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SNR-based Denoising Dynamic Statistical
Threshold Detection of FBG Spectral Peaks

Gabriel Cibira, Ivan Glesk, and Jozef Dubovan,

Abstract—This paper targets a Denoising Dynamic Statistical
Threshold (DDST) detection algorithm of Fiber Bragg Grating
(FBG) spectral peaks at the presence of changing Signal-to-Noise
Ratio (SNR) in a sensing channel. Computing the DDST is based
on statistical parameters of the background noise. The DDST
is determined by adjusting it using the SNR via determining
the targeted probability of false alarms (pFA). The proposed
algorithm implements background noise fluctuations, nonlinear
signal attenuation of a Single-Mode Fiber (SMF), as well as
influence of the short-term interference. The implemented sliding
wavelength window technique in conjunction with the FBG
spectral peaks power scaling allow automatic adjusting of pFA
and the DDST. During the possible FBGs resonant wavelengths
overlap resulting from approaching/colliding spectral power
responses of FBGs, the proposed algorithm also improves the
detection robustness and resolving of these overlaps. The DDST
marginally takes into account spectral shapes of FBGs resonant
wavelength peaks. Advantageously, DDST wavelength resolving is
independent of FBG spectral peaks shapes. Our DDST algorithm
is also simple to implement. Measurements done by two Optical
Spectral Analyzers (OSAs) confirmed significant improvements in
the background noise reduction (i.e. signal denoising), noisy FBG
spectral peaks shapes smoothing and SNR, improved adjacent
FBG spectral peaks detectability and resolving. Our experiments
also confirmed usability of the DDST algorithm under severe
network conditions (with low reflected FBG power below −75 dB
and low SNR < 4 dB resulting a standard deviation of σ > 7 dB
in the background noise fluctuations).

Index Terms—Fiber Bragg grating sensors, denoising, dynamic
statistical threshold, statistical detection, signal-to-noise ratio.

I. INTRODUCTION

F IBER Bragg Grating (FBG) construction and operating
principles have been described in [1], [2], [3]. An FBG

is a type of distributed optical structure longitudinally im-
plemented into a short segment of optical fiber. Its internal
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structure determines specific bandwidth through which the
resonant wavelength is reflected, while other wavelengths are
transmitted. An FBG can therefore be used in telecommuni-
cations or intrinsic sensing applications as an inline optical
filter (to block certain wavelengths), or as a wavelength-
specific reflector [4]. Extrinsic sensing applications can use
a fiber-integrated sensitive thin film as a sensor/transducer of
environmental parameters [5]. The principle of temperature or
strain FBG sensing is based on the fact that the longitudinally
stretched FBG changes its resonant wavelength over time, i.e.
a time-wavelength shift of the reflected light is generated [2].
A simple method of demodulating FBG spectral peaks is to
use a scanning laser, a tunable optical filter and a photode-
tector (all parts of an optical spectrum analyzer (OSA) [3]
or interrogator [6]). The demodulated power is measured in
discrete wavelength steps by OSA. The interpolation of the
measured data determines a smooth profile and identification
of the resonant wavelength of the reflected signal.

Over the last decade, researchers have addressed various
noise effects and asymmetric characteristics of FBG spectral
peaks that affect measurement accuracy. In addition to linear
methods, the applicability of the wavelet threshold denoising
has been demonstrated [7]. Demodulation of multiple weak
and noisy FBG spectral peaks has been presented using
direct peak-detection algorithms, fitting algorithms, matched
filtering, or estimation of cross-correlation resonance point and
Mexican-hat wavelet spectral function [8]. Demodulation of
distorted FBGs spectra has been focused on their asymmetric
side lobes, deformed side lobes, or low extinction ratio of the
FBG reflection peaks [9]. Next, 36-point spectra has been used
for multi-peak correlation demodulation (4 FBGs) [10]. The
characteristics of the sampled FBG spectral peaks have been
analyzed and recognized using vector machine support [11]
or by machine learning when FBGs overlap or are reconfig-
ured [12]. Wavelet decomposition, Hilbert transformation and
fitting methods have already been used [13] for multi-peak
detection. Spectral demodulation has been presented using a
trained convolutional neural network [14].

Statistical signal detection and the sequential probability
ratio test have been two leading theories for binary decision-
making in dynamic real-time applications such as the radar
detection technology [15], where they play the key role when
detecting signals in strongly fluctuating background noise [16],
[17]. The sequential probability ratio test technique has been
also recently established in other areas such as sensing-based
applications [18], [19], communications [20] or biological
systems [21]. However, despite the above, there is still lack of
real-time de-noising algorithms that dynamically could imple-
ment multiple noise fluctuations to and lead to reliable noise
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reduction at different Signal-to-Noise Ratio (SNR) scenarios
in optical sensing technologies.

Recently, the IEEE Communications Society established
the Integrated Sensing and Communication (ISAC) emerging
technology initiative [22]. It looks for enabling technologies
that combine sensing and communication systems to utilize
resources efficiently and even to pursue mutual benefits. In
the optical telecommunication parallel, transmission demand-
based spectrum prediction algorithms target to improve avail-
able bandwidth utilization and throughput of optical lines,
reduce delay, and achieve fair transmission to users [23], [24].
We have recently proposed the concept of sharing a common
optical fiber for FBG sensing and telecommunication services,
benefiting from the occupancy of sensing FBGs [25].

Onward, in this paper we propose a novel efficient algorithm
for denoising and statistical detection of FBG spectral peaks
in sensing applications implemented in a standard single-mode
fiber (SMF). Computing of the denoising dynamic statisti-
cal threshold (DDST) is based on implementing non-linear
bandwidth attenuation within the SMF, background noise
fluctuations, influences of short-term interferences, spectral
distortions near FBG spectral peaks and SNR adjusting via
probability of false alarms (pFA). The novelty DDST detection
algorithm also improves detection robustness where adjacent
FBG spectral peaks are overlapped, as the DDST partially
follows the shapes of the FBG spectral peaks. The proposed
algorithm is applicable for any spectral power dynamics or
SNR. It allows to reduce the conventionally pre-reserved oper-
ational bandwidths of FBG sensors (via dynamic windowing),
brings significant noise reduction and improves SNR and
detection reliability. Our experimental results (obtained by
two OSAs within the SMF optical sensor network [15], [26])
show reliable adjacent FBG spectral peaks differentiation and
a recognition independent of their “pattern” shapes.

The rest of the paper is organized as follows. Section II.
formulates problems with the effects of instrument noise,
SMF attenuation, overlap of adjacent FBG spectral peaks and
noise interferences. Section III. presents the proposed SNR-
based DDST detection algorithm using the sliding wavelength
window technique and the principle of statistical detection,
including mathematical basis. Section IV. comprises simula-
tion results, discussion and validation of the proposed DDST
statistical detection algorithm, including a comparison with
other techniques. Section V. is a conclusion.

II. PROBLEM FORMULATION

FBG spectral peak sensing tries to “win” every decibel
above background noise. Knowledge of the FBG spectral
peak shapes is key for many peak-detection algorithms such
as: direct, centroid, fitting and interpolation algorithms [6],
[10], [11], [12], [13], [27]. All these approaches consider the
rise in the background noise because it is very crucial. This
occurs due to nonlinear temperature drifts, SMF attenuation,
noise interference, overlap and distortion of FBG spectral
peaks, FBG demodulation imperfection, and suboptimal signal
processing. Also, the background noise evaluation is usually
ambiguous due to the noise uncertainty [18].

A. FBG Signal Shape Distortion Caused by Instrumental
Influences

It follows from the nature of optical signals that the optical
power signal incident on perpendicular plane is a Gaussian
distributed random variable. Assume that the narrowband
optical power signal spectrum reflected from an ideal FBG
is a Gaussian distributed random variable [28], [29] too with
a statistical mean power at the Bragg resonant wavelength
µB ≡ λB, and spread described by a standard deviation, σB.
A Probability Density Function (PDF), which describes the
distribution of the reflected power from a FBG as a function
of wavelengths λ within the signal bandwidth, is given as

f (λB) =
1

σB
√

2π
exp

[
− (λ −λB)

2

2σ2
B

]
. (1)

Assume optical signal reflected by FBG spectral peak is
demodulated by an ideal unipolar demodulation photodiode in
a power-wavelength domain. Our next consideration is given
to both discrete sweeping and processing along the bandwidth.
The integration nature of the discretely measured power trans-
forms the smooth Gaussian distribution to a stepwise type of
a binomial distribution [28], [29]. In fact, the discrete FBG
spectral peak represents the signal energy ES measured in
a specific discrete sequence of a number of L wavelengths
Λl . The l ∈ (1,2, ...,L) indicates wavelength sample indices.
The binomial pdf with discrete probabilities p (of FBG signal
occurrence at a given quantization level for lth wavelength) is

Bi(L, p) =
L!

l!(L− l)!
pl (1− p)L−l . (2)

The generated stepwise instrumental error can be obtained
by subtracting (1) and (2)

εB (λ ;L, p) = f (λB) − Bi(L, p) . (3)

However, other imperfections in the production of FBGs or
suboptimal signal processing by analogue or discrete equip-
ment may cause an additional increase of noise or FBG
spectral shape distortions [1], [2], [3], [7], [9], [10], [11],
[12], [27]. In [6], [12], [14], a different wavelength resolution
(78 or 156 pm) was obtained by the so called white-light
interrogation or 5-10 pm by the oversampling interrogation,
respectively. Instrument errors εinstr can be either constant,
linear (e.g. offset additions) or nonlinear (e.g. photodiode ther-
mal voltage bias). Some may occur under specific operational
conditions and/or in a certain wavelength span.

B. Effects of SMF Attenuation

The attenuation of SMF is caused by two factors, absorption
and scattering. Recommendation ITU-T G.652 [30] describes
geometrical, mechanical and transmission parameters of the
SMF and cable originally optimized for the use in the 1310 nm
and 1550 nm wavelength regions. This Recommendation
allows the attenuation factor up to 0.3 dB/km from 1530
to 1565 nm and up to 0.4 dB/km from 1310 to 1625 nm
wavelength regions (according to the ITU-T G.652.D). This
Recommendation also allows operation in other wavelength
regions and provides specified scattering loss.
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Fig. 1. Demonstration of compound reflected power behavior composed of background noise N0 and 4-MUXed FBGs (A, B, C and D) energy Es: a)
(N0 +Es)1 when 10 km long SMF was attached (blue) and (N0 +Es)2 when no fiber was attached (green), b) showing difference (N0 +Es)2 − (N0 +Es)1.

The SMF attenuation is a function of a wavelength, fSMF ≈
f (λ ) and is not linear for different SMF wavebands. The
SMF attenuation coefficient can also vary depending on the
production quality, ageing, temperature, pressure, stress, bend-
ing, and other external factors. Our example shown in Fig. 1
demonstrates the compound (N0 +Es) background noise N0
(caused by interrogator and SMF reflection) and the reflected
energy of spectral power peaks Es from 4 multiplexed (4-
MUXed) FBGs A, B, C and D. In Fig. 1a), (N0 + Es)1 is
shown when a 10 km long SMF (type G.652.D) is attached to
the 4-MUXed FBGs (shown in blue) and, (N0+Es)2 when no
fiber has been attached (shown in green). The measured SNR
with 10 km fiber is 21.28 dB, while without fiber attenuation
is 27.03 dB. Fig. 1b) shows (N0 +Es)2 − (N0 +Es)1. As it
becomes clear from Fig. 1b), adding standard 10 km SMF to
the 4-MUXed FBGs causes increase of reflected background
noise by approximately 1.83 dB. However, the reflected power
of the 4-MUXed FBGs drops up to 6.67 dB.

C. Effects of Overlap with other FBGs

In a number of conventional FBG sensing applications,
FBG spectral peaks shift in fixed non-overlapping wavelength
windows, where the FBG spectral peak powers exceed exper-
imentally fixed pre-set constant threshold level. We assume
Gaussian shape approximation (1) and equal magnitudes for
all FBG spectral peaks in the following three paragraphs, just
for illustration.

In some multisensory dynamic applications, several FBGs
are deployed in a serial connection along the SMF, each having
own but different resonant wavelength, [10], [13]. It has to
be ensured that any forced wavelength shifts do not overlap

with the FBG spectral peaks during sensing system operation.
Lateral wavelength shift of FBG spectral peaks is expected
and allowed, but the overlap is not allowed. Applying Bragg
resonant wavelengths λB1 , λB2 and standard deviations σB1 ,
σB2 of two Gaussian FBG power spectral peaks, respectively,
we derived the compound pdf of the two overlapping spectral
peaks by using [27], [28] as follows

pd f (λB1 ,λB2) =

√
2√

π (σB1 +σB2)
exp

(
−

λ −λB1

2σ2
B1

)
+

+

√
2√

π (σB1 +σB2)
exp

(
−

λ −λB2

2σ2
B2

)
.

(4)

Fig. 2 illustrates the incoherent adding of spectral power
signals of two approaching adjacent Gaussian FBG spectral
peaks (normalized in both, the wavelength and power) with
a wavelengths overlap rate from 1 % to 90 % on compound
power increase. This was obtained using (4). A 60 % overlap
is shown in Fig. 2c) where the level of compound power
attenuation achieves the full width at half maximum (FWHM).
When the wavelengths overlap is 70.7 %, see Fig. 2d),
the compound power is represented by two-sided Gaussian
spectrum with a flat peak at a power level +21 % above
the “non-overlapping normalized power max” level. Finally,
if identical FBG spectral peaks will completely overlap and
the FBGs attenuation will be doubled, resolving of overlapped
FBGs will require some tracking or recognition techniques.

To ensure the proposed method can be easily applied, it is
important to reliably estimate the “safe” approaching limit for
the FBG spectral peaks. This can be obtained from Fig. 3.
A “suitable” general limit can be set below 0.4. For a more
robust performance, the limit might be 0.6-0.7.
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Fig. 3. Attenuation dependence based on overlap rate of two Gaussian-shaped
FBG spectral peaks as calculated from Fig. 2 for the midpoint “0” as a function
of their approaching.

To illustrate the attenuation dynamics of the approaching
FBGs spectral peak, we present another example in Fig. 4a).
Here, wavelengths of FBG spectral peaks A and B are fixed
during the experiment lasting 13 scanning periods. On other
hand, wavelengths of C and D FBGs are shifting during this
measurement until λC = λD ≈ 1554.6 nm. At this moment, the
attenuation caused by the two overlapped FBGs increases by
over +3 dB (see also the asterisked blue line in superimposed
plot in Fig. 4b)), to compare it to the non-overlap spectral
power values.

D. Effects of Background Noise Interference

FBG multi-peak sensing and telecommunication services
aim to increase the system spectral efficiency [10], [13], [14],
[20], [22]. However, data must be protected against mutual
interference from other services carried by SMF when its
spectrum is densely occupied [25]. The FBG sensing system
is also easily affected by the harsh environment (wind, rain,
vibrations etc.). This makes the demodulated FBG spectrum
noisy. The signal denoising is necessary and is done by post-
processing after data acquisition. FBG denoising techniques
could be Wavelet thresholding, empirical mode decomposition,
or compressive sensing algorithms [31]. All these techniques
result in certain SNR. From the subsystem’s point of view,
SNR can then be quantified on both, its input or output with
different values as follows

SNRin =
Ein

N0in
, SNRdBin = 10log10

(
Ein

N0in

)
, (5)

SNRout =
Eout

N0out
, SNRdBout = 10log10

(
Eout

N0out

)
. (6)

III. PROPOSED ALGORITHM

A. Applicability of the Proposed Algorithm

To introduce the applicability of the proposed algorithm,
we first present a conceptual schematic of the interrogator for
scanning SMF with FBG sensors and determine their resonant
wavelengths. This is shown in Fig. 5. The presented diagram
can be altered as needed by the application. The proposed
SNR-based denoising dynamic statistical threshold (DDST)
detection algorithm is applied in the FBG signal and data
processing subsystem.

The interrogator works as follows. The light source sends
appropriate optical scanning signals into the SMF with FBG
sensors, via an optical circulator (OC). Each of the FBG
sensors reflects a proportional part of the optical signal energy
back into the OC to redirect signal into an optical-to-electrical
(OE) conversion unit. Here, the tunable narrowband optical fil-
ters ensure accurate wavelength measurements and resolution.
A unipolar photodiode serves as a photodetector (PD) that
provides an OE conversion. The unit contains optical (EDFA)
and electrical (OPA) amplifiers to boost the signal as needed.

After the OE conversion, FBG signal is processed by the
analog-to-digital converter (ADC). The random access mem-
ory (RAM1) continuously stores the received data resulted
from the tuning of the optical filter at the input of the FBG
signal/data processing unit.

Then the stored data are processed in the detector of FBG
spectral peaks. Here, a conventional detector of FBG spectral
peaks seeks for a values above a fixed set threshold. However,
trend detectors use artificial intelligence (AI) algorithms to
analyze the shapes of FBG spectral peaks to produce shape
classifications (as classifiers of shapes). Unlike both these
detectors/classifiers, our proposed SNR-based DDST detection
algorithm benefits from statistical analysis of the background
noise. The operation of the DDST algorithm is described in
following subsections III.B and III.C. The statistical threshold
automatically adapts to arbitrarily complex noise or interfer-
ence conditions, or to partial overlap of FBG spectral peaks.
This will be shown experimentally. The DDST detection
algorithm can also be used for a preliminary denoising in
previous types of detectors/classifiers.
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Fig. 5. General schematic diagram of the interrogator with proposed SNR-
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The signal then enters an FBG wavelength meter to deter-
mine the measured signal wavelength. It uses direct, centroid,
fitting or interpolation algorithms, and matches it to the FBG
resonant wavelength. Determined FBG resonant wavelengths
are stored in RAM2. This processing is repeated by each
measurement cycle. The target FBG wavelength shift can be
obtained via inter-period matching. This provides the user with
information about the dynamics of external physical factors
acting on individual FBGs.

B. Operation of the Proposed Algorithm

The proposed DDST detection algorithm is schematically
shown in Fig. 6. It targets denoising and identifying of
FBG spectral peaks powers that are above dynamically cal-
culated statistical threshold in order to improve the post-
photodetection SNR. This can be done independently of the
prior knowledge of the shape of FBG spectral peaks. The
DDST algorithm also aims to improve FBG spectral peaks
resolving if they become partially overlapped or they are
affected by interference from neighboring narrowband signals
from services supported by SMF [25]. The proposed algorithm
will also account for the background noise fluctuations.
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Fig. 6. SNR-based dynamic statistical threshold detector of FBG spectral
peaks.

As shown in Fig. 6, digitized sums (background noise plus
FBGs’ reflected powers, in spectral domain) are continuously
stored in an N-cell shift register. These acquired spectral power
values are stored along with n discrete wavelength steps,
n ∈ (1,2, ...,N). The pre-defined sliding wavelength window
of length L systematically slides and operates across the N-
cell register. This sliding window consists of the cell under
the test (CUT), 2G neighboring guarding cells (G-CELL) and
K adjacent cells located left and right of CUT. K is defined
by a number of discrete wavelength steps along the FBG
bandwidth. The left sub-window, see Fig. 6, contains cells
from CUT −G to CUT − k and symmetrically the right sub-
window contains cells from CUT +G to CUT +k. A number
of cells K = 2k = L− 2G−CUT is used to compute the so
called “local statistics” around CUT , the mean µK and the
standard deviation σK .

The DDST detection algorithm statistically evaluates the
background noise along N wavelength steps. As a result, the
approximation function of the SMF attenuation, fSMF , and the
instrument error, εinstr, are obtained and used to adjust the
threshold, τ . The fSMF and εinstr are periodically updated. The
targeted probability of false alarms pFA is a constant slowly
varying in time (see the experimental part).

The comparator based on described inputs then decides
which cells powers are above the statistical threshold value.
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C. Mathematical Basis of the Proposed Algorithm

The computation of threshold level τ is based on continuous
evaluation of the statistical parameters µK and σK along the
sliding wavelength window, which consists of K cells around
the CUT. Sometimes, the K number can differ from the L
number of wavelengths belonging to a typically measured
FBG bandwidth. Prior to calculating µK and σK from the
background noise, various techniques of selecting “suitable
cells” can be used to protect the threshold from the inclusion
of the sudden interference or power intrusion/leakage from the
adjacent cells (caused by discretization of FBG spectral peaks,
especially in a dynamic power environment). These techniques
can modify the needs for surrounding guarding cells. Selection
techniques can be dynamically chosen and controlled by a
feedback, so that the system is automatically able to adapt
cells selection even under difficult detection conditions. In
addition to µK , σK and K, we recommend implementing three
additional input parameters to adjust the statistical threshold
to the desirable level:

a) the level of probability for a false alarm (pFA),
b) the instrument error εinstr,
c) the offset function fSMF describing fiber attenuation

along the used wavelength span.
Detection of an unknown but assumed Gaussian shape

spectral power signal at a presence of the background noise
requires sufficient dynamic bandwidth of the photodetector.
Choosing a sufficient sliding wavelength window width K
around CUT is recommended for reliable computing of µK
and σK . Using selection techniques and multiple levels of
detection threshold for dynamic background noise behavior is
preferable. Applying the Bayesian decision theory [31], [32]
with decision criteria [33] for the background noise and FBGs
spectral power PDFs, the optimized general threshold decision
criterion T (E) with the threshold τ is given as follows

T (E) :=
N0

N0 +ES
e
− ECUT

N0(N0+ES) ≷ τ ⇒

{
YES |LOG1
NO |LOG0

(7)

where the N0 is the mean of a Gaussian random amplitude
noise, Es is anticipated FBG signal energy and ECUT is the
energy obtained in a CUT. Due to the nature of the unipolar
photodetector, its electrical signal at the output is Rayleigh
distributed random variable with the variance is as follows

σ
2
N0+ES

= σ
2
N0

+σ
2
ES

= σ
2
N0

(
1+

σ2
ES

σ2
N0

)
≡

≡ σ
2
N0

(
1+

ES

N0

)
≡ σ

2
N0
(1+SNR) .

(8)

However, other effects may distort the shape of the PDF
of the background noise as well as the shape of PDF of the
FBGs, as shown in Fig. 7. In general, the threshold value τ

always intersects both of these PDFs. The resulting probability
areas are as follows: I – probability of correct FBGs detection
(integral from τ to maximum demodulated power under the
red curve), II – probability of false alarms i.e. false FBGs
detection (integral from τ to maximum demodulated power
under the blue curve), III – FBGs detection loss (integral from
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Fig. 7. Principle of statistical threshold detection based on desired pFA setting.

minimum demodulated power to τ under the red curve), IV –
probability of correct noise detection (integral from minimum
demodulated power to τ under the blue curve). The areas II
and III should be carefully considered when computing the
threshold. Much more attention should be paid to the area
II, because its high pFA may cause false positive increase
of FBG wavelengths numbers. These are the cases when a
such FBG does not exist (NO-FBG) and the background noise
could exceed the detection threshold thus causing these false
detections. This would lead to fatal measurement errors. The
pFA can be found using [28], [32] as follows

pFA =

∞∫
τ

p(N0 +ES |NO−FBG )dE =

=

∞∫
τ

E2
CUT

σ2
N0+ES

exp

(
−

E2
CUT

2σ2
N0+ES

)
dE.

(9)

This truncated pdf is limited by the threshold τ and follow-
ing [33], τ has been derived as follows

τ = N0ES ln
1

pFA
. (10)

Similarly, the probability of correct FBG spectral peaks
detection PD (shown in Fig. 6 as the area I where FBG exists
and decision about FBG existence is correct) using [28], [32]
can be derived

pD =

∞∫
τ

p(N0 +ES |FBG )dE =

=

∞∫
τ

2ECUT

N0ES
exp
(
−

E2
CUT

N0ES

)
dE.

(11)

It is possible to independently measure both, the noise
and FBGs probability density functions, as can be seen from
the histograms in Fig. 7. But, they are not a priori exactly
known. They change under fluctuations of background noise or
interferences. Therefore, the threshold τ must not be constant.
It must dynamically incorporate all possible fluctuations. The
DDST detection algorithm incorporates the instrumental error
εinstr, approximation function of SMF attenuation fSMF , mea-
sured additive noise and signal power (N0 +Es) parametrized
by µK and σK along the sliding wavelength window. The
anticipated minimum-to-maximum FBGs signal power ranges
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from Emin to Emax. It is parametrized by pFA (based on SNR)
and by sliding wavelength window ratio as follows

τ = εinstr + fSMOF +(N0 +ES)µKσK+

− Emax −Emin

ln 1
pFA

K −G
K

.
(12)

Based on the obtained statistical threshold τ , the comparator
at its output will generate the signal pulse presuming the
existence of the FBG spectral peak in the given CUT at the
nth wavelength.

IV. RESULTS OF SIMULATION, DISCUSSION AND
VALIDATION

As mentioned in the previous section, we assume that back-
ground noise is generated mainly by the OSA photodetector,
optical fiber and interconnections. An example of the measured
reflected background noise along the waveband is shown in
Fig. 8.

Fig. 8a) shows in blue the attenuation of a 5 km long
SMF approximated by the 2nd order polynomial function fSMF .
The green line in Fig. 8b) is the reflected noise floor caused
by the first OSA with a C-band mean level µ = 73.56 dB
and standard deviation σ = 0.15 dB. The connected pigtail
increases the mean reflected power by negligible 0.02 dB, see
the brown line. The black trend line fSMF indicates a linear
offset along the used wavelength span caused mainly by an
active system element, the photodiode. However, the 10 km
long SMF significantly contributes to the reflected background
noise increase from 1.5 to 1.8 dB having its maximum at a
wavelength of 1552 nm (shown in orange in Fig. 8b)). After
adding another 5 km of SMF, the total reflected background
noise shown in red increases even more, by 0.75 to 0.95 dB,
see also the 2nd - order polynomial summary approximation
fSMF in magenta.
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Fig. 9. Background noise measured as a transmitted power of wideband light
source attenuated by 10, 30, 50, 100 and 150 km SMFs, respectively.

Another example of transmitted power attenuation is based
on 250 nm wideband light source operating from 1550 to
1800 nm by another OSA. In Fig. 9, the transmitted spectral
power is shown when using 10 to 150 km optical fibers.
The attenuation spectral wavelength dependency change was
measured to be up to 8 dB along the C-band. To fit these
curvatures, it was necessary to find the mathematical model.
The obtained results are shown again in Fig. 9. Good fit
between experimental and mathematical results can be seen.
To obtain the above results, the intrinsic 20 pm resolution of
the OSA was improved by applying the post-demodulation
wavelength upsampling [6] that resulted in approximately
3.43 pm resolution.

A. FBG Spectral Peaks Windowing

Dense spectral spacing and any unexpected events affecting
FBGs cause a spectral overlap. Fig. 10 shows a simple FBGs
detection and the windowing when 4-MUXed FBGs (A, B,
C and D with occupied bandwidths of about 450 pm at
FWHM) at high SNRin > 20 dB were used. The 2nd-order
approximation of the background noise ( fSMF and εinstr) is
included. First, the three conventional thresholds +1.2 dB
(green dot-and-dash line), +2 dB (brown dot-and-dash line)
and +3 dB (blue dot- and-dash line) above the 2nd-order back-
ground noise approximation fSMF are used. Besides the correct
detection of the A, B, C and D FBG spectral peaks, the lowest
threshold inappropriately generates false alarms from low-
level interferences, such as the in the short wavelength section
around 1552 nm (indicated by the green line). Therefore, it is
not appropriate to use the windowing for a low level threshold
addendum of +1.2 dB. The higher the threshold, the narrower
is the window, see brown and blue lines. To summarize
Fig. 10, for a reliable and simple DDST-based windowing,
the background noise approximation fSMF is recommended
to be used. A simplified windowing approach can be used
when occupancy of FBG spectral peaks are required in a
noiseless environment with the high SNR. Such a system
with a periodically updated threshold for efficient spectrum
utilization for sharing a common optical fiber for both sensing
and telecommunication services in more complex environment
was demonstrated in [25]. The requirements for automatic



JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. XX, NO. X, NOVEMBER 2022 8

1525 1530 1535 1540 1545 1550 1555 1560 1565 1570
Wavelength (nm)

-70

-65

-60

-55

-50
Sp

ec
tra

l p
ow

er
 (d

B
) a

nd
 w

in
do

w
in

g

meas. noise with 4-FBGs spec. peaks’ power
fSMF, the approx. of background noise
conventional threshold @ fSMF+ 1.2 dB
conventional threshold @ fSMF+ 2 dB
conventional threshold @ fSMF+ 3 dB
windowing @  fSMF+ 1.2 dB
windowing @  fSMF+ 2 dB
windowing @ fSMF+ 3 dB

A B C D

Fig. 10. Windowing for 4-MUXed FBGs at three conventional detection thresholds of +1.2 dB (green), +2 dB (brown) and +3 dB (blue) above 2nd-order
approximation of background noise (noise floor and fiber attenuation included).

1525 1530 1535 1540 1545 1550 1555 1560 1565 1570
Wavelength (nm)

-70

-65

-60

-55

-50

Sp
ec

tra
l p

ow
er

 a
nd

 th
re

sh
ol

ds
 (d

B
)

noise with 4 FBGs before DDST detection
fSMF, the approx. of background noise
conventional threshold @ fSMF + 3 dB
dynamic threshold @ pFA = 10-2

dynamic threshold @ pFA = 10-3

dynamic threshold @ pFA = 10-4

dynamic threshold @ pFA = 10-6

dynamic threshold @ pFA = 10-10

A B C D

Fig. 11. Dynamic statistical threshold detection of 4-MUXed FBGs (A, B, C and D), based on SNR implementation via pFA at high SNR.

threshold adjustment and occupancy robustness around FBGs
are also discussed there.

B. FBG Spectral Peaks Detection Using the Dynamic Statis-
tical Threshold Under High Input SNR

This subsection describes an example of a real adaptive
detection of 4-MUXed FBGs spectral peaks (2 solitary and
2 adjacent) using the full DDST detection algorithm. Based
on (12), the adaptive dynamic thresholding results are shown
in Fig. 11 for high SNRin > 20 dB. The implementation of
the fSMF and εinstr makes it possible to obtain approximate
levels of detection thresholds with the presence of background
noise. A periodic verification of background noise offset found
in FBGs-free spectral locations is possible and has been used
in our Fig. 11 example. Because the presence of FBG spectral
peaks causes an increase in µK and σK , the threshold level
increases significantly.

The acceptable probability of false alarms ranges from a
very high pFA = 10−2 to an extremely low pFA = 10−10.
The threshold τ is parameterized by an anticipated energy
range of the FBGs signals from Esmin (being close to the
background noise approximation) up to Esmax ≈+20 dB above
the background noise. The τ is adjusted by the width of the
sliding wavelength window to account for increases in σK
when it is too narrow. The more severe the pFA requirement
is, the higher τ will be computed. If a lower threshold level is

applied, a higher number of detected discrete spectral “points”
from an FBG spectral peak will be obtained, see asterisks in
Fig. 11. It leads to a nearly full number of wavelengths within
the section occupied by the FBG and thus to a safer FBG
spectral windowing [25]. Such pre-processing could lead to
a better detectability of FBG spectral peak shapes and their
recognition by classifiers.

On other hand, if using higher thresholds is possible, better
wavelength measurements and resolving of colliding FBG
spectral peaks can be achieved. Then, the proposed DDST
detection algorithm also improves resolving the possibility of
FBGs resonant wavelengths collision. This is shown in the
Fig. 11 example where C and D adjacent spectral peaks (1549
and 1550 nm) have 40 % overlap and are very well resolved
by a DDST detector. In contrast, the conventional threshold at
fSMF +3 dB completely loses the resolving of C and D FBGs
(see the blue dot-and-dash line).

C. Multi-FBG Spectral Peaks Detection Using Dynamic Sta-
tistical Thresholding with Two Different Types of FBGs and
Different Input SNRs

This section describes an example of an adaptive dynamic
thresholding that leads to results shown in Fig. 12 when
4-MUXed FBGs at SNRin > 20 dB are interfered by addi-
tional FBGs I to X. Each of these additional FBGs with an
SNRin > 15 dB occupies a narrowband bandwidth of 84 pm
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Fig. 13. DDST detection of 4-MUXed FBGs at deep external power attenuation by optical fiber, at low SNR and with moderate to severe noise fluctuations
near the detectability level: a) with 20 dB attenuation and SNR ≈ 8.5 dB, b) with 35 dB attenuation and SNR ≈ 8.5 dB, c) with 35 dB attenuation and
SNR ≈ 7 dB, d) with 45 dB attenuation and SNR ≈ 3.5 dB.

at FWHM. Both, the conventional and DDST detections were
investigated. They both successfully detected different types
of solitary FBGs (I, IV and D) and also the adjacent but
not overlapping narrowband FBGs (VII and VIII). However,
FBGs V, VI and B were more reliably resolved by DDST
detector. When the conventional detector was used to resolve
the overlapping FBGs (A, II, III, C, IX and X), the detection
collapsed. However, our proposed DDST detection reliably
handled the situation, even if only starting from pFA = 10−2.

D. FBG Spectral Peaks Detection Using the Dynamic Statis-
tical Threshold Under Low Input SNR

This section describes the applicability of the proposed
DDST detection algorithm for 4-MUXed FBGs (2 solitary

and 2 adjacent). The FBGs were illuminated with a 250 nm
broadband light source from 1550 to 1800 nm. The transmitted
signals were observed by OSA with a high-resolution of
3.43 pm. Fig. 13a) to Fig. 13d) illustrates the measured
increase in the external fiber attenuation attSMF that was 20,
35, 40 and 45 dB, the standard deviation σ , the fluctuating
background noise (especially in the region below 1550 nm),
and the degradation of the SNRin at the input of the DDST
detector. Fig. 14 is the zoom-in of the situation depicted
by Fig. 13. Both figures also show statistical thresholds for
pFA = 10−2 to pFA = 10−10. Fig. 15 shows the zoom-in of
the comparative decision making at the output of the DDST
detection algorithm (CUT signal minus the threshold).

Fig. 13a) and Fig. 14a) show a reliable thresholding when
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Fig. 14. Detailed DDST detection of 4-MUXed FBGs at deep external power attenuation by optical fiber, at low SNR and with moderate to severe noise
fluctuations near the detectability level: a) with 20 dB attenuation and SNR ≈ 8.5 dB, b) with 35 dB attenuation and SNR ≈ 8.5 dB, c) with 35 dB attenuation
and SNR ≈ 7 dB, d) with 45 dB attenuation and SNR ≈ 3.5 dB.

attSMF = 20 dB, the inhomogeneous noise environment varied
with σ = 2.6 dB and the measured medium was SNRin ≈ 9 dB.
The output power of FBG spectral peaks dropped to ∼ 7 dB
despite the threshold was set at pFA = 10−3, see Fig. 15a).
This drop is a penalty for denoising, getting reliable detection
and reliable separation of two adjacent FBG spectral peaks
having an overlap of about 40 % under inhomogeneous noise
environment.

Fig. 13b) and Fig. 14b) show also smooth reliable denoising
and thresholding in degraded conditions of attSMF = 35 dB,
σ = 4.3 dB, and SNRin ≈ 8.5 dB. The above mentioned
broadband light source causes increased noise fluctuations
leading to occasional pulse noise penetrations above selected
thresholds, noticeably around 1535 nm. Since the σ varies
along the studied waveband, the output FBG spectral peaks
are noisy and some noise residuals occur above the threshold
τ at pFA = 10−3, see Fig. 15b). Of course, a stricter threshold
(like at pFA = 10−4) is able to completely remove these noise
residuals, see Fig. 14b).

Fig. 13c) and Fig. 14c) show dynamically adapted reliable
denoising and thresholding in severely degraded conditions:
attSMF = 40 dB, increased σ = 6.7 dB, and SNRin ≈ 7 dB.
The output FBG spectral peaks are noisy. This causes in-
creased σ . Since σ is quite homogeneous alongside of the
scanned waveband, only a few noise residuals occur above
the threshold at pFA = 10−3, see Fig. 15c). As can be seen
in Fig. 14c), a stricter threshold (like at pFA = 10−4) is able
to completely remove observed noise residuals. The most
important consequence is over 7 dB increase in the output

power of FBG spectral peaks, see Fig. 15c).

Fig. 13d) and Fig. 14d) show dynamically adapted reliable
denoising and thresholding in severely degraded environment:
attSMF = 45 dB, σ = 7.5 dB and SNRin ≈ 3.5 dB. As can be
seen, these results in output FBG spectral peaks being noisy.
Because σ in the studied waveband is nearly constant, the
noise residuals are eliminated by DDST detector at pFA = 10−3

(see Fig. 15d)). Further elimination of noise residuals could
be achieved using a stricter threshold (e.g. at pFA = 10−4).
The most important consequence would be a doubled output
power of the FBG spectral peaks (8 dB above the threshold τ

at pFA = 10−3).

In conclusion, as shown in Fig. 15a) to Fig. 15d), a reliable
denoising, detection and high level of adjacent FBG spectral
peaks resolving are achieved by our novel DDST detection
algorithm. The statistical thresholds “follow” the background
noise levels, “local statistics” µK and σK as well as FBG
spectral peaks shapes. Despite the fact that the pFA was only
10−3, we were able to successfully detect each 4-MUXed
FBGs by the dynamic statistical thresholding. This pFA value
was intentionally chosen to reflect high number of wavelength
samples (8750) in the studied waveband. This resulted in the
maximum of 8750× pFA = 8.750 false alarms, as can be seen
in Fig. 15a) and Fig. 15d). A number of false alarms was
slightly exceeded in Fig. 15b) and Fig. 15c) cases due to
significant changes in the background noise variance. Here, the
denoising significantly improved SNRout and smoothen FBG
spectral peak shapes, see Fig. 15c) and Fig. 15d).
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E. Comparison with Other Techniques

Investigating FBG resonant wavelengths in sensor arrays
is a well-established method that is an inherent part of FBG
interrogation systems (often with own, sometimes proprietary,
algorithms for peak detection and tracking). Typically, most
peak detection and tracking methods (direct or fitting) are
based on FBG power demodulation with a sufficient FBG
reflectivity (up to 90%) thus high SNR (> 15 dB) [4], [6],
[34]. Correlation methods trace the coincidence ratio between
measured and calibrated reference spectra in order to detect the
wavelength shift. They are therefore sensitive to fluctuations
of the measured FBG spectral shape. Correlation methods
could be used in cases of a lower SNR ≈ 10 dB and less
fluctuating background noise [6]. Transform-based methods
and optimization techniques (such as using neural networks
or genetic algorithms) require more complex processing. The
use of the Wavelet filtering causes the reduction of the number
of wavelength samples and requires accurate estimation of
both approximate and detailed coefficients for each of trans-
formation stages [6], [35]. Another approach described in [13]
applies Wavelet denoising, Hilbert transformation and parabola
fitting methods, under SNR> 11.25 dB and fluctuations below
σ < 1.229 conditions. In summary, these peak tracking meth-
ods depend on the FBG spectrum shapes. With difficulties,
they can work only with a limited SNR.

Compared to just described techniques, the proposed SNR-
based DDST detection algorithm can detect FBG spectral
peaks in severe environmental conditions. We have demon-
strated successful operation of our novel method reliably
working under −75 dB at SNR< 4 dB and having background
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Fig. 16. Comparison of FBG spectral peak shapes under 20, 35, 40 and 45 dB
fiber attenuation a) after demodulation, b) after DDST detection by dynamic
statistical detector at pFA = 10−3.

noise standard deviation of σ > 7 dB.
In the next step, we will investigate the influence of the

proposed algorithm on the standard deviation of noisy FBG
signals versus a noiseless reference FBG signal. Then we
will compare scenarios from Section IV.D (notably 35, 40
and 45 dB fiber attenuations versus noiseless signals of FBG
spectral peaks at 20 dB fiber attenuation).

This is shown in Fig. 16a) where the transmission spectral
power of demodulated solitary FBGs along 123 wavelength
positions are attenuated by fiber at 20, 35, 40 and 45 dB.
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In comparison, Fig. 16b) shows the DDST detected shapes
of the same FBG spectral peaks influenced by the same
fiber attenuation. Here, the detected FBG power is seen as
“normalized” in volume and the wavelength range narrowed
by ∼ 10%.

Fig. 17a) shows the demodulated shapes of spectral peaks
of 4-MUXed FBGs along 123 wavelength positions influenced
by 40 dB fiber attenuation. In comparison, Fig. 17b) shows
the detected shapes under the same conditions. Here is clearly
seen, DDST detection results in less shape variance. Similarly,
Fig. 17c) and Fig. 17d) compares the demodulated and DDST
detected 4-MUXed FBG signals under a 45 dB fiber attenu-
ation. Here it is clearly seen that DDST detected signals are
less varying in shape. Again, the DDST detection causes the
FBG wavelength range narrowing approximately by ∼ 10%.

Finally, Fig. 18 shows the normalized absolute deviation
of noisy FBG signals versus the noiseless FBG signal (dB)
for the typical solitary FBG spectral peak(s) along the 123
wavelength positions under the fiber attenuation of 35, 40
and 45 dB, and compares it with 20 dB fiber attenuation.
In Fig. 18a), the absolute deviation of demodulated signals
substantially varies for nearly a half of wavelength positions
(1st to 25th and 93rd to 123rd positions). In Fig. 18b), the post-
detection absolute deviations for all wavelength positions is
within the interval of (−2,+4) dB. For typical FBG spectral
peak shapes, cumulative standard deviation values along all
wavelength positions are shown in green/red/blue, respectively.
Values clearly indicate that the DDST detection significantly
denoises and smoothes noisy shapes of FBG spectral peaks.
The more the FBG spectral peak is noisy, the higher DDST
detection efficiency is achieved. For example, in case where
the fiber attenuation was 45 dB, a 3.5-fold improvement of
stdev@45 dB was achieved.

These improvements in FBG spectral peaks denoising leads
to more reliable wavelength measurements, better FBG spec-
tral peak recognition and more precise FBG wavelength shift
estimation, especially in systems with high spectral utiliza-
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Fig. 18. Comparison of absolute and cumulative standard deviations for
FBG spectral peak shapes under 20, 35, 40 and 45 dB fiber attenuation
(referenced to cases with 20 dB attenuation): a) after demodulation, b) after
DDST detection at pFA = 10−3.

tion [25]. We believe that, the DDST detection algorithm
can be also used in Rayleigh, Brillouin or even Raman
scattering measurement techniques for long-distance sensing
like in railway [34] or traffic applications where the back-
ground noise and SNR rapidly changes. Since the Brillouin
optical time domain reflectometry sensing suffers from low
SNR, our approach becomes a good candidate for the future
challenges [36], by improving the thresholding in the detection
technique.

V. CONCLUSION

In conclusion, a novel algorithm for use in Single Mode
Fiber (SMF) sensing applications to determine a Denois-
ing Dynamic Statistical Threshold (DDST) is proposed and
demonstrated. The algorithm is capable of effective detection
of FBG spectral peaks and their changing spectral location.
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The DDST detection algorithm is also capable to detect
FBG spectral peaks at the presence of changing SNR. Based
on the background noise statistics, this simple but effective
algorithm is able to automatically and accurately detect narrow
wavelength windows around FBG resonant peaks, by imple-
menting so called spectral windowing. This windowing helps
with tracking of FBG spectral peaks, especially in a densely
populated FBG sensor networks. Based on SNR (via targeted
probability of false alarms, pFA), the full DDST algorithm is
able to automatically adapt the detection threshold τ to the
fluctuating background noise. At the same time, it preserves
the shape of the FBG spectral peaks and improves the post-
detection SNR even when the background noise suddenly
increases. The full DDST detection algorithm is independent
of FBG spectral peaks shapes. When the adjacent FBG spectral
peaks overlap partially, it provides a high degree of certainty
in rejecting false FBG detection which is important when
wavelength overlap rate is higher than 40 %. In a noisy and
low SNR environment, the novel DDST detection algorithm
provides a highly efficient denoising and smoothing of noisy
FBG spectral peaks. We have shown that 3.5-fold improvement
of the standard deviation can be achieved under 45 dB fiber
attenuation.
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