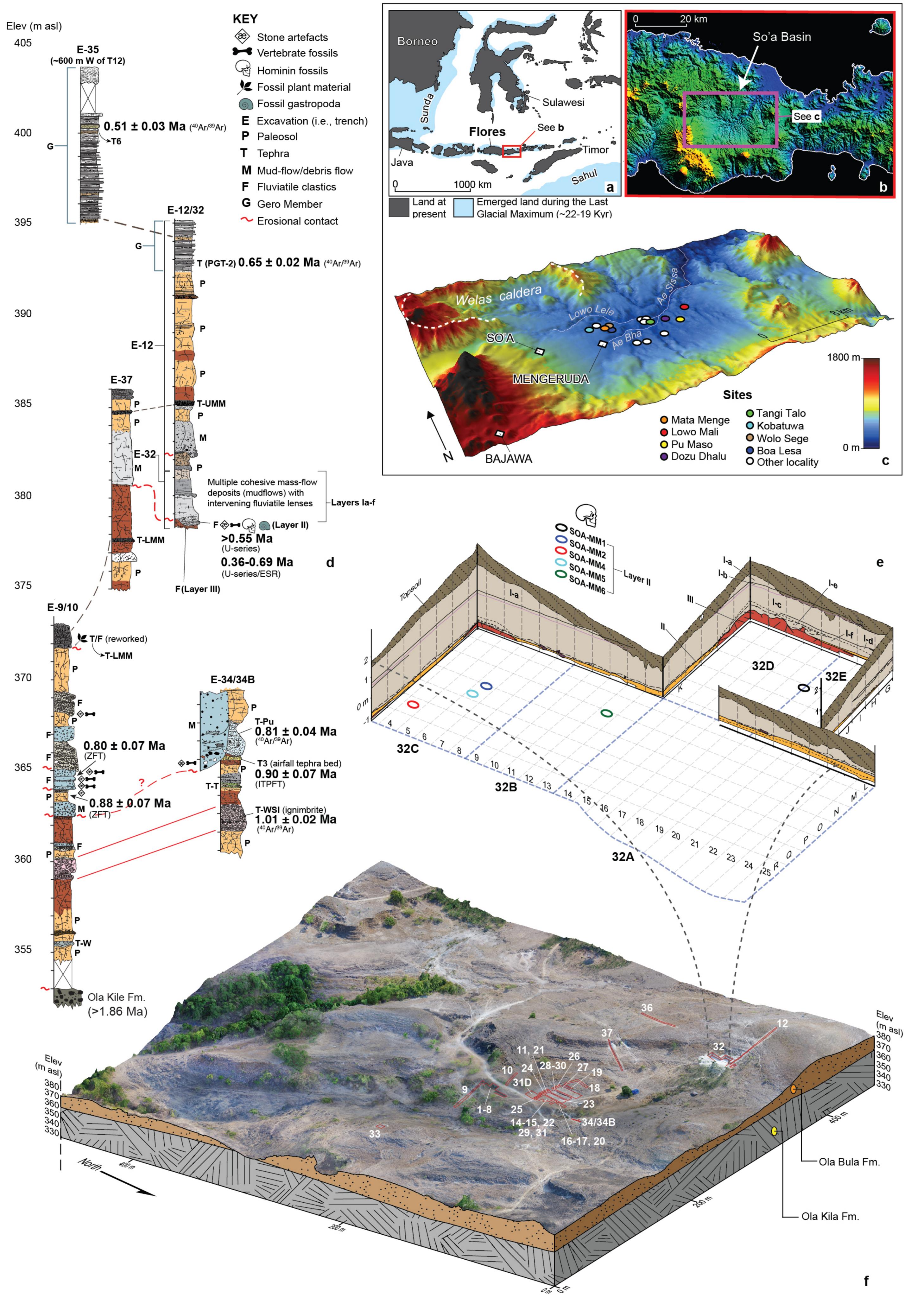
- Hominin tooth root samples (#3543A and #3543B) from Layer II, Mata Menge; **b**, **d**,
- 748 U-series laser tracks for *Stegodon* molar samples from Layer II; e, f, Dose response

respectively. Fitting was carried out with a SSE function through the pooled mean
ESR intensities derived from each repeated measurement. Given the magnitude of the
D_E values, the correct D_E value was obtained for 5>D_{max}/D_E>10 (ref. 36).


curves obtained for the two powder enamel samples from #3541 and #3544,

762

764	Extended Data Figure 8. Carbon and oxygen isotope analysis of dental enamel. a,
765	δ^{13} C and δ^{18} O values of <i>Stegodon florensis</i> and murine rodent tooth enamel. All but
766	one of the δ^{13} C ratios corresponds with a C ₄ diet, indicating that both <i>Stegodon</i> and
767	murine rodents were predominantly grazers in both fossil-bearing horizons. The
768	positive shift observed in δ^{18} O of the younger <i>Stegodon</i> samples (from the hominin-
769	bearing Layer II) is more difficult to interpret with the limited data available, but
770	could mean a distinct source of drinking water (run-off versus lacustrine) and/or
771	warmer conditions; b , Benferroni corrected p values for a pairwise Mann-Whitney


772	statistical analysis to test for similarity of $\delta^{13}C$ between subsamples; c , Benferroni
773	corrected p values for a pairwise Mann-Whitney statistical analysis to test for
774	similarity of δ^{18} O between subsamples; p values showing significant differences in
775	median values are in bold.
776 777	

780 Extended Data Figure 9: Analytical data for the Mata Menge stone technology. a,

- 781 Artefact counts and provenance, Trench E-32 (artefact definitions after ref. 37); **b**,
- raw materials used to manufacture the stone tool assemblage, Trench E-32; c,

783	Platform types on flakes and modified flakes, E-32. Cortical: the blow was struck
784	onto the cortical surface of a cobble. Single-facet: the blow was struck on a scar
785	produced by previous reduction. Dihedral: the blow was struck on the ridge between
786	two scars produced by previous reduction. Multifacet: the blow was struck on the
787	surface of multiple small scars produced by previous reduction. Edge: the blow was
788	struck on the edge of the core and a platform surface is not retained on the flake; d,
789	Cortex coverage on the dorsal surface of complete unmodified flakes, E-32. Percent
790	cortex coverage refers to the proportion of the dorsal surface covered in cortex; \mathbf{e} ,
791	Artefact counts, Trenches E-32 and E-23/27 (artefact definitions after ref. 37); f, Sizes
792	of artefacts and attributes, E-32 and E-23/27; g, Raw materials used to manufacture
793	the stone tool assemblage, E-32 and E-23/27; h, Scatterplot of complete flake sizes,
794	E-32 (total sample size $[N] = 68$ complete flakes) and E-23/27 (N=443). With regards
795	to raw materials, coarse- and medium-grained materials include andesite, basalt,
796	rhyolite, and tuff. Fine-grained materials include silicified tuff, chalcedony, and opal.
797	
798	

