
Stochastic stabilization of hybrid neural

networks by periodically intermittent control

based on discrete-time state observations

Wei Mao1∗, Surong You2, Yanan Jiang3, Xuerong Mao4

1 School of Mathematical Science, and Jiangsu Province Engineering

Research Center of the Elementary Eduction and Big Data,

Jiangsu Second Normal University, Nanjing 210013, China.

2 Department of Statistics

Donghua University, Shanghai 201620, China

3 College of Information Science and Technology

Donghua University, Shanghai 201620, China

4 Department of Mathematics and Statistics

University of Strathclyde, Glasgow G1 1XH, U.K

Abstract

This paper is concerned with stablization of hybrid neural networks by intermittent

control based on continuous or discrete-time state observations. By means of exponen-

tial martingale inequality and the ergodic property of the Markov chain, we establish

a sufficient stability criterion on hybrid neural networks by intermittent control based

on continuous-time state observations. Meantime, by M-matrix theory and compar-

ison method, we show that hybrid neural networks can be stabilized by intermittent

control based on discrete-time state observations. Finally, two examples are presented

to illustrate our theory.
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1 Introduction

As a classical neural network, the Hopfield neural network proposed by Hopfield [?]

has become an important class of nonlinear dynamic systems. In the past few decades, the

Hopfield network has been studied by many scholars and widely used in signal processing,

optimization, control and many other fields. It can be described by the following ordinary

differential equation

Ckẋk(t) = − 1

Rk

ẋi(t) +
n∑
j=1

Tkjgj(xj(t)), 1 ≤ k ≤ n, (1.1)

on t ≥ 0, where the variable xk(t) represents the voltage on the input of the ith neuron,

which is characterized by an input capacitance Ci and nonlinear activation function gk(x).

Tkj is the connected matrix element and Rk represents the parallel resistance of each neuron

input. By defining bk = 1
CkRk

and aki =
Tkj
Ck

, Eq.(1.1) can be re-written as

ẋ(t) = −Bx(t) + Ag(x(t)), t ≥ 0 (1.2)

where x(t) = (x1(t), x2(t), · · · , xn(t))>, B = diag(b1, b2, · · · , bn), A = (akj)n×n, g(x) =

(g1(x1), g2(x2), · · · , gn(xn))>.

Since Hopfield studied its stability by using the energy function, the stability of neural

network has become an important research problem (e.g. [?, ?]). However, due to the

uncertainty of system parameters and the disturbance of external random factors, the neural

network is not always stable. Therefore, it is necessary to stabilize unstable neural network

by means of feedback control. One common strategy is to design feedback control u(y(t)) in

the drift part, so that the deterministically controlled neural network

ẏ(t) = −By(t) + Ag(y(t)) + u(y(t)) (1.3)

becomes stable (e.g. [?]-[?]). It is obviously that y(t) 6= x(t) and the feedback control u(y(t))

changes the state of the system (1.2). While another strategy is to design feedback control

u(z(t))dw(t) in the diffusion part, so that stochastically controlled neural network

dz(t) = [−Bz(t) + Ag(z(t))]dt+ u(z(t))dw(t) (1.4)
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becomes stable. As a matter of fact, this strategy is called stochastic feedback control,

and some stability results have been obtained (e.g. [?]-[?]). Compared with deterministic

feedback control, stochastic feedback control has the advantage of preserves the original

state in average. In this paper, stochastic feedback control with random noise will be used

to stabilize the given unstable neural network. The pioneering work was done by Hasminskii

[?], who stabilized a system by using two white noise sources. The theory on stabilization

by random noise has since then been develpoed by many authors (e.g. [?]-[?]). It is noted

that above mentioned papers are concerned with stochastic feedback control which requires

the continuous observation of the state x(t) or x(t− τ) for all time t ≥ 0. However, such a

continuous time feedback control is expensive and sometimes impossible as the observations

are often of discrete time. In order to reduce the cost of continuous time observations, Mao [?]

introduced the feedback control based on the discrete time observations of the state at times

0, τ, 2τ, · · · to stabilize an unstable system. From a practical point of view, stabilization by

discrete time feedback control is more realistic and costless. Some recent results on stochastic

stabilization with discrete time feedback control may be found in [?]-[?].

On the other hand, let us turn to another discontinuous control strategy. Just like the

feedback control based on discrete time observations, intermittent control, which involves

working time and rest time, can also reduce the control cost efficiently. Therefore, inter-

mittent control has attracted more interest from many people. For example, Li et al. [?]

considered the exponential stabilization problem for stochastic memristive neural network

under periodically intermittent control. Zhang et al. [?, ?] studied the stabilization of a

given nonlinear system by the intermittent Brownian noise perturbation. Liu [?] and Zhu

[?] showed that an unstable system can be stabilized by the intermittent stochastic feed-

back based on discrete time observation. Wang et al. [?] studied the stabilization of hybrid

stochastic complex valued coupled delayed systems by means of periodically intermittent

control. Liu et al. [?] investigated the stabilization of highly nonlinear stochastic coupled

delayed systems via periodically intermittent control. He et al. [?] showed that the un-

derlying neural networks can be stabilized by the discrete-time intermittent noise. Jiang

et al.[?] discussed the stabilization of hybrid stochastic systems by intermittent feedback

control based on discrete-time state observations. For the other intermittent control results

of stochastic system and neural network, refer to [?]-[?] and the references therein.

As is known to all, many neural networks may experience abrupt changes in their struc-
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ture and parameters caused by phenomena such as component failures or repairs and chang-

ing subsystem interconnections, and sudden environmental disturbances. In this situation,

the neural network (1.2) becomes hybrid neural networks

ẋ(t) = −B(r(t))x(t) + A(r(t))g(x(t)), t ≥ 0. (1.5)

This paper is concerned with the almost surely exponential stabilization of hybrid neural

networks (1.5) by the intermittent stochastic feedback control. That is, assume that the

hybrid neural networks (1.5) is not almost surely exponentially stable, our aim is to design

an intermittent feedback control based on continuous-time state observations so that

ẋ(t) = −B(r(t))x(t) + A(r(t))g(x(t)) + σ(x(t), r(t))I(t)dw(t), t ≥ 0 (1.6)

is almost surely exponentially stable. By using the exponential martingale inequality and

the ergodic property of Markov chain, the almost surely exponential stability of hybrid

neural networks with intermittent stochastic noise (1.6) is obtained. Meantime, the periodic

intermittent control based on discrete-time state observations σ(x(bt/τc τ), r(t))I(t)dw(t) is

used to stabilized the hybrid neural networks (1.5), and the upper bound of the duration

between two consecutive observations τ is obtained. It should be noted that the intermittent

stochastic feedback control does not only achieve sample-path stabilisation but also enable

the expectation of the state to be, at all times, equal to the state of the original uncontrolled

system (1.5). The main contributions of this paper are as follows:

(1) In this paper, we study a class of stochastic neural network with Markov switch-

ing, which is a stochastic network system composed of multiple subsystems under different

modes, also known as hybrid stochastic neural networks. Therefore, the stability of hybrid

stochastic network systems is more complex. Compared with the existing research, the al-

most surely exponential stability of hybrid neural networks with intermittent random noise

(1.6) is discussed for the first time, and a sufficient criterion for stability is derived.

(2) As far as we know, there is little research on the stochastic stabilization of neural

networks with intermittent control. The periodic intermittent stochastic feedback control

is used to stabilized the unstable neural networks, in which the derived stability criteria

depends not only on the transition rate γij and the intermittent control parameters θ, but

also on the intensity of stochastic noise σ(x(t), r(t))I(t)dw(t).

(3) In this paper, the periodic intermittent control based on discrete-time state obser-

vations is designed to ensure the almost surely exponential stability of hybrid stochastic
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neural networks (2.2). If I(t) = 1, then Eq.(2.2) degenerates into the hybrid stochastic neu-

ral networks with the classical feedback control based on discrete time observation, namely,

the state is observed at discrete times, say 0, τ, 2τ, 3τ, 4τ, 5τ, · · · . For the results of

discrete time feedback control, see [?]-[?]. While in Eq.(2.2), if T = 5τ and θ = 0.6, the

periodic intermittent control implies that the state is only observed at discrete times, say

0, τ, 2τ, 5τ, 6τ, 7τ, 10τ, 11τ, 12τ, · · · . Because this control strategy only requires discrete

time state observations within the working time of intermittent control period, the control

cost is further reduced.

The rest of the paper is organized as follows. In Section 2, we introduce some notations

and hypotheses concerning Eq.(2.2). In Section 3 and 4, we investigate the stabilization for

hybrid stochastic neural networks via intermittent feedback control based on continuous-time

state observations and discrete-time state observations, respectively. While in Section 5 we

give two examples to illustrate our theory.

2 Preliminaries

Throughout this paper, unless otherwise specified, we use the following notation. Let |.|
denote the Euclidean norm in Rn. If A is a vector or matrix, its transpose is denoted by A>.

If A is a matrix, its trace norm is denoted by |A| =
√

trace(A>A) while its operator norm

is defined by ||A|| = sup{|Ax| : |x| = 1}. If A is a symmetric matrix, denoted by λmin(A)

and λmax(A) its smallest and largest eigenvalues, respectively.

Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions (i.e., it is increasing and right continuous, F0 contains all P -null sets).

Let w(t) = (w1(t), · · · , wm(t))> be an m-dimensional Brownian motion defined on the prob-

ability space. Let r(t), t ≥ 0 be a right-continuous Markov chain on the probability space

(Ω,F , P ) taking values in a finite state space S = {1, 2 . . . N} with generator Γ = (γij)N×N

given by:

P (r(t+ ∆) = j|r(t) = i) =


γij∆ + ◦(∆), if i 6= j,

1 + γii∆ + ◦(∆), if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j, i 6= j, while γii = −
∑

j 6=i γij.

We assume that the Markov chain r(t) is independent of the Brownian motion w(t) and
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irreducible. Under this condition, the Markov chain has a unique stationary distribution π =

(π1, π2, · · · , πN) ∈ R1×N which can be determined by solving the following linear equation

πΓ = 0 subject to
∑N

j=1 πj = 1 and πj > 0 for all j ∈ S.

Consider the following hybrid stochastic neural networks by intermittent feedback con-

trol based on discrete-time state observations

dxk(t) = [−bk(r(t))xk(t) +
n∑
j=1

akj(r(t))gj(xj(t))]dt

+
n∑
j=1

σkj(xk(bt/τc τ), r(t))I(t)dwj(t), k = 1, 2, · · · , n. (2.1)

or equivalently

dx(t) = [−B(r(t))x(t) + A(r(t))g(x(t))]dt+ σ(x(bt/τc τ), r(t))I(t)dw(t), (2.2)

with the initial data x(0) = x0 ∈ Rn, r(0) = r0 ∈ S, where x(t) is the state vec-

tor associated with the n neurons and for each i ∈ S, B(i) = diag(B1(i), · · · , Bn(i))

is a positive diagonal matrix, A(i) = (akj(i))n×n is connection weight matrix, g(x(t)) =

(g1(x1(t)), g2(x2(t)), · · · , gn(xn(t)))> is a vector valued activation function, σ : Rn × S →
Rn×m, σ = (σkj)n×m is the diffusion coefficient matrix, τ is the duration between two con-

secutive observations and bt/τc is the integer part of t/τ . Here I : [0,∞)→ {0, 1} is defined

by

I(t) =
∞∑
n=0

I[nT,nT+θT )(t), t ≥ 0,

where T > 0 denotes the control period and θT > 0 is the working width satisfying θ ∈ (0, 1).

Remark 2.1 In fact, Eq.(2.2) can also be expressed as follows:
dx(t) = [−B(r(t))x(t) + A(r(t))g(x(t))]dt+ σ(x(bt/τc τ), r(t))dw(t),

t ∈ [nT, nT + θT ),

dx(t) = [−B(r(t))x(t) + A(r(t))g(x(t))]dt, t ∈ [nT + θT, (n+ 1)T ).

(2.3)

Note that I[nT,nT+θT )(t) is the indicator function of [nT, nT + θT ) which means that it takes

1 when t ∈ [nT, nT + θT ) and 0 otherwise.

In this paper, we impose the following conditions on the functions g and σ.
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Assumption 2.2 Assume that there exists a constant matrix G ∈ Rn×n such that

|g(x)− g(y)| ≤ |G(x− y)| (2.4)

for all x, y ∈ Rn. Moreover, we assume that g(0) = 0.

Assumption 2.3 Assume that there are nonnegative constants ki such that

|σ(x, i)− σ(y, i)| ≤ ki|x− y| (2.5)

for all x, y ∈ Rn and i ∈ S. Moreover, we assume that σ(0, i) = 0 for all i ∈ S.

Remark 2.4 In fact, the nonlinear activation function g(.) in Assumption 2.2 satisfies the

Lipschitz condition. In many literatures, the following Lipschitz condition are imposed on the

nonlinear activation function g(.): Assume that the activation functions gi(i = 1, 2, · · · , n)

are globally Lipschitz continuous, that is, there exists a constant li > 0 such that

|gi(x)− gi(y)| ≤ li|(x− y)|, ∀ x, y ∈ Rn. (2.6)

Obviously, (2.4) and (2.6) are only different in expression, but they both indicate that g(.) is

Lipschitz continuous. For example, by (2.6), we have that

|g(x)− g(y)| =
√

(g1(x1)− g1(y1))2 + (g2(x2)− g2(y2))2 + · · ·+ (gn(xn)− gn(yn))2

≤
√
l21(x1 − y1)2 + l22(x2 − y2)2 + · · ·+ l2n(xn − yn)2

= |G(x− y)|,

where G = diag(l1, l2, · · · , ln) and (x− y) = [x1 − y1, x2 − y2, · · · , xn − yn]>.

Remark 2.5 Under Assumptions 2.2 and 2.3, it is easy to conclude that Eq.(2.2) has a

unique global solution x(t) on t ≥ 0 (see, [?]).

3 Intermittent continuous-time stochastic stabilization

3.1 Almost sure stochastic stabilization

Consider a nonlinear unstable neural networks

dy(t)/dt = −B(r(t))y(t) + A(r(t))g(y(t)) (3.1)
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and its corresponding stochastically controlled neural networks

dy(t) = [−B(r(t))y(t) + A(r(t))g(y(t))]dt+ σ(y(t), r(t))I(t)dw(t), t ≥ 0 (3.2)

with the initial value y(0) = y0 and r(0) = r0.

Similarly, under Assumptions 2.2 and 2.3, Eq.(3.2) has a unique solution (see [?, ?]).

Denote the unique solution by y(t; 0, y0, r0) on t ≥ 0.

Assumption 3.1 Assume that there are nonnegative constants βi such that

|x>σ(x, i)| ≥ βi|x|2

for all x ∈ Rn and i ∈ S.

We denote by C2(Rn×S;R+) the family of all continuous non-negative functions V (x, i)

defined on Rn × S such that for each i ∈ S, they are continuously twice differentiable in x.

For V (x, i) ∈ C2(Rn × S;R+), we define the function LV : Rn × S ×R+ → R by

LV (x, i, t) = Vx(x, i)[−B(i)x+ A(i)g(x)]

+
1

2
[σ>(x, i)Vxx(x, i)σ(x, i)I(t)] +

N∑
j=1

γijV (x, j) (3.3)

and

HV (x, i, t) = Vx(x, i)σ(x, i)I(t) (3.4)

where Vx(x, i) =
(
∂V (x,i)
∂x1

, · · · , ∂V (x,i)
∂xn

)
, Vxx(x, i) =

(
∂2V (x,i)
∂xi∂xj

)
n×n

.

Theorem 3.2 Under Assumptions 2.2, 2.3 and 3.1, the trivial solution y(t) of Eq.(3.2)

satisfies

lim sup
t→∞

1

t
log(|y(t)|) ≤

∑
i∈S

πi[ηi + θ(0.5k2
i − β2

i )] a.s., (3.5)

where ηi = −λmin(B(i)) + |G|‖A(i)‖. In particular, if
∑

i∈S πi[ηi + θ(0.5k2
i − β2

i )] < 0, then

the trivial solution of Eq.(3.2) is almost surely exponentially stable.

To prove Theorem 3.2, we present two useful lemmas.
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Lemma 3.3 For any t ≥ 0, h > 0 and i ∈ S, then

P (r(s) 6= i for some s ∈ [t, t+ h]|r(t) = i) ≤ 1− e−γ̃h,

where γ̃ = maxi∈S(−γii).

The proof of this lemma can refer to [?], which is omitted here.

Lemma 3.4 For any i ∈ S, then

lim sup
t→∞

1

t

∫ t

0

[k2
r(s) − 2β2

r(s)]I(s)ds ≤ θ
∑
i∈S

πi(k
2
i − 2β2

i ) a.s. (3.6)

Proof. It is obvious that

lim sup
t→∞

1

t

∫ t

0

[k2
r(s) − 2β2

r(s)]I(s)ds

= lim sup
n→∞

1

(n+ 1)T

n∑
j=0

∫ jT+θT

jT

[k2
r(s) − 2β2

r(s)]ds a.s. (3.7)

Let δ ∈ (0, 1) be arbitrary and $ = θT/m for a sufficiently large integer m so that $ < δ.

Then it follows from (3.7) that

lim sup
n→∞

1

(n+ 1)T

n∑
j=0

∫ jT+θT

jT

[k2
r(s) − 2β2

r(s)]ds

≤ lim sup
n→∞

1

(n+ 1)T

m−1∑
v=0

n∑
j=0

∫ jT+(v+1)$

jT+v$

[k2
r(s) − 2β2

r(s)]ds =
m−1∑
v=0

Qv, (3.8)

where

Qv = lim sup
n→∞

1

(n+ 1)T

n∑
j=0

∫ jT+(v+1)$

jT+v$

[k2
r(s) − 2β2

r(s)]ds.

For each i ∈ S, define

τ i0 = inf{j ≥ 0 : r(jT ) = i} and τ in = inf{j ≥ τ in−1 : r(jT ) = i} for n ≥ 1.

Then τ in are all finite stopping times such that 0 ≤ τ i0 < · · · τ in → ∞ a.s. Set Sin = inf{j ≥
0 : τ ij ≤ n} and T in denote the number of the set Sin contains. By the ergodic property of
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the Markov chain, we have limn→∞
T in
n+1

= πi. Similar to the proof of Li et al. [?], we can

derive that

Q0 = lim sup
n→∞

1

(n+ 1)T

∑
i∈S

∑
j∈Sin

∫ jT+$

jT

[k2
r(s) − 2β2

r(s)]ds

≤
∑
i∈S

πi
T

lim sup
n→∞

1

T in

∑
j∈Sin

∫ jT+$

jT

[k2
r(s) − 2β2

r(s)]ds

≤
∑
i∈S

πi
T

lim sup
n→∞

1

n+ 1

n∑
j=0

∫ τ ijT+$

τ ijT

[k2
r(s) − 2β2

r(s)]ds. (3.9)

By the strong Markov property, {r(τ ijT+t)}t≥0 forms a Markov chain with the same generator

Γ which starts from i. Letting ζ ij =
∫ τ ijT+$

τ ijT
[k2
r(s) − 2β2

r(s)]ds, we have that {ζ ij}j≥0 are

independent identically distributed with mean value Eζ i0. By the large number theory,

lim sup
n→∞

1

n+ 1

n∑
j=0

∫ τ ijT+$

τ ijT

[k2
r(s) − 2β2

r(s)]ds = Eζ i0.

On the other hand, by Lemma 3.3, we can obtain that Eζ i0 ≤ (k2
i −2β2

i )$+(k̂2−2β̌2)
√
γ̃δ$,

where k̂ = maxi∈S ki and β̌ = mini∈S βi. Inserting this into (3.9), we get

Q0 ≤
∑
i∈S

πi
T

[(k2
i − 2β2

i )$ + (k̂2 − 2β̌2)
√
γ̃δ$].

Similarly, we can show

Qv ≤
∑
i∈S

πi
T

[(k2
i − 2β2

i )$ + (k̂2 − 2β̌2)
√
γ̃δ$],

for v = 0, 1, 2, · · · ,m− 1. Combing these and (3.7) together, we have

lim sup
t→∞

1

t

∫ t

0

[k2
r(s) − 2β2

r(s)]I(s)ds ≤ m
∑
i∈S

πi
T

[(k2
i − 2β2

i )$ + (k̂2 − 2β̌2)
√
γ̃δ$]

≤ θ
∑
i∈S

πi[(k
2
i − 2β2

i ) +
√
γ̃δθ(k̂2 − 2β̌2)]. (3.10)

Since δ > 0 is arbitrary, we must have

lim sup
t→∞

1

t

∫ t

0

[k2
r(s) − 2β2

r(s)]I(s)ds ≤ θ
∑
i∈S

πi(k
2
i − 2β2

i ). (3.11)

The proof is therefore complete. 2
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Proof of Theorem 3.2. Fix any initial value y0 6= 0 and r0 ∈ S, write y(t; 0, y0, r0) = y(t).

By Mao and Yuan [?], we have that y(t) 6= 0 for all t ≥ 0 almost surely. Define the Lyapunov

function V (y, i) = |y|2 for (y, i) ∈ (Rn − {0}) × S. We can therefore apply the Itô formula

to log V (y(t), r(t)) to obtain that

d[log(V (y(t), r(t)))] =
1

V (y(t), r(t))

[
LV (y(t), r(t), t)dt+HV (y(t), r(t), t)dw(t)

]
− 1

2V 2(y(t), r(t))
|HV (y(t), r(t), t)|2dt. (3.12)

Inserting (3.3) and (3.4) into (3.12), we have

log |y(t)|2 = log |y0|2 +

∫ t

0

1

|y(t)|2
(

2y>(s)[−B(r(s))y(s) + A(r(s))g(y(s))]

+ |σ(y(s), r(s))|2I(s)
)
ds−

∫ t

0

2

|y(t)|4
|y>(s)σ(x(s), r(s))|2I(s)ds

+

∫ t

0

2

|y(t)|2
y>(s)σ(y(s), r(s))I(s)dw(t).

By Assumptions 2.2 and 2.3, we obtain that

log |y(t)|2 ≤ log |y0|2 + 2

∫ t

0

ηr(s)ds+

∫ t

0

k2
r(s)I(s)ds

−
∫ t

0

2

|y(t)|4
|y>(s)σ(x(s), r(s))|2I(s)ds+M(t), (3.13)

where ηr(s) = −λmin(B(r(s))+ |G|‖A(r(s))‖ and M(t) =
∫ t

0
2

|y(t)|2y
>(s)σ(y(s), r(s))I(s)dw(s)

is a continuous martingale vanishing at t = 0. The quadratic variation of this martingale is

given by

〈M(t),M(t)〉 = 4

∫ t

0

|y>(s)σ(y(s), r(s))|2I(s)

|y(s)|4
ds.

Assign ε2 ∈ (0, 1) arbitrarily and let k = 1, 2, · · · . By the exponential martingale inequality,

we have

P
{

sup
0≤t≤n

[
M(t)− ε

2
〈M(t),M(t)〉

]
>

2

ε
log n

}
≤ 1

n2
.

Applying the Borel-Cantelli lemma we see that for almost all ω ∈ Ω, there is an integer

n0 = n0(ω) such that if n ≥ n0,

M(t) ≤ 2

ε
log n+

ε

2
〈M(t),M(t)〉
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holds for all 0 ≤ t ≤ n. Substituting this into (3.13) and then using Assumption (3.1), we

obtain that

log |y(t)|2 ≤ log |y0|2 +
2

ε
log n+ 2

∫ t

0

ηr(s)ds

+

∫ t

0

[k2
r(s) − 2(1− ε)β2

r(s)]I(s)ds (3.14)

for all 0 ≤ t ≤ n, n ≥ n0 almost surely. So for almost all ω ∈ Ω, if n − 1 ≤ t ≤ n and

n ≥ n0, then

1

t
log |y(t)|2 ≤ 1

n− 1

(
log |y0|2 +

2

ε
log n

)
+ 2

1

t

∫ t

0

ηr(s)ds

+
1

t

∫ t

0

[k2
r(s) − 2(1− ε)β2

r(s)]I(s)ds.

This implies

lim sup
t→∞

1

t
log(|y(t)|2) ≤ 2 lim sup

t→∞

1

t

∫ t

0

ηr(s)ds

+ lim sup
t→∞

1

t

∫ t

0

[k2
r(s) − 2(1− ε)β2

r(s)]I(s)ds. (3.15)

By Lemma 3.4 and the ergodic property of the Markov chain r(t), we have

lim sup
t→∞

1

t
log(|y(t)|2) ≤

∑
i∈S

2πiηi + θ
∑
i∈S

πi[k
2
i − 2(1− ε)β2

i ]. (3.16)

Letting ε→ 0 yields the desired assertion (3.5). The proof is therefore complete. 2

Remark 3.5 Note that the deterministic neural networks (3.1) is unstable, then we have∑
i∈S

πiηi > 0, (3.17)

otherwise it is already almost surely exponentially stable. In other words, since the de-

terministic neural networks (3.1) is stable, it is not necessary to add a feedback control

σ(y(t), r(t))I(t)dw(t) to stabilize (3.1). Therefore, combing (??) and
∑

i∈S πi[ηi + θ(0.5k2
i −

β2
i )] < 0 together, we have

∑
i∈S πiθ(β

2
i −0.5k2

i ) > 0. Note that θ > 0, we obtain
∑

i∈S πi(β
2
i −

0.5k2
i ) > 0 and

∑
i∈S πiηi∑

i∈S πi(β
2
i−0.5k2i )

> 0.

Remark 3.6 From Theorem 3.2, we can conclude that the trivial solution of (3.2) is almost

surely exponentially stable if and only if θ ∈ (
∑
i∈S πiηi∑

i∈S πi(β
2
i−0.5k2i )

, 1). Moreover, it is showed that

the speed at which the solution of (3.2) converges to the equilibrium not only depends on ki

and βi, but also on the parameter θ.
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Remark 3.7 The periodic intermittent control in this paper requires that each subsystem

has the same working time or rest time. In practice, the working time or rest time of each

subsystem may not be the same. Therefore, we generalize the definition of I(t) to I(t, r(t)).

That is, I(t, r(t)) can be defined as follows

I(t, r(t)) =
∞∑
n=0

I[nT,nT+θr(t)T )(t), t ≥ 0. (3.18)

Similar to the discussion of Theorem 3.3 ([?]), we can get the following corollary.

Corollary 3.8 Under Assumptions 2.2, 2.3 and 3.1, the trivial solution y(t) of Eq.(3.2)

satisfies

lim sup
t→∞

1

t
log(|y(t)|) ≤

∑
i∈S

πi[ηi + θi(0.5k
2
i − β2

i )] a.s., (3.19)

where ηi = −λmin(B(i)) + |G|‖A(i)‖. In particular, if∑
i∈S

πi[ηi + θi(0.5k
2
i − β2

i )] < 0, (3.20)

then the trivial solution of Eq.(3.2) is almost surely exponentially stable.

Remark 3.9 By corollary ??, we show that the trivial solution of Eq.(3.2) is almost surely

exponentially stable as long as condition (??) is satisfied. The only disadvantage is that we

cannot give the range of each control parameter θi. While, for subsystems with the same

working time, we can get the range of parameter θ. In fact, in Theorem 3.2, we have that

if θ ∈ (
∑
i∈S πiηi∑

i∈S πi(β
2
i−0.5k2i )

, 1), then the trivial solution of Eq.(3.2) is almost surely exponentially

stable. This is why we focus on considering that each subsystem with the same parameters

θ.

Remark 3.10 Obviously, I(t, r(t)) is more practical than I(t) and each subsystem does not

need the same working time, so this control strategy can be more flexible. For example, in

Example ??, we obtain that hybrid neural networks (??) can be stabilized by intermittent

stochastic perturbation with θ ∈ (0.6434, 1). Once the range of θ is determined with θ ∈
(0.6434, 1), we know that it is feasible when all θi, i = 1, 2 are greater than 0.6434. Meantime,

we can also select θ1 which is greater than 0.6434, and θ2 which is less than 0.6434. If we

choose θ1 = 0.8 and θ2 = 0.4 then we have that
∑

i∈S πi[ηi + θi(0.5k
2
i − β2

i )] = −0.0276 < 0.
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3.2 Design of linear feedback control with intermittent noise

Now, we shall show that the hybrid neural networks

dy(t)/dt = −B(r(t))y(t) + A(r(t))g(y(t)). (3.21)

can be stabilized by linear feedback control with intermittent noise. We suppose g(x) satisfies

Assumption 2.2. Let

σ(x, i) = (G1,ix,G2,ix, · · · , Gm,ix),

where Gk,i ∈ Rn×n are all n × n matrices. Then the hybrid stochastic neural network (3.2)

becomes

dy(t) = [−B(r(t))y(t) + A(r(t))g(y(t))]dt+
m∑
k=1

Gk,r(t)y(t)I(t)dw(t). (3.22)

For any (x, i) ∈ Rn × S, we have

|σ(x, i)|2 =
m∑
k=1

|Gk,ix|2 ≤
( m∑
k=1

‖Gk,i‖2
)
|x|2

and

|x>σ(x, i)|2 =
m∑
k=1

|x>Gk,ix|2 ≥
( m∑
k=1

λ2
min(Gk,i)

)
|x|4.

These imply that ki and βi in Assumptions 2.3 and 3.1 have the forms

k2
i =

m∑
k=1

‖Gk,i‖2 and β2
i =

m∑
k=1

λ2
min(Gk,i).

In other words, the coefficients of Eq.(??) satisfy Assumptions 2.2, 2.3 and 3.1, then by

Theorem 3.2, we have the trivial solution of Eq.(??) is almost surely exponentially stable if∑
i∈S πi[ηi + θ(0.5k2

i − β2
i )] < 0.

In fact, there are many choices for the matrices Gk,i in order to stabilize the given

hybrid neural networks (??). Let us now discuss some special cases of hybrid stochastic

neural networks (??).

Case 1. Let Gk,i = σk,iI for 1 ≤ k ≤ m, i ∈ S, where I is the n× n identity and σk,i are

constants. Then the hybrid stochastic neural networks (??) becomes

dy(t) = [−B(r(t))y(t) + A(r(t))g(y(t))]dt+
m∑
k=1

σk,r(t)y(t)I(t)dw(t). (3.23)
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Note that for each i ∈ S,

m∑
k=1

|Gk,ix|2 =
( m∑
k=1

σ2
k,i

)
|x|2 and

m∑
k=1

|x>Gk,ix|2 =
( m∑
k=1

σ2
k,i

)
|x|4

for all x ∈ Rn. By Theorem 3.2, we conclude that the solution of (??) satisfies

lim sup
t→∞

1

t
log(|y(t)|) ≤

∑
i∈S

πiηi − 0.5θ
∑
i∈S

πi(
m∑
k=1

σ2
k,i). a.s.

In particular, if θ ∈
( ∑

i∈S πiηi
0.5

∑
i∈S πi(

∑m
k=1 σ

2
k,i)
, 1
)

, then the hybrid stochastic neural networks (??)

is almost surely exponentially stable. Now if we choose σk,i = 0 for all 2 ≤ k ≤ m, then (??)

becomes

dy(t) = [−B(r(t))y(t) + A(r(t))g(y(t))]dt+ σ1,r(t)y(t)I(t)dw1(t).

That is we only use a scalar Brownian motion as the source of stochastic perturbation. This

stochastic networks is almost surely exponentially stable provided θ ∈
( ∑

i∈S πiηi
0.5

∑
i∈S πiσ

2
1,i
, 1
)

.

Case 2. For i ∈ S and 1 ≤ k ≤ m, choose a symmetric positive definite matrix Dk,i

such that x>Dk,ix ≥
√

10
4

. Let σ be a real number and define Gk,i = σDk,i. Then the hybrid

stochastic neural networks (??) becomes

dy(t) = [−B(r(t))y(t) + A(r(t))g(y(t))]dt+
m∑
k=1

σDk,r(t)y(t)I(t)dw(t). (3.24)

Note that for each i ∈ S,

m∑
k=1

|Gk,ix|2 ≤ σ2
( m∑
k=1

‖Dk,i‖2
)
|x|2 and

m∑
k=1

|x>Gk,ix|2 ≥
5

8
σ2
( m∑
k=1

‖Dk,i‖2
)
|x|4

for all x ∈ Rn. By Theorem 3.2, we obtain that the solution of (??) satisfies

lim sup
t→∞

1

t
log(|y(t)|) ≤

∑
i∈S

πiηi − 0.125θσ2
∑
i∈S

πi(
m∑
k=1

‖Dk,i‖2) a.s.

So if θ ∈
(

8
∑
i∈S πiηi

σ2
∑
i∈S πi(

∑m
k=1 ‖Dk,i‖2)

, 1
)

, then the hybrid stochastic neural network (??) is almost

surely exponentially stable. 2

4 Intermittent discrete-time stochastic stabilization

In this section, we will establish a sufficient stability criterion on hybrid stochastic neural

networks by intermittent feedback control based on discrete-time state observations.
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Let us form Eq.(2.2) as a hybrid stochastic differential delay equation (HSDDEs). In

fact, if we define the variable delay δ : [0,∞)→ [0, τ ] by

δ(t) = t− kτ for kτ ≤ t < (k + 1)τ, k = 0, 1, 2, · · · ,

then Eq.(2.2) can be re-written as the following HSDDEs:

dx(t) = [−B(r(t))x(t) + A(r(t))g(x(t))]dt+ σ(x(t− δ(t)), r(t))I(t)dw(t), t ≥ 0. (4.1)

In the previous section, we can show that Eq.(3.2) is almost surely exponentially stable

by using the Lyapunov function method. Unfortunately, the solution of (??) may reach the

origin provided that x0 6= 0, so we cannot apply the Itô formula to log |x(t)|2 in this delay case.

Therefore, we adopt a comparative method to study the almost sure exponential stability of

the solution to Eq.(??). Our aim here is to show that if auxiliary hybrid stochastic neural

networks by continuous-time intermittent feedback control (3.2) is pth moment exponentially

stable, then so is the hybrid stochastic neural networks by discrete-time intermittent feedback

control (2.2) provided τ is sufficiently small.

Assumption 4.1 There exists a p ∈ (0, 1) such that

Ap := diag(ρ1(p), · · · , ρN(p))− Γ (4.2)

is a nonsingular M-matrix, where ρi(p) = 0.5p[(2− p)β2
i − k2

i ]− pηi.

Note that Ap is a nonsingular M-matrix, by Theorem 2.10 of [?], it follows that A−1
p ≥ 0.

Set (ψ1, · · · , ψN)> := A−1
p

−→
1 , where

−→
1 = (1, · · · , 1)>, we can obtain that ψi > 0, i ∈ S.

The following lemma shows that the corresponding auxiliary hybrid stochastic neural

networks (3.2) is exponentially stable in the pth moment.

Lemma 4.2 Under Assumptions 2.2, 2.3, 3.1 and ??. If θ ∈ ( ψ̄

ψ−1
M +ψ̄

, 1), then the solution

y(t) of Eq.(3.2) satisfies

E|y(t)|p ≤ ψM
ψm

E|y0|pe−[(ψ−1
M +ψ̄)θ−ψ̄]t, ∀ t ≥ 0, (4.3)

where

ψm = min
i∈S

ψi, ψM = max
i∈S

ψi, ψ̄ = max
i∈S

1

ψi

(
pηiψi +

N∑
j=1

γijψj

)
.

In other words, the trivial solution of Eq.(3.2) is pth moment exponentially stable.
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Proof. Let V (y, i) = ψi|y|p. Clearly, ψm|y|p ≤ V (y, i) ≤ ψM |y|p. By (3.3) and Assumption

??, we compute the operator LV as follows:

LV (y, i, t) = pψi|y|p−2y>[−B(i)y + A(i)g(y)] + 0.5pψi|y|p−2|σ(y, i)|2I(t)

− 0.5p(2− p)ψi|y|p−4|y>σ(y, i)|2I(t) +
N∑
j=1

γijψj|y|p

≤ pψi[−λmin(B(i)) + |G|‖A(i)‖]|y|p + 0.5pψik
2
i |y|pI(t)

− 0.5p(2− p)ψiβ2
i |y|pI(t) +

N∑
j=1

γijψj|y|p

≤
{(
pηi + 0.5p[β2

i − (2− p)σ2
i ]
)
ψi +

N∑
j=1

γijψj

}
I(t)|y|p

+
(
pηiψi +

N∑
j=1

γijψj

)
(1− I(t))|y|p ≤ [ψ̄ − (ψ−1

M + ψ̄)I(t)]V (y, i). (4.4)

For any t ≥ 0, the generalized Itô formula shows that

E
[
V (y(t), r(t))e−

∫ t
0 [ψ̄−(ψ−1

M +ψ̄)I(s)]ds
]
− EV (y0, r0)

= E

∫ t

0

e−
∫ s
0 [ψ̄−(ψ−1

M +ψ̄)I(u)]du
(
LV (y(s), r(s), s)− [ψ̄ − (ψ−1

M + ψ̄)I(s)]V (y(s), r(s))
)
ds.

This implies

E|y(t)|p ≤ ψM
ψm

E|y0|pe
∫ t
0 [ψ̄−(ψ−1

M +ψ̄)I(s)]ds. (4.5)

By the condition θ ∈ ( ψ̄

ψ−1
M +ψ̄

, 1), we have∫ t

0

[ψ̄ − (ψ−1
M + ψ̄)I(s)]ds ≤ [ψ̄ − (ψ−1

M + ψ̄)θ]t

for any t ∈ [kT, (k + 1)T ). Hence, we conclude that

E|y(t)|p ≤ ψM
ψm

E|y0|pe[ψ̄−(ψ−1
M +ψ̄)θ]t.

The proof is therefore complete.

Remark 4.3 As θ → 0, Eq.(3.2) will degenerate into a hybrid neural networks (??). Note

that we are only interested in the case when ψ̄ > 0 in this paper; otherwise, the given hybrid

neural networks (??) is already stable and there is no need to stabilize it using feedback

control. As θ → 1, Eq.(3.2) will become continuous hybrid stochastic neural networks

dy(t) = [−B(r(t))y(t) + A(r(t))g(y(t))]dt+ σ(y(t), r(t))dw(t). (4.6)
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From (??), we can obtain that the solution of Eq.(??) is pth moment exponentially stable

and the pth moment Lyapunov exponent is no more than −ψ−1
M .

Remark 4.4 Clearly, (??) means that the pth moment of the solution will tend to 0 expo-

nentially fast. It follows from (??) that

lim sup
t→∞

1

t
log(E|y(t)|p) < 0.

However, by (??), we can also get this asymptotic property. That is, we have

lim sup
t→∞

1

t
log(E|y(t)|p) ≤ ψ̄ − (ψ−1

M + ψ̄)
(

lim inf
t→∞

1

t

∫ t

0

I(s)]ds
)

= ψ̄ − θ(ψ−1
M + ψ̄) < 0

as long as θ > ψ̄

ψ−1
M +ψ̄

.

Lemma 4.5 Let Assumptions 2.2, 2.3 hold and p ∈ (0, 1). Then, for any t ≥ 0,

E|x(t)|p ≤ |x0|pe(η̂+0.5k̂2)pt, (4.7)

E|x(t)− x(δt)|p ≤ |x0|pe(η̂+0.5k̂2)ptH1(p, τ), (4.8)

where η̂ = maxi∈S ηi, k̂ = maxi∈S ki, H1(p, τ) = [2τ(2Ĉ + k̂2)]
p
2 , Ĉ = maxi∈S(‖B(i)‖2 +

|G|2‖A(i)‖2).

Proof. By the Itô formula, it is easy to show that, for t ≥ 0,

|x(t)|2 = |x0|2 +

∫ t

0

{
2x>(s)[−B(r(s))x(s) + A(r(s))g(x(s))] + |σ(x(δs), r(s))|2I(s)

}
ds

+

∫ t

0

2x>(s)σ(x(δs), r(s))I(s)dw(s).

By Assumptions 2.2 and 2.3, we get

E|x(t)|2 ≤ |x0|2 + 2ηi

∫ t

0

E|x(s)|2ds+ k2
i

∫ t

t0

E|x(δs)|2ds

≤ |x0|2 + (2 max
i∈S

ηi + max
i∈S

k2
i )

∫ t

0

sup
0≤u≤s

E|x(s)|2ds.

Noting that the right-hand-side term of the above inequality is increasing in t, we hence have

sup
0≤u≤t

E|x(u)|2 ≤ |x0|2 + (2η̂ + k̂2)

∫ t

0

sup
0≤u≤s

E|x(s)|2ds.
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Consequently, the Gronwall inequality gives

sup
0≤u≤t

E|x(u)|2 ≤ |x0|2e(2η̂+k̂2)t.

By the Hölder inequality, we then have

E|x(t)|p ≤
(
E|x(t)|2

) p
2 ≤ |x0|pe(η̂+0.5k̂2)pt.

On the other hand, we can show that

E|x(t)− x(δt)|2 ≤ 2E|
∫ t

δt

[−B(r(s))x(s) + A(r(s))g(x(s))]ds|2

+ 2E|
∫ t

δt

[σ(x(δs), r(s))]ds|2.

By the Burkholder-Davis-Gundy inequality, Assumptions 2.2 and 2.3, we have

E|x(t)− x(δt)|2 ≤ 4τ max
i∈S

(||B(i)||2 + |G|2||A(i)||2)

∫ t

δt

E|x(s)|2ds

+ 2k̂2

∫ t

δt

E|x(δs)|2ds ≤ 2τ(2Ĉτ + k̂2)e(2η̂+k̂2)t.

Once again, by the Hölder inequality, we have

E|x(t)− x(δt)|p ≤ |x0|pe(η̂+0.5k̂2)ptH1(p, τ).

The proof is therefore complete. 2

Lemma 4.6 Let Assumptions 2.2, 2.3 hold and p ∈ (0, 1). Then, for all t ≥ 0,

E|x(t)− y(t)|p ≤ |x0|pH2(p, τ)[e(2η̂+k̂2)t − 1]
p
2 e(η̂+k̂2)pt,

where H2(p, τ) =
[

2k̂2H1(τ,2)

2η̂+k̂2

] p
2
.

Proof. By the Itô formula and Assumption 2.2, we can show that

E|x(t)− y(t)|2

= E

∫ t

0

(
2[x(s)− y(s)]>[−B(r(s))(x(s)− y(s))

+ A(r(s))(g(x(s)− g(y(s)))] + |σ(x(δs), r(s))− σ(y(s), r(s))|2I(s)
)
ds

≤ 2η̂

∫ t

0

E|x(s)− y(s)|2ds+ E

∫ t

0

|σ(x(δs), r(s))− σ(y(s), r(s))|2ds. (4.9)
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By Assumption 2.3, we obtain that

E

∫ t

0

|σ(x(δs), r(s))− σ(y(s), r(s))|2ds

≤ 2E

∫ t

0

|σ(x(δs), r(s))− σ(x(s), r(s))|2ds+ 2E

∫ t

0

|σ(x(s), r(s))− σ(y(s), r(s))|2ds

≤ 2k̂2E

∫ t

0

|x(δs)− x(s)|2ds+ 2k̂2E

∫ t

0

|x(s)− y(s)|2ds.

By Lemma ??, we get

E

∫ t

0

|σ(x(δs), r(s))− σ(y(s), r(s))|2ds

≤ 2k̂2H1(τ, 2)|x0|2E
∫ t

0

e(2η̂+k̂2)sds+ 2k̂2E

∫ t

0

|x(s)− y(s)|2ds

≤ 2k̂2H1(τ, 2)|x0|2

2η̂ + k̂2
[e(2η̂+k̂2)t − 1] + 2k̂2E

∫ t

0

|x(s)− y(s)|2ds. (4.10)

Inserting (??) into (??), we have

E|x(t)− y(t)|2 ≤ 2k̂2H1(τ, 2)|x0|2

2η̂ + k̂2
[e(2η̂+k̂2)t − 1]

+ 2(η̂ + k̂2)E

∫ t

0

|x(s)− y(s)|2ds.

Then, the Gronwall inequality implies that

E|x(t)− y(t)|2 ≤ 2k̂2H1(τ, 2)|x0|2

2η̂ + k̂2
[e(2η̂+k̂2)t − 1]e2(η̂+k̂2)t.

By the Hölder inequality, we have

E|x(t)− y(t)|p ≤ |x0|p
[2k̂2H1(τ, 2)

2η̂ + k̂2

] p
2
[e(2η̂+k̂2)t − 1]

p
2 e(η̂+k̂2)pt,

which is the required assertion. The proof is therefore complete. 2

Lemma 4.7 Let Assumptions 2.2, 2.3, 3.1 and ?? hold. Choose a free parameter ε ∈ (0, 1).

Let τ ∗ ≥ 0 be the unique root to the equation

H2(p, τ)[e(2η̂+k̂2)(τ+
log(

ψM
ψmε

)

γ
) − 1]

p
2 e(η̂+k̂2)p(τ+

log(
ψM
ψmε

)

γ
) = 1− ε, (4.11)

where γ = (ψ−1
M + ψ̄)θ − ψ̄ and H2(p, τ) has been given in lemma ??. If τ < τ ∗, then there

is a pair of positive integer k̃ and constant λ such that the solution of Eq.(2.2) satisfies

E|x(ik̃τ)|p ≤ |x0|pe−iλk̃τ , ∀ i = 1, 2, 3, · · · . (4.12)
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Proof. Let k̃ be a positive integer that is no less than

log( ψM
ψmε

)

γτ
≤ k̃ < 1 +

log( ψM
ψmε

)

γτ
. (4.13)

This implies ψM
ψm
e−γk̃τ ≤ ε. Write y(k̃τ ;x0, r0) = yk̃. By Lemma ??,

E|yk̃|
p ≤ ψM

ψm
|x0|pe−γk̃τ ≤ ε|x0|p. (4.14)

By the basic inequality (a+ b)p ≤ ap + bp for any a, b ≥ 0 and 0 < p < 1, we can obtain that

E|xk̃|
p ≤ E|yk̃|

p + E|xk̃ − yk̃|
p.

Using (??) and lemma ??, we get

E|xk̃|
p ≤ |x0|p

(
ε+H2(p, τ)[e(2η̂+k̂2)k̃τ − 1]

p
2 e(η̂+k̂2)pk̃τ

)
. (4.15)

By (??), we have

ε+H2(p, τ)[e(2η̂+k̂2)k̃τ − 1]
p
2 e(η̂+k̂2)pk̃τ

< ε+H2(p, τ)[e(2η̂+k̂2)(τ+
log(

ψM
ψmε

)

γ
) − 1]

p
2 e(η̂+k̂2)p(τ+

log(
ψM
ψmε

)

γ
) ≤ 1.

Thus, we may choose λ > 0 such that

ε+H2(p, τ)[e(2η̂+k̂2)k̃τ − 1]
p
2 e(η̂+k̂2)pk̃τ = e−λk̃τ .

It then follows from (??) that

E|xk̃|
p ≤ |x0|pe−λk̃τ .

Let us now consider the solution x(t) of Eq.(2.2) on t ≥ k̃τ. Due to the time-homogeneous

property of Eq.(2.2), we can get

E(|x2k̃|
p|Fk̃τ ) ≤ |xk̃|

pe−λk̃τ .

This implies E|x2k̃|p ≤ E|xk̃|pe−λk̃τ ≤ |x0|pe−2λk̃τ . Repeating this procedure, we have

E|xik̃|
p ≤ E|x(i−1)k̃|

pe−λk̃τ ≤ |x0|pe−iλk̃τ , i = 1, 2, · · · .

The proof is therefore complete. 2
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Theorem 4.8 Let Assumptions 2.2, 2.3, 3.1 and ?? hold. Then, there is a positive number

τ ∗ such that Eq.(2.2) is almost surely exponentially stable provided τ ≤ τ ∗.

Proof. Fix τ ∈ (0, τ ∗) and the initial data x0 ∈ Rn, r0 ∈ S. For simplicity, we write

x(t; 0, x0, r0) = x(t), r(t; 0, r0) = r(t). For any t ≥ 0, we can find a unique integer i such that

t ∈ [ik̃τ, (i+ 1)k̃τ). By the time-homogeneous property of Eq.(2.2), we see from Lemma ??

that

E(|x(t)|p|Fk̃τ ) ≤ |xik̃|
pe(η̂+0.5k̂2)p(t−ik̃τ)

≤ |xik̃|
pe(η̂+0.5k̂2)pk̃τ . (4.16)

This, together with Lemma ??, implies

E|x(t)|p| ≤ E|xik̃|
pe(η̂+0.5k̂2)pk̃τ ≤ |x0|pe−iλk̃τe(η̂+0.5k̂2)pk̃τ

≤ C(p, τ)|x0|pe−(i+1)λk̃τ ≤ C(p, τ)|x0|pe−λt,

where C(p, τ) = eλk̃τe(η̂+0.5k̂2)pk̃τ . By the basic inequality, Assumptions 2.2 and 2.3, it is easy

to show that

E
(

sup
ik̃τ≤s≤t

|x(s)|2
)
≤ 3E|x(ik̃τ)|2 + 3E

(
sup

ik̃τ≤s≤t
|
∫ s

ik̃τ

[−B(r(v))x(v) + A(r(v))g(x(v))]dv|2
)

+ 3E
(

sup
ik̃τ≤s≤t

|
∫ s

ik̃τ

σ(x(δv), (r(v))I(v)dw(v)|2
)

≤ 3E|x(ik̃τ)|2 + 3k̃Ĉτ

∫ t

ik̃τ

E|x(s)|2ds+ 12k̂2

∫ t

ik̃τ

E|x(δs)|2ds

≤ 3E|x(ik̃τ)|2 + (3k̃Ĉτ + 12k̂2)

∫ t

ik̃τ

E sup
ik̃τ≤v≤s

|x(v)|2ds.

Then the Gronwall inequality implies that

E
(

sup
ik̃τ≤t≤(i+1)k̃τ

|x(t)|2
)
≤ 3E|x(ik̃τ)|2e(3k̃Ĉτ+12k̂2)k̃τ .

By the Hölder inequality, we have

E
(

sup
ik̃τ≤t≤(i+1)k̃τ

|x(t)|p
)
≤ E|x(ik̃τ)|p

(
3e(3k̃Ĉτ+12k̂2)k̃τ

) p
2

≤ (3e(3k̃Ĉτ+12k̂2)k̃τ
) p

2 |x0|pe−iλk̃τ (4.17)
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for all i ≥ 1. Using the Markov inequality and (??), we get

P
(

sup
ik̃τ≤t≤(i+1)k̃τ

|x(t)|p ≥ e−0.5iλk̃τ
)
≤ (3e(3k̃Ĉτ+12k̂2)k̃τ

) p
2 |x0|pe−0.5iλk̃τ

for all i ≥ 1. By the Borel-Cantelli lemma, we can obtain that for almost all ω ∈ Ω, there

exists an integer i0 = i0(ω) such that supik̃τ≤t≤(i+1)k̃τ |x(t)|p < e−0.5iλk̃τ for any i > i0(ω).

This implies that lim supt→∞
1
t

log(|x(t)|) < − λ
2p

for almost all ω ∈ Ω. The proof is therefore

complete. 2

Remark 4.9 In fact, Lemmas ??, ?? and Theorem ?? enable us to design the periodically

intermittent feedback control based on discrete-time state observations for stochastic stabi-

lization problem (2.2) in two steps.

Step 1. For an unstable hybrid system

dx(t)/dt = −B(r(t))x(t) + A(r(t))g(x(t)), (4.18)

we design the control function σ : Rn × S → Rn×m for Eq.(3.2) to be pth moment exponen-

tially stable.

Step 2. Find the unique root τ ∗ > 0 to Eq.(??)

H2(p, τ)[e(2η̂+k̂2)(τ+
log(

ψM
ψmε

)

γ
) − 1]

p
2 e(η̂+k̂2)p(τ+

log(
ψM
ψmε

)

γ
) = 1− ε

of Lemma ?? and make sure τ < τ ∗. Then the periodically intermittent feedback control

based on discrete-time state observations will stabilize Eq.(??) in the sense of the almost

sure exponential stability.

5 Two examples

Example 5.1 Let w(t) be a scalar Brownian motion and r(t) be a right-continuous Markov

chain taking values in S = {1, 2} with the generator

Γ = (γij)2×2=

 −1 1

4 − 4

 .
Consider the scalar hybrid neural networks

dx(t)

dt
= −b(r(t))x(t) + a(r(t))g(x(t)), (5.1)
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where

b(1) = −0.2, b(2) = −0.3, a(1) = 0.1, a(2) = 0.25, g(x) = ReLu(x) = max{x, 0}.

Obviously, the Markov chain r(t) has the stationary distribution π = (π1, π2) = (4
5
, 1

5
). Then,

we have that
2∑
i=1

πiηi =
2∑
i=1

πi[−λmin(B(i)) + |G|‖A(i)‖] = 0.35 > 0.

It is obvious that hybrid neural networks (??) is unstable.

To make this given hybrid neural networks (??) stable, we use the periodic intermittent

control. Consider σ(r(t))x(t)I(t)dw(t) as the stochastic perturbation, then the intermittently

scalar hybrid stochastic neural networks can be described by

dx(t) = [−b(r(t))x(t) + a(r(t))g(x(t))]dt+ σ(r(t))x(t)I(t)dw(t), (5.2)

where σ(1) = 1, σ(2) = 1.2. We assume w(t) and r(t) are assumed to be independent. It is

easy to see that k1 = β1 = 1 and k2 = β2 = 1.2. Then we get that

2∑
i=1

πi[ηi + θ(0.5k2
i − β2

i )] = 0.35− 0.544θ.

By Theorem 3.2, we can conclude that if we choose θ ∈ (0.6434, 1), then intermittently hybrid

stochastic neural networks (??) is almost surely exponentially stable. That is, hybrid neural

networks (??) can be stabilized by intermittent stochastic perturbation σ(r(t))x(t)I(t)dw(t)

with θ ∈ (0.6434, 1). Given the initial value x(0) = 2 and r(0) = 1, Figure 1 shows that the

intermittently hybrid stochastic neural networks (??) is stable when θ = 0.9. 2

Remark 5.2 If θ = 1, we can have
∑2

i=1 πi[ηi + θ(0.5k2
i − β2

i )] = −0.143 < 0. This implies

that hybrid neural networks (??) can be stabilized by continuous time stochastic perturbation

σ(r(t))x(t)dw(t). In order to reduce the control cost, the intermittent stochastic control is

naturally selected to stabilize the above neural network.

Remark 5.3 In fact, whether the controlled stochastic neural networks (??) is stable depends

not only on parameter θ, but also on the intensity of noise. If we choose σ(1) = 0.5, σ(2) = 1,

we get
∑2

i=1 πi[ηi + θ(0.5k2
i − β2

i )] = 0.35 − 0.2θ. In this case, if θ = 1, then
∑2

i=1 πi[ηi +

θ(0.5k2
i − β2

i )] = 0.15 is not less than zero. In other words, it is difficult to stabilize the

neural network (??) even if the continuous feedback control strategy is adopted.
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Figure 1: The sample paths of intermittently hybrid stochastic neural networks (??).

Example 5.4 Let w(t) be a scalar Brownian motion and r(t) be a right-continuous Markov

chain taking values in S = {1, 2} with the generator

Γ = (γij)2×2=

 −2 2

1 − 1

 .
Consider the following two dimensional hybrid neural networks

dx(t)

dt
= −B(r(t))x(t) + A(r(t))g(x(t)), (5.3)

where

B(1) =

 0.5 0

0 0.8

 , B(2) =

 0.6 0

0 0.4

 , A(1) =

 0.8 0.4

−0.6 −0.3

 ,

and

A(2) =

 1 0.5

−0.5 −0.2

 , g(x) =

 0.25(|x1 + 1| − |x1 − 1|)
0.25(|x2 + 1| − |x2 − 1|)

 .

Simple computations show that

λmin(B(1)) = 0.5, λmin(B(2)) = 0.4, ‖A(1)‖ = 1.118, ‖A(2)‖ = 1.24.

Meantime, we obtain that the Markov chain has the stationary distribution π = (π1, π2) =

(1
3
, 2

3
). Then, we have that

2∑
i=1

πiηi =
2∑
i=1

πi[−λmin(B(i)) + |G|‖A(i)‖] = 0.166333 > 0.
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It is obvious that hybrid neural networks (??) is unstable.

Now, we will use the intermittent feedback control based on discrete-time state observa-

tions to stablize the hybrid neural networks (??)

dx(t) = [−B(r(t))x(t) + A(r(t))g(x(t))]dt+ σ(r(t))x(bt/τc τ)I(t)dw(t), (5.4)

where

σ(1) =

 1 0

0 1

 , σ(2) =

 1.5 0

0 1.5

 .

Choose p = 0.5, then ρ1(0.5) = 0.0955 and ρ2(0.5) = 0.1713. The matrix A0.5 defined in

(??) becomes

A0.5 =

 2.0955 − 2

−1 1.1713


which is a nonsingular M-matrix. Then, we can determine ψ1 = 6.9798, ψ2 = 6.8130 and

hence, ψ−1
M = 0.1433 and ψ̄ = 0.1345. By Lemma ??, we can conclude that if θ ∈ (0.4842, 1),

then intermittently hybrid stochastic neural networks

dx(t) = [−B(r(t))x(t) + A(r(t))g(x(t))]dt+ σ(r(t))x(t)I(t)dw(t) (5.5)

has the property that

lim sup
t→∞

1

t
logE|x(t)|p ≤ 0.1345− 0.2778θ < 0.

We further choose θ = 0.75, ε = 0.9, then Eq.(??) becomes

H2(0.5, τ)[e2.69(τ+0.762) − 1]0.25 × e1.235(τ+0.762) = 0.1

which has the unique positive root τ ∗ = 3.08× 10−8 (which is about 0.97 seconds if the time

unit is of year). By Theorem ??, we can conclude that Eq.(??) is almost surely exponentially

stable provided τ < 3.08 × 10−8. Given the initial value x1(0) = 2, x2(0) = 3 and r(0) = 2,

Figure 2 showed hybrid neural networks (??) can be stabilized by intermittently feedback

control based on discrete-time state observations when θ = 0.75. 2
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Figure 2: The sample paths of intermittently hybrid stochastic neural networks (??).

6 Conclusion

This paper is devoted to the stablization of hybrid neural networks by intermittent

stochastic feedback control based on discrete-time observations. The exponential martingale

inequality and ergodic property of the Markov chain are used to establish sufficient stability

criterion on hybrid neural networks by intermittent control based on continuous-time state

observations. Meantime, by M-matrix theory and comparison principle, we obtain that

hybrid neural networks can be stabilized by intermittent control based on discrete-time

state observations as long as τ < τ ∗.
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