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ABSTRACT
Music recommender systems are an integral part of our daily life.
Recent research has seen a significant effort around black-box rec-
ommender based approaches such as Deep Reinforcement Learning
(DRL). These advances have led, together with the increasing con-
cerns around users’ data collection and privacy, to a strong interest
in building responsible recommender systems. A key element of
a successful music recommender system is modelling how users
interact with streamed content. By first understanding these in-
teractions, insights can be drawn to enable the construction of
more transparent and responsible systems. An example of these
interactions is skipping behaviour, a signal that can measure users’
satisfaction, dissatisfaction, or lack of interest. In this paper, we
study the utility of users’ historical data for the task of sequen-
tially predicting users’ skipping behaviour. To this end, we adapt
DRL for this classification task, followed by a post-hoc explainabil-
ity (SHAP) and ablation analysis of the input state representation.
Experimental results from a real-world music streaming dataset
(Spotify) demonstrate the effectiveness of our approach in this task
by outperforming state-of-the-art models. A comprehensive analy-
sis of our approach and of users’ historical data reveals a temporal
data leakage problem in the dataset. Our findings indicate that,
overall, users’ behaviour features are the most discriminative in
how our proposed DRL model predicts music skips. Content and
contextual features have a lesser effect. This suggests that a limited
amount of user data should be collected and leveraged to predict
skipping behaviour.
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1 INTRODUCTION
In recent years, online music streaming services (e.g., Spotify) have
seen substantial growth. With the rise of digital music distribution,
the related success of such streaming services, and the ubiquitous
availability of music, a new listening paradigm has emerged. Users
can access any song, at any time, and within a few clicks. As a
result, there has been a significant change in users’ behaviour and
interaction with these systems [19]. Music recommender systems
(MRS) aspire to tackle the problem of providing the users the sup-
port they need to access these large collections of music items and
find songs that match their interests and needs. Recent research has
seen a significant effort towards black-box based approaches such
as Deep Reinforcement Learning (DRL) [3, 56]. This is motivated by
the possible radical changes of behaviour from one song to another,
or even within the same song, but at different points in time. Users’
behaviour is influenced by external (trends) and internal (individual
changes of personal interests) factors. The users’ shifting interests
and behaviour make it hard to learn a generalisable model to tailor
the user’s specific needs at any given time; it is a case where DRL is
required due to continuous learning and adaption [9, 29, 61]. These
advances, however, have inevitably led to rising concerns about
how users’ data is collected, stored, and used. This is leading to a
strong research interest in building responsible systems and data
collection procedures [45]. Constraints should be put in place when
considering what data is collected and then presented to a model
to measure user behaviours. This is due to the potential hazard of
introducing errors and biases. Therefore, minimising and selecting
high-quality data features is of important consideration.

With explicit rating data relatively scarce and rare in today’s
systems, modelling implicit feedback is becoming of acquired impor-
tance. For example, in a lean-back formulation, the case of automatic
playlists or radio streaming, the user interaction is minimised. Users
are presented with a single song at a time. The MRS needs to rely
almost entirely on implicit feedback signals such as the skipping
or scrubbing (i.e., seeking forward and backward by moving the
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cursor [35]) to predict satisfaction and engagement [29, 61]. By
understanding these interactions, insights can be drawn for the
construction of more transparent and responsible systems. The
skipping is a signal that can measure users’ satisfaction, dissatisfac-
tion or lack of interest, and engagement with the platform [44]. In
a lean-back formulation, the MRSs are often designed to be more
conservative, prioritising exploitation over exploration to minimise
negative feedback (in this context, skips) [53]. Thus, one of their
goals may be determined as recommending songs that yield the
highest listening activity (i.e. no skip). However, understanding
the users’ skipping behaviour is still an under-explored domain
[11, 34, 44]. It is a challenging problem due to its noisy nature: a skip
may suggest a negative interaction, but a user may skip a song that
they like because they recently heard it elsewhere. In this work, we
aim to understand why people skip by comprehensively analysing
the utility of users’ historical data. In particular, we analyse the
impact and effect of the users’ behaviour (e.g., the user action that
leads to the current playback to start), listening content (i.e., the
listened song), and contextual (e.g., the hour of the day) features
in the classification task of predicting the users’ music skipping
behaviour. We propose a novel approach that leverages and adapts
DRL for this classification task. This is to most closely reflect how
a DRL-based MRS could learn to detect music skips.

Prior works in analysing the skipping behaviour revealed an uni-
versal behaviour in skipping across songs, with geography, audio
fluctuations or musical events, and contextual listening informa-
tion affecting how people skip music [14, 44, 48, 49]. Recently, the
effectiveness of deep learning models has also been explored for
the task of predicting the users’ sequential skipping behaviour in
song listening sessions [1, 8, 12, 23, 31, 58, 68]. While they made
a significant contribution towards this direction, their process is
usually seen as an independent and static procedure. They may not
account for the dynamic nature of the users’ behaviour, and do not
intuitively optimise for the long-term potential of user satisfaction
and engagement [29, 40, 54, 61, 66, 67]. Overall, this motivates the
investigation of the DRL’s applicability in predicting music skips
and a comprehensive investigation on the relation of the skipping
signal with users’ behaviour, listening context, and content. This
paper aims to investigate the following two important research
questions: can DRL be applied to the users’ music skipping behaviour
prediction task, and if so, would it be more effective in the music skip
prediction task than deep learning state-of-the-art models? (RQ1);
what historical information is considered discriminative and serves
as a high-quality indicator for the model to predict why people skip
music? (RQ2). To investigate our RQs, we have conducted an ex-
tensive study on a real-world music streaming dataset (Spotify).
Our comprehensive analysis demonstrates the effectiveness of our
approach and a temporal data leakage problem in the historical data.
Overall, our findings indicate that the most discriminative features
for our proposed DRL model to predict music skips are some users’
behaviour features, with content and contextual features reporting
a lesser effect. This suggests that a limited amount of user data can
be leveraged to predict this behaviour, thereby offering implications
in the building of novel user-centred MRSs and responsible data
collection procedures. This is a necessary step in creating a holistic
representation of the listeners’ preferences, interests, and needs.
The main contributions of this paper are:

• We demonstrate the applicability and effectiveness of DRL in
predicting users’ skipping behaviour from listening sessions.
A framework is devised to extend the DRL’s applicability
to perform this classification and offline learning. This is
the first time that DRL has been explored in this task. The
effectiveness of our approach is empirically shown on a
real-world music streaming dataset (Spotify). Our proposed
approach outperforms state-of-the-art models in terms of
Mean Average and First Prediction Accuracy metrics.

• We perform a comprehensive post-hoc (SHAP) and ablation
analysis of our approach to study the utility of users’ his-
torical data in detecting music skips. We reveal a temporal
data leakage problem in the historical data. Further, our re-
sults indicate that overall users’ behaviour features are the
most prominent and discriminative in how the proposed
DRL model predicts music skips. The listening content and
context features are reported to have a lesser effect.

2 RELATEDWORK
A successful MRS needs to meet the users’ various requirements at
any given time [24, 55, 64]. Thus, user modelling is a key element.
A line of research has tried to untangle the relationship between
personality and the users’ musical preferences [37, 51, 52]. Volokhin
and Agichtein [60] introduced the concept of music listening intents
and showed that intent is distinct from context (user’s activity). A
different, and arguably complementary, research direction is trying
to understand and model how users interact with the underlying
platform. This is a long-standing and under-researched problem of
online streaming services [11]. An example of these interactions is
the skips between songs. Its modelling and understanding during
music listening sessions plays a crucial role in understanding users’
behaviour [44]. The skips are often the only information available
to the underlying MRS, and therefore they are used as a proxy to
infer music preference [53].

The skipping signal has already been used in prior works, as
a measure in heuristic-based playlist generation systems [10, 50],
user satisfaction [24, 64], relevance [25], or as a counterfactual
estimator [43]. Furthermore, given its universality and presence
in other domains, recent research has also investigated its effect
in ads on social media platforms [5–7]. Despite being abundant in
quantity, it is a noisy implicit signal [53, 62]. A skipped track does
not necessarily imply a negative preference. Multiple hypotheses
can be formulated on why users skip songs, with recent research
suggesting that people manifest an universal behaviour in skipping
across songs, dictated by time, geography, and reaction to audio
fluctuations or musical events [14, 48, 49]. Moreover, it has been
shown in [57] that people who usually listen to songs in their
entirety, show higher listening duration that those who do not.
Most recently, Meggetto et al. [44] proposed a clustering-based
approach that clearly identifies four user types with regards to
their session-based skipping activity. These types, namely listener,
listen-then-skip, skip-then-listen, and skipper, are influenced by the
length of the listening session, time of the day, and playlist type.
The main limitation of these prior works is that they explore the
relation between listening context and content with the skipping
behaviour. They do not explore how the user interactions with the
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platform influence the detection of skips. This is a limitation that
this works addresses.

In 2019, Spotify identified music skip prediction as an important
challenge and organised the Sequential Skip Prediction Challenge 1

to explore approaches that could alleviate this problem. The chal-
lenge focused on predicting whether individual tracks encountered
in a listening session will be skipped or not. To respond to this
challenge, several deep-neural networks [1, 8, 12, 23, 31, 58, 68]
and supervised learning [18] models were proposed. Afchar and
Hennequin [2] proposed using interpretable deep neural networks
for skip interpretation via feature attribution. Whilst neural net-
works, and in particular Recurrent Neural Networks (RNNs), have
been shown to effectively model sequential data, they consider
the procedure as a static process. They do not intuitively provide
a mechanism for the long-term optimisation of user satisfaction
and engagement, continuous learning, and the modelling of the dy-
namic nature of the user’s behaviour [29, 54, 61, 66, 67]. Therefore,
it is a case where DRL is required, an investigation and application
of which has never been explored before. A research gap this work
aims to address.

The Sequential Skip Prediction Challenge is a binary classification
task. Despite receiving limited attention to date, DRL has been
shown to be suitable and effective in classification tasks. It can
assist classifiers in learning advantageous features [15, 27] and
select high-quality instances from noisy data [17]. Wiering et al.
[65] demonstrate that RL is indeed suitable for classification. Their
model slightly outperforms existing classifiers, but training time
and extra computational requirements are major drawbacks. With
the recent advances in the field, a body of research is showing
the superiority of DRL-based approaches for classification tasks
[17, 27, 28, 39, 42]. In particular, the authors in [27, 28] show that
a Vanilla Deep Q-Network (DQN) [47] approach is superior and
more robust to state-of-the-art algorithms.

In this work, we explore, for the first time, the applicability of
DRL in the task of sequentially predicting users’ music skipping be-
haviour. This is motivated by the limitations of existing approaches
and the advantages of DRL. By comprehensively analysing users’
historical data, we study its utility and effect in our approach for
this task. This work is the first step in understanding why people
skip music.

3 APPROACH
In this section, we present our framework to facilitate the applica-
tion of DRL to the problem of sequentially predicting users’ skip-
ping behaviour from listening sessions. To do so, we model this
problem as a Markov Decision Process (MDP) and a mechanism
is introduced in the RL problem formulation to correctly exploit
logged interactions and thus perform offline learning. The details
of this framework are as follows:
State: it is the record-level representation of a listening session
at a discrete time step (i.e., position in the session). The state, i.e.
a record in a listening session, includes various user’s contextual
information about the stream, their interaction history with the
platform, and information about the track that the user listened to.

1https://www.aicrowd.com/challenges/spotify-sequential-skip-prediction-challenge

An episode is the entire listening session, with sessions containing
from 10 up to at most 20 records.
Actions: it is a discrete action space which is a binary indicator
of whether the current track is going to be skipped or not by the
corresponding user. Effectively, the problem formulation can also
be thought of as a binary classification problem 𝐴 = {0, 1}, where
0 represents a no skip operation and 1 represents a skip.
Reward: a positive reward of 1 is given for a correctly predicted
skip classification, 0 reward (i.e., no penalty) otherwise.

Motivated by the discrete action space and off-policy require-
ments of the music skip prediction task, we leverage DQN2. These
requirements preclude the use of algorithms such as Deep Deter-
ministic Policy Gradient (continuous action space) and Proximal
Policy Optimization (on-policy learning). Whilst the problem is
formulated as an MDP, it is partially observable (POMDP) by defi-
nition. This is because only partial information about the listening
context and of the user is available [16]. Hence, in our problem
formulation, we consider MDP and POMDP to be equivalent. This
means that we do not perform any further processing of the state
representation (e.g., masking of some features).

This classification formulation can be seen as a guessing game,
where a positive reward is given for a correct guess, and no penalty
is given for an incorrect one. Long-term optimisation via discount
factor 𝛾 can be thought of as a way to correctly guess as many
records in an episode as possible. Since there is a sequential correla-
tion among recordswithin an episode (i.e., amusic listening session),
a high 𝛾 value should be used. This corresponds to optimisation on
the total number of correct guesses in an episode (long-term) rather
than optimisation on the immediate ones (short-term). By taking
into account previous points in time and the past interactions with
the environment, the DRL agent makes fully informed decisions.

3.1 Offline Mechanism
The DQN’s standard training procedure is entirely online. Online
learning is an iterative process where the agent collects new ex-
periences by interacting with the environment, typically with its
latest learned policy. That experience is then used to improve the
agent’s policy. However, exploiting logged data may be helpful and
informative for the agent as a form of (pre)training. In offline learn-
ing (Batch RL [36]), the agent’s task is instead defined as learning
from a static dataset. Policies are learnt from logged data, and no
interactions with the underlying environment are required. Whilst
our prior formulation would work in an online learning setting,
it presents a major problem when performing offline learning. A
misclassification would cause a transition to a new state, which
is, however, not part of the original trajectory and thus not repre-
sented in the dataset as well. The agent will generate and associate
a (discounted) cumulative reward to a wrongly generated trajectory
that is substantially different from the original. Thus, a pure offline
algorithm has to exclusively rely on the transitions that are stored
in the dataset provided in the input. From our initial formulation,
we need to account for those out-of-distribution actions.

Within the definition of the reward function itself, the out-of-
distribution, untruthful action is marked as invalid and, if sampled

2Due to space limitations, we refer the readers to [47] for the necessary background
and overview of the algorithm.

97

https://www.aicrowd.com/challenges/spotify-sequential-skip-prediction-challenge


CHIIR ’23, March 19–23, 2023, Austin, TX, USA Francesco Meggetto, Crawford Revie, John Levine, and Yashar Moshfeghi

by the agent throughout learning, it causes the current episode to
be terminated. In other words, an incorrect guess (0 reward) leads
to a terminal state. This simple constraint forces a minimisation of
estimation errors and therefore it avoids the creation of potential
estimation mismatches. As such, the untruthful action that causes
the current episode to terminate avoids the future propagation of
incorrect bootstrapped return estimations in the Temporal Differ-
ence target. This is to minimise the distributional shift issues due
to differences between the agent’s policy and the behaviour policy.
More specifically, it explicitly ensures that regardless of the next
sampled action, the current policy 𝜋 (𝑎′ |𝑠′) is as close as possible
to the behaviour distribution 𝜋𝛽 (𝑎′ |𝑠′). The Q-function is queried
as little as possible on out-of-distribution and unseen actions since
this will eventually increase errors in the estimations.

This error, i.e. "extrapolation error" [22], is introduced when an
unrealistic and erroneous estimation is given to state-action pairs.
This is caused when action 𝑎′ from estimate 𝑄 (𝑠, 𝑎) is selected,
and the consequent state-action pair (𝑠′, 𝑎′) is inconsistent with
the dataset due to the pair being unavailable. It provides a source
of noise that can induce a persistent overestimation bias and that
cannot be corrected, in an off-policy setting, due to the inability
to collect new data [21, 22]. Directly utilising DQN in an offline
setting may result in poorer performance and a resemblance to
overfitting [38]. Our proposed mechanism minimises these errors.
It is important to note that the "correct" action is not forcefully
fed to the agent as in Behaviour Cloning based approaches. We let
the agent deterministically decide as if it were a live interaction
with the environment, thus keeping the general workflow of the
original algorithm intact. This provides a single interface to easily
transition from offline to online learning and vice versa.

Finally, it is important to note that the aim of this work is to en-
hance our understanding of why people skip music and identify the
high-quality features for its detection. To this end, we analyse the
applicability of DRL in predicting this behaviour. We leave further
tailoring of the approach to the music skip prediction task and an
evaluation with recently proposed offline model-free algorithms
[4, 13, 20, 33] for future work. Nevertheless, our proposed approach
requires no architectural or algorithmic modifications. It offers the
potential for a swift transitioning from online to offline learning
and vice versa. It can be also be considered as a swift pre-training
of an agent that can later be deployed online for continual learning.

4 EXPERIMENTAL SETTINGS
4.1 Dataset
We conduct our experiments on the real-world Music Streaming
Sessions Dataset (MSSD) provided by Spotify [11]. The publicly
available training set consists of approximately 150 million logged
streaming sessions, collected over 66 days from July 15th and Sep-
tember 18th 2018. Each day comprises ten logs, where each log
includes streaming listening sessions uniformly sampled at random
throughout the entire day. Sessions contain from 10 up to at most
20 records and are defined as sequences of songs/tracks that a user
has listened to (one record per song). Each record includes various
user’s contextual information about the stream (e.g., the playlist
type) and interaction history with the platform (e.g., scrubbing,

which is the number of seek forward/back within the track). Al-
though the track titles are not available, descriptive audio features
and metadata are provided for them (e.g., acousticness, valence, and
year of release). It is important to note that there is no user identi-
fication, nor access to demographic or geographical information.
Hence, by not knowing whether two sessions have been played by
the same user or by two different users, this study revolves around
the modelling and understanding of the users’ skipping behaviour.

4.1.1 Temporal Correlation. There is no temporal correlation
among listening sessions, i.e. the sessions are not presented in
historical order, which is reflected in the chance of consecutive
sessions having a considerably different hour of the day (e.g., morn-
ing and evening). Also, there is no order to the ten logs within
a given day (i.e., the 1st log of the first day does not necessarily
occur before the 2nd of the same day). This does not preclude the
potential applicability of DRL for the skip prediction task since the
hour of the day in which a song was played is provided. Thus, it
allows for the modelling of skipping behaviour dependent on the
hour of the day.

4.1.2 Creation of Training and Test Sets. In this work, we only
leverage the training set since, in the test set, most of the metadata
and the skipping attributes used as ground truth in our evaluation
are not provided. By selecting logs from the original training set,
statistics for our training and test datasets are presented in Table 1.
As it can be seen from the statistics, the ratio of skip values for
all sets is balanced between True and False values. This balanced
distribution is an intrinsic property of the dataset and of any of the
available logs. Due to the large amount of data, and therefore com-
putational and execution time requirements, the first four logs of
the first available day are used for training. Testing is performed on
various logs in order to test the models’ generalisability for different
days. Except for T1, which is the 5th and next immediate consecu-
tive log after the training set collection, all the other logs are of a
random index, day and/or month. This random selection approach
is justified by the fact that there is no temporal correlation among
logs of the same day. This is to show the generalisation capabili-
ties of our proposed approach and to allow for the comprehensive
analysis of the importance of the users’ historical data.

4.1.3 Data Preprocessing. All available features, with a full de-
scription available in [11], are included in the state representation,
except for the skip features, session and song identifiers. Categor-
ical features, such as the playlist type and the user’s actions that
lead to the current track being played or ended, are one-hot en-
coded. All the audio features are standardised to have a distribution
with a mean value of 0 and a standard deviation of 1. Overall, this
results in a state representation consisting of 70 features. For ease
of discussion, they are grouped as follows:
User Behaviour (UB):

• Reason End (RE) is the cause of the current playback to end.
This is a one-hot encoded feature that thus groups various
encoded features such as Trackdone, Backbtn, Fwdbtn, and
Endplay.

• Reason Start (RS). Similar to Reason End, it is the type of
actions that cause the current playback to start.
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Table 1: Summary of datasets used for experiments after pre-processing. log(s) # indicate which log(s) are selected out of the
available ten. skip (%) refers to the ratio between True and False values.

Dataset Date log(s) # # of records # of sessions skip (%)

Training Set 15/07/2018 [0, 3] 11,927,861 711,838 51.20%
Test Set (T1) 15/07/2018 4 2,991,438 178,419 51.21%
Test Set (T2) 19/07/2018 8 3,395,883 204,145 50.53%
Test Set (T3) 27/07/2018 0 3,447,209 207,060 50.76%
Test Set (T4) 10/08/2018 6 3,407,685 205,267 50.42%
Test Set (T5) 09/09/2018 1 2,588,711 155,617 51.48%

• Pauses (PA) is the length of the pause in between playbacks.
It consists of No, Short, and Long Pause.

• Scrubbing (SC) is the number of seeking forward or back-
ward during playback. They correspond respectively to Num
Seekfwd and Num Seekback.

• Playlist Switch (PS) indicates whether the user changed
playlist for the current playback.

Context (CX):

• Session Length (SL) is the length of the listening session.
• Session Position (SP) is the position of the track within
the session.

• Hour of Day (HD) is the hour of the day in which the
playback occurred ([0..23]).

• Playlist Type (PT) is the type of the playlist that the play-
back occurred within. Examples are User Collection, Person-
alized Playlist, and Radio.

• Premium (PR) indicates whether the user was on premium
or not.

• Shuffle (SH) indicates whether the track was played with
shuffle mode activated.

Content (CN). This third and final category groups all the Track
(TR) metadata and features, as they constitute the only content-
based information in the MSSD. It includes 28 features such as Beat
Strength, Key, Duration, and the eight Acoustic Vectors ([0..7]).

4.2 Evaluation Metrics
To perform an evaluation of our proposed approach, we adopt the
evaluation metrics from the Spotify Sequential Skip Prediction Chal-
lenge. This is also to provide a fair comparison with the selected
baselines, since they were proposed on this challenge and for the
following task: given a listening session, predict whether the individ-
ual tracks encountered in the second half of the session will be skipped
by a particular user. Therefore, every second half of a session in
the selected test set is used for prediction. If a session has an odd
number of records, the mid-value is rounded up. This is motivated
by the fact that an accurate representation of the user’s immedi-
ately preceding interactions can inform future recommendations
generated by the music streaming service. Hence, it is important
to infer whether the current track is going to be skipped as well
as subsequent tracks in the session. First Prediction Accuracy and
Mean Average Accuracy are adopted as metrics.

First Prediction Accuracy (FPA) is the accuracy at predicting the
first interaction for the second half of each session.
Mean Average Accuracy (MAA) is defined as:

𝑀𝐴𝐴 =

𝑇∑
𝑖=1

𝐴(𝑖)𝐿(𝑖)

𝑇
(1)

where 𝑇 is the number of tracks to be predicted within the given
session, 𝐴(𝑖) is the accuracy up to position 𝑖 of the sequence, and
𝐿(𝑖) indicates whether the 𝑖𝑡ℎ prediction is correct or not. Intu-
itively, in these evaluation metrics higher importance is given to
early predictions. In our setting, however, we do not exploit this
specification in the problem formulation. Instead, the agent is in-
structed to optimise the total number of correct predictions in the
session. This is to keep the system’s specifications simple and easily
adaptable to different metrics and/or tasks. In the dataset schema,
prediction is based on the skip_2 feature. It indicates a threshold on
whether the user played the track only briefly (no precise threshold
is provided) before skipping to the next song in their session.

4.3 Models
4.3.1 Baselines. To identify state-of-the-art baselines on the music
skip prediction task, we performed an extensive search on prior
works that utilise the MSSD dataset. We identified the following 4
of the top-5 ranked submissions to the Spotify Sequential Skip Pre-
diction Challenge and presented at the WSDM Cup 2019 Workshop:

• Multi-task RNN: RNN-based approach that predicts multi-
ple implicit feedbacks (multi-task) [68].

• Multi-RNN: Multi-RNN with two distinct stacked RNNs
where the second makes the skip predictions based on the
first, which acts as an encoder [23].

• Temporal Meta-learning: A sequence learning, meta-
learning, approach consisting of dilated convolutional layers
and highway-activations [12].

• Weighted RNN: RNN architecture with doubly stacked
LSTM layers trained with a weighted loss function [31].

They respectively reported the 1st, 2nd, 3rd, and 5th best overall
performance on the Spotify Challenge, with Multi-task RNN be-
ing the strongest and Weighted RNN being the weakest baselines.
The exclusion of the 4th overall best model on the challenge in
our evaluation is because no manuscript and code repository were
found. For the selected baselines, we use the code accompanying
the papers (GitHub links available in cited manuscripts). We then

99



CHIIR ’23, March 19–23, 2023, Austin, TX, USA Francesco Meggetto, Crawford Revie, John Levine, and Yashar Moshfeghi

reproduced their results locally by running their provided public
code locally, to the best of our abilities and with an optimised set of
parameters. However, despite our best efforts, we reported consis-
tently worse results than the ones in the Spotify Challenge public
leaderboard and/or accompanying papers. The test set used in chal-
lenge is not fully released. No ground truth is available, thereby not
allowing for a local evaluation. However, given our procedure for
the creation of the train and test sets (Section 4.1.2), i.e. the training
is performed on the first available day and the evaluation is for
different days/months, we make the strong assumption that the
overall data distribution of our selected test sets and the one used
in the public challenge are similar. For a fair comparison, we thus
report the results from the public leaderboard since they are better
than the ones from our local evaluation.

4.3.2 DQN Architecture. For this work, we explored nine state-of-
the-art DQN architectures. By adhering to our proposed framework,
they have been thoroughly investigated in the users’ music skipping
behaviour prediction task. They are the Vanilla [47], Double [59],
Dueling [63], and their respective n-step learning variants [46].
Partially observable architectures have also been explored, with
observations stacking [47] and Gated Recurrent Units (GRU) and
Long Short-Term Memory (LSTM) based architectures [26].

Due to space limitations, a comparison among all these architec-
tural variants is not reported. We note, however, that Vanilla DQN
achieves the best performance. This is given its comparable per-
formance and the advantage of a significantly simpler architecture
with lower complexity. Therefore, the reported results are only for
the Vanilla DQN architecture (hereafter referred to as "DQN").

4.4 Experimental Procedure
We trained our DQN using the following set of parameters: experi-
ence replay memory is 10000, batch size and frequency of updates
are set as 256, the learning rate is 0.001, and the discount factor is 0.9.
The policy network consists of three fully-connected layers (of size
128) and a final action-value linear output layer of size 2. This final
layer computes the Q-values for each action. Hyperparameters were
selected by random and Tree-structured Parzen Estimator search,
with the best set selected for evaluation on the test collections. The
implementation of the DQN agent is provided by the Tensorforce
[32] library. For complete reproducibility of our work, the code for
this work is available at https://github.com/NeuraSearch/Spotify-
XRL-Skipping-Prediction

To explore the potential instabilities and divergences during
training, the proposed DQN approach is run five times per test
set. The reported results represent the mean across all test sets.
Lastly, during the training phase, learning is constrained with out-
of-distribution actions, and therefore, some state-value pairs in
the dataset are not experienced by the agent due to early termina-
tion. During the testing phase, all episodic records are sequentially
retrieved, and the agent acts deterministically on the complete
episodes for its evaluation.

4.4.1 Post-Hoc Analysis. In order to carry out an analysis on the
importance and validity of the users’ historical data in predicting
music skipping behaviour, we first leverage the Shapley Additive
Explanations framework (SHAP) [41]. It is a game-theory based

approach that explains the predictions of machine learning models.
In particular, we adopt the Kernel Explainer, which is a model
agnostic method to estimate the SHAP values. This is because
there exists no DRL specific explainers. However, since the Kernel
Explainer makes no assumptions about the model to explain the
predictions of, it is a highly expensive computational approach. This
means that it is slower than the othermodel type specific algorithms.
By considering these extensive computational requirements, for
each test set, we estimate the feature importance values for the
first 50 episodes (i.e., listening sessions) and with 200 perturbation
samples per record. Given the high similarity across all test sets,
we only report the results for T1.

4.4.2 Ablation Analysis. To validate the SHAP results, we perform
an ablation analysis on the input state representation. We study
the effect that the category (e.g., UB) and type (e.g. RS) features
have on the DQN’s performance. To this end, we train and evaluate
(following the same above-mentioned experimental procedure) the
proposed approach on a state representation that does not include
the selected features’ type. This iterative approach, whereby only
a single type is removed for each evaluation, is repeated until all
types that comprise the input state representation are evaluated.

4.4.3 Temporal Data Leakage. A closer investigation of the MSSD
dataset, and validated by the post-hoc and ablation analysis, reveals
a temporal data leakage of some features. These features have been
left unnoticed and they have inadvertently affected the Spotify
Challenge and thus the baselines. These features correspond to the
length of session (SL) and the user actions that lead the current
playback to end (RE). This is because they provide to the model
information from the future that should not be available in a live
predictive system. Although we recognise and acknowledge this
to be a problem, the reported results on the comparison with the
selected baselines are without the removal of such features. This is
to provide a fair comparison with the selected baselines, since they
include these features in their input representation. These features
are removed from the state when we investigate why people skip
music, and it is referred to as the "corrected" state.

5 RESULTS
First, the validity of our approach to predict users’ music skipping
behaviour is demonstrated against the state-of-the-art deep learn-
ing based models. Our analysis of the music skipping prediction
task and of the MSSD dataset reveals a temporal data leakage prob-
lem (Section 4.4.3). With a "correction" of the state representation
by removal of such features, we report the comprehensive investi-
gation on how the skipping behaviour can be detected by analysing
the importance of UB, CX, and CN.

5.1 Applicability of DRL to Music Skip
Prediction (RQ1)

On our local evaluation, Multi-RNN and Temporal Meta-learning,
despite outperformingWeighted RNN in the challenge submissions,
perform consistently worse on our selected test sets. Multi-Task
RNN, the best performing baseline on the public challenge, achieves
3Leaderboard results available on cited manuscripts and/or at https://www.aicrowd.
com/challenges/spotify-sequential-skip-prediction-challenge
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Table 2: MAA and FPA results for our proposed DQN approach and baselines. The reported results are the averages across all
test sets for DQN (with 95% CI). For the baselines, we report the publicly available results from the Spotify Challenge3. This is
to provide a fair comparison since they are better than those obtained from our local evaluation. No CIs are reported for the
baselines due to their unavailability. The best performing model is highlighted in bold.

MAA FPA

Mean 95% CI Mean 95% CI
DQN 0.820 [0.818 - 0.822] 0.881 [0.880 - 0.882]

Public
Leaderboard

Multi-task RNN 0.651 — 0.812 —
Multi-RNN 0.641 — 0.807 —
Temporal Meta-learning 0.637 — 0.804 —
Weighted RNN 0.613 — 0.794 —

slightly inferior performance compared to Weighted RNN. Overall,
we note that all the baselines perform consistently worse on our
local evaluation than in the public challenge. We observe decreases
in performance of 4.9, 16.2, 4.9, 0.8 (%) and 2.4, 8.2, 2.2, 0.4 (%) in
MAA and FPA and for Multi-task RNN, Multi-RNN, Temporal Meta-
learning, and Weighted RNN respectively. Therefore, in Table 2,
we report results in terms of MAA and FPA metrics for our pro-
posed DQN approach with the baselines’ public results from the
Spotify Challenge. This is because they are better than those that
we obtained from our local evaluation and to provide an as fair as
possible comparison. Our proposed approach exhibits significant
improvements over all baselines on both MAA and FPA metrics.
Our proposed DQN registers an increase of performance for both
MAA and FPA of 17% and 7% respectively with regards to Multi-task
RNN, the best performing baseline from the public challenge.

Overall, our results demonstrate the validity and applicability
of DRL to predict users’ music skipping behaviour. A Vanilla DQN
architecture can outperform the more complex deep learning based
state-of-the-art models. Furthermore, the results and a thorough
analysis, omitted from this paper due to space limitations, also
indicate that convergence is achieved using a significantly lower
number of episodes, at around 2 × 105 (∼ 1/4 of the episodes in the
training set). This suggests sample efficiency and swift convergence
of our proposed approach. Thus, it also addresses the well-known
problem of DRL, which is its computationally intensive and slow
learning. Our approach converges swiftly and, in contrast to the
selected baselines, it does not require GPU access. The low variabil-
ity in performance across multiple runs and during the learning
process also indicates stable and effective learning.

5.2 Identification of Temporal Data Leakage
In the previous section, we compared our proposed DQN against
the selected baselines in order to demonstrate the validity of our
proposed DQN. By performing an as fair as possible comparison,
empirical results indicate the superiority of our approach. However,
this benchmarking introduced errors into themodel. This is because,
as described in Section 4.4.3, we recognise that there are data leaking
features in MSSD. The SL informs the model of how many songs a
given user will listen to. This should not be made available because
it is impossible to know how many songs a user will listen to in
their current listening session. Further, the RE features provide

information about how the current stream ends. This information
should also not be exposed to the model. However, to provide a
fair comparison with the baselines, since they are included in their
input representation, these features were not removed despite our
acknowledgement.

The temporal data leakage problem is validated by Figure 1,
which reports the analysis of the average impact on model output
(SHAP) of all features in the input state representation. It can be
noted how the most discriminative feature to detect music skips
is RE Trackdone, followed by RS Trackdone, RS Fwdbtn, and Short
PA. SL is also found to have a relative impact (19th). It is clear that
the proposed DQN considers these features to be of high quality
and prominent importance for predicting the users’ music skipping
behaviour. However, they introduce a data leaking problem. By
their removal from the input state representation, we observe a
decrease in performance for our proposed DQN of 16% and 11%
in MAA and FPA respectively. Further, we observe decreases in
performance of 5.2, 26.2, 7.6, 0.6 (%) and 3.5, 28.4, 6.0, 1.3 (%) in MAA
and FPA for Multi-task RNN, Multi-RNN, Temporal Meta-learning,
and Weighted RNN respectively (differences calculated from the
results obtained in our local evaluation after removal of the features
with those reported in the public challenge). Overall, these results
validate our initial intuition and demonstrate the data leakage prob-
lem. This finding provides a strong implication for a future outlook
on creating attentive data collection procedures for transparent
measurements of user behaviours. Offline benchmarks should be
an as truthfully as possible reflection of real-world (online) tasks.

5.3 The Role of User Behaviour, Context, and
Content in Detecting Music Skips (RQ2)

In this final section, we aim to address our main research question:
why people skip music? To this end, we acknowledge and thus
remove the leaking features from the state representation to enable
for a correct modelling of the users’ music skipping behaviour.

5.3.1 User Behaviour (UB). Figure 2 reports the SHAP features
importance analysis of the proposed DQN on the "corrected" state
representation. It can be observed that how the user interacted with
the underlying platform to start the current playback (i.e., the RS
type) is considered being the most discriminative feature to detect
music skips. Trackdone and Fwdbtn are the highest negatively and
positively correlated features in predicting a skip. They correspond
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User Collection | CX | PT
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Acoustic Vector 4 | CN | TR
Premium | CX | PR

Acoustic Vector 7 | CN | TR
Backbtn | UB | RS
Shuffle | CX | SH

Endplay | UB | RE
Session Position | CX | SP

Duration | CN | TR
Long | UB | PA

Clickrow | UB | RS
Num Seekback | UB | SC

Fwdbtn | UB | RE
No | UB | PA

Backbtn | UB | RE
Short | UB | PA

Fwdbtn | UB | RS
Trackdone | UB | RS
Trackdone | UB | RE

Figure 1: SHAP features importance analysis of the proposed DQN. The categorisation of the features and an explanation of
the used acronyms is described in Section 4.1.3. Features are ranked in order of importance and they are reported as "[Name] |
[Category] | [Type]".

to the user starting the current playback having listened in full or
having pressed the forward button (i.e., skip) on the previous play-
back. These findings validate the recent observations by Meggetto
et al. [44]. By considering their defined listener and skipper user
types, we hypothesise that the user behaviour that can inform the
membership of a user to one of these two types is a RS Trackdone
or Fwdbtn. From our results, it is clear that how a person interacted
with the previous song appears to greatly affect the DRL’s ability to
detect how they will interact next. Another UB that appears to have
a prominent effect is the pause in between playbacks. A Short PA
and a No PA are shown to highly and weakly suggest a music skip
respectively. In the case of a Long PA, our results strongly indicate
that the user will not skip their current song. This finding validates
our initial hypothesis. It may correspond to a person searching the
catalogue for a song they would like to listen, and hence a long
pause. Therefore, it is intuitive that it may not be skipped. However,
the effect of a short pause in detecting music skips is of surprising
effect. This may be justified by a user’s exploratory state where
they browse the catalogue and briefly listen to multiple songs until
they find a match for their needs.

5.3.2 Context (CX). We observe that users that listen in Shuf-
fle mode and/or with a Premium account are associated with less
skipping activity. Listening with a User Collection PT is associated
with a higher skipping rate. It is also shown that listening under

a Personalised Playlist or Radio is subject to more listening and
thus less skipping activity. This finding could suggest that they
have a higher users’ engagement. However, this is not possible to
quantify, and further evaluation is required in order to understand
this phenomenon. This could be explained by the noisy nature of
the skipping activity and the possibility, as in the example of radio
listening, of passive (background) consumption of the music. Al-
though the PT findings appear to partially validate prior work [44],
in our ablation analysis we see that their removal from the state
representation registers no significant effect on the DRL’s ability
to predict music skips.

5.3.3 Content (CN). The only content-based features in the
MSSD are related to the track being listened by the user (TR). The
correlation between skipping activity and the TR features is less
obvious since they appear to be less discriminative and promiment
in detecting music skips. Beat Strength and Key, although mostly
centred around a zero impact, suggest that a high beat strength is
associated with more listening, and a high-pitched song (Key) with
higher chances of skipping. Further, longer songs (Duration) are
usually associated with higher listening activity, although they may
also correspond to skips. However, in our ablation analysis, we ob-
serve the no effect in the DQN’s performance by the removal of all
TR features. We find this to be of surprising effect, since it appears
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Figure 2: SHAP features importance analysis with positive (skip) and negative (no skip) impact values of the proposed DQN on
a "corrected" state representation (i.e., after addressing temporal data leakage). The Feature Value axis refers to high or low
observational values. For Boolean features (e.g., RS Trackdone), high/red is a True value, and low/blue is False. The categorisation
of the features and an explanation of the used acronyms is described in Section 4.1.3. Features are ranked in order of importance
and they are reported as "[Name] | [Category] | [Type]".

Table 3: MAA and FPA results for our ablation analysis on the proposed DQN on the corrected state representation. The reported
results are the average across all test sets and the 95% CIs. (*) and (**) indicate that the selected type of features had a statistically
significant effect in performance in the proposed DQN (on a "corrected state") on MAA or FPA. This is based on confidence
levels (𝑝 < .05) and (𝑝 < .001) respectively.

MAA FPA

Mean 95% CI Mean 95% CI
Corrected State 0.664 [0.662 - 0.666] 0.773 [0.772 - 0.774]

U
B

Reason Start (RS) 0.389 (**) [0.378 - 0.400] 0.479 (**) [0.464 - 0.494]
Pauses (PA) 0.659 (*) [0.657 - 0.661] 0.769 (*) [0.768 - 0.770]
Scrubbing (SC) 0.659 [0.655 - 0.663] 0.770 (*) [0.768 - 0.772]
Playlist Switch (PS) 0.662 [0.659 - 0.665] 0.773 [0.772 - 0.774]

CX

Hour of Day (HD) 0.663 [0.661 - 0.665] 0.773 [0.772 - 0.774]
Playlist Type (PT) 0.663 [0.661 - 0.665] 0.772 [0.771 - 0.773]
Premium (PR) 0.664 [0.662 - 0.666] 0.773 [0.772 - 0.774]
Shuffle (SH) 0.663 [0.660 - 0.666] 0.774 [0.773 - 0.775]CN Track (TR) 0.664 [0.661 - 0.667] 0.773 [0.772 - 0.774]

103



CHIIR ’23, March 19–23, 2023, Austin, TX, USA Francesco Meggetto, Crawford Revie, John Levine, and Yashar Moshfeghi

to contradict prior research suggesting that audio characteristics
influence how people skip music [14, 49].

5.3.4 Ablation Analysis. In order to validate our findings and to
demonstrate the impact, whether statistically significant or not,
that these features have on the DQN’s performance, in Table 3 we
report the results for the ablation analysis. We performed paired
t-tests on the prediction accuracy of the proposed DQN (on the
"corrected" input state representation) with each of the selected
type of features (e.g., RS). We use (*) and (**) to denote the fact
that the removal of the selected type of features had a statistically
significant effect in performance in the proposed DQN onMAA and
FPA. This is based on confidence levels (𝑝 < .05) and (𝑝 < .001) re-
spectively. We note how the RS features type, as previously shown
in Figure 2, is the highest quality estimator to detect music skips.
Its removal registers a decrease in performance of 28% and 29%
in MAA and FPA respectively. The PAs also register a significant
impact. All the remaining features, including the CX and CN cat-
egories, do not appear to show a statistically significant effect on
the DQN’s performance. These results, therefore, suggest that a
limited amount of users’ data can be indeed leveraged to predict
the users’ music skipping behaviour, with only the RS and PA user
behaviours showing a statistically significant effect.

6 DISCUSSION & CONCLUSIONS
In this work, we aim to understand why people skip music. To
carry out such an analysis, we first proposed to leverage DRL to
the task of sequentially predicting users’ skipping behaviour in
song listening sessions. By first understanding how a DRL model
learns individual user behaviours, we can then help the process
of explaining recommendations of a DRL-based MRS. To this end,
we extended the DRL’s applicability to this classification task. Re-
sults on a real-world music streaming dataset (Spotify) indicate the
validity of our approach by outperforming state-of-the-art deep
learning based models in terms of MAA and FPA metrics (RQ1). By
empirically showing the effectiveness of our proposed approach,
our main post-hoc and ablation analysis revolves around a compre-
hensive study of the utility and effect of users’ historical data in
how the proposed DRL detects music skips (addressing RQ2).

Our findings indicate that how users interact with the platform is
the most discriminative indicator for an accurate detection of skips
(i.e., RS and PA). Surprisingly, the listening CX and CN features
explored in this work do not appear to have an effect on the DRL
model for the prediction of music skips. Our analysis also reveals
a temporal data leakage problem derived from some features in
the dataset and used in the public challenge, since they provide
information from the future that should not be made available to a
live predictive system. Overall, this work shows that an accurate
representation of the users’ skipping behaviour can be achieved by
leveraging a limited amount of user data. This offers strong implica-
tions for the design of novel user-centredMRSs with a minimisation
and selection of high-quality data features to avoid introducing er-
rors and biases. The results and a thorough analysis of our proposed
approach indicate sample efficiency, swift convergence, and long-
term stability of our proposed approach. With convergence reached
using a significantly lower number of episodes, training time can be
greatly reduced by early termination. With no GPU access required

(in contrast to the state-of-the-art deep learning based models), our
approach also clearly addresses the well-known limitation of DRL
being a computationally extensive approach. These findings and
the consistent performance with no signs of instability make this
work of great interest for future research.

With the importance of modelling and understanding the users’
skipping behaviour, we believe this work to be an important step
towards improving user modelling techniques. An accurate rep-
resentation of the skipping behaviour can provide an invaluable
stream of information to the underlying recommendation process.
For example, we expect our findings, e.g. the RS type, to be highly
relevant in the downstream task of capturing, in real-time, a user’s
skipping type [44]. By extending our approach to predict and un-
derstand other users’ behaviours, we can create a holistic repre-
sentation of the listeners’ preferences, interests, and needs. We
also advocate for thoughtful considerations when collecting and
then presenting data to a model for measuring user behaviours.
With increasingly rising concerns around users’ data collection
and privacy, the need for minimal data collection is paramount.
Our proposed approach can be extended in future works to predict
when the song is likely to be skipped. This level of information
could allow to predict moments in a song where skips are most
likely to occur, which could be of great value for the underlying
platform. Considering how user’s emotions or current psychologi-
cal state affect their skipping behaviour is also an interesting venue
for further research. With access to richer behavioural data and
non-anonymised listening sessions, another line of research can
investigate the relation between skipping signal and the individual
user’s preferences (e.g., situation-aware MRS). Finally, although
not the aim of this work, performance improvements are to be
expected by further tailoring our approach to the music skip pre-
diction task. Given the user-based exploratory nature of this work,
we leave further experimentation and evaluations with emerging
DRL model-free offline algorithms and architectures (e.g., extend-
ing our analysis to transformer-based DRL models [30]) for future
investigation.
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