
Citation: Gowrisetty, V.S.S.;

Fernando, A. Static Video

Compression’s Influence on Neural

Network Performance. Electronics

2023, 12, 8. https://doi.org/

10.3390/electronics12010008

Academic Editors: Hüseyin

Kusetogullari, Turgay Celik, Chafik

Samir and Amir Yavariabdi

Received: 1 August 2022

Revised: 1 December 2022

Accepted: 10 December 2022

Published: 20 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Static Video Compression’s Influence on Neural
Network Performance
Vishnu Sai Sankeerth Gowrisetty * and Anil Fernando

Department of Computer & Information Sciences, University of Strathclyde, Glasgow G1 1XQ, UK
* Correspondence: vishnu.gowrisetty@strath.ac.uk

Abstract: The concept of action recognition in smart security heavily relies on deep learning and
artificial intelligence to make predictions about actions of humans. To draw appropriate conclusions
from these hypotheses, a large amount of information is required. The data in question are often
a video feed, and there is a direct relationship between increased data volume and more-precise
decision-making. We seek to determine how far a static video can be compressed before the neural
network’s capacity to predict the action in the video is lost. To find this, videos are compressed by
lowering the bitrate using FFMPEG. In parallel, a convolutional neural network model is trained to
recognise action in the videos and is tested on the compressed videos until the neural network fails to
predict the action observed in the videos. The results reveal that bitrate compression has no linear
relationship with neural network performance.
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1. Introduction

With the rapid advancement of technology, envisioning a future filled with smart
gadgets is becoming more feasible. Smart security cameras are wire-free cameras that can
do more than just record video and take pictures. These gadgets include added features
that allow you to check on the condition of your home even if you are hundreds of miles
away. These devices provide you with the assurance that your home is secure and safe
from intruders. The detection of human actions from real-time CCTV video data streams is
a major subject. It is very useful for video surveillance and anomaly detection.

1.1. Motivation

In the domain of security, there are two conflicting criteria for smart monitoring. The
first thing that is necessary is high-quality video. Having visual representations of a problem
is useless if you cannot get valuable information from it. The capacity to recognize persons
or interpret descriptions of objects can be decisive in determining whether a video includes
important information. The overall graphical fidelity of videos is affected by their resolution.
The better the resolution, the clearer the video. Video file size is also affected by resolution.
As a result, a high-definition video has a larger file size than a standard-definition video of
the same runtime. The availability of data storage is the second necessity for smart security
monitoring. Following the completion of the recording, the video must be saved, which
requires both memory and processing power if it is to be broadcast. This memory and
processing capability necessitates a substantial financial commitment. As a result, the size of a
video file accounts for a significant portion of the entire cost of any security system.

Video compression could be beneficial in fixing this issue. Parts of the data that
are deemed repetitious are removed using a video codec, reducing the size of the video.
However, because video compression results in data loss, some of the lost data may be
critical, as a deep learning neural network may rely on the missing data. We define critical
data as data that have a statistical link with poor deep learning neural network prediction
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performance if it they are omitted or altered. As a result, it is critical to pick a video
compression format that strikes the optimal balance between removing unnecessary data
and retaining crucial data. In addition, standard video compression standards are intended
for human video consumption. Most videos are currently processed by machines, and
human consumption is linked to validating machine analysis results [1]. A new video
codec permits lower bitrates without compromising machine analysis performance.

1.2. Research Purpose

Humans watch and evaluate video in a very different way than machines. Dispar-
ities in colour, shape, and size of things are influenced by the objects’ distance, lighting,
familiarity, and image resolution. The impact of compression on human perception of
digital information can be measured using metrics such as Structural Similarity Index
Metric (SSIM) [2,3] and Peak Signal-to-Noise Ratio (PSNR) [3]. The goal of this research
is to identify the maximum bitrate compression that a video may go through for a neural
network to still be able to predict the action in the film.

This is accomplished by examining the outputs of a Convolutional Dense Neural
Network (5C3DNN) tested on several different bitrate versions of video sequences from the
i3DPost Multi-view Human Action Dataset [4]. The 5C3DNN is trained on the HMDB51
Dataset [5].

2. Related Work

From previous research, it can be assumed that the major adverse effects on neural
network prediction probability appear to be caused by several types of blur and noise. To
test the performance of a new capsule-based architecture [6] on data that include intrinsic
noise, an image classification architecture based on the clustering of neurons into capsules
and a new dynamic routing protocol was explored. In order to accomplish this, the
efficiencies of six widely used Convolutional Neural Networks were reviewed on two
distinct datasets with varying image-quality distortions. It was demonstrated that high
classification accuracy is not achievable when a dataset comprises a large number of classes,
and the new capsule architecture is resistant to specific image loss.

The effects of ×264 video encoding optimized for human vision on neural network
performance in the realm of autonomous vehicles was analysed to potentially demonstrate
the relevance of ×264 video encoding as a method for decreasing the volume of data re-
quired for the sufficient performance of machine learning algorithms used for autonomous
driving while preserving human perception levels of the data [7].

A range of network architectures and application domains, including end-to-end
convolution, encoder–decoder, region-based CNN (R-CNN), dual-stream, and generative
adversarial networks (GAN), have been examined to demonstrate a nonlinear and nonuni-
form link between network performance and the amount of lossy compression [8]. Notably,
performance degrades drastically below a JPEG quality (quantization) level of 15% and an
H.264 Constant Rate Factor (CRF) of 40%. In certain instances, however, retraining these
architectures on pre-compressed imagery recovers network performance. In addition, there
is a correlation between architectures employing an encoder–decoder pipeline and lossy
image compression resistance.

Training the models [9] on uncompressed images increases their robustness when eval-
uated on compressed data; moderate image compression has no effect on the classification
performance of deep learning-based models. On average, an image can be compressed by
a quality factor of 10 for a JPEG encoder and 20 for a MozJPEG encoder while preserving
its classification accuracy [10].

3. Methodology
3.1. Bitrate-Compression

The FFmpeg [11] tool is used to compress our dataset in terms of bitrate. We pick
FFmpeg to compress our datasets since it is a high-performance, industry-leading, open-
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source multimedia framework for encoding, decoding, transcoding, and other tasks. The
rate at which video data are conveyed in bits per second is referred to as video bitrate.
When a video is expected to be compressed, a maximum bitrate that must not be exceeded
must be sent to the video codec. For example, if the video codec is designed to compress
the video at 1 mbps, the encoder will compress each second of the video so that the decoder
only receives 1 mb of data per second.

There are several algorithms for finding and applying a bitrate value for video com-
pression, such as:

Constant Bitrate (CBR) [12]: video quality is sacrificed in order to keep a constant bitrate.
Variable Bitrate (VBR) [12]: maintains video quality while allowing the bitrate to fluctuate.
To understand how bitrate affects video quality, it is necessary to know how video

compression works. When video is compressed, the compression technique uses Discrete
Cosine Transform (DCT) [? ] to transfer video from the pixel domain to the frequency
domain, and Quantization [14] to reject a significant number of frequencies that the human
eye cannot distinguish. When compressing a video, information is compromised in order
to maintain the video’s quality. A substantial amount of data are lost when compressing a
video considerably, and the loss of data is obvious. If the video is not heavily compressed,
the file size is huge, but the video quality is excellent. This is known as the rate–distortion
trade-off in video compression. Assuming that the resolution is fixed, the lower the bitrate,
the worse the video quality.

The i3DPost Multi-view Human Action Dataset is made up of consecutive png frames,
and because FFmpeg can only encode video files, we first utilize it to compile this dataset
into an mp4 file. As depicted in Figure 1, this video is fed into an H.264/HEVC [15] video
encoder, which performs prediction, transformation, and encoding operations to produce a
compressed bitstream. An H.264/HEVC video decoder completes the procedures of decod-
ing, inverse transforming, and reconstruction to produce a decoded video sequence. This
decoded video sequence is bitrate-altered before being evaluated with the 5C3DNN model.

Figure 1. The framework.

3.2. Neural Network

A neural network classification model with five convolution layers is built. This is
a basic classifier. A moving average technique [16] is employed. This method involves
creating a function that generates a unique forecast for the entire video. This function
takes ‘n’ frames from a video and predicts what will happen in each frame. Averaging the
predictions of these ‘n’ frames yields the total score for the entire video. This is referred to
as the Single-Frame CNN method.

The 5C3DNN model (Figure 2) is first trained on the HMDB51 dataset. The HMDB51
dataset includes videos from many sources, such as movies and web videos. The dataset
includes 6849 video clips from 51 activity categories, each of which has at least 101 clips.
This 5C3DNN model is an image classification model that operates on each and ev-
ery frame of the video before averaging the individual probabilities to produce a final
probabilities vector.
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Figure 2. The 5C3DNN architecture.

Several constants are defined during the preparation of the dataset, including the
frame’s height and width (64 × 64) and the maximum number of frames collected from
each action to train the model. The sizes of all of these frames are standardised, and this is
now a feature. Each feature is assigned an action label. There are now two lists: features
and labels. Labels are converted to hot-encoded vectors. Following the division of these
lists into training and testing sets, the training data are fed into the 5C3DNN model. On
test data, the model predicts with 96% accuracy after training.

3.3. YUV

YUV is a pixel format employed by video applications. YUV is the real identity of
the colour space shared by all “YUV” pixel formats. In contrast to RGB (Red–Green–Blue)
formats, YUV colours are represented with one “luminance” component, called Y (similar
to grey scale), and two “chrominance” components, called U (blue projection) and V
(red projection).

The YUV 4:2:0 format comprises luminance plane Y, followed by the U and V chromi-
nance planes. The two chrominance planes (blue and red projections) are sub-sampled by a
factor of two in both the horizontal and vertical dimensions. For a 2 × 2 square of pixels,
there are four Y samples but only one U sample and one V sample. This format uses 48 bits
per 4 pixels, or 12 bits per pixel, giving it a depth of 12 bits per pixel.

The sequential png frames from the i3DPost Multi-view Human Action Dataset are
grouped and converted into YUV 4:2:0 format video, as it considered to be a raw data-
form and is helpful for calculating the PNSR with respect to the YUV 4:2:0 format of
bitrate-altered videos.

4. Results and Analysis

The i3DPost Multi-view Human Action Dataset has 125 sequential uncompressed
frames with an aspect ratio of 1920 × 1080. The bitrate of the uncompressed video formed
using these frames is calculated based on one uncompressed frame:

pixels per frame = 1920 * 1080 = 2,073,600 pixels.
In YUV420, there is one U and one V value per 2 × 2 group of Y (which means the

two chroma components are sampled at half the sample rate of luma both horizontally
and vertically.
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Hence, a 2 × 2 block of an uncompressed frame has 4*4-bit Y values + one 4-bit U +
4-bit V. Therefore, for 2 × 2 pixel: 16 + 4 + 4 = 24 bits and 1 pixel: 6 bits.

Hence, bits per frame = 6 * 2,073,600 = 12,441,600 bits.
The uncompressed video runs at 30 frames per second (FPS). Therefore,
bit rate = 30 * size of one uncompressed frame = 30 * 12,441,600 = 373,248,000 bits/s.
The bitrate of each uncompressed video sequence that is formed from the uncom-

pressed images in the i3DPost Multi-view Human Action Dataset is 373,248,000 bits/s.
The trained 5C3DNN model is further tested on bitrate-altered videos to find out the

extent to which we can decrease the bitrate of the video so that the neural network model
fails to predict the action. For this, eight video sequences with bitrates alerted at variable
intervals are fed into the model and accuracies are noted. The following graph shows the
results obtained for each video sequence.

The results are consistent and maintain a non-linear relationship with respect to bitrate
compression. The neural network appears to perform really well on video sequences that
are too compressed for human consumption. From Figure 3, we can observe that in the
range of 25 Kbps–35 Kbps, the neural network is losing its ability to predict the action in
the video.

Figure 3. Bitrate vs. accuracy of video sequences.

To calculate the PSNR value between the uncompressed video and the bitrate-altered
videos, a MATLAB function ‘yuvpsnr’ is used. The bitrate-altered videos are initially
converted from mp4 to YUV420 format, as the function yields solutions only between two
YUV format videos.

Both of the Bitrate vs. PSNR graphs (Figures 4 and 5) portray the same fall of the quality
with bitrate reduction that was depicted in the Bitrate vs. Accuracy graph (Figure 3) earlier.

The Bitrate vs SSIM graphs (Figure 6) prove the fall of quality with respect to the
bitrate shown in Figure 3.
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Figure 4. Bitrate vs. Y PSNR of video sequences.

Figure 5. Bitrate vs. YUV PSNR of video sequences.

Figure 6. Bitrate vs. SSIM of video sequences.
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The follwing quartet of Figures 7–10 portray the dissipation of the data with respect
to the reduction of the bitrate and thus losing the accuracy in predicting the activity at
35 Kbps. We can see that model is performing well even at 40 Kbps bitrate, where human
consumption of the video is not possible.

Figure 7. Uncompressed frame: Accuracy = 0.99.

Figure 8. Frame of a video with a bitrate of 40 Kbps: Accuracy = 0.99.

Figure 9. Frame of a video with a bitrate of 70 Kbps: Accuracy = 0.99.
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Figure 10. Frame of a video with a bitrate of 35 Kbps: Accuracy = 0.40.

The Table 1 gives the approximate compression rates of the video sequences at the
breakeven points.

Table 1. Compression ratio at breakeven point of each video sequence.

Sequence No. Bitrate at Breakeven Point
(Kbps)

Compression Ratio at
Breakeven Point

000 31 12,040.25
001 28 13,330.28
002 34 10,977.88
003 25 14,929.92
004 25 14,929.92
005 29 12,870.62
006 33 11,310.54
007 33 11,310.54

The neural network model presented in this paper is trained and tested on only six
classes of the HMBD51 Dataset (“climb_stairs”, “fall_floor”, “run”, “sit”,“stand”, and
“walk”). To evaluate the performance of this model, it is compared with proven neural
network architectures in the Table 2.

Table 2. Comparison between architectures.

Model Accuracy on HMDB51 Test
Data (5 Classes)

Average Bitrate at Breakeven
Point (Kbps) (i3DPost)

Rank pooling [17] 82.74% 39.82
SP-CNN [18] 85.27% 35.61

BERT, 3D CNN [19] 95.33% 31.93
5C3DNN [Ours] 96.96% 29.75

5. Conclusions

In this research work, we empirically assessed the effect of bitrate reduction on the
performance of neural networks for action recognition. In doing so, we hoped to demon-
strate the applicability of video compression as a means of decreasing the quantity of data
required for the proper performance of deep learning algorithms used for action detection
while preserving human perception levels of said data.

We generated a dataset from raw uncompressed images and evaluated the bitrate-
altered movies inferred from eight video sequences in that dataset on a 5C3DNN model
trained on a different activity dataset. Following this, we drew two comparisons. First,
we examined the accuracy of bitrate-modified videos and determined the range of bitrates
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at which the neural network loses its capacity to predict activity. Next, we compared the
PSNR values of the YUV version of bitrate-altered videos to those of the uncompressed
raw videos to see if they complemented the prior findings.

Important findings from our studies include that the range of 25 Kbps to 35 Kbps
contains the breakeven bitrate points at which the neural network could not predict. This
range of videos has a compression ratio between 10,977.88 and 14,929.92. It was discovered
that there is no linear relationship between bitrate compression and 5C3DNN performance.
Later, the model was compared to different architectures and proved its capability to
perform better than them at lower bitrates.

The datasets reported in this work are static; hence, additional work on dynamic
videos is necessary to strengthen the outcomes of this experiment. Future research on
this subject would benefit from the inclusion of even more-diverse datasets and ones that
include other luminance settings. Future research on this topic would also benefit from
testing the effectiveness of another neural network model created and trained to meet a
different application domain other than Action Recognition.
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