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Abstract: A Ganymede-synchronous frozen orbit around Europa provides a stable spatial geometry
between a Europa probe and a Ganymede lander, which facilitates the observation of Ganymede and
data transmission between probes. However, the third-body gravitation perturbation of Ganymede
continues to accumulate and affect the long-term evolution of the Europa probe. In this paper, the
relative orbit of Ganymede with respect to Europa is considered to accurately capture the perturbation
potential. The orbital evolution behaviors of the Europa probe under the non-spherical gravitation
of Europa and the third-body gravitation of Jupiter and Ganymede are studied based on a double-
averaging framework. Then, the initial orbital conditions of the Ganymede-synchronous frozen
orbit are developed. A station-keeping maneuver was performed to maintain the orbital elements to
achieve the Ganymede-synchronous and frozen behaviors. A numerical simulation showed that the
consumption for orbital maintenance is acceptable.
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1. Introduction

One of the scientific objectives for a practical Jovian system mission is exploring the
Galilean moons such as Europa and Ganymede. NASA is carrying out the Europa Clipper
mission to tour the Galilean moons by multiple fly-bys [1]. The Europa Clipper probe
requires a wide-breadth imaging system to achieve global coverage with about 50 fly-bys,
which constricts the imaging resolutions. The original design of the Europa Clipper mission
includes a surface lander to improve the exploration efficiency [1]. However, this lander
was canceled later due to budget issues. The ESA’s Jupiter Icy Moons Explorer (JUICE)
will employ a high inclination that orbits around one of the Galilean moons to achieve
global observing capacity [2,3]. Meanwhile, the imaging resolution of JUICE is improved
with frequent revisits compared to that of the Europa Clipper mission. Theoretically, the
exploration efficiency can be further enhanced if the JUICE probe carries a surface lander
to investigate the surface of another Galilean moon, such as Ganymede. However, a
probe orbiting around a Galilean moon suffers from multiple perturbations, resulting in a
complicated evolution of the orbit. Meanwhile, to manage the data relay, the geometry of
the Europa probe and the Ganymede lander should keep a stable transmission condition,
which is also determined by the long-term orbital behavior of the Europa probe.

In order to study the long-term evolution behavior of the Galilean moon probe, re-
searchers applied the mean element theory to eliminate the short-period variations in the
orbital elements [4,5]. It was first employed to construct the secular evolution model with
respect to classic orbital elements under the non-spherical gravitation perturbation of the
central body such as the zonal terms J2 and J3 [6], the harmonic term C22 [7], and irregular
celestial body shapes [8,9]. Later, the third-body gravitation perturbation of the planet
was taken into account, and the secular evolution behavior was studied in the planetary
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system exploration mission [5,10–12]. Scheeres et al. [11] and Broucke [13] derived the
secular Lagrange equations of a Europa probe under Europa’s non-spherical gravitation
and Jovian third-body gravitation perturbations. They both employed a double-averaging
method to eliminate the periodic terms of the motions of the probe around Europa and
of Europa around Jupiter. The orbits around Europa are summarized as the stable orbits
with low inclinations and the unstable orbits with high inclinations. More recently, further
studies were performed to search for frozen orbits around Europa by considering more
complex dynamic models [14–17]. The studies focus on the behaviors of the frozen orbits in
aspect of the eccentricity, inclination, and argument of periapsis, which denote the motion
with respect to the central moon. The evolution of the longitude of the ascending node,
which represents the orbital behavior with respect to another Galilean moon, is always
neglected. However, in order to achieve a stable condition for transmission, for instance, a
moon-synchronous behavior, the evolution of the longitude of the ascending node should
also be taken into account.

In previous studies, the methods of designing a series of synchronous orbits were
proposed, such as the sun-synchronous orbit in the Sun–Earth system [18,19], around
a comet [20], and the lunar synchronous orbit in the Earth–Moon system [21]. These
synchronous orbits are generated by drifting the longitude of the ascending node in
specific periods considering non-spherical gravitation perturbation [18] and solar radiation
pressure [20]. A Galilean-moon-synchronous orbit, taking the Ganymede-synchronous orbit
around Europa as an example, experiences a periodic behavior with respect to Ganymede.
When Europa and Ganymede are synodic, the angle between the Europa–Ganymede vector
and the normal vector of the orbital plane is a constant. Consequently, the orbit possesses
a fixed spatial geometry with respect to Ganymede, which provides a periodic observing
chance of Ganymede and a constant data transmission configuration between the Europa
probe and the Ganymede lander. However, although the perturbation on the Europa probe
from Ganymede gravity is small [22–24], this perturbation continues to accumulate due to
the fixed space geometry. This brings about a long-term effect on the orbital evolution of
the Europa probe. However, the corresponding evolution behavior has not been analyzed
yet. Meanwhile, due to the fact that the orbital conditions of the synchronous are strict,
an orbital maneuver is employed to loosen the constraint of the orbital condition and to
generate the artificial synchronous orbits. Macdonald et al. generated an artificial sun-
synchronous orbit by maintaining the right ascension of the ascending node [18]. This orbit
can be of arbitrary inclination and semi-major axis. Wang et al. developed control strategies
to eliminate the drift of the argument of periapsis and generated artificial sun-synchronous
frozen orbits [25]. Wu et al. proposed a design method for an artificial sun-synchronous
frozen orbit around Mars [26]. These research examples illustrate that an orbital maneuver
can be executed to maintain the orbital elements to satisfy specific orbital constraints and
generate artificial orbits.

This paper addresses the problem of the orbit evolution behavior of a Europa probe
under Ganymede’s gravitation perturbation and generates a Ganymede-synchronous
frozen orbit around Europa. The main contributions are summarized as follows: (1) Long-
term Lagrange planetary equations for a Europa probe considering multiple gravitation
perturbations are derived. Due to a transient impact on the probe when Ganymede is
close to Europa, Ganymede’s gravitation is considered using an averaging method and a
numerically double averaging framework [27]. Then, the Lagrange equations of the Europa
probe in terms of classical orbital elements are obtained. (2) The long-term evolution
behavior for a high-inclination near-circular orbit is analyzed. Since the perturbation of
Ganymede’s gravitation accumulates, the analysis was conducted by numerical simulations
to estimate the major influence on the orbit. The orbital conditions of the Ganymede-
synchronous frozen orbit are summarized on the basis of these behaviors. (3) A design
method for a Ganymede-synchronous frozen orbit is developed. In order to maintain
a fixed perturbing effect of Ganymede’s gravitation, the design method is searching for
an orbit with a synchronous behavior with respect to the longitude of the ascending
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node, and frozen behavior with respect to the inclination and argument of periapsis.
Inspired by [28], the impulsive consumption of orbit maintenance is evaluated. The rest
of the paper is organized as follows: In Section 2, a dynamic model of a Europa probe
considering Jovian and Europa’s non-spherical gravitations is introduced. Long-term
perturbation potential and corresponding Lagrange’s equations are derived based on the
double-averaging method in Section 3. Then, the analyses of the orbital behaviors are
performed in Section 4. Finally, the conclusion of the paper is presented in Section 5.

2. Dynamic Model

For the Jupiter–Europa–Ganymede–probe system where Europa and Ganymede are
orbiting around Jupiter and the probe is orbiting around Europa, the coordinate systems
and the equations of motion are established in this section. Then, a Legendre expansion is
performed to simplify the perturbing potential.

2.1. Dynamical Model of Europa Probe

When Ganymede’s gravitation is considered, the perturbation effects on a Europa
probe include Europa’s non-spherical gravitation and Jovian and Ganymede’s third-body
gravitations. In this case, the perturbing potential from Europa’s non-spherical gravitation
is calculated in the Europa-centric coordinate system, while the perturbing potentials from
Jovian and Ganymede’s gravities and their positions are generally obtained in the Jovian-
centric coordinate system. These coordinate systems and corresponding parameters are
shown in Figure 1. In this figure, the Jovian-centric Jovian equator inertial (JCI) coordinate
system [XJ, YJ, ZJ] and Jovian equator are shown in black. The XJ-axis points to the Jupiter
equinox, the ZJ-axis is aligned with the Jupiter rotation axis, and the YJ-axis completes
the right-handed frame. The Europa-centric inertial (ECI) coordinate system [XE, YE,
ZE] and Ganymede-centric inertial coordinate system [XG, YG, ZG], which also represent
the revolutions of Europa and Ganymede around Jupiter, are illustrated in red and blue,
respectively. The XE-axis is in the intersection line between the Jovian equator and Europa’s
revolution plane, the ZE-axis is normal to Europa’s revolution plane, and the YE-axis
satisfies the positively oriented frame. In this case, the angle between XJ and XE is defined as
the longitude of the ascending node ΩE of Europa’s revolution orbit with respect to Jupiter,
and the angle between the fundamental planes of these two systems is the inclination iE of
Europa’s revolution orbit. It should be noted that Europa’s equator and Europa’s revolution
plane around Jupiter are assumed as coplanar since the axial tilt between these two planes
around Jupiter is 0.0965◦. Similarly, the XG-axis coincides with the intersection between
the Jovian equator and Ganymede’s revolution plane, the ZG-axis is normal to Ganymede’s
revolution plane, and the YG-axis completes the right-hand frame. The angle between
XJ and XG defines the longitude of the ascending node ΩG of Ganymede’s revolution
orbit around Jupiter. Additionally, the angle between the fundamental planes of these two
systems is the inclination iG of Ganymede’s revolution plane.
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Depending on the definition of the Europa probe, the motion of the probe is described
in the Europa-centric inertial coordinate system and suffers from the perturbations from
Europa’s non-spherical gravitation, Jovian third-body gravitation, and Ganymede’s third-
body gravitation. According to the research of Cinelli [17], as the mass of the probe is much
smaller than those of Europa, Jupiter, and Ganymede, the equation of motion of the Europa
probe can be expressed as:

d2r
dt2 = −µE

r
r3 − µJ

(
rJP

r3
JP

+
rEJ

r3
EJ

)
− µG

(
rGP

r3
GP

+
rEG

r3
EG

)
(1)

where
..
r represents the acceleration vector of the probe; µE, µJ, µG are the gravitational

parameters of Europa, Jupiter, and Ganymede, respectively; r represents the position vector
of the probe in an Europa-centric inertial coordinate system, r = ||r||; rJP and rEJ are the
vectors from Jupiter to the probe and from Europa to Jupiter, rJP = ||rJP||, rEJ = ||rEJ||,
respectively; rGP and rEG are the vectors from Ganymede to the probe and from Europa to
Ganymede, rGP = ||rGP||, rEG = ||rEG||, respectively.

Based on the above equation of motion, the perturbing potential on the probe due to
Europa’s non-spherical gravitation is given by [17]

RE =
µE

r

[
1−

J2R2
E

2r2

(
3 sin2 ϕ− 1

)]
(2)

where J2 represents the coefficient of Europa’s J2 non-spherical gravitation; RE represents
Europa’s radius; ϕ is the latitude of the probe regarding to the Europa.

Moreover, the perturbing potential on the probe due to Jovian gravitation is given as
follows [17]:

RJ =
µJ

rJP
−

µJ

r3
EJ

r · rEJ (3)

The perturbing potential on the probe due to Ganymede’s gravity is given as follows:

RG =
µG

rGP
− µG

r3
EG

r · rEJ (4)

Moreover, the relative positions between Jupiter, Europa, Ganymede, and the probe
are illustrated in Figure 2. The angle α is the angle between the distances r (the distance
between the probe and Europa) and rEG (the distance between Europa and Ganymede).
Meanwhile, angle β defines the angle between the distances rEJ (the distance between
Europa and Jupiter) and rJG (the distance between Jupiter and Ganymede). Consequently,
distance rGP, from Ganymede to the probe, is determined by distances r, rJE, and rJG, as well
as the angles α and β, which can be calculated in a simple trigonometric way as follows:

rGP =
√

r2 + r2
EG − 2rrEG cos α (5)

rEG =
√

r2
JG + r2

EJ − 2rJGrEJ cos β (6)
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The intersection angles α and β can be calculated as follows:

cos α =
1

rEG
(K1 cos u + K2 sin u) (7)

cos β = cos ∆ΩIII cos uE cos uG + sin ∆ΩIII cos iG cos uE sin uG
− sin ∆ΩIII cos iE sin uE cos uG
+(cos ∆ΩIII cos iE cos iG + sin iE sin iG) sin uE sin uG

(8)

where a, e, I, Ω, ω, and f are semi-major axis, eccentricity, inclination, longitude of the
ascending node, argument of periapsis, and true anomaly, respectively, which constitutes
the set of orbital elements oe, oe = [a, e, i, Ω, ω, f ]. The symbol u is defined as the argument
of latitude, u = ω + f. Particularly, the orbital elements without subscript denote the
orbit of the probe in the ECI coordinate system. The subscripts “E” and “G” represents
the orbital elements of Europa and Ganymede in the JCI coordinate system. ∆ΩIII is
the difference of longitude of the ascending node between Ganymede’s and Europa’s
revolution orbits, ∆ΩIII = ΩE −ΩG. The detailed expressions of variables K1 and K2 are
given in Equations (35)–(39) of Appendix A.

Meanwhile, because Europa’s and Ganymede’s revolution orbits around Jupiter are
near-circular, this study also considered the simplified conditions that the eccentricities
of Europa’s and Ganymede’s revolution orbits are 0, and the inclinations of both Galilean
moons are 0◦. In these situations, both longitudes of the ascending nodes and arguments
of periapsis of these two moons are 0◦, respectively. These conditions are summarized
as follows {

eE = 0, iE = 0, ΩE = 0, ωE = 0
eG = 0, iG = 0, ΩG = 0, ωG = 0

(9)

Therefore, the distance between Europa and Ganymede is simplified as below:

r′EG =
√

a2
G + a2

E − 2aGaE cos β (10)

and angle β in Equation (10) is given as β = f G − f E. The position vectors in Equations (5)–(8)
are derived as follows: 

XEG = aG cos fG − aE cos fE
YEG = aG sin fG − aE sin fE
ZEG = 0

(11)

It should be emphasized that since Europa and Ganymede are Galilean moons orbiting
around Jupiter, the Europa–Ganymede distance rEG oscillates significantly, which makes
the mean relative motion of Ganymede around Europa significantly different from that
in other cases due to the apparent motion of Jupiter around Europa. The long-term orbit
evolution behaviors of the Europa probe under the proposed accurate model and simplified
model are investigated in the next section.
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2.2. Legendre Expansion

Since previous studies have already discussed the long-term effect of Europa’s non-
spherical gravitation perturbation and Jovian gravitation perturbation, the influence of
Ganymede’s third-body gravitation perturbation is the main focus here. In order to simplify
the derivation, the perturbing potential in Equation (4) is split into individual terms
as follows: {

RG,a = µG
rGP

RG,b = − µGr cos α

r2
EG

(12)

According to Equations (5), (6), and (12), the perturbing effect from Ganymede’s
gravitation on the probe depends on the relative motion between Ganymede and Europa,
especially the relative distance rEG in Equation (6).

Based on the classic Legendre expansion method in Appendix A, the perturbing
potential RG,a is given in Equation (16). Considering the magnitudes of distances r and rEG,
the expansion is truncated to zero order, first order, and second order, respectively.

RG,a,0 = µG
rEG

RG,a,1 = µGr
r2

EG
cos α

RG,a,2 = µG
r2

2r3
EG

(
3 cos2 α− 1

) (13)

From Equation (13), the zero-order term of the Ganymede gravitation potential is
irrelevant to the orbital elements of the probe. Therefore, this term is neglected in the
following analysis. Furthermore, the first-order term compensates the potential RG,b in
Equation (12). Therefore, the potential term RG,a,2 dominates the Ganymede gravitation
perturbation on the long-term evolution of Europa probe.

Furthermore, according to Equation (12), the variable that denotes the relative motion
of Ganymede to Europa is the Europa–Ganymede distance rEG. From the definition in
Equation (6), the distance rEG is determined by the motions of Europa and Ganymede,
whose orbits are not exactly circular and coplanar. In this situation, it is difficult to analyti-
cally expand the distance rEG to high order. Consequently, only the mean motion of the
Europa probe is considered rather than the accurate model. Then, applying the simplified
model in Equations (10) and (11), both the mean motion of the Europa probe and the mean
relative motion of Ganymede around Europa are considered. The Legendre expansion
is employed again towards the Europa–Ganymede distance rEG. Since the magnitudes
of Europa’s and Ganymede’s semi-major axes are approximated, the expression of the
distance rEG is truncated up to the fifth order (about 0.1 of order of magnitude) to guarantee
the accuracy.

3. Long-Term Evolution and Analysis

In order to develop a Ganymede-synchronous frozen orbit around Europa, this section
first derives the mean motion of the Europa probe. Then, the control strategy for generating
a Ganymede-synchronous frozen orbit is provided.

3.1. Double-Averaging Method

In the Europa probe case, the magnitude of the orbital period for 1RE-3RE of semi-
major axis is 104, while the revolution periods of Jovian and Ganymede’s apparent motions
around Europa are about 3 × 105 s and 6 × 105 s, respectively. Therefore, the motion of the
probe can be considered as a fast variable. Consequently, the secular effect of Ganymede
gravitation can be obtained by eliminating the short-period term oscillations with a double-
averaging method. The first averaging is performed regarding the mean motion of the
probe to obtain the mean variations of the orbital elements in one orbital period:

〈R〉 = 1
T

∫ T

0
R(t)dt =

1
2π

∫ 2π

0

R( f )η3

(1 + e cos f )2 d f (14)
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where T = 2π/n represents the orbital period of the probe and n =
√

µ/a3 is its related
mean motion, while η =

√
1− e2.

Then, the second averaging is performed with respect to Ganymede’s apparent motion
around Europa to obtain the mean variations in one revolution period. This second
averaging is given as follows:

〈〈R〉〉 = 1
TA,G

∫ TA,G

0
〈R〉dt =

1
2π

∫ 2π

0

η3
E〈R〉

(1 + eE cos fE)
2 d fE (15)

where TA represents the periods of Jovian and Ganymede’s apparent motions around
Europa. The Jovian apparent motion period TA equals the revolution period of Europa
around Jupiter. The period of Ganymede’s apparent motion TA,G is the synodic period of

the relative motion of Ganymede to Europa as shown in Equation (15), where nE =
√

µJ/a3
E

and nG =
√

µJ/a3
G. It should be noted that the orbit of Ganymede’s apparent motion

around Europa is not a conic curve, and hence the right part of Equation (15) is invalid for
Ganymede’s mean motion.

TA,G =
2π

nE − nG
(16)

Using the double-averaging method, the mean motion of the probe under Europa’s
non-spherical gravitation, Jovian third-body gravitation and Ganymede’s third-body gravi-
tation is obtained.

3.2. Mean Motion of the Probe around Europa

Based on the perturbing potential RG,a,2, an accurate Europa–Ganymede distance rEG
is first derived with the averaging method in Equation (14). The average potential of the
probe under Ganymede’s gravitation in one orbit period is given as follows:

〈RG,a,2〉 = µGa2

2r5
EG

[ 3
2 K2

1
(
5e2 cos2 ω− e2 + 1

)
+ 3

2 K2
2
(
5e2 sin2 ω− e2 + 1

)
+9K1K2e2 sin ω cos ω− 3

2 e2 + 1
] (17)

where the definitions of K1 and K2 are provided in Appendix A.
Since Ganymede’s apparent motion around Europa is non-elliptical, the Europa–

Ganymede distance rEG is time-varying significantly, which makes it difficult to derive
Ganymede’s mean apparent motion analytically using the double-averaging method in
Equation (18). In this situation, the average potential for the Europa probe under Europa’s
non-spherical gravitation and Jovian and Ganymede’s third-body gravitation is given as:

〈RA〉 = 〈RG,a,2〉+ 〈〈RE〉〉+ 〈〈RJ〉〉 (18)

〈〈RE〉〉 =
µE J2,E

4a3η3

(
2− 3 sin2 i

)
(19)

〈〈RJ〉〉 =
µJa2

4a3
E

[(
1− 3

2
sin2 i

)(
1 +

3
2

e2
)
+

15
4

e2 cos 2ω sin2 i
]

(20)

It should be emphasized that since the orbit of the probe and that of Jovian apparent
motion around Europa are both near-circular, the double-averaging method is employed to
eliminate the short-period terms of the probe and Jovian motions in research [11].

By substituting the potential term with the accurate average potential in the Lagrange
planetary equations (seeing Appendix B), the equations of motion of the orbital elements
are obtained analytically. The long-term evolution model for the Europa probe is given
as follows:

da
dt

= 0 (21)



Mathematics 2023, 11, 41 8 of 19

de
dt

=
3µGηe
4nr5

EG

[
5
(

K2
1 − K2

2

)
sin 2ω− 6K1K2 cos 2ω

]
+

15µJηe
8a3

En
sin2 i sin 2ω (22)

di
dt = − 3µG

4n sin ir5
EG

[
cos ie2(5K2

1 cos 2ω− 5K2
2 cos 2ω− 6K1K2 cos 2ω

)
+2K1K1,Ω

(
5e2 cos 2ω− e2 + 1

)
+ 2K2K2,Ω

(
5e2 sin 2ω− e2 + 1

)
+3e2(K1,ΩK2 + K1K2,Ω) sin 2ω

]
− 15µJe2

16a3
Enη

sin 2i sin 2ω

(23)

dΩ
dt = 3µG

4 sin ir5
EG

[
2K2K2,i

(
5e2 sin2 ω− e2 + 1

)
+ 3e2K1K2,i sin 2ω

]
3µJ cos i
8a3

Enη

(
5e2 cos 2ω− 3e2 − 2

)
− 3J2nR2

E
2a2η4 cos i

(24)

dω
dt = 3µGη

2nr5
EG

[
K2

1
(
5 cos2 ω− 1

)
+ K2

2
(
5 sin2 ω− 1

)
+ 3K1K2 sin 2ω− 1

]
+

3µJ
8a3

Enη

[
5 cos2 i− 1 + 5 sin2 i cos 2ω + e2(1− 5 cos 2ω)

]
+

3J2nR2
E

4a2η4

(
5 cos2 i− 1

) (25)

It can be seen from the Lagrange equations that the semi-major axis keeps constant
during the evolution, which means that Ganymede’s gravitation has no secular influence
on the orbital energy of the probe. The variables in these Lagrange equations are provided
in Equation (6) and in Equations (32)–(36) of Appendix A. Furthermore, although the
analytical form of the mean potential of Ganymede’s gravity is difficult to obtain, the
long-term evolution behavior of the probe can be studied following the accurate and
simplified model using numerical propagation. Based on the double-averaging method in
Equation (15), the average Lagrange equations of the probe’s orbital elements are computed
as follows: 〈〈

dϕ

dt

〉〉
=

1
TA,G

∫ TA,G

0

〈
dϕ

dt

〉
dt (26)

where ϕ represents the orbital element of the probe.
To validate the long-term evolution behavior based on the double-averaging method,

a large-eccentricity, high-inclination orbit is taken as an example to simulate the orbital
behavior under the accurate average model. The adopted values of the gravitational
parameters of Jupiter, Europa, and Ganymede are given in Table 1. The initial orbital
conditions of the probe are set to for a = 1.2 RE, i = 93◦, Ω = 0◦, and ω = 0◦, unless otherwise
specified in the following simulations. Eccentricity e = 0.1 is selected, and the evolution
duration is set as 150 days. The orbital evolutions of the eccentricity, inclination, longitude
of the ascending node and argument of periapsis are given in Figure 3. Blue and red
curves represent the oscillating and mean orbits, respectively. Note that the semi-major
axis remains constant and is not propagated.

Table 1. Dynamical parameters of the Jovian system [23,24].

Parameter Value

µJ 126,686,534.9218 km3/s2

µE 3202.74 km3/s2

µG 9887.83 km3/s2

J2,E 0.0004355
RE 1560.8 km
aE 671,100 km
eE 0.0094
iE 0.465◦

aG 1,070,587.5 km
eG 0.00195
iG 0.135◦
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Figure 3. Evolution behavior of a probe around Europa, for a = 1.2 RE, e = 0.1, i = 93◦, Ω = 0◦, and
ω = 0◦. Subplots (a–d) are the behaviors of the eccentricity, inclination, longitude of the ascending
node and argument of periapsis, respectively.

As shown in Figure 3, the long-term evolution tendencies of the mean orbital elements
and the oscillating orbital elements are consistent with each other. By removing the
short-period oscillation, the evolution of the mean elements are smoother than that of the
oscillating elements, which makes the mean orbit more applicable for the analysis of long-
term evolution. Moreover, the orbital elements also suffer from long-period oscillations,
which is similar to the research by Scheeres et al. [11]. This behavior suggests that Europa’s
non-spherical gravitation and Jovian third-body gravitation are the major perturbations,
while Ganymede’s gravitation is the weak perturbation. In the next section, the perturbing
effect of Ganymede’s gravitation on the secular motion of the Europa probe is further
analyzed, and a Ganymede-synchronous frozen orbit is generated.

3.3. Sensitivity Analysis

Based on the long-term models in Equations (21)–(25), the effects of Ganymede’s
gravitation on the orbital elements with respect to the initial phase angle are studied. This
initial phase angle is the difference between the initial longitude of the ascending node
and the argument of latitude of Europa, i.e., Ω − uE. The average rates of change of the
eccentricity and inclination are shown in Figure 4. The initial conditions of a near-circular
orbit are considered by setting e = 0.001, ω = 35◦. The average rates of change are propagated
using the numerical integration method. From Figure 4a, it can be seen that the oscillation
amplitude was four orders of magnitude smaller than the value of the rate of change,
which suggests that Ganymede’s gravitation perturbation on the eccentricity is weaker
compared to those of Europa’s non-spherical gravitation and Jovian gravitation. According
to the literature [11,13], the eccentricity evolution mainly depends on the inclination and
argument of periapsis.
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According to the average rate of change of the inclination in Figure 4b, the rate
of change of the inclination oscillates significantly, which is different from that of the
eccentricity. This suggests that for a near-circular orbit, the perturbing effects due to
Europa’s non-spherical gravitation and Jovian gravitation are small, while Ganymede’s
gravitation dominates the evolution of the inclination. Moreover, the initial phase angle
Ω − uE determinates the value of the average rate of change. For a Ganymede-synchronous
orbit, the initial phase angle is fixed with respect to both Europa and Ganymede for
each Ganymede-apparent revolution period. In this situation, the average rate of change
of the inclination is constant, which drifts the inclination continuously. Four zero-rate
change conditions are obtained when the initial phase angle Ω − uE approximates −92.5◦,
−3◦, 87.5◦, and 177◦. These conditions keep the inclination constant under Ganymede’s
gravitation with a Ganymede-synchronous orbit.

Moreover, the average rates of change of the longitude of the ascending node and
argument of periapsis with respect to the initial phase angle Ω − uE are studied. The initial
orbital conditions of the probe are e = 0.001 and ω = 35◦. The calculation results are shown
in Figure 5. Similarly, the average rates of change are propagated using the numerical
integral method. According to Figure 5a, for the average rate of change of the longitude of
the ascending node, the oscillation amplitude is eight orders of magnitude smaller than
the value of the average rate of change. This means that Ganymede’s gravitation has little
effect on the longitude of the ascending node. Meanwhile, the literature [11,13] shows
that the semi-major axis and inclination determine the rate of change of the longitude
of the ascending node when considering Europa’s non-spherical gravitation and Jovian
gravitation perturbations. Therefore, to generate the Ganymede-synchronous frozen orbit,
it can be assumed that the evolution of the longitude of the ascending node is decoupled
with the initial phase angle Ω − uE to simplify the design of the initial orbital conditions.

Furthermore, from Figure 5b it can be seen that the oscillation amplitude of the
argument of periapsis is four orders of magnitude smaller than the value of the average rate
of change. Therefore, Ganymede’s gravitation perturbation on the argument of periapsis
is a small disturbance. In order to generate a Ganymede-synchronous frozen orbit whose
argument of periapsis is fixed, a station-keeping (SK) maneuver is employed to cancel out
the slight drift caused by Ganymede’s gravity.
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Figure 5. Rates of change of the longitude of the ascending node (a) and the argument of periapsis
(b), for a = 1.2 RE, e = 0.001, i = 93◦, and ω = 35◦.

Next, the rate of change of the inclination with respect to the eccentricity and inclina-
tion are studied. The results are shown in Figure 6 for i = 93◦ (a) and e = 0.001 (b). Note
that the distributions of the rate of change in other conditions are similar and not given
here. The rate of change of the inclination with respect to the eccentricity is provided
in Figure 6a. According to the distribution of the rate of change of the inclination di/dt,
the orbits are divided into an elliptic case (for an elliptic orbit with eccentricity larger
than 0.1) and a near-circular case (with eccentricity smaller than 0.1). For an elliptic orbit,
the eccentricity has an influence on the rate of change of the inclination. However, for a
near-circular orbit, the rate of change of the inclination is nearly constant with respect to
the eccentricity. Therefore, small eccentricity is considered for the initial condition of the
Ganymede-synchronous frozen orbit. Nevertheless, the effect of the eccentricity on the rate
of change of the inclination is neglected.
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inclination (b) in subplot (a), for a = 1.2 RE.

Then, the rate of change with respect to the inclination is shown in Figure 6b. Ac-
cording to Figure 6b, the rate of change of the inclination is divided into positive regions
where the initial phase angle Ω − uE is (−180◦, −90◦) and (0◦, 90◦) and negative regions
where the initial phase angle Ω − uE is (−90◦, 0◦) and (90◦, 180◦). Between these regions,
the contour line of di/dt = 0 deg/sec is obtained (define this line as DIZL). Due to the
fact that for the synchronous frozen orbit the initial phase angle Ω − uE and inclination
keep constant, the rate of change of the inclination is fixed. Therefore, the initial condition
should locate on the DIZL to achieve the frozen behavior.

Finally, the rate of change of the inclination with respect to the argument of periapsis
is analyzed. A series of eccentricities 0.1, 0.05, 0.01, and 0.001 are taken as examples to
study the evolution of di/dt. The results are contoured in Figure 7 for e = 0.1 (a), e = 0.05 (b),
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e = 0.01 (c), and e = 0.001 (d). According to Figure 7a for eccentricity e = 0.1, the argument of
periapsis dominates the rate of change of the inclination for an elliptic orbit. The DIZLs are
discovered when the argument of periapsis is about −180◦, −90◦, 0◦, and 90◦. Figure 7b,c
show the transition of di/dt between the elliptic orbit and the near-circular orbit. With the
eccentricity descending, the effect of the argument of periapsis decreases. Furthermore,
for a near-circular orbit in Figure 7d, this rate of change mainly depends on the initial
phase angle Ω − uE. The initial phase angles Ω − uE of the DIZL are about −91◦, −1◦, 89◦,
and 179◦. Therefore, when a near-circular Ganymede-synchronous orbit is considered, the
initial argument of periapsis can be chosen arbitrarily.
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4. Design of a Ganymede-Synchronous Frozen Orbit
4.1. Conditions of Synchronous Frozen Orbit

A Ganymede-synchronous frozen orbit around Europa constitutes synchronous be-
havior with respect to Ganymede and frozen behavior in terms of the orbital elements. For
Ganymede-synchronous behavior, when the Europa–Ganymede distance rEG approaches
the minimum, the intersection angle of the orbital plane and the Europa–Ganymede vector
should be a constant. Consequently, the geometry between the orbit and Ganymede is
fixed. This Ganymede-synchronous condition can be described as in Equation (27). The
rate of change of the longitude of the ascending node should be equal to the drift rate of the
elongation in the inertial coordinate system to achieve Ganymede-synchronous behavior.〈〈

dΩ
dt

〉〉
=

du
dt

(27)

According to the synodic motion between Europa and Ganymede, the drift rate of the
elongation is given as follows:

du
dt

= 2nG − nE (28)

In addition, the literature [17] shows that a large velocity increment (∆V) is needed to
freeze the eccentricity because of the drift of the argument of periapsis. A more cost-efficient
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way is to freeze the inclination and argument of periapsis. Meanwhile, the value of the
argument of periapsis should be in the regions of (−90◦, 0◦) and (90◦, 180◦), where the
eccentricity continuously decreases. In this situation, the orbit keeps circularizing and
achieves a long lifetime. These frozen conditions are summarized as follows:〈〈

di
dt

〉〉
= 0 (29)

〈〈
dω

dt

〉〉
= 0 (30)

4.2. Preliminary Design of a Ganymede-Synchronous Frozen Orbit

Based on the dynamical evolution of the orbital elements and the conditions of the
synchronous frozen orbit, the design method for a Ganymede-synchronous frozen orbit
was developed. Since the accurate model is time-varying, it is difficult to analytically design
a Ganymede-synchronous frozen orbit. Therefore, a preliminary design method based on
the simplified model was developed and is given in Algorithm 1.

Algorithm 1 Design Method for a Ganymede-Synchronous Frozen Orbit

Input: Semi-major axis a, eccentricity e;
Output: Inclination i, initial phase angle Ω − uE, argument of periapsis
1: Assign oe0 = [a, e] as the initial conditions;
2: Assign dΩ

dt = du
dt as the expected rate of change of the longitude of ascending node;

3. Main
4: Inclination i← dΩ

dt ;

5: DIZL and DWZL
(

di
dt , dω

dt

)
← (a, e, i) ;

6: Initial phase angle and argument of periapsis (Ω− uE, ω)←
(

di
dt , dω

dt

)
;

7: end

Firstly, a semi-major axis is chosen according to the mission requirement. In this study,
the initial eccentricity is set as e = 0.001. Then, according to literatures [11,14], the rate
of change of the longitude of the ascending node is determined by the inclination. The
inclination of the orbit is solved based on the synchronous condition in Equation (30). The
rate of change of the longitude of the ascending node and the corresponding Ganymede-
synchronous condition are shown in Figure 8. The purple dotted line represents the
synchronous condition with respect to Ganymede. From Figure 8, because the drift rate of
the elongation is negative, the inclination of the Ganymede-synchronous orbit ranges from
78.8◦ to 81.8◦ which is equivalent to about 98.96% and 98.98% of global coverage. For the
semi-major axis a = 1.2 RE, the obtained inclination is given as i = 78.842◦.

After obtaining the inclination, the longitude of the ascending node and argument of
periapsis are designed. The contour lines of the inclination di/dt = 0 deg/sec (denoted as
DIZL) and argument of periapsis dω/dt = 0 deg/sec (denoted as DWZL) with respect to
the eccentricity are calculated. For the inclination i = 78.842◦, the intersection of DIZL and
DWZL is shown in Figure 9. Blue and red points represent DIZL and DWZL, respectively.
From Figure 9, it is seen that the argument of periapsis of the intersection of the DIZL
and DWZL was about –133.1◦, −46.9◦, 46.9◦, and 133.1◦. In order to keep the eccentricity
decreasing, the argument of periapsis ω = 133.1◦ was chosen as the initial condition. The
intersection line with respect to eccentricity is given in Figure 10, in which the initial phase
angle Ω − uE is nearly constant when the eccentricity is small. In this situation, initial
phase angle Ω − uE = 87.46◦ was chosen in the preliminary design phase. This orbit was
considered as an expected orbit. The method of maintaining this orbit with the accurate
model is discussed in the following section.
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4.3. Orbit Maintenance with Accurate Model

Since the expected orbit was designed based on the simplified model in the preliminary
phase, the actual orbit under an accurate dynamical model naturally drifts and deviates
from the expected orbit. Therefore, in this section, the SK maneuver is designed to maintain
the inclination, longitude of the ascending node, and argument of periapsis at their expected
values. The ∆V consumptions for the inclination, longitude of the ascending node, and
argument of periapsis are evaluated by taking the impulse propulsion as follows:

∆Vi =
√

µE
aη2 (1 + e cos ω)∆i

∆VΩ =
√

µE
aη2 (1 + e sin ω) sin i∆Ω

∆Vω =
√

µE
aη2 ∆ω

(31)

Using this SK strategy, the Ganymede-synchronous frozen orbit was validated by a
numerical simulation. Except the perturbations of Europa’s J2 non-spherical gravitation,
Jovian and Ganymede’s third body gravitations, the perturbations of Jovian J2 non-spherical
gravitation and solar gravitation were both considered to guarantee the accuracy. The
initial conditions were a = 1.2 RE, e = 0.001, i = 78.842◦, Ω = 120.7575◦, and ω = 133.07◦. In
order to achieve a collinear behavior of uE − eG = 0◦, the initial date MJD was selected
as MJD = 62504.384619. The SK period was set as one synodic period of the Europa–
Ganymede revolution TA,G. Fifteen numbers of SK maneuvers were performed to evaluate
∆V consumption. The evolution of the orbit is shown in Figure 11, and ∆V consumptions
of the inclination (blue line), longitude of the ascending node (black line), and argument of
periapsis (red line) are given in Figure 12.
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In Figure 11, the blue and red curves represent the evolution of natural drift and SK
maneuver, respectively. According to Figure 11, the eccentricity kept decreasing, which
circularized the orbit. Due to the difference between the simplified dynamical model and
accurate model, the inclination oscillated in a small amplitude, while the argument of
periapsis oscillated heavily. The SK maneuver was employed to directly maintain these
two elements at the expected values. Meanwhile, the longitude of the ascending node kept
decreasing. According to the numerical calculation, the evolution period of the longitude
was about 500 days, which equaled the synodic period of Europa and Ganymede. In this
situation, the orbit demonstrated Ganymede-synchronous behavior.

Furthermore, according to Figure 12, for about 105 days of evolution, the maintaining
∆V for the inclination, longitude of the ascending node, and argument of periapsis were
1.36 m/s, 4.8 m/s, and 20 m/s. The total ∆V consumption was about 26.16 m/s, which
was 0.25 m/s per day. This is an acceptable ∆V for a practical mission. Most of the ∆V is
consumed to maintain the argument of periapsis, while maintaining the inclination cost
the least ∆V. This suggests that the effect of an accurate dynamic model has little influence
on the evolution of the inclination.

5. Conclusions

This paper focuses on the long-term evolution behavior of a probe around Europa.
The non-spherical gravitation perturbation of Europa and the third-body gravitation pertur-
bations of Ganymede and Jupiter were considered to derive the Lagrange equation based
on the double-averaging framework. Then, a design method of a Ganymede-synchronous
frozen orbit was proposed using the simplified model. The angle between the normal vector
of this orbit and the Europa–Ganymede vector is constant when Europa and Ganymede
come synodic. In this situation, the Europa probe has the stable capacity to observe
Ganymede and to transmit data with the Ganymede lander.

The numerical simulation showed that Ganymede’s gravity has a small but continu-
ously accumulated effect on the inclination. The rate of change of the inclination mainly
depends on the argument of periapsis for an elliptic orbit, while it is determined by the
phase angle between the longitude of the ascending node and the Europa–Ganymede
vector. Moreover, due to the difference between the accurate model and the simplified
model, the obtained orbit drifts slightly. A station-keeping maneuver was employed to
maintain the longitude of the ascending node and argument of periapsis. With the pro-
posed maintenance method, the eccentricity of the Ganymede-synchronous frozen orbit
kept decreasing, while the inclination and argument of periapsis maintained the expected
values. The evolution period of the longitude of the ascending node was 500 days, which
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achieved Ganymede-synchronous behavior. The total maintenance ∆V consumption was
26.16 m/s for 105 days of evolution, or 0.25 m/s per day, which is acceptable for practical
mission application.
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Appendix A

In this paper, Jovian and Ganymede’s apparent motions orbiting around Europa are
considered. The distance from the Europa-to-Ganymede intersection is determined by the
angle α. Angle α is expressed using Equation (7), whose variables are given as follows:{

K1 = XEG cos Ω + YEG sin Ω
K1,Ω = −XEG sin Ω + YEG cos Ω

(A1)


K2 = −XEG sin Ω cos i + YEG cos Ω cos i + ZEG sin i
K2,i = XEG sin Ω sin i−YEG cos Ω sin i + ZEG cos i
K2,Ω = −XEG cos Ω cos i−YEG sin Ω cos i

(A2)

XEG =
aGη2

G
1 + eG cos fG

(cos ∆Ω cos uG − cos iG sin ∆Ω sin uG)−
aGη2

E
1 + eE cos fE

cos uE (A3)

YEG =
aGη2

G
1+eG cos fG

[cos iE(sin ∆Ω cos uG + cos iG cos ∆Ω sin uG) + sin iE sin iG sin uG]

− aEη2
E

1+eE cos fE
sin uE

(A4)

ZEG =
aGη2

G
1+eG cos fG

(sin ∆Ω cos uG + cos iG cos ∆Ω sin uG)

+
aEη2

E
1+eE cos fE

cos iE sin iG sin uG

(A5)

where ∆ΩIII = ΩE −ΩG.
The classical Legendre polynomial expansion is applied to express the perturbing

potential in Equation (12) into individual terms. This expansion is shown as follows:

1
‖r − r′‖ =

1√
r2 + r′2 − 2rr′ cos γ

=
1
r

∞

∑
n=0

(
r′

r

)n

Pn(cos γ) (A6)

cos γ =
r· r′
rr′

(A7)

Pn(x) =
1

2nn!
dn

dxn

(
x2 − 1

)n
(A8)
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Appendix B

In order to study the long-term evolution of orbital elements, the Lagrange planetary
equations which derive the effect of perturbing potential on the orbital elements are given
as follows: 

da
dt = 2

na
∂R
∂M

de
dt =

1
na2e

(
η2 ∂R

∂M − η ∂R
∂ω

)
di
dt =

1
na2η sin i

(
cos i ∂R

∂ω −
∂R
∂Ω

)
dΩ
dt = 1

na2η sin i
∂R
∂i

dω
dt = η

na2e
∂R
∂e −

cos i
na2η sin i

∂R
∂i

(A9)

Then, the long-term evolution of Europa probe’s orbital elements can be obtained.
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