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ABSTRACT: In order to meet increasing safety standards and technological requirements for 
underground construction, the estimation of Earth models is needed to characterize the subsur
face. This can be achieved via near-surface or standard Full-Waveform Inversion (FWI) velocity 
model building, which reconstructs the Earth model parameters (compressional and shear wave 
velocities, density) via recordings obtained on the field. The wave function characterizing the 
Earth model parameters is inherently non-linear, rendering this optimization problem complex. 
With advances in computational power, including graphics processing units (GPUs) computing, 
data driven approaches to solve FWI via Deep Neural Networks (DNN) are increasing in popu
larity due to its ability to solve the FWI problem accurately. In this paper, we leverage on 
DNN-based FWI applied to field data, to demonstrate that instead of depending on observed 
data collected from multiple boreholes across a large distance, it is possible to obtain accurate 
Earth model parameters for areas with varied geotechnical characteristics by using geotechnical 
data as prior knowledge and constraining the training models according to a single borehole to 
map the large geological earth cross section. Also we propose a methodology to simulate acous
tic recordings indirectly from laboratory tests on soil samples obtained from boreholes, which 
were analysed for compressive strength of intact rock and Geological Strength Index. 
Layers’geometry and properties for a section of total 3.0 km are used for simulating 15 2D 
elastic spaces of 200 m width and 50m depth assuming receivers and Ricker-wavelet sources. 
We adopt a Fully Convolutional Neural Network for Velocity Model Building, previously 
shown to work well with synthetic data, to generate the 2D predicted Earth model. The results 
of this study show that the velocity model can be accurately predicted via DNN through the 
appropriate training with minimum demands for borehole data. The performance is evaluated 
through both metrics focused on image quality and on velocity values giving a multifaceted 
understanding of the model’s true ability to predict the subsurface.

Extensive geophysical research is often carried out on large-scale construction projects, such 
as tunnels, to investigate the complex and changing subsurface. Usual applications may 
include the estimation of bedrock and groundwater levels, imaging of various subsurface 
layers, or detection of “weak” material as peat or slide planes (Niederleithinger et al., 2016). 
Geophysical surveys enable Earth model information (such as velocity of compressional 
waves Vp, velocity of shear waves Vs and density ρ) to be obtained for large volumes of 
ground that cannot be investigated by direct methods (McDowell et al., 2002). Specially for 
tunnel design, in cases when the soil overburden above the tunnel crown is of great height 
which means that the required depth of an exploratory borehole will be quite large and so 
making boreholes will be difficult, the geophysical methods can provide an alternative 
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solution of significant importance. This can be done in addition to the application of the pilot 
tunnel method where a small-diameter tunnel is constructed, in parallel to the axis of a much 
larger main tunnel to explore ground conditions, assist final excavation and overcome the dif
ficult ground conditions. Thus, the need for better and stable performance of geophysical 
methods in subsurface imaging with a limited number of available auxiliary boreholes is 
a task of great interest in tunnel construction.

The study of the properties of the subsoil is mainly based on the application of seismic 
methods both for historical and practical reasons since seismic methods use strong natural 
(earthquakes) or artificial sources (explosions)(K. & V. Papazahos, 2008). The problem that 
describes the definition of the Earth Model from observed data d (seismic recordings), is finding 
a non-linear operator G which when applied to the Earth model m (representing the parameters 
that describe the Earth model e.g., compressional wave velocities, shear wave velocities, density), 
will produce the observed data d= G(m) (Bogiatzis, 2006). But solving equation for m̂ ¼ G � 1d 
that is finding a solution for the Earth Model parameters, is significantly difficult due to the 
non linear mapping of the wave equation to the measured data and so is often handled through 
iterative methods. Full waveform inversion (FWI) is a method for solving this problem, that 
takes advantage from the full shape of the waveform and nowadays is one of the most preferred 
methods for Velocity Model Building (VMB), that ensure solutions of high accuracy. In recent 
years, tackling the FWI problem is implemented through deep learning neural network (DNN) 
architectures and many successful examples can be found in the literature.

Mao et al., (2019), proposed a deep learning-based data assimilation method for tackling 
VMB which can be considered as similar to the FWI, and they used a convolutional neural 
network (CNN) in order to predict the prior velocity information with two 2D convolutional 
layers, four fully connected layers and an activation function that uses hyperbolic tangent 
(Tanh). The input is a zero – offset seismic gather, the output is the subsurface velocity struc
ture and the presented training dataset is consisted of 5000 synthetic velocity models with 3 to 
6 layers of random velocity layers in the range of [2,4] km/s with their corresponding zero- 
offset gather. They presented test results for a velocity model containing a salt structure.

Zheng et al., (2019), presented two case studies from which the second one was concerning 
elastic VMB through supervised deep learning approach. They trained a CNN to make predic
tions of 1D velocity (Vp and Vs) and density profiles. The CNN consists of multiple 2D convo
lutional layers with 3x3 filter kernels, while between the sets of convolutional layers, a 
max-pooling layer and a dropout layer are used for downsampling and to control overfitting. 
They trained their network with 10000 synthetic data while they tested the prediction capabil
ities of the network on both synthetic and on field data after making simplifying assumptions 
that the field data present only vertical variation and are horizontally homogeneous.

Li et al., (2020), addressed the mapping of time series to spatial image via the proposed Seis
mInvNet. The network adopts an encoder-decoder architecture for VMB and tackles the weak 
spatial correspondence (when a reflected wave exists on the seismic data on a specific position for 
which the velocity model does not contain an interface and vice versa) and the uncertain reflec
tion – reception relationship between velocity model and seismic data as well as the time varying 
property of seismic data. The main components of the network are an embedding encoder, 
a spatially aligned feature generator, a velocity model decoder and a loss function composed by 
the mean squared error and multiscale structural similarity while the presented experiment con
sisted of 12000 synthetic training velocity models with their corresponding seismic pairs.

Another implementation is the Fully Convolutional Network named FCNVMB for Vel
ocity Model Building (Yang et al., 2019) which uses a U-Net encoder decoder architecture 
with skipping layers. The network learns the nonlinear law between the parameters of the 
wave equation with training on physical models. In the original paper the authors tested the 
network for reconstructing Earth Model parameters and in particular P-waves velocity. The 
1600 synthetic training models that they used presented salt bodies positioned on constant 
multilayer velocity background and 130 models from the original Society of Exploration Geo
physicists (SEG) model. The encoder is composed by 10 2D convolutional layers while they 
used a rectified linear unit activation function (RELU). The decoder includes eight 2D convo
lutional layers connected with the corresponding deconvolutional layers. The authors pre
sented their result in comparison with physics based FWI results for smoothed starting 
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velocity models for two experiments. The first experiment was on predicting synthetic salt 
bodies and the second used the pretrained network of the first experiment with addition of 
130 SEG models to predict parts of the SEG model.

In this paper we handle the near surface Full waveform Inversion problem through 
FCNVMB for reconstruction of the P-waves velocity image of the subsurface with application 
to field data. All the pairs of velocity and corresponding shot are created through Devito (Lou
boutin et al., 2019) which is a domain-specific language for implementing high-performance 
finite difference partial differential equation solvers. The contributions of this paper concern the 
following: 1)We provide a training methodology for predicting large geological sections based 
on prior geotechnical knowledge and constraints on sparse density sampling boreholes. 2)We 
provide a methodology for simulating seismic shots from geotechnical lab data. 3)We present 
a step by step comprehensive schematic representation of the overall procedure.

Here we describe our proposed methodology from generation of acoustic measurements 
that comprise d, inclusion of elastic displacements to augment the training set, generation of 
velocity models that comprise m and the experimental setup for the FCNVMB for near sur
face FWI-VMB to elastic spaces with dimensions 200m width x 50m depth through data 
obtained from real boreholes of spanning 3.0 km.

2.1  Borehole data

As is typical in construction engineering, multiple boreholes are used to collect soil samples 
across the 3km span. Specialists after laboratory analysis of the collected soil samples, created 
a subsurface map presenting the space between the boreholes, an example of which is shown in 
Figure 1a. It indicates the geomaterials that compose each section (claystone, sandstone, silt
stone etc.) the main geotechnical characteristic parameters of which, including compressive 
strength of the intact rock σci and the Geological Strength Index GSI can be seen in Tables 1–3. 
The estimation of the parameters of strength and deformability of the rock mass is of major 
importance during the design for the opening and support of underground projects. The main 
difficulty in obtaining these parameters is that the laboratory tests are done on samples of intact 
rock (without discontinuities) and are therefore not representative for the rock mass which 
includes discontinuities. Given the uniaxial compressive strength of the intact rock pieces with
out discontinuities σci and the Geological Strength Index GSI, the modulus of elasticity of the 
rock mass is calculated according to the following equation which is proposed by Hoek et al., 
(1997), and is a modification of the empirical relationship of Serafim and Pereira, (1983):

Figure 1.  a) Longitudinal geological section from field data. Specially for tunnel construction projects, 
dense boreholes are usually implemented. b) Training velocity models used for the network are generated 
on known geotechnical area. Subsequently the training velocity models are constrained to single borehole 
data in every 200m longitudinal distance of the investigated 200m x 50m areas and the new models are 
added to the initial models forming in total 9000 training models as described in paragraph 2.3.
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Figure 2.  Schematic representation of the proposed methodology.

Where: σci is the compressive strength of the intact rock in MPa, GSI is the Geological 
Strength Index and Erm in the elastic modulus of deformation of the rock mass in GPa. These 
are listed in Tables 1–3 for three sections. Sections A and B span 1.2km each and Section 
C spans 0.6km. For simplification, the mean and standard deviation of the densities are used 
for modelling - these are shown in Table 4.

2.2  Calculation of the acoustic velocities from geotechnical laboratory data with inclusion of 
elastic displacements

The acoustic velocity is calculated as Vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðErm=ρÞ

p
, where Erm is the modulus of elasticity of 

the rock mass for each layer and ρ the density for every section (Table 4). Vp is shown in 
Tables 1–3 (Column 4) which is mapped to a unique Red-Green-Blue (RGB) code shown in 
Tables 1–3 (Column 5), for every geomaterial in every geological section A,B or C, which after 
is assigned to every subsurface layer in the initial drawing created by specialists. The generated 
images presented in Figures 3, 4 and 5 are then resized in order to correct the drawing scale and 
to represent the physical analogy of the elastic space studied (200m x 50m). After the calculation 
of the velocity model and the extraction of the RGB image files, elastic displacements are added 
to the images in order augment the training dataset, to strengthen the generalization of the net
work and to avoid overfitting (Bloice et al., 2017). In our dataset, a Gaussian Distribution is 
used for sampling distortion on the center of the image, through the gaussian distortion function 
with parameters grid width=3, grid height= 3, magnitude= 90 and corner=bell.

2.3  Creation of the velocity models and calculation of the corresponding shot for input to deep 
learning FWI network

The total length of the geotechnical sections is 3.0 km and the length of every elastic space for 
the modelling of the wave equation in Devito has a physical size with dimensions (201.,51.) and 
grid spacing (1.,1.). Two experiments have been implemented in this paper each one containing 
9000 models: 1) Experiment 1 at which 9000 training velocity models are generated for the 
“known subsurface area” which then are used to predict “unknown subsurface areas” and 2) 
Experiment 2 at which the 9000 training models are generated for the “known subsurface area” 
but part of them (4800/9000) is constrained to velocity values obtained from a single borehole 
data in the “unknown subsurface areas”. Also a number a small number of subsection images 
(1800/9000) is taken from the “known subsurface area” for every geological section and used in 
the training set. Subsequently the generated images are used to generate velocity arrays for the 
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target RGBs according to the mapping shown in Tables 1–3. Then, the calculation of the pair 
seismic shots that are used for the training of the network is implemented from the solution of 
the constant density acoustic 2D wave equation in the time domain according to the finite dif
ferences method which is defined as R ¼ ∂2u

∂t2 � c2r2u, where u is the displacement field, c is the 
p wave velocity field and R is the Ricker source propagator.

Table 1. Geotechnical properties of section A.

Geomaterial category σci (Mpa) GSI Erm (Mpa) Vp (m/s) *RGB

Claystone, Calcareous claystone 7.60 29 822 588 (150,150,150)
Sandstone, Calcareous sandstone 14.25 43 2487 1022 (0,255,255)
Breccia, Calcareous Breccia 17.10 55 5397 1506 (255,255,255)
Sandstone-calc.sandstone with - - - - -
claystone-calc. claystone intercalations 8.55 35 1244 723 (0,255,0)
Siltstone and sandstone alternations 9.03 35 1243 723 (0,0,0)
Marly limestone 20.90 42 2851 1095 (0,0,255)
Thin bedded marly limestone 20.90 51 4927 1439 (255,0,255)
Karstic marly limestone 20.90 47 3748 1255 (255,255,0)
Limestone 28.50 67 14184 2441 (255,0,0)

* RGB codes shown in section A shown in Figure 3.

Table 2. Geotechnical properties of section B.

Geomaterial category σci (Mpa) GSI Erm (Mpa) Vp (m/s) *RGB

Claystone, Calcareous claystone 7.60 38 1382 762 (75,75,75)
Sandstone, Calcareous sandstone 14.25 45 2774 1080 (150,150,0)
Breccia, Calcareous Breccia 17.10 49 3995 1296 (125,125,125)
Claystone -calc. claystone - - - - -
with sandstone intercalations 9.03 32 1084 675 (0,125,0)
Siltstone and limestone intercalations 14.73 29 1176 703 (0,0,20)
Sandstone-calc.sandstone with - - - - -
claystone-calc. claystone intercalations 8.55 40 1635 829 (0,0,125)
Siltstone and sandstone alternations 9.03 37 1426 774 (125,0,125)
Calcareous marl 12.35 48 3214 1162 (132,132,132)
Marly limestone 20.90 56 6476 1650 (125,0,0)
Thin bedded marly limestone 20.90 60 8060 1840 (255,255,255)
Limestone 28.50 55 7160 1734 (5,5,0)

* RGB codes shown in section B shown in Figure 4.

Table 3. Geotechnical properties of section C.

Geomaterial category σci (Mpa) GSI Erm (Mpa) Vp (m/s) *RGB

Limestone 38.00 57 9223 1962 (150,150,150)
Claystone, Calcareous claystone 7.60 42 1720 847 (75,75,75)
Sandstone, Calcareous sandstone 14.25 36 1696 841 (150,150,0)
Breccia, Calcareous Breccia 17.10 48 3581 1223 (125,125,125)
Claystone -calc. claystone - - - - -
with sandstone intercalations 9.03 36 1313 740 (0,125,0)
Siltstone and sandstone alternations 9.03 27 781 571 (125,0,125)
Marly limestone 20.90 15200 51 1415 (125,0,0)
Thin bedded marly limestone 20.90 49 4297 1340 (255,255,255)
Karstic marly limestone 20.90 38 2355 992 (255,255,0)
Limestone 28.50 61 10216 2065 (5,5,0)

* RGB codes shown in section C shown in Figure 5.
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The wave equation is solved for a Ricker Source at depth of 1 m with a peak frequency of 
0.010 KHz, receivers placed every 1m, at depth of 1m and the simulation lasted 2000 millisec
onds. In this study we have assumed a single source in order to aim at low costs, although the 
total number of receivers could also be important. So we have assumed a very dense in-line 
arrangement of surface receivers in the simulations in order to transfer to the network 
a greater amount of information from the seismic recordings. The in-line spacing between 
receivers could be optimised accordingly in order to lead to a more realistic placement.

2.4  DNN-based FWI setup

When the solution of the differential equation is completed the velocities and the correspond
ing displacements are stored in arrays with dimensions 2000x200 for the displacements in the 
x-t domain and 50x200 for the velocities in the x-z domain, and are written into two separate 
Matlab files (.mat) and then passed to the FCNVMB for the training and testing procedures. 
The training/testing ratio used in the process is 9000:2250 for both experiments 1 and 2. The 
number of the epochs is set to be 100, the test batch size equal to 10 and the learning rate used 

Figure 4.  Geotechnical section B, with total length of 1.2 km. The arrow shows the “TEST- Ground 
Truth” image for this section.

Figure 5.  Geotechnical section C, with total length of 600 m. The arrow shows the “TEST- Ground 
Truth” image for this section.

Figure 3.  Geotechnical section A, with total length of 1.2 km. The arrow shows the “TEST- Ground 
Truth” image for this section.

Table 4. Density used for modelling various section layers.

Section ρmeanðkg=m3Þ stdðkg=m3Þ

Geomaterials of Section A 2380 79.06
Geomaterials of Section B 2380 87.65
Geomaterials of Section C 2395 98.46
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is set to be equal to 1e-3. The training process lasted 8.50 hours on a GPU NVIDIA RTX 
A4000 while the testing process took a couple of minutes.

In all velocity images that can be seen in Figure 6, the horizontal axis shows the width in kilo
meters and the vertical axis the depth in kilometers, while the maximum depth is shown at the 
zero 0.00 km level. Velocity has units of km/s. Finally in the velocity profile diagram the velocity 
is in m/s units while the maximum depth is at the 50.00 m level of the vertical axis. Experiment 1 
is shown in column 1, experiment 2 at column2 and ground truth (GT) at column 3.

3.1  Quantitative comparison of results in terms of image metrics psnr and ssim

The peak signal to noise ratio (psnr) is a quality image metric that the higher it is, the better 
the quality of the image being considered. The psnr between the prediction of the network 
trained on the experiment 2 and ground truth image is improved by 11.42 % compared to the 
prediction of the trained on the experiment 1 and ground truth for section A (Figure 6, 1st 
row), 4.5 % for section B (Figure 6, 2nd row) and 27.75 % for section C (Figure 6, 3rd row). 
The structural similarity index (ssim) from the other hand is a quality metric used to measure 
how similar two images are, based on loss of correlation, luminance distortion and contrast 
distortion. For the case of experiment 2 ssim is calculated to be 3.11 %, 1.11 % and 0.9 % 
greater than the ssim calculated for the experiment 1. More specifically the (psnr,ssim) values 
for the 2nd dataset are (16.00,0.928),(23.75,0.984) and (30.07,0.99) for sections A B and 
C respectively which can be considered as high values.

3.2  Quantitative comparison of results in terms of metrics applied on velocity values, mse

The extracted values for the ground truth, and the predictions for both experiments are plotted 
for a vertical cut in the middle (at 100m position)of the elastic space and can be seen in Figure 6 
(column d). The mean squared error (mse) for experiment 1 regarding to the three sections A,B, 
C is 2.01,3.77 and 5.38 greater compared to the mean squared error calculated for experiment 2.

3.3  Qualitative comparison of results

As we can observe in Figure 6, 1st row, we have a complete prediction of the velocities for the 
case of the experiment 2 (2nd column) training. There is some weakness in the prediction of the 
thickness of the geological layers and in the shape of the geological layers. This is also reflected 
as a lag in the vertical one-dimensional velocity profile in which we see that the prediction 
reaches the correct estimated value but little later for the specific GT image. For the case of 
experiment 1 the predicted image (column 1) does not capture neither the geometry neither the 
correct velocity range of the GT image. The only successful point in the prediction is the first 
meters of the velocity image where the network correctly predicts low velocity values, but incor
rectly maintains them at greater depths. It is worth at this point to comment on the fact that in 
this example the mse difference between the two datasets (2.01 % with respect to the values of 
the velocity profile) is much smaller compared to the next two images not because the network 
approaches the correct value but because the delay in estimating the correct velocity from the 
2nd dataset also leads to a very large mse error calculation which is not quite representative for 
this specific case since the prediction is quite good. In Figure 6, 2nd row, we see the successful 
prediction after training on 2 experiment and unlike before we do not notice the same degree of 
failure in the prediction of the layer thickness. This is also reflected in the vertical profile where 
all branches except the third are in perfect coincidence. On the contrary, the prediction concern
ing the experiment 1 fails to capture the gradation of bottom velocities so good. In Figure 6, 3rd 
row, we see the successful prediction after training on experiment 2 as opposed to the prediction 
after training on experiment 1 where it completely fails to predict the velocity of the upper levels. 
This failure is what levels up the mse since it involves many pairs of velocity values. Also as we 
see at greater depths the network incorrectly predicts some low velocity values that do not exist.

Constraining the training dataset to velocity values obtained from just a single borehole 
data in combination with the use of subsection images in parallel with application of elastic 
displacements can strengthen the prediction ability of the network and lead to successful 
results on field data.
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The results directly show that the proposed method can lead to great performances over 
field data. Especially for tunnel construction in cases when the soil overburden above the 
tunnel crown is of great height and in general when making sampling boreholes is difficult, 
DNN-FWI can predict for the unknown subsurface based on a very limited- sparse number of 
auxiliary boreholes.
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