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ABSTRACT

The capillary bundle model, wherein the flow dynamics of a porous medium is predicted from that of a bundle of independent cylindrical
tubes/capillaries whose radii are distributed according to the medium’s pore size distribution, has been used extensively. However, as it lacks
an interaction between the flow channels, this model fails at predicting a complex flow configuration, including those involving a two-phase
flow. We propose here to predict spontaneous imbibition in quasi-two-dimensional porous media from a model based on a planar bundle of
interacting capillaries. The imbibition flow dynamics, and in particular, the breakthrough time, the global wetting fluid saturation at break-
through, and which capillary carries the leading meniscus are governed by the distribution of the capillaries’ radii and their spatial arrange-
ment. For an interacting capillary system consisting of 20 capillaries, the breakthrough time can be 39% smaller than that predicted by the
classic, non-interacting, capillary bundle model of identical capillary radii distribution, depending on the spatial arrangement of the capillar-
ies. We propose a stochastic approach to use this model of interacting capillaries for quantitative predictions. Comparing bundles of interact-
ing capillaries with the same capillary diameter distribution as that of the pore sizes in the target porous medium, and computing the average
behavior of a randomly chosen samples of such interacting capillary bundles with different spatial arrangements, we obtain predictions of
the position in time of the bulk saturating front and of that of the leading visible leading front, which agree well with measurements taken
from the literature. This semi-analytical model is very quick to run and could be useful to provide fast predictions on one-dimensional spon-
taneous imbibition in porous media whose porosity structure can reasonably be considered two-dimensional, e.g., paper, thin porous media
in general, or layered aquifers.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0123229

I. INTRODUCTION

When a wetting fluid is placed in contact with a porous medium,
the fluid spontaneously imbibes into the pore space due to capillary
suction. Such spontaneous imbibition in the porous matrix is crucial
for applications, such as oil recovery from reservoirs,1–3 Paper
Analytic Devices (l PADs),4,5 textiles,6 inkjet printing,7,8 microflui-
dics,9–13 lab-on-chip devices,14,15 point-of-care diagnostics,16,17

Polymer Electrolyte Membrane Fuel Cell (PEMFC),18,19 and micro
heat pipes,20,21 in understanding the motion of blood cells22 and in the
design of bio-inspired drainage and ventilation systems.23 Capillary
driven imbibition in a homogeneous porous medium follows diffusive
dynamics, where the imbibition length is proportional to the square
root of time.24–26 This kind of dynamics was first characterized by

Lucas27 and Washburn28 for a horizontal cylindrical capillary tube:
during the spontaneous imbibition of a wetting fluid of viscosity l in a
tube of radius r, the imbibition length (which here is simply the longi-
tudinal position of the meniscus along the tube) is given by

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rr cos hw

2l
t

s
; (1)

where r is the surface tension coefficient and hw is the wetting angle of
the invading fluid on the tube’s wall. In Eq. (1), the prefactor of the

ffiffi
t

p

law is proportional to
ffiffi
r

p
, which implies that, at any given time, the

meniscus will have advanced more along a capillary of larger radius
than along one of smaller radius. Later, the phenomenon of imbibition
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in a single pore/tube was observed to be strongly dependent on the
geometries of the capillaries.29–40

Due to the similarity in the macroscopic laws describing the time
evolution of the imbibition length between imbibition in a capillary
tube and imbibition in a homogeneous porous medium, the capillary
bundle model, considering a bundle of non-interacting capillaries of
different radii, is classically considered as a proxy for porous media, in
particular, soils.41–44 However, in a naturally occurring porous
medium, the pores are of various shapes and sizes and are intercon-
nected.45,46 In a quasi-two-dimensional (2D) porous medium such as
paper, Bico and Qu�er�e47 showed that there are two imbibing fronts, a
leading front in the small pores and a bulk saturating front that lags
behind, which is contradictory to the predictions of the classic bundle
of (non-interacting) capillaries, where the pores with larger radii have
the leading front during imbibition.

The model geometry consisting of interacting capillaries (i.e., a
capillary bundle where an opening allowing fluid exchange exists
between adjacent capillaries, see, e.g., Ref. 55) accounts for the effect of
the interaction between pores on the pore scale flow dynamics, which,
in turn, affects the Darcy scale flows in porous media.48–55 In a system
of two interacting capillaries, the imbibition in the capillary of smaller
radius is found to be faster than that in one of larger radius, unlike the
behavior suggested by Eq. (1). However, a majority of these models
were limited to predicting the imbibition dynamics in an ordered
arrangement of pores or in two and three interacting capillary systems.
For a system consisting of three interacting non-cylindrical capillaries,
Unsal et al.56–58 showed experimentally that the imbibition speed is
fastest in the capillary of least effective radius. On the contrary, Ashraf
et al.,55 using a one-dimensional lubrication approximation model and
considering a system of three interacting cylindrical capillaries, showed
that imbibition is not always fastest in the capillary of smallest radius.
Furthermore, both these studies55,56 showed that, for three capillary
systems, the random positioning of the capillaries strongly impacts the
invasion behavior. However, how the interconnection between
capillaries impacts the overall imbibition dynamics is far from being
fully understood in the general case of a larger number of tubes.
Consequently, interacting capillary systems, despite having a complex-
ity which is intermediate between that of the classical bundle of
non-interacting capillaries, have so far not been used to predict the
generalized imbibition phenomenon observed in porous media con-
sisting of several pores of irregular sizes and varying connectivity. To
this aim, more complex models have been introduced since, based on
pore-network geometries inferred from a geometrical analysis of the
porous medium in which imbibition is to be investigated.59–61 We will
present here a model of intermediate complexity between those early
interacting-capillary models and pore network models. Note that in
many practical cases, the detailed porous structure is not known, and
only an estimate of the pore size distribution is available; in such cases,
a pore network model cannot be applied without making assumptions
on the unknown structure, whereas the model presented here can be
applied directly.

We, thus, propose a generalized one-dimensional model to pre-
dict spontaneous imbibition in a capillary bundle consisting of any
number of randomly arranged cylindrical tubes that interact with each
other, with any arbitrary distribution of the capillaries’ radii. The
model generalizes the study by Ashraf et al.,55 for systems of two and
three interacting capillaries, to an arbitrary number of interacting

capillaries. It is meant to model spontaneous imbibition in quasi-2D
porous media for which the pore size distribution is known. The
model is inspired by a model developed to tackle spontaneous imbibi-
tion in stratified geological porous media.62 The two models are for-
mally very similar to each other, but, due to the difference in
geometries (flat layers for the stratified geological formation, cylindri-
cal tubes in the present model), the equations are not identical. More
importantly, the two studies differ widely in that the relative position-
ing of the layers in a geological medium is given, whereas, for a quasi-
2D porous medium whose pore size distribution is known, the relative
positioning of connected capillaries of different diameters within the
2D bundle that can predict the medium’s behavior is not known a pri-
ori. Here, we explain the underlying physical phenomena causing the
menisci to advance at different rates in the different capillaries and
demonstrate that both the spatial arrangement of the interacting
capillaries and, for a given arrangement, the contrasts in the capillaries’
radii (i.e., their ratios) are crucial in predicting the imbibition dynam-
ics. In contrast to the standard (non-interacting) capillary bundle, this
model provides predictions that are qualitatively consistent with the
phenomenology of spontaneous imbibition in real (quasi-)two-dimen-
sional (2D) porous media. In particular, this model correctly predicts
that the smaller pores carry the leading front, while the larger pores
carry the lagging saturating front responsible for the mass uptake of
fluid in the porous medium, as measured in a paper-based porous
medium.47 Furthermore, we provide a successful quantitative compar-
ison between the measurements of Bico and Qu�er�e on the leading and
lagging imbibition fronts to predictions of the model obtained using a
stochastic approach: the predicted behavior is the average of those
obtained for all possible spatial organizations of the capillaries’ diame-
ter distribution. Though less accurate than fully numerical (and much
more complicated) pore network models, this semi-analytical model
has the advantage of running within seconds on any computer.

The presentation is organized as follows. We first review the
model by Ashraf et al.55 (Sec. IIA). We then proceed to extend it to a
system consisting of four interacting capillaries (Sec. II B), before pre-
senting the generalized one-dimensional model predicting spontane-
ous imbibition in an interacting multi-capillary system (Sec. II C). We
then examine the imbibition dynamics in a system of four interacting
capillaries (Sec. IIIA) and in a similar system consisting of 20 capillar-
ies (Sec. III B). In the discussion, we first compare the predictions of
our model to those of the classic, non-interacting, capillary bundle
(Sec. IIIC 1) and, finally, confront its predictions of the leading and
lagging fronts in a real quasi-2D porous medium from the literature to
the published experimental measurements (Sec. III C 2). Section IV
contains a summary of the work and conclusive remarks and discusses
prospects to this study.

II. MODELS
A. Capillary imbibition in interacting capillaries

Using the capillary system shown in Fig. 1, Ashraf et al.55 used
volume of fluid63 (VOF) two-phase flow simulations to study sponta-
neous imbibition in a bundle of two or three interacting capillaries.
These CFD (computational fluid dynamics) calculations provided the
entire pressure and velocity fields inside the connected capillaries.
They showed that (1) the invading wetting fluid transfers between two
adjacent capillaries from the capillary of larger radius to that of smaller
radius, but this transfer occurs only in the immediate vicinity of the
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(less advanced) meniscus of the capillary of larger radius; (2) every-
where else (that is, everywhere except in the vicinity of that meniscus),
the flow in the capillaries is not perturbed by the transfer of fluid
between the capillaries; and (3) consequently, the pressure can be con-
sidered uniform over all transverse sections of the capillary system
where both capillaries are filled with the same fluid, since no flow
occurs along the transverse direction (if one neglects the small regions
in the vicinity of the less advanced meniscus). These findings (1–3)
served as basic assumptions to develop a reduced order, Washburn-
like one dimensional model for a bundle of two and three interacting
capillaries that can interact hydrodynamically with the neighboring
capillaries along their touching sides. The model predicted that in a
bundle of two interacting capillaries, the meniscus in the capillary of
smaller radius moves ahead of the other one during the spontaneous
imbibition, which is in consistent with the results of the VOF simula-
tions. In this study, we shall generalize the reduced order model of
Ashraf et al.,55 to an arbitrary number of capillaries positioned in the
same plane and interacting with their neighbors.

For a flat bundle of three interacting capillaries, the model of
Ashraf et al.55 showed that the distribution of radii and the spatial
arrangement of the capillaries impact the imbibition behavior in the
capillary system significantly. The meniscus in the capillary of smallest
radius does not always move ahead of the others.

In Secs. II B and IIC, we examine the dynamics of menisci during
spontaneous imbibition in a flat bundle containing an arbitrary num-
ber of interacting capillaries. This generalization of the interacting
capillaries’ model follows the model development formulations from
the study of Ashraf and Phirani,62 for imbibition in stratified porous
media. In a stratified porous medium, the contrasts in layer transmis-
sivities and the relative positioning of the layers control the imbibition
dynamics, whereas in the present interacting capillaries bundle model,
the positioning of the capillaries also plays a crucial role, but the role
played by the transmissivities in the stratified medium is played by the
product of the capillaries’ permeabilities by their cross-sectional areas,
both of which are controlled by the contrasts in the capillaries’ radii.

We first describe below the one-dimensional model formulation
for a system of four interacting capillaries to understand the underly-
ing equations, before generalizing the model to a multiple-interacting
capillary system.

B. Model development for four interacting capillaries

To predict the dynamics of spontaneous imbibition in a porous
medium using a system of interacting capillaries, we need to take the
arrangement of capillaries into account, unlike for the classic capillary
bundle (sometimes called bundle-of-tubes) model. For a porous
medium made of n interacting capillaries, there are n!=2 different
arrangements. Figure 2 shows a bundle of four interacting capillaries
that are ordered spatially according to their radii ra > rb > rc > rd;

we call this arrangement abcd. The capillary pressure in tube i
(i ¼ a; b; c; d) is given by the Young–Laplace equation as64,65

Pci ¼
2r cos hw

ri
; (2)

where r is the surface tension and hw is the contact angle; hence,
Pca < Pcb < Pcc < Pcd. The corresponding imbibition lengths in the
tubes at any time t are denoted, respectively, by ziðtÞ. We consider the
assumptions from Ashraf et al.,55 according to which (1) the pressure
equilibrates over the sections of the capillary system that are entirely
filled with the invading fluid, and (2) fluid transfers from a capillary
having a larger radius to an adjacent capillary having a smaller radius
just before the meniscus, which in the model we assume to occur at
the position of the meniscus. We show this fluid transfer between adja-
cent capillaries in the vicinity of the meniscus by vertical arrows in Fig.
2. We consider the interaction between the capillaries to be sufficiently
low for the Poiseuille flow in each of the capillaries to be maintained.
At any given time t, the less advanced meniscus (i.e., that for which
the imbibition length is the smallest) will be in the capillary for which
the driving capillary pressure jump across the meniscus is the smallest;
hence, it will be the meniscus in the a capillary. For z < zaðtÞ, the
pressure field must be identical in all capillaries. Similarly, the next-
less-advanced meniscus is necessarily the b capillary driven by the
capillary pressure Pcb, so at any time t, the pressure field is identical in
capillaries b, c, and d for zaðtÞ < z < zbðtÞ and so forth: the pressure
field is identical in the d and c capillaries for zbðtÞ < z < zcðtÞ. The
imbibition length in capillary d, zdðtÞ, is the largest at any time t.

We now consider one of the random arrangements shown in the
schematic of Fig. 3, where the order of arrangement of the capillaries is
bcad. It was explained by Ashraf et al.54 that, for a randomly arranged
interacting capillary system, the meniscus in the smallest radius capil-
lary does not always lead. For this arrangement, depending upon the
contrasts in the radii, three different positionings of the menisci are
possible as shown in Figs. 3(a)–3(c). At any given time t, for 0 < zaðtÞ,
the pressure field is identical in all capillaries, and the pressure drop
from the inlet to zaðtÞ is Pca. For z > zaðtÞ, the imbibing fluid is con-
tinuous in the capillaries b and c, since they are connected. Therefore,
the pressure field is the same in the capillaries b and c for
zaðtÞ < z < zbðtÞ. As rb > rc (meaning that the capillary suction in b
is less than that in c), during the spontaneous imbibition,
zbðtÞ < zcðtÞ, at all times. Although the capillary d is filled with the
imbibing phase, the non-wetting fluid in a disconnects it from
capillaries b; c for z > zaðtÞ. Therefore, for z > zaðtÞ, the pressure

FIG. 1. Spontaneous imbibition in two interacting capillaries: (a) cross-sectional
view and (b) lateral view showing the contact angle hw.

FIG. 2. Schematic showing the spontaneous imbibition in an ordered system of four
interacting capillaries. The imbibition lengths in capillaries a, b, c, and d of radii
ra; rb; rc; and rd are denoted by za; zb; zc; and zd, respectively. The cross section
of the system of interacting capillaries is also shown.
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field in d can be different from that in b; c. For the arrangement bcad
shown in the schematic of Fig. 3, za < zb < zc and za < zd during the
imbibition process, and the position of zdðtÞ relative to zbðtÞ and zcðtÞ
depends on the contrasts in the capillaries’ radii.

The detailed development of the generalized one-dimensional
model for this system of four interacting capillaries with arrangement
bcad is described in Appendix A. The pressure drop across each of the
sections is determined individually, i.e., for sections (I) 0 < z < za,
(II) za < z < zb, (III) zb < z < zc, and (IV) za < z < zd. As sponta-
neous imbibition is driven by capillary forces, the sum of the pressure
drops across all the sections of a capillary is equal to the capillary pres-
sure of that capillary,

Pci ¼
X
j

PiðjÞ
� �

; (3)

where PiðjÞ is the pressure drop across the section of index j ¼ ðIÞ;
ðIIÞ; ðIIIÞ; ðIVÞ of the capillary of index i ¼ a;b; c; d. By solving
the system of equations expressing (i) Darcy’s law in each of the
capillaries, and (ii) the relations between the menisci’s advancement
and the fluid velocities and fluid exchange between the capillaries,
we obtain the equations governing the flow in the interacting
capillaries, which are

Pca ¼
8lzaðtÞ

r4a þ r4b þ r4c þ r4d
r2a
dza
dt

þ r2b
dzb
dt

þ r2c
dzc
dt

þ r2d
dzd
dt

� �
; (4)

Pcd � Pca ¼
8lðzdðtÞ � zaðtÞÞ

r2d

dzd
dt

� �
; (5)

Pcb � Pca ¼
8lðzbðtÞ � zaðtÞÞ

r4b þ r4c
r2b
dzb
dt

þ r2c
dzc
dt

� �
; (6)

Pcc � Pcb ¼ 8lðzcðtÞ � zbðtÞÞ
r2c

dzc
dt

� �
: (7)

Equations (4)–(7) are rendered non-dimensional by normalizing
the positions by the total capillary system’s length, L, and time by
½8lL2=ðPcar2aÞ�, thus defining the non-dimensional positions and
times,

Zi ¼
zi
L
; i ¼ a; b; c; d and T ¼ Pcar2a

8lL2
t: (8)

Introducing the contrasts in radii, ki ¼ ri=ra, and in capillary pres-
sures, ei ¼ Pci=Pca, for i ¼ b, c, d, we then obtain the non-
dimensional form of Eqs. (4)–(7) as

1 ¼ Za

1þ k4b þ k4c þ k4d

dZa

dT
þ k2b

dZb

dT
þ k2c

dZc

dT
þ k2d

dZd

dT

� �
; (9)

ed � 1 ¼ Zd � Za

k2d

dZd

dT

� �
; (10)

eb � 1 ¼ Zb � Za

k4b þ k4c
k2b

dZb

dT
þ k2c

dZc

dT

� �
: (11)

ec � eb ¼ Zc � Zb

k2c

dZc

dT

� �
: (12)

Further assuming that the contact angle hw is the same in all capillar-
ies, we have ei ¼ 1=ki, and upon rearranging the governing Eqs.
(9)–(12) and adding them, we obtain

2 1þ
X

i¼b;c;d

eik
4
i

� �
T ¼ Z2

a þ Z2
bk

2
b þ Z2

c k
2
c þ Z2

dk
2
d: (13)

Equation (13) expresses that, in a system of interacting capillaries, the
sum of the squares of the product of the non-dimensional radius with
the non-dimensional distance invaded in all the capillaries is propor-
tional to the invasion time T. For different arrangements of a system
of 4 interacting capillaries having the same contrasts in capillary radii,
the total capillary suction of the system remains the same. Therefore,
for any of the 4!=2 ¼ 12 possible arrangements, rearranging the equa-
tions governing the imbibition process and adding them lead to Eq.
(13). However, the velocity at which the individual menisci travels in
each of the tubes depends on the particular arrangement of the
capillaries.

C. Generalizing the one-dimensional spontaneous
imbibition model in the interacting capillary system

Equation (13) is readily generalized to a system of n interacting
capillaries, in the form

FIG. 3. Spontaneous imbibition in a system of four interacting capillaries with a spa-
tial arrangement of bcad of the capillaries. The imbibition lengths in capillaries a,
b, c, and d of radii ra; rb; rc; and rd are zaðtÞ; zbðtÞ; zcðtÞ; and zdðtÞ, respec-
tively. The schematics of the imbibition phenomenon show the fluid transfer at
menisci locations with arrows. For this spatial arrangement, depending upon the
contrasts in the capillaries’ radii, the possible orders in the invasion lengths can
be (a) za < zb < zc < zd, (b) za < zb < zd < zc, and (c) za < zd < zb < zc.
The cross section of the system of interacting capillaries is also shown for (a).
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2
Xn
i¼1

eik
4
i

 !
T ¼

Xn
i¼1

wiZi; (14)

where wi ¼ pr2i zi=ðpr2aLÞðj ¼ 1; 2;…; nÞ is the non-dimensional vol-
ume imbibed in the capillary of index i. Equation (14) expresses that
the sum over all capillaries of the non-dimensional volumes times the
corresponding non-dimensional imbibition lengths, is proportional
to time. This can be compared to the dynamics in a bundle of
non-interacting capillaries, for which we know that the dynamics is
diffusive, i.e., for each of the capillaries, the imbibed length square is
proportional to time.

We note from the derivation of Eq. (13) for the system consisting
of four capillaries, that each arrangement of the capillaries will have a
different set of governing equations for menisci positions with time.
This is because the knowledge of the arrangement is required to deter-
mine the regions of the capillaries across which the pressure equili-
brates and the locations of fluid transfer. Therefore, for a system of n
interacting capillaries, we now propose an algorithm that can deter-
mine the imbibition behavior in the bundle of interacting capillaries
and form the governing equations for a generalized model of such sys-
tems of n interacting capillaries. A MATLAB program has been writ-
ten to implement this algorithm and obtain the advancement of the
menisci, zlðtÞ, where l ¼ 1; 2; 3;…; n, as a function of time. The step-
by-step procedure is described in detail in Appendix B, but its princi-
ples can be described in the following manner.

First, the algorithm searches for the capillary of largest radius in
the arbitrary arrangement, whose meniscus position is za at a given
time; it is denoted Ci in Fig. 4, where the capillaries on the order of
arrangement are denoted from C1 to Cn. The pressure drop in the
region 0 < z < za is determined for all the capillaries, and the algo-
rithm then considers two regions: the “top region” consisting of the
capillaries C1 to Cði�1Þ and the “bottom region” consisting of the
capillaries Cðiþ1Þ to Cn (see Fig. 4). The largest radius capillaries in
each of these two regions are determined, and the pressure drop in the
respective regions is determined for sections za < z < zb and
za < z < zc. Now, each of these two regions is further divided into

two subregions each, i.e., containing the capillaries C1 to Cðj�1Þ on the
one hand and Cðjþ1Þ to Cði�1Þ on the other hand in the top region, and
Cðiþ1Þ to Cðk�1Þ on the one hand and Cðkþ1Þ to Cn on the other hand
in the bottom region. The pressure drops are determined in each of
the subregions. This procedure is then performed recursively until the
algorithm has identified the pressure drop in each of the sections for
every capillary. It can then formulate the governing equations, which
are consequently solved to obtain the advancement of all menisci as a
function of time.

III. RESULTS AND DISCUSSION

We first explore the imbibition of a system of four interacting
capillaries, followed by the imbibition in a system consisting of 20
capillaries.

A. Interacting four-capillary system

In Sec. IIA, we have anticipated that, in an ordered arrangement,
the meniscus in the capillary of smallest radius, d, will always lead, fol-
lowed by the capillary of second smallest radius, c, as shown in Fig. 2,
while the meniscus in the capillary a always lags behind. Solving the
governing equations for this arrangement, we always get the same
trend, i.e., zaðtÞ < zbðtÞ < zcðtÞ < zdðtÞ for the imbibed lengths in
the capillaries at any given time during the imbibition process.
However, 4!=2 ¼ 12 arrangements are possible for an interacting
four-capillary system, for any given four radii of the capillaries. In Sec.
II B, we chose one arrangement bcad and anticipated three cases of
different relative positioning of menisci. The possibility of occurrence
of these three cases depends upon the radii contrast in the capillaries.
A change in radii contrast changes the pressure fields in the capillaries,
which governs the menisci positions. Each of the three cases shown in
Fig. 3 is shown in Figs. 5(a), 5(c), and 5(e). Solving Eqs. (9)–(12) over
non-dimensional times, we show in Figs. 5(b), 5(d), and 5(f) how the
relative positions of the plots of Zb; Zc; andZd as a function of time
change when the contrast in the radii of capillaries is changed accord-
ing to the three configurations addressed in Figs. 5(a), 5(c), and 5(e).

We now consider two other random arrangements cdab and
cabd, which are illustrated in Figs. 6 and 7, respectively. In these fig-
ures, we show the schematic of the menisci locations at a given time
during imbibition in (a), (c), and (e). The corresponding time evolu-
tion of the positions of menisci in the four capillaries is shown in (b),
(d), and (f). Each of these figures shows that the contrast in the capil-
lary radii, for a given arrangement, impacts the relative positions of
the menisci at any given time. Conversely, in Figs. 5(f), 6(d), and 7(b),
the radii of the capillaries in the interacting capillary system are identi-
cal, but the arrangements of the capillaries are different. For the
arrangement bcad shown in Fig. 5(f), the menisci positions are
ordered according to Zc > Zb > Zd > Za, while for the arrangement
cdab shown in Fig. 6(d), the menisci positions are ordered according
to Zd > Zb > Zc > Za, and for the arrangement cabd shown in
Fig. 7(b), the menisci positions are ordered according to Zd > Zc > Zb

> Za. Hence, for an interacting multi-capillary system, both the con-
trast in capillary radii and their arrangement are crucial in determining
the imbibition behavior. The non-dimensional time at which the
imbibing fluid first breaks through or reaches the non-dimensional
length 1 in one of the interacting capillaries, and the radius of the capil-
lary through which the breakthrough occurs, are impacted accordingly,
as reported in the captions of Figs. 5–7. Note that in Figs. 5–7,

FIG. 4. Schematic of spontaneous imbibition in an n-capillary system where the
capillaries are positioned randomly. The capillaries in the arrangement are denoted
by C1;C2;…;Cn. The capillary radii are denoted as ra; rb; rc;…, and the corre-
sponding imbibition distances at time t are denoted by zaðtÞ; zbðtÞ; zcðtÞ;….
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the schematics presented in (a), (c), and (e) are not necessarily to scale,
either for the capillaries’ radii [indicated in the legends of (b), (d), and
(f)] or for the imbibition lengths.

We further illustrate the imbibition phenomenon in a system of
four interacting capillaries for three arrangements out of the 12 possi-
ble arrangements in Fig. 8. The radii of the capillaries are ra ¼ 80 lm,
rb ¼ 60 lm, rc ¼ 40 lm, and rd ¼ 20 lm for all the arrangements. In
Fig. 8(a), where the capillaries are in the ordered arrangement ðabcdÞ,
the leading meniscus is in the capillary with the smallest radius (d).
For the same contrast in radii and the arrangement cbad [Fig. 8(b)],
the leading meniscus is in capillary c. For arrangement adbc shown in
Fig. 8(c), the menisci in capillaries c and d travel at the same velocity
at all times. It can also be observed from Fig. 8 that the breakthrough
times change with the arrangement of the capillaries; while the

breakthrough for the ordered arrangement [Fig. 8(a)] occurs at
T¼ 0.33, for the other two arrangements shown in Figs. 8(b) and 8(c),
the breakthrough occurs at T¼ 0.40. Similar plots are shown for all 12
possible arrangements in Fig. 14 of Appendix C; all the arrangements
are found to have breakthrough times in the range T¼ 0.33–0.40. For
a wetting fluid of viscosity 10�3 Pa s and surface tension of 73� 10�3

N=m impregnating the empty capillary system of length 1m and with
a maximum capillary radius of 80lm, the non-dimensional time cor-
responding to T¼ 0.01 is 6.84 s, so the breakthrough for the arrange-
ments shown in Fig. 8 occurs between 225.7 and 273.6 s. Hence, for
the four-capillary system, we can summarize that the arrangement of
the capillaries and the contrasts in capillary radii significantly affect
the breakthrough time and the index of the capillary through which
breakthrough occurs.

FIG. 5. Spontaneous imbibition in a system of four interacting capillaries, which are positioned with respect to each other according to the arrangement bcad, for three different
contrasts in capillary radii. (a), (c), and (e) The schematics of possible imbibition behavior at a given time t. The distribution of radii predicting the imbibition phenomenon is indi-
cated in the plots (b), (d), and (f). The non-dimensional times at which the leading meniscus reaches the outlet end of the interacting capillary system (Tbt) for the cases (b),
(d), and (f) are 0.43, 0.40, and 0.39, respectively.

FIG. 6. Spontaneous imbibition in a system of four interacting capillaries, spatially arranged as cdab. Depending upon the contrasts in capillary radii, at a given time, the rela-
tive positions of the menisci vary. (a), (c), and (e) The schematics of possible imbibition behavior. The non-dimensional meniscus positions and the radii contrasts correspond-
ing to the schematics of (a), (c), and (e) are shown in (b), (d), and (f), respectively, as a function of the non-dimensional time. The times at which the invading fluid reaches the
outlet end ðTbtÞ for the cases (b), (d), and (f) are 0.38, 0.40, and 0.39, respectively.
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B. System consisting of 20 interacting capillaries

From the above analysis, we see that for any interacting multi-
capillary system, the capillary having the leading meniscus and the
breakthrough time both depend on the contrast in the capillary radii
and on the spatial arrangement of capillaries. We now use the general-
ized model to predict imbibition in a system consisting of n¼ 20 inter-
acting capillaries, focusing on the impact of the arrangement. We
assume no spatial correlations in the capillaries’ radii. The number of
different arrangements for n¼ 20 is 20!=2 ¼ 1:216� 1018. We run
the generalized model on 1000 random arrangements for capillaries
whose radius distribution is uniform between 10lm (minimum
radius) and 200lm (maximum radius).

We show in Fig. 9(a) the imbibition length in the capillaries vs
the radii of the capillaries at the non-dimensional time T¼ 0.2 for six
random arrangements (denoted arr1, arr2, arr3, arr4, arr5, and arr6
in the figure), and the ordered arrangement (denoted ordered in the
figure). We have chosen the six random arrangements such that the
disparity in the breakthrough time and the capillary radius through

which the breakthrough occurs can be observed for the given radii
contrast of the capillaries. We see from Fig. 9(a) that, at T¼ 0.2, the
capillary having the leading meniscus is different for different arrange-
ments, and the menisci positions in the capillaries are also dependent
on the arrangement. For instance, at T¼ 0.2, the meniscus in the capil-
lary of radius 10lm (smallest radius) has traveled a non-dimensional
length of 0.79 for the ordered arrangement, whereas for the random
arrangement number 1, the non-dimensional length invaded in the
smallest capillary is 0.51. In Fig. 9(b), we illustrate the relationship
between the radii and the imbibition length in all capillaries at break-
through time. The breakthrough time for different arrangements is
given in the legend of the arrangement in Fig. 9(b). Breakthrough in
the systems of 20 interacting capillaries occurs through different
capillaries and at different times for the six random arrangements and
the ordered arrangement.

The saturation at a given imbibition length Z can be defined
as the ratio of the cross-sectional area occupied by the imbibing
fluid at Z to the total cross-sectional area of the capillary system,

FIG. 7. Spontaneous imbibition in a system of four interacting capillaries, spatially arranged as cabd. Depending upon the contrasts in capillary radii, at a given time, the rela-
tive positions of the menisci vary. (a), (c), and (e) The schematics of possible imbibition behavior. The non-dimensional meniscus positions and the radii contrasts correspond-
ing to the schematics of (a), (c), and (e) are shown in (b), (d), and (f), respectively, as a function of the non-dimensional time. The times ðTbtÞ at which the invading fluid first
reaches the outlet in any of the capillaries are 0.38, 0.42, and 0.38 for the cases (b), (d), and (f), respectively.

FIG. 8. Spontaneous imbibition in a system of four interacting capillaries of radii ra ¼ 80 lm, rb ¼ 60 lm, rc ¼ 40 lm, and rd ¼ 20 lm. The non-dimensional positions of
the four menisci are shown as functions of the non-dimensional time for three of the 12 possible arrangements (a) abcd, (b) cbad, and (c) adbc. The relative position of the
menisci with time and the breakthrough time depend upon the arrangement of the capillaries, for a given contrast in the radii.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 012005 (2023); doi: 10.1063/5.0123229 35, 012005-7

VC Author(s) 2023

https://scitation.org/journal/phf


i.e., ð
Pnf

j¼1 r
2
f Þ=
Pn

i¼1 r
2
i , where nf ðZÞ is the number of capillaries filled

by the imbibing fluid at Z and the indices j refer to all such capillaries.
The plot of saturation vs longitudinal position is shown in Fig. 9(c) at
T¼ 0.2 and T¼ 0.3, for all the seven spatial arrangements. These satu-
ration profiles of the interacting capillary system depend significantly
on the arrangement of the capillaries. For example, at T¼ 0.3, the sat-
uration at Z¼ 0.7 is 0.43 for the random arrangement number 3, and
0.35 for the ordered arrangement as indicated in Fig. 9(c).

In Fig. 9(d), we show how saturation varies with the longitudinal
position at breakthrough time for the seven arrangements. The
amount of non-wetting fluid displaced at the time of breakthrough is
different between the different arrangements. We also observe from
Fig. 9(a) that the random arrangements where the leading meniscus is
in a capillary of larger radius will have a longer breakthrough time as
shown in Fig. 9(b). This will also cause the saturation of the random
arrangement to be larger at the breakthrough time, which can be
observed in Fig. 9(d).

However, since the contrast in the radii of the capillaries is identi-
cal for all arrangements, the effective capillary suction causing the
imbibition phenomenon is also identical in all cases. Therefore, at a
given time T, the global wetting fluid saturation in the interacting
capillary system will be the same for all arrangements, which is deter-
mined as S ¼

Pn
i¼1 r

2
i Zi=

Pn
i¼1 r

2
i . The fraction of the interacting

capillary system occupied with the imbibing phase at T¼ 0.2 is 0.55

and at T¼ 0.3 is 0.67 for all the seven arrangements. However, this is
only applicable until breakthrough occurs in one of the arrangements.

In Fig. 10, we have plotted the radius of the capillary having the
leading meniscus vs the breakthrough time for the 1000 randomly
chosen arrangements, assumed to be representative of the entire statis-
tics. We see that when a wetting fluid of viscosity of 10�3 Pa s and sur-
face tension of 73� 10�3 N/m imbibes a 20 capillary system of length
1m and maximum capillary radius of 200lm, and the non-
dimensional time of T¼ 0.01 corresponds to 2.73 s. If such a wetting
fluid were considered to imbibe into this interacting capillary system,
the breakthrough that occurs between T¼ 0.31 and 0.42 corresponds
to the dimensional times of 84.63 and 114.66 s. Therefore, for the same
contrast in capillary radii, the maximum and minimum breakthrough
time are approximately 30 s apart, indicating that the breakthrough
time significantly depends on the arrangement of the capillaries. It can
also be observed from Fig. 10 that breakthrough in an ordered multi-
capillary system occurs through the capillary of smallest radius at
T¼ 0.31, which is the smallest breakthrough time as compared to
other arrangements. Figure 10 also shows that the largest radius of a
capillary through which breakthrough occurs is as large as 100lm,
while the minimum radius of the capillary through which break-
through occurs is 10lm. For arrangement number 6 (þ symbols), the
leading meniscus is in the 100lm radius capillary, and breakthrough
occurs at Tbt ¼ 0:42 as shown in Fig. 9(b). From Fig. 10, we also see

FIG. 9. Spontaneous imbibition in seven systems of 20 interacting capillaries with identical radii but different spatial arrangements: six random arrangements and one ordered
arrangement. (a) Radii vs imbibition length at T¼ 0.2; (b) radii vs imbibition length at breakthrough time, T ¼ Tbt, (c) saturation vs longitudinal position at T¼ 0.2 and 0.3, and
(d) saturation vs longitudinal position at breakthrough time, T ¼ Tbt.
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that when breakthrough occurs through the smallest radius capillary,
the breakthrough time may vary between T¼ 0.31 and 0.41, and the
total volume fraction of the interacting capillary system occupied by
the invading phase can lie between 0.69 and 0.79. In contrast, if break-
through occurs through the capillary of radius 70lm, the break-
through time lies between T¼ 0.38 and T¼ 0.42, and the total volume
fraction imbibed by the wetting phase lies between 0.76 and 0.8.

C. Discussion

We now compare the predictions of our analytical model of
interacting capillaries to those of the standard capillary bundle model
and discuss how the predictions of our model compare experimental
measurements in quasi-2D porous media. We use our model within a
stochastic approach, that is, for a given number n of capillaries of
known radii, we consider the average behavior of all m ¼ n!=2

different spatial arrangements of the capillaries. When m is too large
to be tractable even for our very fast semi-analytical model (for exam-
ple, for n¼ 20,m > 1:21� 1018), we consider the average behavior of
a sufficiently large subsample of R<m randomly chosen spatial
arrangements.

1. Confronting predictions from the classic
(non-interacting) capillary bundle to our model

We show the spatial saturation profile for the classic capillary
bundle model with n¼ 20 capillaries at three different times (T¼ 0.1,
T¼ 0.3, and T ¼ Tbt ¼ 0:5) in Fig. 11(a), and the average spatial satu-
ration profile for 1000 randomly chosen different spatial arrange-
ments, for a system of 20 interacting capillaries (as predicted by our
model) at the same three times in Fig. 11(b). Note that the number of
spatial arrangements was chosen after a convergence study which we
present in Appendix D (see, in particular, Fig. 15).

The capillary radii are identical in the two cases. For non-
interacting capillaries, by non-dimensionalizing the Washburn’s law,
z2i ¼ ðPcir2i =4lÞt, we obtain

Z2
i ¼ 2eik

2
i T; (15)

where Zi ¼ zi=L is the non-dimensional length imbibed in the capil-
lary of radius ri and L is the total length of the capillary system. The
time is non-dimensionalized as T ¼ tðPcar2aÞ=ð8lL2Þ. In Eq. (15),
e ¼ Pci=Pca and ki ¼ ri=ra, where Pca and ra are, respectively, the
capillary pressure and radius of the widest capillary (200lm). The
maximum value of ei and ki is 1, which occurs for the largest radius
capillary. For all other capillaries, ei and ki are always smaller than 1.

As discussed previously, in the classic capillary bundle model,
imbibition follows Washburn’s diffusive dynamics, and, therefore, the
invaded length is the largest in the capillary of largest radius. As illus-
trated in Fig. 11(a), due to the large cross-sectional area of that widest
capillary, it contributes to a large fraction of the cross-sectional satura-
tion for the bundle-of tubes model. On the contrary, in our
interacting-capillary system, the largest radius capillary always has the
least advanced meniscus, at any time. Consequently, the breakthrough

FIG. 11. (a) Spatial saturation profile during spontaneous imbibition in a bundle-of-tubes consisting of 20 non-interacting capillaries at T¼ 0.1, T¼ 0.3, and T ¼ Tbt ¼ 0:5. (b)
Average spatial saturation profile for 1000 different spatial arrangements of the system consisting of 20 interacting capillaries of identical radii as in (a), at T¼ 0.1, T¼ 0.3,
and T ¼ Tbt.

FIG. 10. Radii of the capillaries in which breakthrough occurs vs breakthrough time
in 1000 randomly chosen arrangements of a system of 20 interacting capillaries
with radii uniformly distributed between 10 and 200lm (the upper boundary of the
vertical scale is, thus, chosen to 200lm). The shortest breakthrough time is
observed in the ordered arrangement, at T¼ 0.31, and the maximum observed
breakthrough time is T¼ 0.42. The largest radius of a capillary through which
breakthrough occurs is 100lm, while the smallest one is 10 lm.
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time for the capillary bundle model is 136.5 s (at T¼ 0.5), at which the
fractional volume occupied by the invading fluid is 0.86. This is con-
siderably larger than the breakthrough time for interacting capillary
systems, which occurs between 84.63 and 114.66 s (between T¼ 0.31
and 0.42), depending on the configuration, and the fractional volumes
occupied by the imbibing fluid across the 1000 arrangements lie
between 0.69 and 0.79. In Fig. 11(b), we show the averaged saturation
values along the length of the capillary system for all the 1000 arrange-
ments of the 20 interacting capillary system at non-dimensional times
T¼ 0.1 and 0.2 and at breakthrough, i.e., Tbt. We see from Fig. 11(b)
that the standard deviation (SD) across the arrangements is due to the
difference in the relative positioning of the menisci resulting from the
spatial arrangement of the capillaries.

For instance, the leading meniscus for an orderly arranged inter-
acting capillary system is in the smallest radius capillary, and we know
that the fraction of saturation contributed by the smallest radius capil-
lary is small. For the arrangement 2 shown in Fig. 9, the leading menis-
cus is in the capillary of radius 100lm. In the capillary bundle model,
the cross-sectional area of the leading capillary (200lm) is 13.93% of
the total cross-sectional area, whereas for the ordered arrangement and
the arrangement number 2, the respective cross-sectional area of the
leading meniscus capillaries is 0.03% and 3.43%. Consequently, as
shown in Fig. 11(b), the cross-sectional saturation decreases gradually
with longitudinal position for the classic capillary bundle model, while
in the case of interacting capillaries, a steep decrease is observed already
at small longitudinal positions. Figure 11(b) also shows that the stan-
dard deviation in saturation from the average across the 1000 arrange-
ments at T¼ 0.1 and 0.2 is as high as 0.2 at Z¼ 0.59 and 0.69,
respectively, whereas for T ¼ Tbt, it is 0.18 at Z¼ 0.76. In real two-
dimensional porous media where the spatial arrangement of pores may
vary, the interacting capillaries model will be more helpful in predicting
the accurate imbibition behavior than the classic capillary bundle model.
The saturation of the porous medium with length and the breakthrough
time significantly differ for the classic (non-interacting) capillary bundle
and for the different arrangements of the interacting multi-capillary
system, although the contrast in the radii of the capillaries is the same.

2. Confronting predictions from themodel
to experimental measurements from previous studies

The spatial profiles of saturation for the interacting multi-
capillary system are consistent with observations of imbibition phe-
nomena in quasi-2D porous media described by Dong and Zhou,48

Ding et al.,66 Debbabi et al.,67 and Akbari et al.68 In real porous media,
the imbibing fluid saturation decreases gradually with longitudinal
position, similar to the trend shown by the interacting multi-capillary
system. It was also previously described that the lagging macroscopic
front is mostly responsible for the saturation of a porous medium,47

which is in good agreement with the saturation profile anticipated by
the interacting multi-capillary system, as shown in Fig. 11(b). The sat-
uration profile for the (classic) non-interacting capillary bundle [Fig.
11(a)] predicts that the large pores are responsible for the leading mac-
roscopic front and the saturation of the porous medium, which is con-
trary to the interacting capillaries model [shown in Fig. 11(a)] and the
experimental observations in real porous media.47,54,62,69,70

Furthermore, in the following, we compare the predictions of our
model to two datasets from the literature, both taken from Ref. 47.

a. Two capillary system. We first compare our model predictions
to measurements performed on a system of two capillaries consisting
of a thread positioned inside a cylindrical tube. The time evolution of
the menisci position squared, as predicted by our model, compares
well with the experimental observations for both capillaries (Fig. 12).
The radius of the large capillary was ra ¼ 300 lm and that of the
thread was rb ¼ 170 lm. From the experimental data,47 the value of
ðPcar2aÞ=ð8lL2Þ is 0.0108 s�1, which is used to non-dimensionalize
time in Fig. 12. The predictions from the classic (non-interacting)
capillary bundle model [Eq. (15)] are also shown in the inset of Fig. 12
for comparison. The imbibition in the wider capillary is little impacted
by the imbibition in the (much) narrower capillary, so that the predic-
tion of the non-interacting capillary bundle for the wider capillary is
similar to the experimental data; however, the non-interacting capil-
lary bundle underestimates the advancement of the meniscus in the
narrower capillary (the thread) by a factor 5.

b. Imbibition in a paper filter. Bico and Qu�er�e47 also performed
experiments in which a silicone oil of viscosity 16� 10�3 Pa s and sur-
face tension 20:6� 10�3 N/m spontaneously imbibes into a
Whatman grade 4 filter paper, which has pore diameters in the range
20–25lm. They observed that the microscopic front propagating in
small pores travels ahead of the saturating macroscopic front in large
pores, again in contradiction to the predictions of the classic non-
interacting capillary bundle model. In Fig. 13, we show a comparison
of the experimental observations from these authors47 (shown as sym-
bols in the figure) with predictions of our model (shown as lines in the
figure). Two capillary systems were simulated with our model, corre-
sponding to two ways of sampling the pore size PDF (probability den-
sity function) of the paper filter: having no information on the
functional form of that PDF, we assumed that it was uniform and
sampled it first with n¼ 6 interacting capillaries of radii 10, 10.5, 11,

FIG. 12. Imbibition in a system of two interacting capillaries having radii ra ¼ 300
lm and rb ¼ 170 lm. Predictions from our semi-analytical model (solid lines) com-
pare well to the data (symbols) of Bico and Qu�er�e.47 The inset of the figure shows
the same comparison for predictions of the classic (non-interacting) capillary bundle
model (solid lines), obtained through Eq. (15), which underestimates the advance-
ment Zb of the meniscus in the narrower capillary (red line) by a factor 5.
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11.5, 12, and 12.5lm; we then performed a second calculation with a
sampling twice finer, i.e., with n¼ 11 interacting capillaries of radii 10,
10.25, 10.5, 10.75, 11, 11.25, 11.5, 11.75, 12, 12.25, and 12.5lm. For
n¼ 6, the non-dimensional leading front position was defined as the
average of the positions of the two more advanced menisci, whereas
that of the lagging front was defined as the average of the two less
advanced menisci. For n¼ 11, a similar method was used, but involv-
ing the average of the three more advanced menisci positions for the
leading front and that of the three less advanced menisci positions for
the lagging front. A statistics of R¼ 360 arrangements (i.e., all possible
arrangements) was chosen for n¼ 6, whereas for n¼ 11, we used
R¼ 1000 randomly chosen arrangements within more than 19.9� 106

of different possible arrangements. The confidence interval defined
from the standard deviations over the statistics is also shown in Fig. 13
as thin orange lines for the leading front computed with n¼ 6; for the
lagging front, the standard deviations are so small that they would be
hardly visible, so we did not plot the corresponding confidence interval.

The predictions of our model for n¼ 6 and n¼ 11 are very simi-
lar to each other, especially for the leading front, which is a good test
of consistency for the method. Indeed, it means that changing the
sampling resolution for a given pore size distribution does not impact
the predictions. Furthermore, these predictions appear to be quite con-
sistent with the experimental data, for both the leading and lagging
front. In other words, they exhibit the same Washburn-like dynamics
as both the experimental leading front (at all times) and lagging front
(for T � 0:3 at least), with the same proportionality factors between
Z2 and T (i.e., the slope in the plots). On the contrary, the predictions
of the classic (non-interacting) capillary bundle, also shown in Fig. 13
(as green dashed lines), are shown to be much less efficient at predict-
ing the proportionality factor, especially the leading front; in addition,
they predict a leading front occupying the largest capillaries and

a lagging front occupying the smallest ones, in contradiction to the
experimental observations and to the predictions from our model.

Also note that to non-dimensionalize the time in Fig. 13, we have
relied on the observation by Bico and Qu�er�e that most of the wetting
fluid is carried by the lagging front (which they term macroscopic
front). Adopting a macroscopic point of view, one can assume that the
Darcy law holds at any time across the porous medium’s length, with a
pressure gradient that is Pceff=z; Pceff being a constant effective capil-
lary pressure defined for the entire medium. Then, the Darcy law reads

dz
dt

¼ K
l
Pceff
z

; leading to z2 ¼ 2PceffK
l

t; (16)

where K is the medium’s permeability, and we have assumed that at
time t¼0, no wetting fluid has yet invaded the medium. If we choose
to non-dimensionalize time by the characteristic time ðlL2Þ=ðPceffKÞ,
we obtain from Eq. (16) the non-dimensional equation Z2 ¼ 2T . Since,
according to Bico and Qu�er�e’s observation mentioned above, it is the
lagging (macroscopic) front that carries most of the interface between
the two fluids, Eq. (16), its non-dimensional counterpart can be
assumed to describe the behavior of the lagging front. From the experi-
mental data for the lagging front, ðPceffKÞ=ðlL2Þ is measured to be
9:7�10�5 s�1, which we, thus, use to non-dimensionalize all plots in
Fig. 13. The dependence of Z2 on T for the lagging (macroscopic) front
then has a slope 2 (as shown by the dotted gray line in Fig. 13), while
that for the leading (microscopic) front, it exhibits a larger imbibition
rate, with a slope 2.67 (as shown by the orange dotted line in Fig. 13).

IV. CONCLUSIONS

In conclusion, we investigated spontaneous imbibition of a wet-
ting fluid in a randomly arranged planar system of interacting capillar-
ies. This generalized model can predict the imbibition behavior for all
the n!=2 possible arrangements of an interacting n-capillary system. It
is inspired by a previous work on stratified geological formations, with
planar layers instead of cylindrical capillaries.

Using an interacting capillary system containing four capillaries,
we showed that the imbibition dynamics depends significantly on the
arrangement of the capillaries within the capillary system, for a given
distribution of the capillary radii. Similarly, the dynamics is affected by
that distribution for a given arrangement of the capillaries.
Furthermore, we showed that the arrangement and radii distribution
of the capillaries jointly control the relative menisci’s locations, the
breakthrough time, and which capillary carries the leading meniscus.
The cross-sectional saturation of the impregnating fluid along the
length of the capillary system also changes with a change in the
arrangement of the capillaries. However, the total capillary pressure
driving the flow is identical for all arrangements; therefore, the overall
volume fraction occupied by the invading fluid (i.e., the global satura-
tion of the wetting fluid) at a given time remains the same across all
arrangements, until breakthrough occurs in one of the arrangements.

Similarly, considering 1000 randomly chosen different arrange-
ments of an interacting 20 capillary system having a uniform distribu-
tion of radii between 10 and 200lm, we observed that depending on
the arrangement of the capillaries, the leading meniscus can be in any
of the capillaries whose radii are between 10 and 100lm, and the non-
dimensional breakthrough time lies between Tbt ¼ 0:31 and Tbt ¼ 0:42.

The dynamics of spontaneous imbibition as predicted by this
new model is significantly different from that predicted by the classic

FIG. 13. Dependence of the square of the non-dimensional imbibition length on
non-dimensional time. The experimental findings of Bico and Qu�er�e47 are shown
with red squares (for leading front) and black triangles (for lagging front). The pre-
dictions of our model for two different samplings (6 and 12 interacting capillaries) of
the uniform pore size distribution are shown with lines, respectively, orange and
dashed (for n¼ 6) or purple and solid (for n¼ 11) for the leading front, and thick,
gray, and dashed (for n¼ 6) or black and dashed for the lagging front. The results
from the classic, non-interacting capillary bundle are presented for comparison for
the leading front (green long-dashed line) and lagging fronts (green dashed line).
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bundle of non-interactive capillaries (or tubes), for which the leading
meniscus is always in the largest radius capillary. For the interacting
multi-capillary system mentioned above, on the contrary, the leading
meniscus can be in any of the capillaries having radii between 10 and
100lm. We observed that the breakthrough occurs earlier than in the
classic capillary bundle, where it occurs at non-dimensional time Tbt

¼ 0:5 for the aforementioned 20-capillary-system, to be compared to
the 0.31–0.42 range for the 20-capillary-system mentioned above.
Furthermore, for this system, the saturation at breakthrough time falls
in the range 0.69–0.79, whereas for the classic capillary bundle, it is
equal to 0.86. The dependence of the saturation as a function of the
longitudinal position also shows a stark contrast between the predic-
tions of the classic capillary bundle and the average behavior of the
1000 arrangements of interacting capillaries. Indeed, the interacting
capillary system shows a steep decrease in the saturation with length
as compared to the classic capillary bundle. Additionally, the interact-
ing multi-capillary system shows that the spatial arrangement of the
capillaries may cause significantly different saturation values at a given
longitudinal position.

So, how is this model consisting of a planar bundle of interacting
capillaries to be used to predict spontaneous imbibition in quasi-two-
dimensional porous media whose pore size distribution is known? We
propose to use a stochastic approach, i.e., to consider the average
behavior between a large number of randomly picked spatial arrange-
ments of the capillary diameters, the distribution of these diameters
being equal to the pore size distribution of the real porous medium.
We tested that method against data from the literature. First, qualita-
tive observations relative to which ranges of pore sizes mainly contrib-
ute to the leading and lagging fronts of the imbibition interface, and to
the longitudinal saturation profile, are consistent between experiments
from the literature and the predictions of our model. Second, to vali-
date the model’s quantitative predictive capacity, we compared its pre-
dictions to imbibition measurements in a filter paper, performed by
Bico and Qu�er�e.47 The model predicts that the visible leading front is
carried by smaller pores, and that the bulk saturating front responsible
for most of the fluid mass invasion is the lagging front carried by larger
pores, which agrees very well with the experimental findings. The
quantitative predictions for the positions in time of these two fronts,
obtained from averaging over the statistics of randomly chosen
arrangements, agree well with the measurements.

This generalized model for spontaneous imbibition in a planar
bundle of interacting capillaries, which is semi-analytical and runs
extremely quickly, could be useful for fast assessment of one-
dimensional imbibition dynamics in design-based porous media such
as loop heat pipes, diagnostic devices, and microfluidic devices, or in
real porous media whose porosity structure can reasonably be consid-
ered two-dimensional, e.g., paper, thin porous media in general, or lay-
ered aquifers.

Prospects to this work include extending this approach to three-
dimensional models by considering parallel capillaries, and the
positions of whose axes in a transverse plane would be the nodes of a
triangular grid.
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APPENDIX A: MATHEMATICAL FORMULATION
FOR THE SYSTEM OF FOUR INTERACTING CAPILLAIRES

In capillary a, for 0 < z < zaðtÞ, the pressure drop is given by
the Hagen–Poiseuille law as

PðzaðtÞ; tÞ � P0 ¼ � 8lzaðtÞ
r2a

vaðtÞ; (A1)

where l is the imbibing fluid’s viscosity, vaðtÞ is the instantaneous
velocity of the wetting fluid in the capillary a, P0 is the inlet pres-
sure, and PðzaðtÞ; tÞ is the pressure in the imbibing fluid at zaðtÞ, as
shown in Fig. 3. Since the pressure fields are identical in all capillar-
ies for z < zaðtÞ, the pressure gradient is the same in all capillaries,
which from Eq. (A1) implies

vaðtÞ
r2a

¼ vbðtÞ
r2b

¼ vcðtÞ
r2c

¼ vdðtÞ
r2d

; (A2)

where the index i ði ¼ a;b; c; dÞ indicates quantities relative to the
capillary of radius ri and viðtÞ (i ¼ a; b; c; d) is the velocity of the
imbibing fluid for z < zaðtÞ.

The capillary pressure jump through the fluid–fluid interface is
Pca at zaðtÞ, where some of the imbibing fluid transfers from the
capillary a to other capillaries. The volumetric fluid transfer from
the capillary a to the capillaries b and c is dqa, whereas the fluid
transfer from the capillary a to the capillary d is dq0a. The velocity of
the advancing meniscus in capillary a, dza=dt, is, thus, given by

dza
dt

¼ vaðtÞ �
dqa þ dq0a

pr2a
: (A3)

For zaðtÞ < z < zdðtÞ, the velocity of the fluid in capillary d is simi-
larly given by

dzd
dt

¼ vdðtÞ þ
dq0a
pr2d

; (A4)

so the pressure drop in the capillary d between z ¼ zaðtÞ and z
¼ zdðtÞ is
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PðzdðtÞ; tÞ�PðzaðtÞ; tÞ ¼�8lðzdðtÞ� zaðtÞÞ
r2d

vdðtÞþ
dq0a
pr2d

 !
: (A5)

At z ¼ zdðtÞ, the pressure jump across the meniscus is Pcd, since
the pressure in the non-wetting fluid is the atmospheric pressure.

The capillaries b and c are on the other side of the capillary a
with respect to the capillary d. As the capillary pressure jump of the
capillary b is smaller than that in the capillary c, the meniscus in b lags
behind that in c. Hence, the imbibing fluid in these capillaries is con-
tinuous for zaðtÞ< z< zbðtÞ. Defining x and ð1�xÞ as the fractions
of dqa transferred, respectively, to b and c, we can write an equation
similar to Eq. (A4) for both b and a, where xdqa and ð1�xÞdqa
appear, respectively, as a differential velocity term arising from fluid
transfer. Considering that the pressure field is the same in the capillar-
ies b and c for zaðtÞ< z< zbðtÞ, we then obtain in that z range,

vbðtÞ þ
xdqa
pr2b

pr2b
¼

vcðtÞ þ
ð1� xÞdqa

pr2c
pr2c

: (A6)

Combining Eq. (A2) and Eq. (A6), we then obtain the fraction x
from the capillaries’ radii: x ¼ r4b=ðr4b þ r4c Þ. Therefore, the pressure
drop in capillaries b and c for zaðtÞ < z < zbðtÞ is

PðzbðtÞ; tÞ � PðzaðtÞ; tÞ ¼ � 8lðzbðtÞ � zaðtÞÞ
r2b

vbðtÞ þ x
dqa
Ab

� �
:

(A7)

At the meniscus in the capillary b, the capillary pressure jump is
Pcb, and some of the impregnating fluid transfers from b to c,
which we assume to correspond to a differential flow rate dqb. The
velocity of the meniscus in the capillary b for z > zbðtÞ is then

dzb
dt

¼ vbðtÞ þ x
dqa
pr2b

� dqb
pr2b

: (A8)

Similarly, for z > zbðtÞ, the meniscus in the capillary c travels
with a velocity given by

dzc
dt

¼ vcðtÞ þ ð1� xÞ dqa
pr2c

þ dqb
pr2c

: (A9)

The pressure drop between z ¼ zbðtÞ and z ¼ zcðtÞ in capillary c is
then given by

PðzcðtÞ; tÞ � PðzbðtÞ; tÞ

¼ � 8lðzcðtÞ � zbðtÞÞ
r2c

vcðtÞ þ ð1� xÞ dqa
pr2c

þ dqb
pr2c

 !
: (A10)

The pressure jump across the meniscus in each of the capillar-
ies is given by the Young–Laplace equation,64,65 i.e., Eq. (2), from
which it follows that

Pðzi; tÞ � P0 ¼ �Pci ¼ � 2r cos hw
ri

; (A11)

for i ¼ a; b; c; d. Note that the prefactor 2 is controlled by circular
cross-section of the tube, another geometry (e.g., square cross sec-
tion) would yield a different prefactor. Equation (A11) imposes the

total pressure drop within the impregnating wetting fluid in each of
the capillaries. Substituting Eqs. (A3), (A4), (A8), and (A9) in Eqs.
(A1), (A5), (A7), and (A10), respectively, we obtain the equations
governing the flow in the interacting capillary system,

Pca ¼
8lzaðtÞ

r4a þ r4b þ r4c þ r4d
r2a
dza
dt

þ r2b
dzb
dt

þ r2c
dzc
dt

þ r2d
dzd
dt

� �
; (A12)

Pcd � Pca ¼
8lðzdðtÞ � zaðtÞÞ

r2d

dzd
dt

� �
; (A13)

Pcb � Pca ¼
8lðzbðtÞ � zaðtÞÞ

r4b þ r4c
r2b
dzb
dt

þ r2c
dzc
dt

� �
; (A14)

Pcc � Pcb ¼ 8lðzcðtÞ � zbðtÞÞ
r2c

dzc
dt

� �
: (A15)

APPENDIX B: GENERALIZATION OF THE MODEL
FOR AN ARBITRARY NUMBER OF CAPILLAIRES

The following step-by-step procedure must be followed:

1. We initiate the model formulation by finding the largest radius
capillary, Ci. The pressure field is identical in all capillaries for
z < zaðtÞ, and the corresponding pressure gradient is related to
the fluid velocity in each capillary by Hagen–Poiseuille’s law. Some
of the invading fluid from capillary i transfers to other capillaries
in the immediate vicinity of the meniscus position zaðtÞ.

2. For z > zaðtÞ, the imbibing fluid in the capillaries C1 to Cði�1Þ is
separated from the imbibing fluid in the capillaries Cðiþ1Þ to Cn.
We, thus, classify the capillaries on either sides of the capillary Ci

in two regions, the capillaries C1 to Cði�1Þ in the first one, the
capillaries from Cðiþ1Þ to Cn in another one. The fluid transfer
from the capillary Ci is divided among the other capillaries
according to their radii. If the fluid transfer to the top region is
dqt, the fraction of dqt flowing from capillary Ci to a capillary of
radius rp would be r4pdqt=

Pi�1
q¼1ðr4qÞ. Similarly, for the bottom

region, if dqb is the fluid transfer from Ci, the fractional flow in a
capillary of radius rr will be r4r dqb=

Pn
s¼iþ1ðr4s Þ. This fluid trans-

fer causes the flow rates to increase in capillaries C1 to Cði�1Þ and
Cðiþ1Þ to Cn.

3. The widest capillary Cj among the capillaries C1 to Cði�1Þ is now
identified. For zaðtÞ < z < zbðtÞ, the pressure field in the imbib-
ing fluid is identical in capillaries C1 to Cði�1Þ and is related to
the fluid velocity in each capillary by Hagen–Poiseuille’s law. In
the vicinity of z ¼ zbðtÞ, some of the invading fluid transfers
from Cj to the capillaries C1 to Cðj�1Þ and Cðjþ1Þ to Cði�1Þ, which
increases the flow rate in these capillaries.

4. Similarly, the widest capillary among capillary Cðiþ1Þ to Cn,
which we denote Ck, is chosen. The pressure field is identical in
the capillaries Cðiþ1Þ to Cn for zaðtÞ < z < zcðtÞ, and the pressure
gradient is related to the fluid velocity in each of these capillaries
from the Hagen–Poiseuille law. At z ¼ zcðtÞ, some of the fluid
invading Ck transfers into the capillaries Cðiþ1Þ to Cðk�1Þ and
Cðkþ1Þ to Cn, which increases the flow rate in these capillaries.

5. The impregnating fluids in the regions encompassing capillaries
C1 to Cðj�1Þ and Cðjþ1Þ to Cði�1Þ are separated by displaced fluid
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in capillary Cj for z > zj. Again, the capillary of largest radius
among the capillaries C1 to Cðj�1Þ is identified as well as the capil-
lary of largest radius among the capillaries Cðjþ1Þ to Cði�1Þ. The
similar procedure previously explained for the pressure field, and
its relation to the fluid velocity is repeated for those two regions.

6. The same procedure as explained in step 5 is performed in
the regions encompassing capillaries Cðiþ1Þ to Cðk�1Þ and Cðkþ1Þ
to Cn.

7. This is repeated in all the regions, which have been defined in
steps 1 to 5, and this in a recursive manner, until the entire bun-
dle of interacting capillaries is divided into regions containing
only one capillary each.

8. The pressure jump across the meniscus in each of the capillaries
is the corresponding Young–Laplace capillary pressure of that
capillary. The n equations relating the pressure drops to the
velocities of the fluid–fluid interfaces are then solved to obtain
the lengths impregnated in each of the capillaries at the consid-
ered time t.

APPENDIX C: IMBIBITION IN ALL POSSIBLE
ARRANGEMENTS OF A SYSTEM OF FOUR
INTERACTING CAPILLARIES

A four capillary system has 12 possible arrangements. For a set
of capillaries with radii ra ¼ 80 lm, rb ¼ 60 lm, rc ¼ 40 lm, and
rd ¼ 20 lm, we present in Fig. 14 the time evolution of the menis-
ci’s positions in all four capillaries for all 12 arrangements.

We see from Fig. 14 that the leading meniscus is in capillary d
for arrangements shown in Figs. 14(a), 14(b), 14(f), 14(g), and
14(i)–14(l). For the arrangements shown in Figs. 14(c) and 14(d),
the leading meniscus is in c. For arrangements shown in Figs. 14(e)
and 14(h), the capillaries c and d impregnate the same distance
with time. However, the breakthrough times are different for all the
arrangements, varying from T¼ 0.33 to T¼ 0.40. The minimal
breakthrough time is 0.33, observed in arrangements (a), (g), (k),
and (l) of Fig. 14. The breakthrough for all the arrangements shown
in Fig. 14 occurs between 225.7 and 273.6 s.

FIG. 14. Spontaneous imbibition in a system of four interacting capillaries of radii ra ¼ 80 lm, rb ¼ 60 lm, rc ¼ 40 lm, and rd ¼ 20 lm. The non-dimensional positions of
the four menisci are shown as a function of non-dimensional time for all the 12 possible arrangements in (a)–(l). The arrangement, the ordering of the menisci locations, and
the breakthrough times for each of the cases (a)–(l) are provided as legends of the plots.
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APPENDIX D: CONVERGENCE OF THE COMPUTATIONS
FOR A SYSTEM OF 20 INTERACTING CAPILLARIES

For the study of the bundle consisting of 20 interacting
capillaries, the convergence of the results as a function of the num-
ber of randomly chosen spatial arrangements was verified in the fol-
lowing manner.

Three sets of R¼ 100, 1000, and 2000 randomly chosen
arrangements were simulated independently, and their results were
compared with each other. Figure 15(a) shows the spatial profile of
wetting phase saturation at three different times (T¼ 0.2, T¼ 0.3,
and T ¼ Tbt), obtained as the average of the spatial profiles for all R
arrangements. Figure 15(b) shows the standard deviation over the
statistics of the spatial wetting phase saturation profiles for the R
arrangement, also at times T¼ 0.2, T¼ 0.3, and T ¼ Tbt.
Obviously, the average behavior for 1000 arrangements (in contrast
to the case R¼ 100) cannot be distinguished from that for 2000
arrangements, and even the spatial profiles of the standard devia-
tion over the statistics are quite similar for the two cases. Therefore,
we consider R¼ 1000 to be a sufficiently large number of randomly
chosen arrangements for the imbibition dynamics to be well pre-
dicted in a system of 20 interacting capillaries.
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