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Abstract 
Peridynamic formulations of the mean stress and incubation time fracture models are 

discussed in the paper. Contemporary fracture simulations using the peridynamic theory often 

rely on critical bond stretch fracture criterion which is known to operate similarly to energy-

based fracture models. The energy-based fracture criteria – both in classical Griffith’s and 

Irwin’s form – are known to be powerful tools for fracture simulations and analysis. However, 

a number of experimentally observed dynamic fracture effects cannot be captured by these 

models, e.g. rate sensitivity of the material toughness. Thus, coupling of peridynamic approach 

with alternative stress-based fracture models would possibly broaden the peridynamics 

applicability. Here implementation technique of the aforementioned fracture model is discussed 

and its results for the case of a dynamically propagating crack with relatively low velocity due 

to quasistatic load appear to be in good agreement with the classical energy release rate 

approach. 

Keywords: brittle fracture, peridynamics, Griffith’s approach, fracture criterion, structural 

criterion, incubation time. 

1. Introduction
Fracture mechanics as an independent science originates in the 20s of the last century, 

when A.A. Griffiths established the energy principle of crack propagation in an elastic body 

[1]. According to this principle, the total potential energy of a body containing a crack is a 

function of the crack length, and its movement is accompanied by a decrease in the elastic 

potential energy, which is spent on the formation of new crack surfaces, and the critical energy 

release rate per unit area γ is a material constant. Thus, according to the Griffith’s concept the 
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infinitesimal crack elongation takes place, when sufficient amount of energy is provided for the 

formation of the new surfaces: 

−
𝑑𝛺

𝑑𝑙
≥ 2𝛾  

(1). 

In (1)𝑑𝛺is an elastic strain energy increment and 𝑑𝑙 is a crack length increment. The 

criterion (1)yields remarkably accurate strength predictions for quasistatically loaded samples 

with cracks. However, limitations of (1) are also well-known, including its inability to work 

with angular notches without proper modifications [2]. Another widely used energy-based 

fracture criterion for a cracked body is Irwin’s fracture condition which implies comparison of 

the current stress intensity factor (SIF) 𝐾𝐼 with some ultimate SIF value 𝐾𝐼𝐶, which is a material 

parameter:  

𝐾𝐼 ≥ 𝐾𝐼𝐶 (2). 

        In (2) mode-I load is supposed, though similar conditions can also be written for the 

other loading modes. Criterion (2) works reliably for stationary cracks and quasistatic loads, 

but fails to predict crack initiation for intensive high-rate loads requiring introduction of new 

ultimate SIF value for each loading rate. The situation is even more complicated in case of 

moving cracks due to known lack of K-dominance for the fastpropagating cracks [3].  

        However, (2)is often modified to address dynamically propagating cracks. For example, 

the static ultimate SIF value is substituted by a 𝐾𝐼(𝑣) relation which decribes dependence of 

the current SIF on a crack velocity 𝑣. This relation is regarded as a material property and is 

supposed to be evaluated experimantally for each material. However, it was found that for some 

loads [4] and specimen types [5] this relation can be inconsistent and non-unique and thus the 

corresponding fracture model may yield erroneous results.  

        Alternative fracture criteria are able to resolve some of the mentioned problems. For 

example, the incubation time fracture criterion (ITFC) [6,7] is able to predict some fundamental 

dynamic fracture effects. This fracture model does not rely on the energy release rate or SIF 

concepts, but rather explicitly involve stress field values and thus help to evade the mentioned 

controversy. Peridynamic implementation of two stress-based fracture models (mean stress 

fracture model and ITFC) are discussed. Additionally, performance of these fracture models is 

compared to conventional critical bond stretch criterion (which in its turn correlates with energy 

release rate criterion [8]) for a quasistatic load case and relatively low crack propagation 

velocities. The studied regimes suppose that both models will provide similar results and thus 

the developed numerical scheme could be verified. Peridynamic models of ITFC already 

demonstrated some experimental phenomena of the dynamic fracture [9,10]. The computations 
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were performed using peridynamic software Peridigm [11] with additional procedures 

implementing the ITFC. 

 

2. Peridynamics  
In early 2000s a novel nonlocal solid mechanics theory was presented by Silling [12,13] 

and became a very powerful tool particularly for solving the problems of fracture mechanics. 

Nowadays it is a fast-developing field of science and many researchers have already made a 

decent contribution to the theory and its applications [14-16]. In this section, we briefly describe 

some basics of peridynamics. 

Peridynamics is known to be a reformulation of the standard continuum theory. The 

solid body is simulated by a set of non-locally interacting particles. Each particle x has a family 

of neighbour particles ℋ𝔁 which influence its behavior. The subset ℋ𝔁 contains particles which 

are located in sphere of a specific radius (horizon) centered at 𝑥 (Fig. 2). On the contrary, 

continuum theory deals with infinitely small elements interacting with each other only if they 

are in contact, i.e. there is a zero distance between them. It should be mentioned that the idea to 

account for non-local interactions inside the medium is far from being new or revolutionary, 

one can explore its roots and corresponding references in comprehensive works [17,18]. 

Moreover, concepts of smoothing and delocalization have naturally found their way into the 

numerical methods area and such methods as phase-field modelling [19], SPH [20] and many 

others are actively used by researchers and engineers to simulate fracture. 

Nevertheless, if there is no non-local behaviour presented in the structure, for instance, 

discontinuity of the strain field in the region of the contact between stiff and compliant layers 

in the composite structure or singularity in the vicinity of the crack tip, then peridynamic 

approach converges to the classical one when a radius of the spherical region of influence 

approaches to zero, i.e. in this case peridynamics and classical approach are equal [21]. 

An equation of motion in the standard theory operates with the spatial derivatives of the 

continuum stress field which is defined as: 

𝜌(𝐱)𝐮̈(𝐱, t) =  ∇ ∙ 𝛔(𝐱, t) + 𝐛(𝐱, t) (3), 

where ρ(x), 𝐮̈(x,t), b(x,t) are mass density, acceleration and body force density, respectively, 

σ(x,t) is a stress tensor; x and t are position vector in the reference configuration and time, 

respectively. 

The peridynamics equation of motion is composed of integration of the non-local forces 

between the particles and can be written as: 
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ρ(𝐱)𝐮̈(𝐱, 𝑡) = ∫ {𝐓[𝐱, 𝑡]〈𝐱′ − 𝐱〉 − 𝐓[𝐱′, 𝑡]〈𝐱 − 𝐱′〉}𝑑𝑉𝐱′ + 𝐛(𝐱, 𝑡)
ℋ𝔁

 (4), 

where 𝐱′ is the position vector of any neighbour of the particle x in its neighbourhood ℋ𝔁.A 

vector state A maps the vectors into the vectors as well as the second-order tensor (difference 

between them is that vector state can be a nonlinear or discontinuous function and therefore it’s 

something more general than a second-order tensor).𝐓 = 𝐓̂(𝐘)is the force vector state function, 

which maps the deformation vector state 𝐘 into the force-vector state 𝐓[𝐱, 𝑡] (in the angle 

brackets, 〈𝐱′ − 𝐱〉, we indicate the bond, that is, an interaction between two particles, which a 

force state operates on).  
Deformation vector-state 𝐘[𝐱, t]〈𝛏〉(where 𝛏 = 𝐱′ − 𝐱) can be defined as: 

𝐘[𝐱, t]〈𝛏〉 = 𝐲(𝐱 + 𝛏, 𝑡) − 𝐲(𝐱, 𝑡) (5), 

where y(x,t) is the position of x at time t after deformation which is defined as: 

𝐲(𝐱, 𝑡) = 𝐱 + 𝐮(𝐱, 𝑡) (6), 

Where u(x,t) is the displacement field. Therefore,𝐘[𝐱, t]〈𝛏〉 is the image of 𝛏after deformation. 

Transformation of the equation of motion mentioned above plays a crucial role for the 

fracture mechanics since the absence of the spatial derivatives allows to overcome the obstacles 

of the classical theory, such as discontinuities. 

Thus, each of two interacting particles of the bond has its own force vector and in the 

general state-based peridynamics these vectors are not equal (instead of the bond-based 

approach, Fig. 1). If we assume that force vector remains parallel to the vector which connects 

𝐱  and 𝐱′  in deformed configuration, then such approach is called an ordinary state based 

peridynamics, otherwise it is called a non-ordinary state based peridynamics. In this paper we 

will consider an ordinary state based linear peridynamic solid (LPS) material [13]. 
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Fig. 1. Schematics of the bond based, ordinary state based and non-ordinary state based 

approaches. 

To solve the problems of solid mechanics Eq.(4)can be discretized and the integral can 

be replaced with a finite sum. 

 
Fig. 2. Schematic of peridynamic discrete representation. 

Damage of the peridynamic point is determined as the fraction of broken bonds 

connected to the point: 

𝜑(𝐱, 𝑡) =
∫ (1 − 𝛽(𝜉, 𝑡))𝑑𝑉𝜉ℋ

∫ 𝑑𝑉𝜉ℋ

 (7), 

where 𝛽(𝝃, 𝑡) = {
1, if bond damage criterion is satisfied ∀𝑡′ ≤ 𝑡

0, otherwise
, 

and this way, peridynamics is naturally suitable for simulations of the material 

degradation which is now studied even for very complex systems, e.g. granular materials 

[22,23].In order to implement the mean stress criterion and ITFC it is important to calculate the 

classical stress field. For this purpose, the shape tensor will be used: 
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𝐊[𝐱, t] =  ∫ 𝜔⟨|𝛏|⟩𝛏⨂𝛏
ℋ𝔁

𝑑𝑉𝐱 (8), 

where 𝜔⟨|𝛏|⟩ is an influence function (this function is supposed to be spherically symmetric, 

and thus depending only on the bond length |𝛏|) and in the presented study both the unity and 

Gaussian influence functions are discussed. The unit influence function is defined as: 

𝜔⟨|ξ|⟩ = {
1, if

|𝛏|

δ
≤ 1

0, otherwise  
or if bond is broken 

 (9). 

The Gaussian influence function is defined as (Fig. 3): 

𝜔⟨|ξ|⟩ = {
𝑒−(

|ξ|
0.4𝛿

)
2

, if
|𝛏|

δ
≤ 1

0, otherwise 
or if bond is broken 

 (10). 

 

Fig. 3. Gaussian influence function. 

Then, deformation gradient tensor F can be obtained by reduction of the deformation 

vector state: 

𝐅[𝐱, t] =  [∫ 𝜔⟨|𝛏|⟩(𝐘〈𝛏〉⨂𝛏)
ℋ𝔁

𝑑𝑉𝐱, ] 𝐊−1 (11). 

Next,a Green-Lagrange strain tensor E[x,t] is defined as: 

𝐄[𝐱, t] =  
1

2
(𝐅T ∙ 𝐅 − 𝐈) (12), 

where I is the identity tensor. Then, using a Hook’s law we can define the Piola-Kirchhoff stress 

tensor 𝝈[𝐱, t]: 

𝝈[𝐱, t] = λ tr(𝐄)𝐈 + 2μ𝐄 (13), 

where 𝜆 = 𝐾 −
2

3
𝐺 , 𝜇 = 𝐺  are the Lame constants, 𝐾 , 𝐺  are bulk and shear moduli, 

respectively. 

 

3. Stress based fracture criteria 
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3.1 Mean stress fracture criterion (Neuber-Novogilov criterion [24,25]) 
Let’s consider a segment with length 𝑑 (a𝑑-sized area if 3D case is considered) located 

along X-axis subjected to normal stresses 𝜎𝑦(𝑥). According to the considered criterion a crack 

along this segment will appear if the following condition holds: 

1

𝑑
∫ 𝜎𝑦

𝑥+𝑑

𝑥

(𝑥′)𝑑𝑥′ ≥ 𝜎𝑐 (14). 

An introduction of a characteristic length parameter 𝑑 is a key feature of the considered 

criterion.This way the fracture scale level size is set: cracks smaller than 𝑑 are not considered 

as fracture and the crack is supposed to propagate by discrete jumps due to subsequent failure 

of the structural blocks of size d starting from the crack tip [26].  

If both sides of (14)are multiplied by 𝑑, the integral on the left hand side will yield force 

acting on a continuation of the crack (we consider a plane problem here supposing a unity 

sample thickness). Thus, the criterion (14)is in fact a force-based fracture condition.   

The criterion (14) is consistent with the classical Irwin’s fracture criterion 𝐾𝐼 ≥ 𝐾𝐼𝐶if 

proper 𝑑 value is chosen and if Sneddon’s formulas for the stress field near the crack tip are 

recalled. Substitution of the Sneddon’s expressions into (11) provides the following value for 

𝑑 [26]: 

𝑑 =
2

𝜋

𝐾𝐼𝑐
2

𝜎𝑐
2

 (15). 

Here 𝐾𝐼𝐶 is a critical quasi-static stress intensity factor (SIF) and thus d can be regarded as a 

material constant. 

It should be noted that application of (11)together with numerical methods implies 

natural restrictions on the body mesh size in the zone of interest: the element size should be less 

or equal to𝑑. This refers to any numerical scheme with spatial discretization including finite 

element method and peridynamics. This limitation may require considerable amount of 

computational resources as for some materials 𝑑 is small leading to extremely fine meshes.  

In case when the computational resources are limited a rescaling procedure can be 

performed and a new characteristic size 𝑑∗ = 𝑘𝑑, 𝑘 > 1 can be introduced. Expression (15) is 

supposed to hold for 𝑑∗ and thus the recalculated ultimate stress value 𝜎𝑐
∗ = 𝜎𝑐 √𝑘⁄  should be 

introduced, if the Irwin’s criterion is supposed to remain applicable and the ultimate SIF value 

𝐾𝐼𝑐 to be unchanged. This way, in order to use larger 𝑑 to obtain larger mesh size, one should 

use a smaller ultimate stress value. See Fig. 4 for details. 
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Fig. 4. Comparison of the average stress value at the crack tip vicinity on the interval of size d 

(on the left) and of size kd (on the right). 

In fact, formula (14) is a well-known Neuber-Novohilov fracture condition introduced 

in, but in this particular work it is not implemented directly and thus we use a mean stress 

criterion term instead.  

 

3.2 Incubation time fracture criterion (ITFC) 
The Incubation time fracture criterion (ITFC) [6,7,26] is known as a space-time 

approach to dynamic fracture problems that was developed to analyse key dynamic effects of a 

brittle fracture. If the crack tip is currently located at a point with coordinate 𝑥 on the axis along 

the direction of the crack, then the crack tip will move to the point with coordinate 𝑥 + 𝑑if the 

following condition holds: 

1

𝜏
∫

1

𝑑
∫ 𝜎𝑦

𝑥+𝑑

𝑥

(𝑥′, 𝑡′)𝑑𝑥′𝑑𝑡′
𝑡

𝑡−𝜏

≥ 𝜎𝑐 (16), 

where 𝜏 is called an incubation characteristic time of fracture and the crack direction coincides 

with spatial axis in (14).The inner integral of (16) has a form of the Neuber-Novogilov static 

fracture criterion and thus minimal fracture surface or crack length𝑑is introduced. It is also 

supposed that the ITFC is consistent with the classical Irwin’s fracture criterion 𝐾𝐼 ≥ 𝐾𝐼𝐶and 

thus 𝑑 is selected according to formula (15).It is worth noticing that the initial interpretation of 

parameter 𝑑 involved its connection to physical dimensions of the medium structure, e.g. grain 

size or interatomic distances and thus 𝑑 was supposed to be used for size effects investigation 

which is a fruitful and important field [27]. However, the ITFC approach considers 𝑑 to be a 

scale identifier: for the case of crack propagation 𝑑 is a minimal crack increment registered 

within the model. 

Time integration in (16) implies that fracture at the point of interest is controlled by 

history of the stresses rather than their current immediate values. This means that fracture is 

considered to be a continuous process and not an instantaneous event or in other words dynamic 
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fracture is “space and time non-local”. Final fracture at a chosen scale (controlled by the𝑑 

parameter) is a result of preparatory processes e.g., microcracking, birth and coalescence of 

voids and various defects. Interestingly, such fracture process non-locality is nowadays 

observed experimentally in new metamaterials with complicated structures which are designed 

to make fracture not an instant event, but a gradual process [28,29]. 

These complicated processes are accounted by a single parameter – the incubation time 

𝜏, which is regarded as a material property. The incubation time𝜏can be obtained analytically 

from the experimental results on dynamic fracture [30], where stress history and fracture time 

are known.  

The afore mentioned critical fracture condition (16)has been already effectively used to 

predict fracture in various problems including impact, dynamic crack propagation, spallation, 

solid particle erosion [30-33]. 

 

4. Implementation of the stress-based fracture criteria in peridynamics 
The developed peridynamic implementation of the mean stress and incubation time 

approaches suppose that the bonds fail separately in the autonomous mode as it is usually 

considered in other fracture criteria applied in combination with the peridynamic theory. An 

explicit solver of the open-sourced peridynamic code Peridigm was used for numerical 

implementation [11]. 

The criterion (14) is a stress-based fracture criterion and thus, the bond failure is 

controlled by stresses in the elements connected by the considered bond if the ITFC is applied. 

As it has been mentioned earlier, the Neuber-Novogilov criterion is not implemented directly 

in this work and thus is referred as the mean stress fracture criterion.  

Formula (14) supposes averaging of stresses over segment with length 𝑑 (or over 𝑑-

sized area for a 3D case) and formulas for the stress evaluation in the elements (11)-(13) map a 

stress tensor to the whole peridynamic element and thus these stress tensor values can be 

regarded as averaged over element.  

Thus, if the element size is chosen to equal 𝑑, element stresses evaluated according to 

(11)-(13) can be used to predict a fracture. Since the bond failure is controlled by stresses, it is 

convenient to introduce the bond stress assuming that the bond fails if normal stress acting on 

some virtual area inside at least one of the considered elements exceeds some critical value, the 

bond fails.  
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This way, for the bond connecting elements 𝐴 and 𝐵 it is convenient to put 𝜎𝑖𝑗
𝑏𝑜𝑛𝑑 =

𝜎𝑖𝑗
𝐴 + 𝜎𝑖𝑗

𝐵, 𝑖, 𝑗 = 1. .6. In this particular case we are interested in stresses normal to the crack 

propagation direction which coincides with the X axis and thus it is fair to consider: 

𝜎𝑦
𝑏𝑜𝑛𝑑 = 𝜎𝑦

𝐴 + 𝜎𝑦
𝐵 (17). 

 

It is worth noticing that for the extreme scenario when, for example, 𝜎𝑦
𝐴 = 𝜎𝑐 and𝜎𝑦

𝐵 =

0 the bond will still fail. Formula (17) can be obviously rewritten using a more conventional 

expression for the bond stress [34,10] 𝜎𝑦
𝑏𝑜𝑛𝑑 = (𝜎𝑦

𝐴 + 𝜎𝑦
𝐵)/2, however this requires utilization 

of a halved ultimate stress value since we suppose that the bond should fail in the mentioned 

extreme case (𝜎𝑦
𝐴 = 𝜎𝑐, 𝜎𝑦

𝐵 = 0). 

Since the element size is selected to be 𝑑 and the stresses 𝜎𝑦
𝐴 and 𝜎𝑦

𝐵 are considered as 

mean stresses for the elements 𝐴 and 𝐵, the mean stress criterion reads as: 

𝜎𝑦
𝑏𝑜𝑛𝑑 ≥ 𝜎𝑐 (18). 

If the 𝑑 parameter appears to be too small resulting in unacceptably fine mesh and a new 

mesh size 𝑑∗ = 𝑘𝑑, 𝑘 > 1 has to be used, the above described rescaling procedure should be 

applied and the right side of (18) should be substituted by 𝜎𝑐 √𝑘⁄ . 

𝜎𝑦
𝑏𝑜𝑛𝑑 ≥

𝜎𝑐

√𝑘
 (19). 

For the ITFC the bond stress definition, the 𝑑 parameter selection according to (15) and 

possible rescaling are also valid and the main technical difference from the mean stress criterion 

is time integration. Thus, the following condition should be checked if the ITFC is used for the 

bond failure prediction: 

1

𝜏
∫ 𝜎𝑦

𝑏𝑜𝑛𝑑𝑑𝑡′
𝑡

𝑡−𝜏

≥ 𝜎𝑐 (20). 

Again, for the meshes with larger elements with size 𝑑∗ = 𝑘𝑑, 𝑘 > 1 the right side of 

(20) should be changed to 𝜎𝑐 √𝑘⁄ . The outer temporal integral in (20) is calculated using a 

trapezoidal rule based on the sufficient time interval and simulation timestep should be smaller 

than the incubation time𝜏.  

 

5.Quasi-static verification tests 
In order to test the implemented criterion quasi-static tensile tests were conducted with 

a pre-notched plate.The main purpose was to compare energy release rates of the running crack 

using the classical critical bond stretch criterion, which is analogous to the classic Griffith 
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criterion in peridynamic formulation. Relation of the critical stretch value in case of state-based 

peridynamics was taken from [14].  

The energy release rate was calculated using Rice-Cherepanov J-Integral approach. The 

displacement-based method described in [35] was used for this purpose. The fact that in the 

state-based peridynamics we can calculate deformation gradient tensor F from the deformation 

state 𝐘allows one to calculate J-Integral via displacement field. A stationary contour embracing 

sufficiently large domain was used for the J-integral calculations (Fig.5). 

In these tests rectangular PMMA specimens with a size of 80 mm x 50 mm were used. 

In all experiments prescribed displacements are applied to the left edges with a width of two 

horizons (2𝛿) as it is shown in Fig.5.The length of the pre-notch is 15 mm and the J-Integral 

contour size is 60 mm x 17 mm. Relatively low crack propagation velocities (100-140 m/s) 

were observed in the cases discussed below. 

The problem was solved in a three-dimensional configuration since Peridigm is 

implemented for 3D case. 

 
Fig.5. Conditions of the quasi-static verification tests. 

Table 1. Mechanical properties of PMMA. 

Density 1230 kg/m3 

Young’s modulus 3.5 GPa 

Poisson’s ratio 0.35 

Critical SIF, 𝐾𝐼𝐶 1 MPa√m 

Critical energy release rate, G1C 0.286 N/mm 

Ultimate tensile stress, 𝜎𝑐 60 MPa 

Structural block size, d 0.177 mm 

Incubation time, 𝜏 1.5 𝜇s 

Peridynamic formulation of the mean stress and incubation time fracture criteria and its correspondence to the classical Griffith's approach
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In all tests presented in this papera horizon size is taken as δ = 3∆𝑥 as it is shown to be 

a numerically stable choice [36]. Specimen thickness is equal to 2𝛿 and, thus, it is different in 

the presented cases. Acrack tip position is determined as the rightest element with a damage 

value of 0.35 or greater [36]. 

All the results presented below on Fig.6-Fig. 9 contain the energy release rate 

dependences averaged over 40 s (upper graphs) and non-averaged dependences of the crack 

tip position (lower graphs). 

Firstly, we studied how the classic Griffith criterion correlates to the mean stress fracture 

criterion. As seen from Fig.6, the energy release rate for a crack moving according to mean 

stress criterion is close to a static critical value G1c, which can be regarded as a good indication 

of the mean stress criterion applicability and potential of the stress-based fracture criteria for 

peridynamics in general.  

 
Fig.6.Comparison of the theoretical static critical value G1c and mean stress criterion for 

𝛥x=d=0.177 mm in case of the Gaussian influence function. 

In addition to this, we tested the mean stress criterion, the ITFC and the critical stretch 

criterion for three different mesh sizes in order to check how the rescaling procedure works. 

The minimum element size is equal to 0.177 mm – a value calculated according to formula (15). 
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The two other element sizes are: 0.5 mm and 1 mm. The corresponding results are shown in 

Fig. 7-Fig. 9, where a unit influence function was used. 

As seen from Fig. 7 - Fig. 9, the energy release rates during crack propagation as well 

as the dependences of the crack tip position governed by the mean stress criterion are close to 

those governed by the classical critical bond stretch criterion for all considered element sizes. 

This could be seen as a good indication of the rescaling procedure applicability at least for the 

mean stress fracture criterion.  

 
Fig. 7. Comparison of the critical stretch, mean stress and incubation time criteria for 

𝛥x=d=0.177 mm in case of the unit influence function. 
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Fig.8.Comparison of the critical stretch, mean stress and incubation time criteria for 𝛥x=0.5 

mm in case of the unit influence function.  

 
Fig. 9. Comparison of the critical stretch, mean stress and incubation time criteria for 𝛥x=1 

mm in case of the unit influence function. 
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In case of the 𝛥x=d=0.177, the best correlation was observed between a mean stress and 

critical stretch criteria. Meanwhile, in this case, ITFC demonstrates the highest energy release 

rate and the lowest crack velocity, that corresponds well to both the numerical results of finite-

element modelling using ITFC in [37] and experimental data [38]. 

All the results shown in Fig.6 - Fig. 9 are presented for different time intervals for which 

a relatively constant energy release rate was observed. After that, in cases presented in Fig.6 - 

Fig. 7, there is a divergence in the energy release rates for all presented criteria, apparently 

because of the peridynamic boundary effect due to incomplete horizons of boundary or near-

boundary points. Additional correction algorithms could be used to address this problem [14, 

39]. 

The latter means that elastic waves reflected multiple times from the boundaries affect 

the stress waves, that are especially important for the crack propagation governed by the stress-

based fracture criteria presented here. Due to varying sample thicknesses, out-of-plane elastic 

waves could also affect the energy release rate in different ways. This could be avoided in a 2D 

analysis, that would also possibly improve the presented results. 

It is worth noting that although both models demonstrated a generally continuous crack 

propagation, some short stops were observed, that explains some deviations of the measured 

energy release from the G1cvalue. Obviously, the choice of the element size as well as the 

influence function also affects the deviation of the measured energy release from G1c value. As 

seen from Fig.6-Fig. 9, the results obtained using the mean stress fracture criterion, ITFC and 

the critical bond stretch criterion are in good agreement in terms of the current energy release 

rate, the crack tip position and the crack velocity. It was also observed that the cracks modelled 

by aforementioned criteria visually look identical, i.e. thickness of the damaged elements zone, 

as well as the level of their damage. 

 

6. Conclusion 
The work presents peridynamic implementation and numerical testing of the stress-

based fracture criteria. An explanation of the proposed modifications of the structural-time 

fracture criteria for use in peridynamics was given. For the test case (relatively slow crack 

propagation due to quasistatic load) the presented method is in good agreement with the 

classical Griffith theory. On the other hand, application of the incubation time fracture model 

allows one to investigate problems where classical criteria will possibly fail or require serious 

modifications, e.g. the widely used stress-intensity factor criteria perform poorly when applied 

to crack initiation problems due to high-rate load requiring adjustment for each particular 
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loading rate. The mean stress fracture criterion and ITFC does not rely on the SIF value but 

rather operates with stresses and thus, provides possibility to evade the mentioned problems. 

This way, the proposed implementation of the aforementioned criteria can possibly broaden 

applicability of the peridynamic theory. 
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