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Abstract 10 

Lamb wave excitation at high frequency-thickness products offers a potential solution for high-resolution 11 

guided wave testing. The method is attractive for crack imaging and corrosion mapping, especially in hidden 12 

locations where direct access is limited. However, multiple modes may propagate, complicating signal 13 

interpretation, which is undesirable. In this work, a systematic approach is presented, in an effort to determine 14 

the influence of the key parameters related to single higher order Lamb wave mode excitation with a 15 

conventional linear array transducer. Specifically, a linear time delay law is used to enhance a targeted mode, 16 

while the array's length, pitch and apodisation profile remain to be optimally selected. First, an analytical 17 

solution is derived based on modal analysis. This provides a natural decomposition of the amplitude of a guided 18 

wave mode to the product of the response of a single element and the excitation spectrum, which is related to 19 

properties of the array. Then, a key observation is made, associating the excitation spectrum to the directivity 20 

function for bulk wave phased array steering. This allows the application of well established phased array 21 

analysis tools to guided wave phased array excitation. In light of this fact, minimisation of the spectrum’s 22 

bandwidth, elimination of the grating lobes and derivation of an apodisation profile are performed, to enhance 23 

the purity of the targeted mode. Finally, experiments conducted on an aluminium plate verify the above 24 

theoretical results. The Full Matrix is acquired, and all signals are reconstructed synthetically. 25 
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1. Introduction30 

Ultrasonic guided waves (UGW) are extensively used in structural health monitoring and non-destructive31 

evaluation applications. They are commonly employed for the inspection of a large variety of structural assets, 32 

such as pipelines, storage tanks and pressure vessels. In this work, attention is shifted to a special class of UGW, 33 

namely Lamb waves, propagating in plates or plate-like waveguides. Lamb waves decompose to symmetric or 34 

antisymmetric modes. They can be classified based on their frequency-thickness product [1,2], which 35 

determines their key properties, such as phase velocity, dispersion and modal density. The region below 10 36 

MHz⋅mm has been extensively investigated by several authors, particularly for steel and aluminium samples 37 

[3–15]. Recently, there has been a research interest in the region above 15 MHz⋅mm [1,2,16–22], called here 38 

higher order mode region, which is very attractive, because of the potential for medium-range high-resolution 39 

inspection of relatively thick samples at high frequencies. For example, operation at 20 MHz⋅mm implies 40 

guided waves can be generated on a 10 mm thick plate with a 2 MHz probe. Potential applications include the 41 

in-service inspection of the annular plate of storage tanks [1], thickness gauging [20], crack imaging [23,24] 42 

and inspection for corrosion on pipe networks, especially in hidden locations, such as corrosion under piper 43 

supports [21,22]. 44 

Lamb waves are commonly excited with piezoelectric, laser or electromagnetic acoustic transducers [25]. 45 

Among others, piezoelectric transducer excitation includes wedge [18], comb [26], interdigital [13], periodic 46 

[27], phased comb [8,28] or apodised phased comb [29]. The latter is an extension of phased comb excitation, 47 
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describing the case where both time delays and voltage amplitudes vary across the elements of a conventional 48 

1-D linear array probe with individually addressable elements. Such arrays are commonly deployed for bulk 49 

phased array ultrasonic inspections due to their flexibility and therefore guided wave excitation utilising these 50 

probes is advantageous, as they are readily available and mature. However, transducer size constrains and 51 

scanning resolution requirements for common engineering structures obligate manufacturing usually above 1 52 

MHz. Commonly, operation at low frequency thickness products is preferred [27,30,31], below 3.5 MHz⋅mm, 53 

as it is easier to target a single mode. However, this requires thin waveguides, approximately up to 3.5 mm 54 

thick. Recent work has shown potential in exciting Lamb waves around 10 MHz⋅mm [8,29,32]. Veit and 55 

Bélanger [8] reported the generation of a single Lamb wave mode using a 64-element phased array probe centred 56 

at 1.5 MHz on a 5 mm thick aluminium sample. They used a linear time delay law and uniform voltage 57 

amplitudes across the array elements. Cirtautas et al. [29] demonstrated the feasibility of generation of the 58 

symmetric mode 𝑆3 on a 10 mm sample with a linear 1 MHz array mounted on an angled wedge using a two-59 

sided excitation approach. The interaction of 𝑆3  with corrosion-like defects was simulated, showing the 60 

potential of the mode for corrosion defect detection and classification. 61 

Guided wave phased array excitation is influenced by two key objects, namely the excitation and frequency 62 

spectrum [7]. The frequency spectrum is determined by the temporal profile of the applied pressure load. This 63 

profile is defined as the convolution of the excitation signal and the impulse response of the array elements. In 64 

guided wave applications, the excitation signal is typically a finite-cycled toneburst, controlled by the centre 65 

frequency, number of cycles and applied window [15].  The impulse response of an element of the array depends 66 

on the specific array design and material properties. Although this response might vary across the elements of 67 

the array, these variations are usually small and thus all elements are considered identical. Ultimately, the 68 

frequency spectrum is a bandpass filter, characterised by its centre frequency and bandwidth [33]. To excite a 69 

single mode, a narrowband spectrum is preferred, as unwanted modes outside the band range are filtered out. 70 

The excitation spectrum depends on the number of elements, pitch, time delay law and apodisation profile 71 

employed. In the frequency-wavenumber domain, assuming linear time delays and uniform voltage amplitudes, 72 

the points (𝑓, 𝑘) where the spectrum maximises appear as straight lines (excitation beams).  Their slope is 73 

determined by the pitch and the applied linear time delay law.  Among the infinitely many excitation beams, 74 

one passes through the origin of the frequency-wavenumber domain. In the frequency-phase velocity domain, 75 

this beam appears as a straight horizontal line at constant phase velocity. Commonly, the time delays are 76 

adjusted so that the same excitation beam crosses the desired wave mode at the centre frequency. This way the 77 

two spectra intersect on top of the targeted mode, which is then generated and propagates in the waveguide. 78 

In this work, emphasis is placed on guided wave excitation at the higher order mode region, using a 79 

conventional linear array.  Employing a linear time delay law, a single low dispersion higher order mode is 80 

targeted at 20 MHz⋅mm. For the first time, a systematic analysis for guided wave excitation is presented where 81 

the length, pitch and apodisation profile are appropriately determined to optimise single mode excitation. More 82 

specifically, the influence of the number of elements on the bandwidth of the excitation spectrum is investigated. 83 

The effect of the pitch on the elimination of the grating lobes is studied in detail. The possibility of enhancing 84 

the purity of the targeted mode using an apodisation profile is explored.  Moreover, the targeted guided wave 85 

mode propagation is unidirectional. This is due to satisfaction of a condition involving the pitch and wavelength 86 

of the selected mode. All conditions presented in this work are derived analytically and verified experimentally.  87 

The organization of this paper is as follows. First, in Section 2, a model based on modal analysis is derived. 88 

The array is modelled as a transient periodic pressure load acting on the top surface of the plate, leading to an 89 

explicit expression between the amplitudes of any mode and the parameters relevant to the excitation. Then, a 90 

set of conditions related to the number of elements, pitch and apodisation profile is provided in Section 3. In 91 

Section 4, experimental results are presented, using a dataset acquired with the Full Matrix Capture (FMC) 92 

method. Finally, in Section 5, key conclusions are drawn.  93 

 94 
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2. Analytical solution for the apodised phased comb array excitation problem based on modal analysis 95 

Guided wave excitation studies are commonly based on a suitable analytical method. Among others, the 96 

normal mode expansion method [34,35] and methods based on integral transforms, such as the Fourier transform 97 

[7] are commonly utilised. This work presents an alternative technique based on modal analysis, to solve the 98 

apodised phased comb array excitation problem. Besides its natural simplicity, the method offers some 99 

advantages. Specifically, it treats transient loads directly, without having to express the input signal as a 100 

superposition of time harmonic excitation sources using a Fourier transform [34]. Furthermore, there is no need 101 

to define new concepts, such as a new orthogonality condition [34]. Throughout the analysis, all quantities 102 

remain finite. 103 

 104 

Figure 1. Apodised phased comb array excitation model. The plate has finite length 𝓵 and thickness d. The 105 
pressure load 𝒑𝒓 on the top surface of the plate models the rth element. A local frame (𝒙′, 𝒛′) is used to express 106 
the solution of the rth element. The global frame (x, z) coincides with the local frame of the first element. 107 

Consider a homogeneous isotropic plate of length ℓ, thickness 𝑑 = 2ℎ and width 𝑏. The equation of motion 108 

after omitting external loads appears in the form [7] 109 

(λ + μ)∇(∇ ⋅ 𝑢) + 𝜇∇2𝑢 = 𝜌𝑢̈, (1) 110 

where λ, μ are the Lamé constants and 𝜌  is the density of the plate. Assuming plane strain condition, the 111 

displacement field with respect to a right-handed frame (𝑥, 𝑦, 𝑧) located at the centre of the plate appears in the 112 

form 𝑢 = (𝑢1, 0, 𝑢3). The cross section of the plate at 𝑦 = 𝑏/2is shown in Figure 1. Separation of variables in 113 

space and time  114 

𝑢1 =  𝑋1(𝑥) 𝑋1(𝑧) 𝑇(𝑡), 𝑢3 = 𝑋3(𝑥) 𝑋3(𝑧)𝑇(𝑡)  (2) 115 

and after substituting (2)  in (1)  and employing the free-free boundary conditions on the top and bottom 116 

surfaces of the plate fully determines the through thickness profiles 𝑋1(𝑧) and 𝑋3(𝑧) of the modes in the axial 117 

and thickness direction, respectively [7]. Similarly, the modal profiles along the axial direction, 𝑋1(𝑥) and 118 

𝑋3(𝑥), are determined by the boundary conditions on the left and right boundaries. However, in a guided wave 119 

excitation study, waves are assumed to propagate far from the left and right boundaries; thus, a particular choice 120 

of boundary conditions does not affect wave propagation. Therefore, the boundary conditions at the left and 121 

right edges can be arbitrarily chosen. In fact, any complete orthogonal set of functions in 𝐿2([−ℓ/2, ℓ/2]) can 122 

be selected. In this work, the set {1, cos(kx) , sin(kx) |  𝑘 =
2 𝜋𝛼

ℓ
, 𝛼 = 1,2,3. . . } is employed. As shown in [36], 123 

‘if 𝑋1(𝑥) is a sine function, 𝑋3(𝑥) must be a cosine function, and vice versa’. Note that for simplicity in 124 

notation, 𝑋  is used to describe both the through thickness and axial displacement profiles, which are 125 

distinguished from the argument. The total solution can then be expanded in an infinite series form [37], 126 

𝑢 = τ𝑖𝑋̂𝑖, 𝑖 = 1,2, … , ∞ 127 

where 𝑋̂𝑖 is the 𝑖th normalised eigenfunction such that 𝑋̂𝑖 =
1

√𝑔𝑖𝑖
𝑋𝑖 and 𝑔𝑖𝑗 is the metric tensor [38] defined as  128 

𝑔(𝑋𝑖, 𝑋𝑗 ) = 𝑔𝑖𝑗 = 𝑏 ∫ ∫ 𝜌𝑋𝑖𝑋𝑗𝑑𝑥 𝑑𝑧
ℓ/2

−ℓ/2

ℎ

−ℎ
. 129 

The time dependent coefficients 𝜏𝑖 are determined according to [37] 130 

𝜏̈𝑖 + 𝜔𝑖
2𝜏𝑖 = 𝑓𝑖,  𝑓𝑖 = ∫ 𝑝(𝑥, 𝑡) 𝑋̂𝑖

3(𝑥) 𝑋̂𝑖
3(𝑧 = ℎ) 𝑑𝑥

𝑙/2

−𝑙/2

, (3) 131 
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where the eigenfrequency ω𝑖 related to mode 𝑋̂𝑖 is determined from the dispersion equations and 132 

𝑝(𝑥, 𝑡) = ∑ 𝑝𝑟  

𝑁−1

𝑟=0

 133 

is the excitation load modelling an array with 𝑁 elements, width 𝑤 and pitch 𝑠, as shown in Figure 1. The size 134 

of the elements in the 𝑦-direction is assumed to be much larger than their width (𝑥-direction); therefore, the 135 

plane strain condition holds [7]. In what follows, emphasis is placed on deriving an analytical expression for 136 

the 𝑢3 component of the displacement field at the top surface of the plate. This is meaningful, as this is exactly 137 

the component sampled by a linear array. For simplicity in the notation, 𝑢3(𝑥, ℎ, 𝑡) is denoted as 𝑢(𝑥, 𝑡). The 138 

expression for 𝑢1 and other fields, such as velocity or stress fields, is similar.  139 

The solution for an arbitrary element 𝑟 of the array is expressed in the local frame 𝑥′ = 𝑥 − 𝑟𝑠, 𝑡′ = 𝑡 −140 

𝑡𝑟, as shown again in Figure 1. The excitation load is given by 141 

𝑝r(𝑥′, 𝑡′) = 𝐴r𝑔(𝑥′; 𝑤)ℎ(𝑡′; 𝑀), (4) 142 

where 𝐴𝑟 and 𝑡𝑟 = 𝑟τ are the maximum voltage amplitude and linear time delay applied to the 𝑟th element, 143 

respectively, ℎ(𝑡′) is an 𝑀-cycle normalised toneburst with centre frequency 𝑓𝑒 and 𝑔(𝑥′; 𝑤) is the normalised 144 

pressure distribution which is considered identical for all elements and is usually modelled as piston-source, 145 

parabolic-source distribution or a similar window function of width w. Substitution of (4) into (3) assuming 146 

zero initial conditions and neglecting the initial time 𝑡′ < 𝑀/𝑓𝑒, yields the solution of the time coefficients of 147 

the 𝑟th sub-problem according to Duhamel's integral, 148 

𝜏r
𝑖(𝑡′) = ∫ ∫ 𝑝r(𝑥, 𝜏) 𝑋̂𝑖

3(𝑥)𝑋̂𝑖
3(𝑧 = ℎ) 

𝑙/2

−𝑙/2
𝑠𝑖𝑛(𝜔𝑖(𝑡′ − 𝜏)) 𝑑𝑥 𝑑𝜏

𝑀/𝑓𝑒

0
  . (5)149 

Equation (5) can be expressed as a sum of harmonic waves, 150 

𝜏𝑟
𝑖 (𝑡′) = 𝐴 𝑐𝑜𝑠(ωi𝑡

′) + 𝐵 𝑠𝑖𝑛(ωi𝑡
′) 151 

and after straightforward manipulations and omitting index 𝑖 for simplicity in the notation, the displacement 152 

field can be expressed in the form of forward and backward travelling waves, 153 

𝑢𝑟 = 𝐴𝑠𝐴𝑟𝑒j(𝑘𝑥′∓ω𝑡′−ψ), 154 

where only the real part of the expression is kept. The term 𝐴𝑠 appears in the form 155 

𝐴𝑠(ω, k) =
1

2ω
𝑋̂3(ℎ)2√(∫ ℎ(𝑡)

𝑀/𝑓𝑒

0

cos(ω𝑡) 𝑑𝑡)

2

+ (∫ ℎ(𝑡)
𝑀/𝑓𝑒

0

sin(ω𝑡) 𝑑𝑡)

2

|∫ 𝑔(𝑥)
𝑤/2

−𝑤/2

cos(𝑘𝑥) 𝑑𝑥|. 156 

Term 𝐴𝑠  fully describes the modal amplitude distribution from the response of a single element. It can be 157 

decomposed in three terms; the first is known as the excitability function, defined as 158 

𝐸 =
1

2𝜔

𝑋3(ℎ)2

𝑔(𝑋, 𝑋)
. 159 

This term is related to the properties of the waveguide and cannot be altered. The normalised excitability 160 

function for the first 10 guided wave modes on a 10 mm thick aluminum plate is shown in Figure 2a. The modes 161 

exhibit a transient behavior until they reach a local maximum, after which the amplitude is strictly decaying. At 162 

high frequencies, modes 𝐴0 and 𝑆0 combine and form the Rayleigh wave [18], whose excitability remains 163 

constant with frequency. Figure 2b displays the excitability of the same modes at 2 MHz. Neglecting the 164 

Rayleigh wave, the excitability is strictly increasing from mode 𝐴1 to 𝐴5. The second term is the frequency 165 

spectrum, which can be interpreted as the norm of the Fourier transform of h(t),  166 

‖ℱ(h(t))‖  =  ‖∫ h(t)e−iωtdt
∞

−∞
‖ = √(∫ ℎ(𝑡)

𝑀/𝑓𝑒

0
cos(ω𝑡) 𝑑𝑡)

2
+ (∫ ℎ(𝑡)

𝑀/𝑓𝑒

0
sin(ω𝑡) 𝑑𝑡)

2
. The 167 

temporal profile of the applied load ℎ(𝑡) can be seen as the convolution of the excitation signal and the impulse 168 

response of an array element. The third term is called single element excitation spectrum, given by 169 

Hse = |∫ 𝑔(𝑥)
𝑤/2

−𝑤/2

cos(𝑘𝑥) 𝑑𝑥|. 170 
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This term depends on the element width and spatial pressure distribution profile. Assuming piston-like 171 

excitation, the single element spectrum for element width 1 mm is shown in Figure 3a. The maximum value is 172 

reached at 𝑘 = 0 rad/mm, while several local minima and maxima occur in the displayed range. However, Lamb 173 

wave modes around 20 MHz⋅mm propagate at wavenumbers below 4 rad/mm. The effect of element width in 174 

this range is shown in Figure 3b. The amplitude of high-wavenumber modes is reduced with increasing element 175 

width. For example, at 𝑘 = 3.5 rad/mm, the amplitude drop is −1.1, −5 and −14.5 dB for element width 0.5, 176 

1 and 1.5 mm, respectively. Therefore, it is expected that more energy is distributed to lower wavenumber 177 

modes when increasing element width. 178 

Linearity of  (3) permits the expression of the total displacement field as a superposition of the individual 179 

solutions of each element. These solutions are then transformed to the global frame and summed according to 180 

𝑢 = ∑ 𝑢𝑟

𝑁−1

𝑟=0

= ∑ 𝐴𝑠𝐴𝑟𝑒𝑗(𝑘𝑥′∓ω𝑡′−ψ)

𝑁−1

𝑟=0

= 𝐴𝑠 ∑ 𝐴𝑟𝑒j(𝑘𝑥−𝑘𝑟𝑠∓ω𝑡±ωrτ−ψ)

𝑁−1

𝑟=0

= 𝑁𝐴𝑠𝐻±𝑒j(𝑘𝑥∓ 𝜔 𝑡−ψ−ϕ) 181 

where 182 

𝐻±(𝜔, 𝑘) =
1

𝑁
√∑ 𝐴r

2𝑁−1
r=0 + 2 ∑ ∑ 𝐴r

r−1
q=0

𝑁−1
r=0 𝐴q 𝑐𝑜𝑠((𝑘𝑠 ∓ 𝜔𝜏)(r − q)) (6)183 

and ψ, ϕ are phase values and do not affect modal amplitudes. The above form of the spectrum holds for linear 184 

time delay law and arbitrary apodisation profile. It is important to note that the modal amplitudes can be 185 

decomposed to 186 

𝐴± = 𝐴𝑆 𝐻±, (7)   187 

where 𝐴𝑆 = 𝑁𝐴𝑠. Term 𝐴𝑠 is related solely to the response of a single element; thus, it is determined by the 188 

frequency spectrum, mode excitability and element width. Multiplication by 𝑁 is merely rescaling and thus 189 

insignificant. On the other hand, the excitation spectrum is strictly related to properties of the array, namely the 190 

pitch, number of elements, time delay law and apodisation profile. In the following section, the properties of 191 

the excitation spectrum are investigated in detail, to derive a set of conditions for single mode excitation. 192 

 193 

 194 

  

Figure 2. Excitability function for a 10 mm thick aluminium 6082-T6 plate. a) Excitability function of the first 195 
10 modes. b) Excitability function of the same modes at 2 MHz.  196 
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Figure 3. Single element excitation spectrum. a) Excitation spectrum for element width 1 mm. b) Excitation 197 
spectrum for element width w=0.5,1 and 1.5 mm. Higher wavenumbers are attenuated with increasing element 198 
width. 199 

 200 

3. Selection of excitation parameters to enhance the purity of a single mode 201 

If uniform amplitudes 𝐴𝑟 = 1 are considered, the excitation spectrum (6) simplifies to 202 

𝐻±(ω, 𝑘 ;  𝑁, 𝑠, τ) = |
𝑠𝑖𝑛(

1

2
𝑁(𝑘𝑠∓𝜔𝜏))

𝑁 𝑠𝑖𝑛(
1

2
(𝑘𝑠∓𝜔𝜏))

| . (8)203 

The spectrum depends on angular frequency and wavenumber, while the number of elements, pitch and time 204 

delay law are treated as parameters. Furthermore, using the transformations ω = 2π𝑓, 𝑐𝑝 =
𝜔

𝑘
 𝑎𝑛𝑑 𝑘 =

2 𝜋

𝜆
, 205 

equivalent representations such as 𝐻±(𝑓, 𝑐𝑝; 𝑁, 𝑠, τ) can be obtained. To enhance the forward propagation of a 206 

mode, say at (𝑓𝑒 ,  𝑐𝑝𝑒 ), the time delay constant is selected to maximise 𝐻+(𝜔𝑒 , 𝑘𝑒), requiring the denominator 207 

of the same expression to vanish [28], 208 

sin(
1

2
(𝑘𝑒 s − ω𝑒 τ)) = 0 ⇒ τ =

𝑠

𝑐𝑝𝑒
−

𝑛

𝑓𝑒
, (9) 209 

where 𝑛 ≤ s
𝑐𝑝𝑒

𝑓𝑒
 and is an integer. For 𝑛 = 0, the method is known as excitation at constant phase velocity [8].  210 

  

Figure 4. Excitation spectrum 𝑯+ for a 16-element array with pitch 4.5 mm. a) Spectrum at frequency-phase 211 
velocity domain. The main lobe is at constant phase velocity. One grating lobe above the Rayleigh wave velocity 212 

(a) (b) 
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is shown. The white lines represent dispersion curves of a 𝟏𝟎 mm thick aluminium sample. b) Gated signal at 213 
2 MHz, showing the main, grating and side lobes.  214 

The excitation spectrum 𝐻+(𝑓, 𝑐𝑝 ;  𝑁, 𝑠, 𝜏) for a 16-element array with pitch 4.5 mm on top of the dispersion 215 

curves (in white) of a 10 mm thick aluminium plate is shown in Figure 4a. Although the pitch value is not 216 

representative of a conventional linear array probe, it is selected here to make it simpler to illustrate the attributes 217 

of the spectrum, namely the main, grating and side lobes. The time delay constant is set to 𝜏 = 𝑠/𝑐𝑝𝑒 = 1194 218 

ns to enhance 𝑆3 with (𝑓𝑒 , 𝑐𝑝𝑒) = (2 MHz, 3.77 m/ms). The excitation beam at constant phase velocity is 219 

shown (main lobe), while several excitation beams appear below and above 𝑐𝑝𝑒 (grating lobes). Fortunately, not 220 

all these beams are relevant to guided wave excitation. This is based on the fact that all guided wave modes lie 221 

between a well-defined region bounded by the Rayleigh wave 𝑉𝑅 and cutoff velocity 𝑉cutoff, 222 

𝑉𝑅 ≤ 𝑐𝑝 ≤ 𝑉cutoff, 223 

thereafter referred to as the excitable phase velocity region. Therefore, beams outside this region do not intersect 224 

with a guided wave mode and thus have no effect on guided wave excitation. For common steel and aluminium 225 

samples, 𝑉𝑅 ≈ 3 m/ms and 𝑉cutoff ≈ 22 m/ms. The excitation spectrum captured by the gate at 𝑓 = 𝑓𝑒 is shown 226 

in Figure 4b. The spectrum consists of the main, side and grating lobes. Note that the display dynamic range in 227 

Figure 4a thresholds all but the biggest amplitude side lobes.  228 

The features of the excitation spectrum in Figure 4b are familiar from bulk wave steering. In fact, direct 229 

comparison of (8) with the directivity function [39] for phased array steering 𝐻2(𝜃) reveals that setting  230 

𝑠𝑖𝑛θ = ±
cpτ

s
 and  sin𝜃𝑠 = 1, (10) 231 

it turns out that  232 

𝐻2(𝜃) = 𝐻±, (11) 233 

where θ, θ𝑠 are the azimuthal and steering angles with respect to the centre of the array, respectively. This 234 

means the material for phased array beam steering is transferable to phased array guided wave excitation. 235 

However, the performance of the array is not tested against angle θ but phase velocity, which is not a material 236 

constant due to the multimodal and dispersive nature of guided waves. Note also that setting 𝑠𝑖𝑛θ𝑠 = ±
cpτ

s
 and 237 

sinθ = 1 yields identical results, however, the former choice is made. 238 

In what follows, emphasis is placed on the main attributes of the spectrum to improve guided wave 239 

excitation. More specifically, in Section 3.1, the bandwidth of the excitation spectrum is defined and an explicit 240 

form relating its width to relevant excitation parameters is provided. In Section. 3.2, a set of conditions on the 241 

pitch of the array are derived, to eliminate the grating lobes in the excitable phase velocity region. Finally, the 242 

general form of the spectrum is re-considered and an optimised apodisation profile is derived to further enhance 243 

the purity of the targeted mode in Section 3.3.  244 

 245 

3.1 Bandwidth of excitation spectrum at constant phase velocity 246 

At high frequency-thickness products, the low dispersion modes can be roughly approximated as straight 247 

horizontal lines in the frequency-phase velocity domain. Each mode can be associated with a phase velocity 248 

bandwidth, defined as  249 

Δ𝑐𝑝
𝑚± ≡ |𝑐𝑝

𝑚 − 𝑐𝑝
𝑚±1|, 250 

where 𝑐𝑝
𝑚 the phase velocity of mode 𝑚 and 𝑐𝑝

𝑚−1, 𝑐𝑝
𝑚+1  the phase velocity of the modes closest to 𝑚 such 251 

that 𝑐𝑝
𝑚−1 < 𝑐𝑝 < 𝑐𝑝

𝑚+1. The above definition is useful, as it quantifies how ‘far’ the examined mode is from 252 

its neighbours. The phase velocity bandwidth of 𝑆3 at 20 MHz⋅mm is shown in Figure 5. 253 
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 254 

Figure 5. Phase velocity bandwidth of mode 𝑺𝟑 at 2 MHz on a 10 mm aluminium plate. 255 

Next, the attention is shifted to the phase velocity bandwidth Δ𝑐𝑝 of the excitation beam at constant phase 256 

velocity 𝑐𝑝𝑒 of the spectrum 𝐻+. Based on the above, single mode excitation requires 257 

Δ𝑐𝑝/2 < Δ𝑐𝑝
𝑚+ 𝑎𝑛𝑑  Δ𝑐𝑝/2 < Δ𝑐𝑝

𝑚− (12)258 

where Δ𝑐𝑝 is defined as the phase velocity interval containing the main lobe together with the left and right peak 259 

side lobes, see Figure 6. More specifically, using (46) from [39] and (10) the phase velocity corresponding to 260 

the local maxima of the first three side lobes, located on the right-hand side of the main lobe reads  261 

𝑐𝑝 ≈ (1 −
(2𝑚′′+1)λ𝑒

2𝑁𝑠
) 𝑐𝑝𝑒 ,  𝑚′′ = −2, −3, −4 (13)262 

with corresponding amplitudes at −13.5 dB, −18 dB and −21 dB, respectively, as shown again in Figure 6. 263 

Including the peak side lobes in the definition of the bandwidth ensures the maximum amplitude outside the 264 

bandwidth region is not greater than −18 dB. Note that in the above equation, the dispersion effects are 265 

neglected. This is a valid assumption for the low dispersion modal region. For example, when 𝑆3 is targeted, 266 

the error between the exact phase velocity value corresponding to the maximum of the peak side lobe and (13) 267 

is less than 0.1%. Employing (29) from [39] and (10) and setting 𝑚 =  ±2, Δ𝑐𝑝 is given by 268 

Δ𝑐𝑝 ≈ ((1 +
2λ𝑒

𝑁𝑠
) − (1 −

2λ𝑒

𝑁𝑠
)) 𝑐𝑝𝑒 =

4λ𝑒

𝑁𝑠
𝑐𝑝𝑒 . 269 

The above equation shows that the bandwidth of the excitation spectrum increases for increasing the wavelength 270 

and phase velocity of the targeted mode, but decreases when the total length of the array increases. This can be 271 

achieved by increasing the number of elements or the pitch. However, as will be shown in Section 3.2, increasing 272 

the pitch can have negative effects, as grating lobes may appear. The phase velocity bandwidth of 𝑆3 at 20 273 

MHz⋅mm and the bandwidth of the excitation spectrum corresponding to an array with pitch 0.75 mm operating 274 

at 2 MHz for 32, 64 and 128 elements are given in Table 1. We observe that Δ𝑐𝑝
𝑚− < Δ𝑐𝑝

𝑚+, which suggests 275 

that the modal density increases for lower phase velocities. The minimum number of elements to satisfy 276 

condition (12) using the same array is given by 277 

Δ𝑐𝑝/2 < Δ𝑐𝑝
𝑆3− ⇒ 𝑁 >  

2λ𝑒

Δ𝑐𝑝
𝑆3−𝑠

𝑐𝑝𝑒 ⇒ 𝑁 > 90, 278 

which suggests 𝑆3 can be excited efficiently with an array length above 68 mm. 279 
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 280 

Figure 6. Excitation spectrum 𝑯+ at 2 MHz for a 64-element, 0.75 mm pitch array. The maximum amplitude 281 
of the peak, second and third side lobes is shown. The phase velocity bandwidth is defined as the width of the 282 
main and peak side lobes. 283 

 284 

Table 1 Phase velocity bandwidth at 𝟐 MHz of mode 𝑺𝟑 and a 0.75 mm pitch array with 32, 64 and 128 285 
elements. 286 

Mode/Spectrum Phase velocity (m/ms) Δ𝑐𝑝
𝑆3+ (m/ms) Δ𝑐𝑝

𝑆3− (m/ms) Δ𝑐𝑝/2 (m/ms) 
S3 3.77 0.32 0.21 - 
32 −element array 3.77 - - 0.59 
64 −element array 3.77 - - 0.30 
128 −element array 3.77 - - 0.15 

 287 

3.2 Elimination of grating lobes in the excitable phase velocity region 288 

The grating lobes correspond to local maxima of the excitation spectrum and are found by setting the 289 

denominator of the spectrum 𝐻+  to zero. Combining (33) of [39] and (10) , their location is determined 290 

according to  291 

𝑐𝑝(𝑚′) = (1 −
𝑚′λ

𝑠
)

𝑠

τ
, (14)292 

where 𝑚′ is an integer and λ = 𝑐𝑝/𝑓 . For the general linear time delay law given in (9) the main lobe occurs 293 

for 𝑚′ = 𝑛, while 𝑚′ ≠ 𝑛 corresponds to grating lobes. Therefore, there exists an infinite number of grating 294 

lobes. Nevertheless, as stated earlier, only lobes that lie in the excitable phase velocity region are relevant. To 295 

eliminate them in this region, two necessary conditions are required. The first requires the lobe at the right 𝑚′ =296 

𝑛 − 1 (see Figure 4b) of the main lobe to occur at phase velocity higher than the cutoff,  297 

𝑐𝑝(𝑚′ = 𝑛 − 1) > 𝑉𝑐𝑢𝑡𝑜𝑓𝑓 . (15) 298 

The second condition requires the lobe at the left 𝑚′ = 𝑛 + 1 of the main lobe to occur at phase velocity lower 299 

than the Rayleigh wave velocity, 300 

𝑐𝑝(𝑚′ = 𝑛 + 1) < 𝑉𝑅 . (16) 301 

At this stage, it is convenient to transform (14) in the frequency-wavenumber domain, 302 

𝑘 =
𝜏

𝑠
𝜔 +

2π𝑚′

𝑠
=  (

2π

c𝑝𝑒
−

2π𝑛

𝑓𝑒𝑠
) 𝑓 +

2π𝑚′

𝑠
. (17)303 

This form is advantageous as it explicitly contains the frequency, which can be set to 𝑓 = 𝑓𝑒. In the frequency-304 

wavenumber domain, the excitation beams appear simply as straight lines of equal and positive slope, see Figure 305 

7. 306 
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Figure 7. Excitation spectrum 𝑯+ in the frequency-wavenumber domain for a 32-element array with pitch 2.25 307 

mm and target mode at (𝒇𝒆, 𝒄𝒑𝒆). The excitation beams appear as straight lines. The excitation beam for 𝒎′ =308 

𝟎 intersects the frequency spectrum (in red) on top of 𝑺𝟑 mode at 2 MHz. The white lines represent dispersion 309 
curves of a 10 mm thick aluminium sample.  310 

 311 

 Condition (15) reads 312 
𝜔𝑒

𝑉cutoff
> (

2𝜋

𝜆𝑒
−

2𝜋𝑛

𝑠
) +

2𝜋(𝑛−1)

𝑠
⇒ 𝑠 <

𝜆𝑒

1−
𝑉phase
𝑉cutoff

. (18)313 

Similarly, condition (16) is stated as 314 
𝜔e

𝑉R
< (

2𝜋

𝜆𝑒
−

2𝜋𝑛

𝑠
) +

2𝜋(𝑛+1)

𝑠
⇒ 𝑠 <

𝜆𝑒
𝑉phase

𝑉R
−1

. (19)315 

Conditions (18) and (19) set an upper bound for the pitch. Exploiting the fact that 𝑉cutoff > 𝑉phase and 𝑉𝑅 <316 

𝑉phase  for any guided wave mode, both conditions can be expressed in the more compact form 𝑠 <317 

min (
λ𝑒

1−ϵ1
,

λe

ϵ2
), where 𝜖1,  𝜖2 are positive numbers such that 𝑉phase/𝑉cutoff = 𝜖1 and 𝑉phase/𝑉R = 1 + 𝜖2. As an 318 

example, consider an array on top of a 10 mm aluminium plate operating at 2 MHz with target mode S3. Then,  319 

𝜖1 = 0.17, 𝜖2 = 0.25, 𝜆𝑒 = 1.88 mm, and simple calculations yield 320 

min (
λ𝑒

1 − ϵ1
,
λ𝑒

ϵ2
) =

λ𝑒

1 − ϵ1
= 2.27 mm. 321 

Condition (18) proved stricter than condition (19) at the scenario above. That is indeed the case when low 322 

dispersion modes close to the Rayleigh wave are targeted. Therefore, for the cases examined in this work, only 323 

condition (18) is significant. 324 

The above conditions do not eliminate grating lobes in the backwards direction. For this purpose, 𝐻− is 325 

examined. The grating lobes are located at  326 

𝑐𝑝 = − (1 −
𝑚′λ

𝑠
)

𝑠

τ
. (20)327 

In a similar manner, (20) is first transformed to  328 

𝑘 = −
𝜏

𝑠
𝜔 +

2π𝑚′

𝑠
= − (

1

λ𝑒𝑓𝑒
−

𝑛

𝑓𝑒𝑠
) 𝜔 +

2π𝑚′

𝑠
, (21) 329 

which shows that the excitation beams related to backward propagation are also straight lines with equal but 330 

negative slope. Next, it is required that the excitation beam given by 𝑚′ = −𝑛 + 1 does not intersect with the 331 

frequency spectrum inside the modal region, as shown in Figure 8 for a 128-element, 0.75 mm pitch array with 332 

time delay set to τ =  𝑠/𝑐𝑝𝑒, to enhance the forward propagation of mode (𝑓𝑒 , 𝑐𝑝𝑒). 333 
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 334 

Figure 8. Excitation spectrum 𝑯− in the frequency-wavenumber domain for a 128-element array with pitch 335 
0.75 mm and target mode at (𝒇𝒆, 𝒄𝒑𝒆). Unidirectional propagation requires that the excitation beam for 𝒎′ = 𝟏 336 

does not intersect the frequency spectrum (in red) inside the excitable region, defined by the Rayleigh wave and 337 
cutoff lines. The white lines represent dispersion curves of a 10 mm thick aluminium sample. 338 

This is ensured if the excitation beam assumes a higher wavenumber value that the Rayleigh wave mode at 𝑓 =339 

𝑓𝑒, 340 
𝜔𝑒

𝑉𝑅
< − (

2π

λ𝑒
−

2π𝑛

𝑠
) +

2π(−𝑛+1)

𝑠
⇒ 𝑠 <

λ𝑒

1+
𝑉phase

𝑉𝑅

. (22)      341 

In contrast to condition (18) the above condition not only necessary, but also sufficient. In other words, if it is 342 

satisfied, unidirectional propagation is enforced. Furthermore, if 𝑉phase ≈ 𝑉𝑅  the condition becomes 𝑠 <
λ𝑒

2
, 343 

which is a well-known condition applied in phased array beam steering [39]. Note that this condition is related 344 

only to the unidirectionality of the mode and not to propagation in the forward direction. 345 

Although conditions (18) and (22) were derived in a systematic way, some assumptions were made. 346 

Specifically, the whole derivation is solely based on the excitation spectrum, completely neglecting the effect 347 

of the single element response. In a sense, it is assumed that the single element distributes energy uniformly 348 

across the modes, while in fact, more energy is distributed to the low wavenumber modes. Furthermore, the 349 

excitation beams and frequency spectrum are simply treated as lines with zero bandwidth. For these reasons, in 350 

practice, these conditions are expected to be slightly violated.  351 

 352 

3.3 Apodisation 353 

Apodisation profiles can be employed to potentially improve guided wave excitation. Standard apodisation 354 

windows such as Hanning or Blackman eliminate the side lobes but increase the width of the main lobe [29]. In 355 

this section, an apodisation profile is derived based on an optimisation process. The apodisation function is 356 

compared with common apodisation profiles in Section 4.3. 357 

Consider the general form (6) of the spectrum 𝐻+. First, the terms that do not depend on frequency or 358 

wavenumber are omitted. The modified spectrum is given by 𝐻̅ = ∑ ∑ 𝐴𝑟𝐴𝑞
𝑟−1
𝑞=0 cos((𝑘𝑠 − 𝜔𝜏)(𝑟 − 𝑞))𝑁−1

𝑟=0 , 359 

which can be expressed in the more compact form 360 

𝐻̅ = 𝐴𝑇𝐻̂𝐴, 361 

where 𝐴 = (𝐴0, … , 𝐴𝑁−1)𝑇and 𝐻̂ is a 𝑁 × 𝑁 matrix with elements 362 

[𝐻̂𝑟𝑞] = {
𝑐𝑜𝑠((𝑘𝑠 − ωτ)(𝑟 − 𝑞)) , 𝑞 < 𝑟                                           

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 363 

where 𝑟, 𝑞 = 0, . . . , 𝑁 − 1. Next, an objective function that needs to be maximised is defined [10,40]  364 
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Δ =
𝐴𝑇𝐻̂𝑒𝐴

𝐴𝑇𝐻̂𝑠𝐴
, (23)365 

where 𝐻̂𝑒 = ∑ 𝐻̂𝑒𝑝(𝑓𝑒𝑝, 𝑘𝑒𝑝)𝑃
𝑝=0 and 𝐻̂𝑠 = ∑ 𝐻̂𝑠𝑝′(𝑓𝑠𝑝′ , 𝑘𝑠𝑝′)𝑃′

𝑝′=0 .  The points in the frequency-wavenumber 366 

domain (𝑓𝑒𝑝, 𝑘𝑒𝑝),  (𝑓𝑠𝑝′, 𝑘𝑠𝑝′) correspond to modes to enhance and suppress, respectively. The critical points 367 

of Δ are found by imposing the requirement  368 

∂𝐴𝑟
 Δ = 0 ⇒ (𝐻̂𝑒 + Ĥe

T − 𝜆(𝐻̂𝑠 + Ĥs
T)) 𝐴 = 0 ⇒ 𝑅𝐴 = λ𝐴, (24)369 

where 𝑅 = (𝐻̂𝑠 + Ĥs
T)

−1
(𝐻̂𝑒 + Ĥe

T). Solution of (24) results in finding the eigenvalues and eigenvectors of 𝑅, 370 

which in the case examined in Section 4.3 was an invertible matrix. The apodisation profile is selected as the 371 

eigenvector 𝐴opt which corresponds to the largest eigenvalue 𝜆𝑚𝑎𝑥.  372 

 373 

4. Experimental results 374 

The experimental setup is presented in Figure 9. Two linear 2.25 MHz Vermon arrays with 128 elements 375 

and a pitch of 0.75 mm were used in pitch-catch configuration on top of a 10 mm thick 6082-T6 aluminium 376 

plate. FMC data was collected along an overall line scan of 192 mm by using each element of the receiver probe 377 

as independent receivers. The length of the phased array probe is 96mm so the 192mm line-scan was captured 378 

in two steps (2x96 mm) by manually moving the probe. The separation distance was set in the first capture 379 

approximately to 200 mm edge-to-edge. The transducers were aligned with a metallic frame (not shown in 380 

Figure 9). The signals were generated and received with the 32Tx/32Rx/128E FI Toolbox [41], which is an 381 

array driver capable of producing arbitrary waveform signals using pulse width modulation with a 3-state pulser 382 

and digitising signals with a sampling frequency of 50 MHz. To excite a single mode, a narrowband signal was 383 

required. For that reason, in all following results, the excitation was a 14-cycle Hanning windowed toneburst 384 

centred at 2 MHz, leading to 20MHz⋅mm operating frequency-thickness product. The excitation signal was 385 

Hanning windowed to suppress any sidelobes [15]. The selected number of cycles narrows the frequency band 386 

of the signal approximately to 0.17 MHz at −6 dB. Although this is desired to excite a single mode, an 387 

immediate downside is the decrease in spatial resolution of the travelling wave, as the length of the wave-packet 388 

increases. However, the wavelengths of the guided wave modes at 20 MHz⋅mm are in the range 1.5 − 3 mm 389 

for the low dispersion modes, say 𝐴1 − 𝑆5. This can compensate for the high number of cycles. All 2DFFT 390 

[42] results are presented on top of the dispersion curves (in white) for the 10 mm thick aluminium sample that 391 

was used for the experiments. 392 

 393 

 394 

Figure 9. Experimental setup, showing two linear 2.25 MHz arrays with 128 elements operating in pitch-catch 395 
technique on top of a 10 mm aluminium plate.  396 

All signals were reconstructed synthetically [43,44]. More specifically, given the full matrix of signals 397 

[𝑠𝑟𝑞(𝑡)], where index 𝑟 and 𝑞 denote the transmitting and receiving elements, respectively, the linearity of (3) 398 

suggests the reconstructed signal at 𝑥𝑞 is given by  399 
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𝑢(𝑥𝑞 , ℎ, 𝑡) = ∑ 𝐴𝑟𝑠𝑟𝑞(𝑡 − 𝑡𝑟)

𝑁−1

𝑟=0

. 400 

This means once the full matrix is obtained, any delay law and apodisation profile can be constructed 401 

synthetically. In this work, only linear time delays are considered; however, general voltage amplitudes 𝐴𝑟 are 402 

addressed in Section 4.3. 403 

The 2DFFT of a single element of the array is shown in Figure 10. Considering the amplitude 404 

decomposition (7), this plot is related to term 𝐴𝑆. Essentially, the single element response sets an amplitude 405 

floor, which is then enhanced or suppressed by the excitation spectrum. Simple examination reveals more energy 406 

is placed at the low wavenumber modes, which are in general more dispersive, such as 𝐴8 and 𝑆8, while little 407 

energy is distributed to higher wavenumber modes, such as 𝐴1 and 𝑆1.  The 2DFFT map reveals that there is 408 

an offset between the experimental data and the dispersion curves, especially for high wavenumber modes. This 409 

error is expected to be related to the frequency-wavenumber discretisation involved in the 2DFFT [45]. The 410 

numerical error was found around 3% and did not raise any issues, thus was deemed acceptable for the purposes 411 

of this work.  412 

In the experimental results that follow, mode 𝑆3 at (𝑓𝑒 , 𝑘𝑒) = (2 MHz, 3.34 rad/mm) was targeted. Based 413 

on the excitability function presented in Figure 2b, 𝑆3 is more excitable that any lower order mode at 20 414 

MHz⋅mm. Furthermore, this mode is less dispersive compared to higher order modes such as 𝐴5, 𝑆5, 𝐴6, ⋯,A9. 415 

Modes 𝐴4 and 𝑆4 exhibit also low dispersion behavior and good excitability. However, mode 𝑆3 was preferred 416 

due to its lower wavelength at 2 MHz, namely 1.89 mm, over 2.03 and 2.21 mm of  𝐴4 and 𝑆4, respectively. 417 

These modes are also considered in Section 4.3. In all that follows, modes 𝑆3, 𝐴4 and 𝑆4 were excited using (9) 418 

with 𝑛 = 0. 419 

 420 

Figure 10. 2DFFT of a single element for a 14-cycle Hanning windowed toneburst centred at 2 MHz. More 421 
energy is distributed to the low wavenumber modes. 422 

 423 

4.1 Experimental investigation of the influence of the excitation spectrum’s bandwidth to single mode 424 

excitation 425 

Three setups are presented, varying the number of elements of the transmitter array, to investigate 426 

experimentally the effect of the excitation spectrum’s bandwidth on guided wave excitation.  In all setups, 427 

uniform amplitudes 𝐴𝑟 = 1 and time delay constant τ = 200 ns were employed. The excitation bandwidth as 428 

given in Table 1 is plotted in red on top of the 2DFFT results presented in Figure 11a, b and c. In the first 429 

configuration, only the first 32  elements of the transmitter array were used. As shown in  Figure 11a, a 430 

significant amount of energy is distributed not only to 𝑆3 but also its neighbours, namely modes 𝐴3 and 𝐴4. 431 

This is expected, as the excitation bandwidth associated with a 32-element array is large enough to significantly 432 
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overlap with 𝐴3 and 𝐴4 around 2 MHz. In the second configuration, the first 64 elements were used for the 433 

excitation. Energy leakage is reduced, and more energy is focused on mode 𝑆3, see Figure 11b. This is due to 434 

the narrower spectrum bandwidth of a 64-element array. Finally, the excitation is further improved utilising all 435 

128 elements and can be considered as single mode. The A-scans for the three configurations examined are 436 

shown in Figure 12. The signals shown in Figure 12a, b and c were captured at a distance around 303, 307 and 437 

320 mm away from the first element of the transmitter array, respectively. This way, the peak amplitude of S3 438 

occurs around 122 μ𝑠 for all three cases. The group velocity of 𝐴3, 𝑆3 and 𝐴4 was found to be 2.77 m/ms, 2.62 439 

m/ms and 2.45 m/ms, respectively, with error less than 0.5%, 0.5% and 1.3% compared with the theoretical 440 

group velocities obtained from the Dispersion Calculator [46]. 441 

 442 

   

Figure 11. 2DFFT produced with 0.75 mm pitch array and a) 32, b) 64 and c) 128 elements. The response 443 
improves significantly with the increase of number of elements, which narrows the bandwidth of the excitation 444 
spectrum. 445 

   

Figure 12. Example A-scans targeting mode S3 varying the number of elements a) 32 elements were used, 446 
modes A3 and A4 are present. b) 64 elements were used, modes A3 and A4 are suppressed c) 128 elements 447 
were used, mode S3 is dominant.  448 

 449 
4.2 Experimental verification of the generation of grating lobes 450 

Another set of experiments was conducted to examine the validity of conditions (18) and (22), which read 451 

𝑠 < 2.27 mm and 𝑠 < 0.84 mm, respectively. 452 

The 2DFFT in the forward direction for 𝑠 = 1.5, 2.25 and 3 mm is shown in Figure 13a, b and c.  The data 453 

was obtained from the same FMC dataset by skipping one, two and three elements of the transmitter array. The 454 

active aperture was kept constant at 96 mm, and voltage amplitudes were uniform. For 𝑠 = 1.5 mm, condition 455 

(18) is satisfied and a single mode is generated in the forward direction, see Figure 13a. The response is very 456 

similar to the one presented in Figure 11c. However, for 𝑠 = 2.25 mm, an unwanted mode is generated, as 457 

shown in Figure 13b. The location of the unwanted mode is at the intersection of the frequency spectrum with 458 

an excitation beam (grating lobe), which can be found substituting 𝑚′ = −1 in (17). This means condition (18) 459 

is violated somewhat earlier in practice, which is expected, as both the frequency and the excitation beams are 460 

associated with finite bandwidths. The effect of the 𝑚′ = −1 beam is present also for 𝑠 = 3 mm, as shown in 461 

Figure 13c. The increase of the pitch has shifted the beam to the left, thus compared to the previous case, a 462 

(a) (b) (c) 
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higher wavenumber unwanted mode is generated. 463 

Next, the 2DFFT for guided wave propagation in the backward direction is presented in Figure 13d, e and 464 

f, for 𝑠 =  1.5, 2.25 and 3 mm, respectively. This time, the time delay law applied synthetically is given by 465 

𝑡𝑟 = (𝑁 − 1 − 𝑟)τ , to mimic a beam propagating in the −𝑥  direction. In what follows, the 0  dB value 466 

corresponds to the maximum amplitude of the forward propagating wave. For example, the 0 dB value in Figure 467 

13d corresponds to the maximum amplitude of Figure 13a. Note that for 𝑠 = 0.75  mm condition (19) is 468 

satisfied and no energy higher than −18 dB was found to propagate in the backwards direction, thus this result 469 

is not presented. For all three setups, condition (19) is violated and unwanted modes propagate. These are 470 

located at the intersection between the frequency spectrum and the excitation beams given by (21). Specifically, 471 

Figure 13 d, e and f show the propagating modes on top of the excitation beams for 𝑚′ = 1, 𝑚′ = 2 and 𝑚′ =472 

2,3, respectively. The above results are in striking agreement with the material developed in Section 3.2. 473 

   

   
Figure 13. Top Row: 2DFFT in the forward direction, varying the pitch value; red line indicates an excitation 474 
beam. a) 𝒔 = 𝟏. 𝟓 mm. No excitation beams intersect with the frequency spectrum and only 𝑺𝟑 is excited. b) 475 
𝒔 = 𝟐. 𝟐𝟓  mm. The excitation beam for 𝒎′ = −𝟏  intersects with the frequency spectrum, generating low 476 
wavenumber modes. c) 𝒔 = 𝟑 mm. The same beam is activated. This time, the beam is shifted to the left, 477 
resulting in excitation of a higher wavenumber mode. Bottom Row: 2DFFT in the backward direction, varying 478 
the pitch value. d) 𝒔 = 𝟏. 𝟓 mm. The excitation beam for 𝒎′ = 𝟏 intersects with the frequency spectrum. e) 𝒔 =479 
𝟐. 𝟐𝟓 mm. Although the excitation beam for 𝒎′ = 𝟏 beam does not activate any modes, the beam for 𝒎′ = 𝟐 480 
does. f) 𝒔 = 𝟑 mm. Two excitation beams intersect with the frequency spectrum inside the modal region, 481 
leading to the excitation of lower and higher wavenumber modes. 482 

Similar results can be obtained if the elements of the array are grouped to simulate larger elements. For 483 

example, instead of skipping two elements, the array can be partitioned into groups of three elements, combining 484 

1 − 3, 4 − 6, . . . ,124 − 126. The two approaches are equivalent in the sense that both give the same pitch value. 485 

However, the response of a single group is different from the single element response shown in Figure 10, due 486 

to the larger width of the group. The 2DFFT of a group that consists of three elements is shown in Figure 14. 487 

The energy distribution to the higher wavenumber modes is below -18 dB. This makes targeting these modes 488 

more challenging, mainly for three reasons. First, even if condition (18) is satisfied and no grating lobes are 489 

present, a small amount of energy may still be distributed to low wavenumber modes, as the group element 490 

response enhances these modes significantly. Second, the energy of the high wavenumber targeted mode is 491 

decreased compared to the case where the elements are not grouped, leading to lower signal to noise ratio. 492 

Comparison of the 2DFFT result shown in Figure 15a with Figure 11c revealed that the amplitude of 𝑆3 was 10 493 

(a) (b) (c) 

(d) (e) (f) 

Single mode Lamb wave excitation at high frequency thickness products using a conventional linear array transducer



- 16 - 

   
 

time lower. Finally, if condition (18) is violated, the unwanted modes are expected to dominate the signal. 494 

 495 

 
 496 

Figure 14. 2DFFT of a group of 3 elements. More energy is distributed to the low wavenumber modes. 497 

 498 
Figure 15a, b and c present 2DFFT results in the forward direction grouping two, three and four elements, 499 

respectively. All remaining parameters were kept identical to the results already presented in Section 4.2. The 500 

2DFFT for pitch value 1.5 mm is shown in  Figure 15a. Similar to  Figure 13a, most of the energy is focused 501 

on 𝑆3. However, in this case, energy leakage towards low wavenumber modes is present.  Figure 15b and c 502 

correspond to pitch values of 2.25 and 3 mm. Again, these are similar to Figure 13b and c, but with a sharp 503 

difference. Specifically, the energy of the targeted mode 𝑆3 is significantly lower compared to energy level of 504 

the unwanted modes, which dominate wave propagation, being approximately 18 dB higher than S3. This is 505 

expected, as the single group response amplifies low wavenumber modes, see  Figure 14. The results for 506 

propagation in the −𝑥 direction are very similar to the ones already presented in Figure 13d, e and f thus are not 507 

repeated here. 508 

 509 

   
 510 

Figure 15. 2DFFT in the forward direction, varying the pitch value; red line indicates an excitation beam. a) 511 
𝒔 = 𝟏. 𝟓 mm. Mode S3 is dominant. b) 𝒔 = 𝟐. 𝟐𝟓 mm. The excitation beam for 𝒎′ = −𝟏 intersects with the 512 
frequency spectrum, generating low wavenumber modes. Mode S3 is below -18 dB. c) s=3 mm. The same beam 513 
is activated. Mode S3 is approximately 18 dB lower. 514 

4.3 Experimental assessment of apodisation 515 

The experimental results presented so far assume uniform voltage amplitudes across the elements of the 516 

array. This raises a natural question, whether an apodisation profile can improve the purity of the targeted mode. 517 
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Here, three apodisation profiles are compared, namely uniform, Blackman window and the optimised, as shown 518 

in Figure 16a. The optimised profile is the result of the optimisation problem described in Subsection 3.3, where 519 

the points in the frequency-wavenumber domain to enhance and suppress are manually selected based on Figure 520 

11c. In general, the definition of a suitable objective function is a subtle issue; different apodisation profiles 521 

result from different definitions. Here, the points to enhance and suppress are the points of maximum amplitude 522 

of 𝑆3  and 𝐴4,  which in the frequency-phase velocity domain are given by  (𝑓𝑒, 𝑐𝑝𝑒)  and (𝑓𝑠, 𝑐𝑝𝑠) =523 

(2.08 MHz, 3.956 m/ms). The effect of each of the three profiles on the phase velocity spectrum gated at 2 524 

MHz is shown in Figure 16b, similar to Figure 4b but plotted in dB scale. As expected, the Blackman window 525 

significantly reduces the amplitude of the side lobes; however, the width of the main lobe increases. On the 526 

contrary, the optimised profile's spectrum is very similar to the uniform spectrum, with one key difference: the 527 

second side lobe's amplitude is significantly reduced. The peak of this side lobe is at 𝑐𝑝 = 3.959 m/ms, which 528 

is very close to 𝑐𝑝𝑠. The amplitude of 𝐴4 at (𝑓𝑠, 𝑐𝑝𝑠) depends on the magnitude of the excitation spectrum at the 529 

same point. This means that the second side lobe is primarily responsible for the generation of 𝐴4, and it is 530 

exactly the same lobe that is suppressed by the optimised apodisation profile. Therefore, by reducing the 531 

magnitude of the second side lobe of the spectrum, the amplitude 𝐴4 is expected to decrease. 532 

  
Figure 16. a) Uniform, Blackman and optimised apodisation profiles for 128-element array. b) The excitation 533 
spectrum for each of these profiles is shown. The response of the optimised and uniform profiles is very similar, 534 
but the second side's lobe amplitude is significantly reduced for the optimised profile, which is beneficial to 535 
enhance the purity of 𝑺𝟑. 536 

The effect of the selected profiles on guided wave excitation is further investigated. Specifically, an 537 

experimental 2DFFT for each amplitude profile is computed and shown in Figure 17. The overall improvement 538 

is visible in the 2DFFT graph.  539 

 540 

   

Figure 17. 2DFFT results for different apodisation profiles. The unwanted modes are encircled in red. a) 541 
Uniform amplitudes. The presence of A4 is not significant but visible. b) Blackman window. The presence of 542 
the unwanted mode is amplified. c) Optimised profile. A4 is suppressed.    543 

(a) (b) 
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 544 

The performance of each profile is further measured with the definition of an objective function which is similar 545 

to (23), defined by 546 

Δ𝐸 =
∑ 𝐴𝐸(𝑓𝑒𝑝,𝑘𝑒𝑝)3

𝑝=0

∑ 𝐴𝐸(𝑓𝑠𝑝′,𝑘𝑠𝑝′)14
𝑝′=0

, 547 

but in this case 𝐴𝐸(𝑓𝑒𝑝, 𝑘𝑒𝑝),  𝐴𝐸(𝑓𝑠𝑝′, 𝑘𝑠𝑝′) represent amplitudes extracted directly from experimental 2DFFT 548 

results. For this calculation, four points of 𝑆3 and fifteen points of 𝐴4 were selected around 2 MHz. Then, the 549 

amplitude (linear scale) of these points was extracted from the 2DFFT for the cases of uniform, Blackman and 550 

optimised apodisation profiles. The experimental objective function together with its numerator and 551 

denominator is shown in Figure 18. The amplitude of the target mode for uniform amplitudes excitation was set 552 

to one and all others were scaled accordingly. As expected, the optimised apodisation profile performs better 553 

among the selected three, suggesting it is the most appropriate choice for single mode excitation. 554 

 555 

 

Figure 18. Amplitude comparison between Uniform, Blackman and Optimised profiles. 556 

 557 
Next, the possibility of further improving single mode excitation using apodisation is investigated for more 558 

higher order modes, namely 𝐴4 and 𝑆4.  559 

Figure 19 displays 2DFFT maps in the frequency-wavenumber domain. Uniform voltage amplitudes were 560 

employed. At 2 MHz, the wavenumber values of 𝐴4 and 𝑆4 read 3.109 rad/mm and 2.814 𝑟𝑎𝑑/𝑚𝑚, thus the 561 

required time delay constant is 185 ns and 167 ns, respectively. However, since the sampling period is 20 ns, 562 

the applied time delays need to be rounded to the closest multiple of 20, leading to 180 ns and 160 ns. This 563 

introduces an error of 5 ns and 7 ns. To bypass this issue, the excitation frequency for mode 𝐴4 was shifted to 564 

1.94MHz. This way, energy is centered at (𝑓𝐴4, 𝑘𝐴4) = (1.94 𝑀𝐻𝑧, 2.95 𝑟𝑎𝑑/𝑚𝑚) , as shown Figure 19a. 565 

Targeting this point requires a time delay constant τ𝐴4 ≈ 180𝑛𝑠. Most of the energy is focused on 𝐴4, while 566 

some energy leakage is observed to modes 𝑆4 and 𝑆5. A similar frequency shift may be employed to excite 𝑆4 567 

at 160 ns. However, to illustrate the effect of applying a time delay law slightly different from the nominal one, 568 

mode 𝑆4 was excited at 2MHz. The maximum energy was found at point (𝑓𝑆4, 𝑘𝑆4) = (1.93𝑀𝐻𝑧, 2.58 𝑟𝑎𝑑/569 

𝑚𝑚), see  Figure 19b. Although the target mode is excited, in this case, mode 𝐴5 is significantly excited, 570 

spanning a wide range of frequencies, from 1.95 to 2.15 MHz. 571 

 572 
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(a)

 
Figure 19. 2DFFT in frequency-phase velocity domain using uniform amplitudes and targeting modes a) A4, 573 
and b) S4. 574 

 575 
The performance of uniform, Blackman and optimised profiles is tested on the selected modes. The 576 

optimised profile for mode 𝐴4 is shown in Figure 20a. An objective function according to  (23) was defined. 577 

The point to enhance was selected as the point of maximum amplitude of 𝐴4. The points to suppress were 578 

selected as the maxima points of the first three side lobes of the excitation spectrum at 1.94 MHz. Figure 20b 579 

shows the optimised profile for mode 𝑆4. Again, the point to enhance was selected as the point of maximum 580 

amplitude of the targeted mode. The maxima of the first five side lobes at the same frequency were suppressed. 581 

These maxima occur at 𝑐𝑝 = 4.88, 5.01, 5.15, 5.30, 5.46 m/ms. All these side lobes contribute to the excitation 582 

of the unwanted mode 𝐴5, as it spans a phase velocity range, from 4.7 𝑡𝑜 5.4 𝑚/𝑚𝑠. In this case, the Blackman 583 

window is expected to yield satisfactory results, as it effectively suppresses all side lobes. 584 

 585 

  

Figure 20. Optimised apodisation profile for A4 and S4 modes. a) A4 apodisation profile, b) S4 apodisation 586 
profile.   587 

 588 
Figure 21a, b and c present 2DFFT results for uniform, Blackman and optimised apodisation profiles 589 

when the target mode is 𝐴4. Visual examination reveals that the optimised profile performs best, see Figure 590 

21c, while the uniform and Blackman window have similar behavior. However, this is not true when targeting 591 

mode 𝑆4, see Figure 21d, e and f. In this case, the Blackman window yields better results, as shown in Figure 592 

21e. This is not surprising, as the Blackman window suppresses all side lobes, and in this case, multiple 593 

sidelobes contribute to the generation of A5. The amplitude of the relevant modes extracted from the 2DFFT 594 
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graphs is shown in Figure 22. The procedure followed was similar to the one described for Figure 18. 595 

Specifically, eight points along 𝐴4 and fifteen points along 𝑆4 and 𝑆5 around 1.94 MHz were selected for 596 

Figure 22a, while seven point along S4 and seventeen points along 𝐴5 around 1.93 MHz were selected to 597 

produce Figure 22b. The results agree with the previous visual observations. 598 

 599 

   

   

Figure 21. 2DFFT results for different apodisation profiles. Top Row (A4): a) Uniform amplitudes. b) 600 
Blackman window. c) Optimised profile. Bottom Row (S4): a) Uniform amplitudes. b) Blackman window. c) 601 
Optimised profile. 602 

 603 

  
Figure 22 Amplitude comparison between Uniform, Blackman and Optimised profiles. a) Mode A4 is targeted. 604 
b) Mode S4 is targeted. 605 

 606 

5. Conclusion 607 

This study focused on the proper selection of key parameters for single mode excitation in the higher order 608 

mode region with a conventional linear array. An analytical model based on modal analysis was derived, 609 

showing the feasibility of the method even for guided wave related problems. An important decomposition 610 
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between the excitation spectrum and the response of a single element was made. Then, a set of conditions was 611 

derived, see Table 2. These can be seen as guidelines for the proper selection of the number of elements, pitch 612 

and apodisation profile. The first condition determines the phase velocity bandwidth, and provided a pitch 613 

decides the number of elements. The second and third conditions are related to eliminating grating lobes in the 614 

forward and backward direction, respectively. Violation of the second condition will lead to propagation of 615 

unwanted modes, since a grating lobe will intersect with the frequency spectrum, generating low wavenumber 616 

modes. However, satisfaction of the same requirement does not ensure single mode excitation; for example, 617 

unwanted neighbouring modes might be generated, due to the small aperture length of the array. This means 618 

this condition is only necessary. On the contrary, the third condition is also sufficient, since it ensures 619 

unidirectional propagation. This condition is stricter that the necessary condition, in the sense that if it is 620 

satisfied, the necessary condition is satisfied as well. Therefore, it can be used to determine the pitch of the 621 

array. More specifically, the pitch should be small enough to satisfy this requirement, but large enough to 622 

increase the total length of array and thus decrease the excitation spectrum’s bandwidth. Finally, the apodisation 623 

profile was optimised to possibly enhance the purity of the targeted mode. The exact form of the objective 624 

function is defined online, after performing 2DFFT analysis. This can be seen as a calibration process, tuning 625 

each voltage amplitude to improve guided wave excitation and propagation. 626 

    An experimental FMC dataset was obtained, to validate the above theoretical results. This allowed 627 

different number of elements and pitch values to be evaluated after post processing from the same raw data 628 

signals. The agreement between theoretical and experimental results was strong. Emphasis was placed on 629 

exciting 𝑆3, although modes 𝐴4 and 𝑆4 were targeted as well. The performance of different apodisation profiles 630 

was evaluated for each of these modes. The suitability of the apodised window depended on the energy 631 

distribution of the unwanted modes in the 2DFFT map. When they spanned a narrow frequency range, the 632 

optimised profile gave better results compared to the uniform amplitudes and Blackman window. However, 633 

when the unwanted mode spans a wider frequency range, multiple side lobes need to be suppressed. In this case, 634 

the Blackman window was found to perform best. The described setup integrated into a roller probe and its 635 

capability to excite a pure mode in the high frequency thickness product region could be a subject to be 636 

investigated in future work. 637 

 638 

Table 2 Conditions for single mode excitation 639 

Condition No. Condition Description 

1  𝑁 >  
2λ𝑒

Δ𝑐𝑝
𝑚−𝑠

𝑐𝑝𝑒 Suppression of neighbouring 
modes of targeted mode 

2 𝑠 <
𝜆𝑒

1 −
𝑉phase

𝑉cutoff

 No grating lobes in +𝑥 direction 

3 𝑠 <
λ𝑒

1 +
𝑉phase

𝑉𝑅

 No grating lobes in −𝑥 direction 
(unidirectional propagation) 

4 𝑚𝑎𝑥(Δ) Further enhancement of the 
purity of the targeted mode 

 640 

Funding: This work was supported by the Advanced Nuclear Research Centre (ANRC). 641 

 642 

Single mode Lamb wave excitation at high frequency thickness products using a conventional linear array transducer



- 22 - 

   
 

References 643 
[1] J. Chandrasekaran, I. Anto, K. Balasubramaniam, K.S. Venkataraman, Higher order modes cluster (HOMC) 644 

guided waves for online defect detection in annular plate region of above-ground storage tanks, Insight Non-645 
Destructive Test. Cond. Monit. 51 (2009) 606–611. https://doi.org/10.1784/insi.2009.51.11.606. 646 

[2] C. Jayaraman, C. V. Krishnamurthy, K. Balasubramaniam, Higher order modes cluster (HOMC) guided waves - 647 
A new technique for ndt inspection, in: AIP Conf. Proc., American Institute of Physics, 2009: pp. 121–128. 648 
https://doi.org/10.1063/1.3114094. 649 

[3] J.P. Koduru, J.L. Rose, Mode controlled guided wave tomography using annular array transducers for SHM of 650 
water loaded plate like structures, Smart Mater. Struct. 22 (2013). https://doi.org/10.1088/0964-651 
1726/22/12/125021. 652 

[4] H. Kannajosyula, C.J. Lissenden, J.L. Rose, Analysis of annular phased array transducers for ultrasonic guided 653 
wave mode control, Smart Mater. Struct. 22 (2013). https://doi.org/10.1088/0964-1726/22/8/085019. 654 

[5] H. Taheri, A.A. Hassen, Nondestructive ultrasonic inspection of composite materials: A comparative advantage 655 
of phased array ultrasonic, Appl. Sci. 9 (2019). https://doi.org/10.3390/app9081628. 656 

[6] P. Cawley, D. Alleyne, The use of Lamb waves for the long range inspection of large structures, Ultrasonics. 34 657 
(1996) 287–290. https://doi.org/10.1016/0041-624X(96)00024-8. 658 

[7] J.L. Rose, Ultrasonic Guided Waves in Solid Media, Cambridge University Press, 2014. 659 
[8] G. Veit, P. Bélanger, An ultrasonic guided wave excitation method at constant phase velocity using ultrasonic 660 

phased array probes, Ultrasonics. 102 (2020). https://doi.org/10.1016/j.ultras.2019.106039. 661 
[9] J.L. Rose, P. Morrow, Y. Zhu, Ultrasonic Guided Wave Modal Analysis Technique (UMAT) for Defect 662 

Detection, in: Conf. Proc. Soc. Exp. Mech. Ser. , 2011. 663 
[10] J.P. Koduru, S. Momeni, J.L. Rose, Phased annular array transducers for omnidirectional guided wave mode 664 

control in isotropic plate like structures, Smart Mater. Struct. 22 (2013). https://doi.org/10.1088/0964-665 
1726/22/12/125022. 666 

[11] B.C. Lee, W.J. Staszewski, Lamb wave propagation modelling for damage detection: I. Two-dimensional 667 
analysis, Smart Mater. Struct. 16 (2007) 249–259. https://doi.org/10.1088/0964-1726/16/2/003. 668 

[12] M. Faisal Haider, M.Y. Bhuiyan, B. Poddar, B. Lin, V. Giurgiutiu, Analytical and experimental investigation of 669 
the interaction of Lamb waves in a stiffened aluminum plate with a horizontal crack at the root of the stiffener, J. 670 
Sound Vib. 431 (2018) 212–225. https://doi.org/10.1016/j.jsv.2018.06.018. 671 

[13] R.S.C. Monkhouse, P.D. Wilcox, P. Cawley, Flexible interdigital PVDF transducers for the generation of Lamb 672 
waves in structures, Ultrasonics. 35 (1997) 489–498. https://doi.org/10.1016/S0041-624X(97)00070-X. 673 

[14] A. Gachagan, G. Hayward, R. Banks, A flexible piezoelectric transducer design for efficient generation and 674 
reception of ultrasonic lamb waves, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52 (2005) 1175–1182. 675 
https://doi.org/10.1109/TUFFC.2005.1504004. 676 

[15] D.N. Alleyne, P. Cawley, Optimization of lamb wave inspection techniques, NDT E Int. 25 (1992) 11–22. 677 
https://doi.org/10.1016/0963-8695(92)90003-Y. 678 

[16] S.H.K. Reddy, A. Vasudevan, P. Rajagopal, K. Balasubramaniam, Scattering of Higher Order Mode Clusters 679 
(HOMC) from surface breaking notches in plates with application to higher temperature gradients, NDT E Int. 680 
120 (2021) 102441. https://doi.org/10.1016/j.ndteint.2021.102441. 681 

[17] J. Chandrasekaran, C. V. Krishnamurthy, K. Balasubramaniam, Axial higher order modes cluster (A-HOMC) 682 
guided wave for pipe inspection, AIP Conf. Proc. 1211 (2010) 161–168. https://doi.org/10.1063/1.3362262. 683 

[18] P. Khalili, P. Cawley, Excitation of Single-Mode Lamb Waves at High-Frequency-Thickness Products, IEEE 684 
Trans. Ultrason. Ferroelectr. Freq. Control. 63 (2016) 303–312. https://doi.org/10.1109/TUFFC.2015.2507443. 685 

[19] Z. Abbasi, F. Honarvar, Contribution of Lamb wave modes in the formation of higher order modes cluster 686 
(HOMC) guided waves, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 236 (2022) 3595–3605. 687 
https://doi.org/10.1177/09544062211042410. 688 

[20] P. Belanger, High order shear horizontal modes for minimum remnant thickness, Ultrasonics. 54 (2014) 1078–689 
1087. https://doi.org/10.1016/j.ultras.2013.12.013. 690 

[21] K. Shivaraj, K. Balasubramaniam, C. V. Krishnamurthy, R. Wadhwan, Ultrasonic circumferential guided wave 691 
for pitting-type corrosion imaging at inaccessible pipe-support locations, J. Press. Vessel Technol. Trans. ASME. 692 
130 (2008) 0215021–12150211. https://doi.org/10.1115/1.2892031. 693 

[22] P. Khalili, P. Cawley, The choice of ultrasonic inspection method for the detection of corrosion at inaccessible 694 
locations, NDT E Int. 99 (2018) 80–92. https://doi.org/10.1016/j.ndteint.2018.06.003. 695 

[23] S.H.R. K, P. Rajagopal, K. Balasubramaniam, S. Hill, S. Dixon, Interaction of Higher Order Modes Cluster ( 696 
HOMC ) guided waves with notch-like defects in plates Interaction of Higher Order Modes Cluster ( HOMC ) 697 
Guided Waves with Notch-like Defects in Plates, 030015 (2017). https://doi.org/10.1063/1.4974583. 698 

[24] S. Harsha, K. Reddy, A. Vasudevan, P. Rajagopal, K. Balasubramaniam, Scattering of Higher Order Mode 699 
Clusters ( HOMC ) from surface breaking notches in plates with application to higher temperature gradients, 700 
NDT E Int. 120 (2021) 102441. https://doi.org/10.1016/j.ndteint.2021.102441. 701 

[25] M. Tabatabaeipour, O. Trushkevych, G. Dobie, R.S. Edwards, R. McMillan, C. Macleod, R. O’Leary, S. Dixon, 702 

Single mode Lamb wave excitation at high frequency thickness products using a conventional linear array transducer



- 23 - 

   
 

A. Gachagan, S.G. Pierce, Application of ultrasonic guided waves to robotic occupancy grid mapping, Mech. 703 
Syst. Signal Process. 163 (2022). https://doi.org/10.1016/j.ymssp.2021.108151. 704 

[26] J.L. Rose, S.P. Pelts, M.J. Quarry, A comb transducer model for guided wave NDE, 1998. 705 
[27] W. Zhu, J.L. Rose, Lamb wave generation and reception with time-delay periodic linear arrays: a BEM 706 

simulation and experimental study, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 46 (1999) 654–664. 707 
https://doi.org/10.1109/58.764852. 708 

[28] J. Li, J.L. Rose, Implementing guided wave mode control by use of a phased transducer array, IEEE Trans. 709 
Ultrason. Ferroelectr. Freq. Control. 48 (2001) 761–768. https://doi.org/10.1109/58.920708. 710 

[29] D. Cirtautas, V. Samaitis, L. Mažeika, R. Raišutis, E. Žukauskas, Selection of Higher Order Lamb Wave Mode 711 
for Assessment of Pipeline Corrosion, Metals (Basel). 12 (2022). https://doi.org/10.3390/met12030503. 712 

[30] M.J. Ranjbar Naserabadi, S. Sodagar, Application of Phased Array Ultrasonic Transducers for Guided Wave 713 
Scanning of Plates Using Multi-point Focusing Technique, J. Nondestruct. Eval. 41 (2022). 714 
https://doi.org/10.1007/s10921-022-00867-0. 715 

[31] W.A.K. Deutsch, A. Cheng, J.D. Achenbach, Self-focusing of rayleigh waves and lamb waves with a linear 716 
phased array, Res. Nondestruct. Eval. 9 (1997) 81–95. https://doi.org/10.1080/09349849709409609. 717 

[32] K.C.T. Nguyen, L.H. Le, T.N.H.T. Tran, M.D. Sacchi, E.H.M. Lou, Excitation of ultrasonic Lamb waves using a 718 
phased array system with two array probes: Phantom and in vitro bone studies, Ultrasonics. 54 (2014) 1178–719 
1185. https://doi.org/10.1016/j.ultras.2013.08.004. 720 

[33] R.B. Randall, Frequency analysis., Bruel and Kjaer, Naerum, Denmark, 1987. 721 
[34] B.A. Auld, G.S. Kino, Normal Mode Theory for Acoustic Waves and its Application to the Interdigital 722 

Transducer, IEEE Trans. Electron Devices. 18 (1971) 898–908. https://doi.org/10.1109/T-ED.1971.17303. 723 
[35] J.D. Achenbach, Reciprocity in elastodynamics, Cambridge University Press, 2003. 724 
[36] Y.F. Xing, B. Liu, Exact solutions for the free in-plane vibrations of rectangular plates, Int. J. Mech. Sci. 51 725 

(2009) 246–255. https://doi.org/10.1016/j.ijmecsci.2008.12.009. 726 
[37] R.R. Craig, Structural Dynamics: An Introduction to Computer Methods, Wiley, 1981. 727 
[38] E. Paraskevopoulos, S. Natsiavas, On application of Newton’s law to mechanical systems with motion 728 

constraints, Nonlinear Dyn. 72 (2013) 455–475. https://doi.org/10.1007/s11071-012-0727-1. 729 
[39] S.-C. Wooh, Y. Shi, Optimum beam steering of linear phased arrays, 1999. 730 
[40] E. V. Glushkov, N. V. Glushkova, O. V. Kvasha, R. Lammering, Selective Lamb mode excitation by 731 

piezoelectric coaxial ring actuators, Smart Mater. Struct. 19 (2010). https://doi.org/10.1088/0964-732 
1726/19/3/035018. 733 

[41] D. Lines, J. Wharrie, J. Hottenroth, Multi-Channel Ultrasound Toolbox: A Flexible Modular Approach for Real-734 
Time Array Imaging and Automated Inspection, 2010. 735 

[42] D. Alleyne, P. Cawley, A two-dimensional Fourier transform method for the measurement of propagating 736 
multimode signals, J. Acoust. Soc. Am. 89 (1991) 1159–1168. https://doi.org/10.1121/1.400530. 737 

[43] P.D. Wilcox, Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate 738 
structures, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50 (2003) 699–709. 739 
https://doi.org/10.1109/TUFFC.2003.1209557. 740 

[44] R. Sicard, J. Goyette, D. Zellouf, A SAFT algorithm for lamb wave imaging of isotropic plate-like structures, 741 
Ultrasonics. 39 (2002) 487–494. https://doi.org/10.1016/S0041-624X(01)00087-7. 742 

[45] B. Ghose, R.S. Panda, K. Balasubramaniam, Phase velocity measurement of dispersive wave modes by Gaussian 743 
peak-tracing in the f-k transform domain, Meas. Sci. Technol. 32 (2021). https://doi.org/10.1088/1361-744 
6501/ac261b. 745 

[46] A. Huber, Dispersion Calculator (DC), (2018). https://www.dlr.de/zlp/en/desktopdefault.aspx/tabid-746 
14332/0A24874_read-61142/#/gallery/33485. 747 

 748 

Single mode Lamb wave excitation at high frequency thickness products using a conventional linear array transducer


	Abstract
	Keywords:
	1. Introduction
	2. Analytical solution for the apodised phased comb array excitation problem based on modal analysis
	3. Selection of excitation parameters to enhance the purity of a single mode
	4. Experimental results
	References



