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Abstract

This paper proposes an initial step towards the construction of a transport network connecting different orbit regimes with a Geosyn-
chronous orbit in the Laplace plane and the Geosynchronous orbit with the Moon. This transport network will be designed to exploit
a combination of natural dynamics and impulsive manoeuvres. The methodology proposed starts from the identification of regions, in
orbital parameter space, around the Earth, where third-body effects concur to modify favourably the orbital elements. A sequence of
manoeuvres is then devised to exploit these natural effects and achieve the desired final orbit. Conversely, the cislunar region will be
connected thanks to impulsive manoeuvres and invariant manifolds, peculiar to the Circular Restricted Three-Body Problem. Finally, a
perturbed two-body model is also used to identify possible disposal orbits for the decommissioned modular space assets.
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Nomenclature CORES COllaborative Recycling of End-of-life Sps
G Gravitational constant CR3BP Circular Restricted Three-Body Problem
L; Libration point

DRO Distant-Retrograde Orbit
M Mean anomaly

Q Right ascension of the ascending node ECI Earth-Centered Inertial frame
o Mass parameter ) )

. GEO Geostationary Earth Orbit
w Argument of perigee

GSO Geosynchronous Orbit
0 True anomaly
a Semi-major axis TADC Inter-Agency Space Debris Coord. Committee
e Eccentricity
) I LEO Low-Earth Orbit
1 Inclination
n Mean motion NRHO Near-Rectilinear Halo Orbit
Ta Apogee radius
. . RAAN Right Ascension of the Ascending Node
Tp Perigee radius
v Velocity SBSP Space-Based Solar Power
A SPS Solar Power Satellite
cronyms

AOP Argument Of Perigee TLE Two-Line-Element catalogue
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1. Introduction

The disposal of large infrastructures in space, like a So-
lar Power Satellite (SPS), poses a considerable problem.
This was discussed for the first time from a circular space
economy perspective by [1] in a study which disclosed the
findings of a comparative sustainability assessment on the
space-based solar power (SBSP) concept with terrestrial-
based energy generation options. A key finding from this
was that very little literature on end-of-life operations of
SPS systems exists, despite the relative importance of re-
ducing resource dependency, energy intensity and the eco-
logical footprint of the technology. The reason for this is due
to the fact that modern SPS systems are envisaged to oper-
ate almost indefinitely, with proper repair and maintenance.
Highly modular system concepts will allow individual ele-
ments of the satellite to be replaced on a regular basis. How-
ever, from both a technical and environmental perspective,
this still raises two unanswered questions: how can flexible
large-scale structures be autonomously constructed and dis-
mantled in space and what happens to the decommissioned
modular space assets at the end of life?

To address this problem, a project called CORES (COI-
laborative Recycling of End-of-life Sps) was recently ini-
tiated at the University of Strathclyde. CORES goes be-
yond the current effort to manage the space environment by
removing space debris, avoiding collisions and de-orbiting
space objects. It goes also beyond the simple in orbit servic-
ing idea and looks at recycling and repurposing of space ob-
jects. In a way it follows in the footsteps of the Phoenix pro-
gramme of DARPA [2], H2020 PERASPERA programme
and aligns with the ESA OMAR programme but with spe-
cific application to SPS.

In this framework, there is the need to have frequent
and low-cost transfers in Earth orbit and cis-lunar region.
CORES aims at creating a continuous transport network be-
tween different orbital regimes to fetch and transport the
parts of non-active satellites, that can be repurposed and
used to remanufacture modular systems, like an SPS. The
idea is to investigate regions in the phase space where natu-
ral dynamics plays in favour of the transfer. To do this, the
orbital perturbations in Earth orbit and the already known
pathways (like the manifolds in the Circular Restricted
Three-Body Problem) will be mapped, in order to exploit
them and facilitate construction in orbit. This work is fo-
cused on connecting a Geosynchronous orbit (GSO) in the
Laplace plane with densely populated regions in space, as
Low-Earth Orbit (LEO) and super-synchronous Graveyard
orbit, and to the cis-lunar region, which will experience an
increase in traffic in the upcoming years. The Laplace plane
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is a plane in which secular orbital evolutions due to luni-
solar perturbation and Earth oblateness are zero, hence the
orbits on this plane are frozen [3]. It has been proposed as a
suitable location for a SPS [4], an alternative to the standard
solution of a Geostationary Earth Orbit (GEO).

This paper proposes different transfer strategies used to
connect the already cited orbital regimes, exploiting natu-
ral dynamics. Section?2 presents the LEO - GSO connec-
tion, a four-impulses transfer that uses the variation of or-
bital elements in a perturbed environment to gain in terms
of delta-v. Section 3 describes the transfer strategy from a
Halo orbit in the L, point of Earth - Moon system to the
reference GSO. In this case, the invariant manifolds of the
Circular Restricted Three-Body Problem are used to get as
close as possible to Earth for free. Section4 discusses dis-
posal options by analysing the long-term evolution of the
objects on super-synchronous orbits, under various pertur-
bations, including the solar radiation pressure. In Section 5,
the results concerning the previous sections are presented
and discussed, and compared to the more classical results
already in the literature. Lastly, the limitations of this work
and the possible future extension are highlighted along with
the conclusions, drawn in Section 6.

2. LEO - GSO Connection

In this work, the design of the orbital transfers from LEO
to a GSO is based on a perturbed two-body problem, with
the gravitational perturbation due to Earth oblateness and
the third-body perturbations of the Sun and the Moon. In
this case, the orbital elements are not constant, but they are
a function of time. If we consider the direct two-impulses,
half-ellipse LEO - GEO transfer in Fig. 1, the third-body
perturbations acting on the orbit are small enough that the
corresponding variation of the orbital elements is negligible,
and the two-body approximation gives good estimates for
the delta-v values required. But, when the apogee increases
(as it is done in the bi-elliptic type of transfer), the effect of
the third-body becomes increasingly more important. The
orientation of the transfer orbits with respect to the Sun and
the Moon - which depends on the epoch, Right Ascension of
Ascending Node (RAAN) and Argument of Perigee (AOP)
- and the timing of the manoeuvre are fundamental. These
parameters control the variations in orbital elements on a
transfer orbit, and their adequate selection may lead to a
transfer in which the orbital elements vary in a such a way
that the costs of the manoeuvres will be lower.

In particular, consider the classical bi-elliptic transfer in
the two-body problem, or three-impulses transfer in Fig. 2.
It consists in two half-elliptic orbits and three burns: the
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Initial orbit

Final orbit

Fig. 1: Two-impulses transfer strategy. The numbers outline
the sequence of the manoeuvres.

first one to enter an orbit with an apogee higher than that of a
GSO, the second to change the inclination and enter an orbit
with the perigee radius equal to that of a GSO, the last one
to finally circularise the orbit. If the initial and final orbit
have a different inclination ¢, the change of plane manoeuvre
will be performed as far as possible from Earth where the
velocity is lower (that is, at the apogee), being the cost of
the manoeuvre (hereafter, “delta-v”) Av = 2vsin (Ai/2)
[5]. In this case, A7 will always be constant and it will not
depend on the propagation time of the orbit. If, however, we
add the mentioned perturbations to the model, and let them
act for a period of time, the inclination of the transfer orbit
may vary thanks to the action of third-body perturbations
[6, 7]. When the initial inclination is greater than the final
one, the desirable effect of the perturbations would be to
decrease the inclination, so that A¢ is smaller. Furthermore,
another effect that could be exploited is the variation of the
radius of perigee, that should get as close as possible to the
radius of a GSO. If we manage to exploit these effects, we
can save in terms of delta-v compared to the classical and
theoretical cases. The idea followed in this work is to map
the variation in orbital elements caused by the perturbations
in a certain time frame and establish what area of the phase
space should be investigated.

In the proposed strategy, the geometry of the transfer is
similar to that of a bi-elliptic transfer, but it consists in four
burns instead of three, in which the change of plane and
the change of perigee manoeuvres are located at different
points. The first transfer orbit (or, the orbit prior to the plane
change) is propagated up to time 7', different from the semi-
period or period of the orbit. The plane change manoeuvre
is performed when the A is minimum, while the change
of radius of perigee is performed at the subsequent apogee.
Once on a GSO, the orbit is circularised with another ma-
noeuvre, for a total of four impulsive manoeuvres.
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Initial orbit

Final orbit

Fig. 2: Bi-elliptic transfer strategy. The numbers outline the
sequence of the manoeuvres.

2.1 The Perturbed Two-Body Problem

In the restricted two-body problem, two point masses
move under their mutual gravitational attraction, with one
of them (the spacecraft) being much smaller than the other
(the Earth). The third-body perturbations of the Sun and the
Moon, and the Earth oblateness are added to this model in
the form of perturbing accelerations. The equations of mo-
tion in vector form are

ey

. m
r= _7‘731‘ + aj, + asun + Aproon

where, G is the gravitational constant, m is Earth’s mass,
r = (z, y, z) is the position vector, z, y and z are the Carte-
sian coordinates in an Earth-Centered Inertial frame (ECI),
see Fig. 3.The first term in Eq. (1) is the two-body accelera-
tion term, while the other terms are, respectively, the accel-
erations coming from .J2, Sun and Moon gravity. The model
described was implemented in MATLAB R2021b and val-
idated with the software GMAT. The tolerance used in the
integration process was set to 10714,

Given the fact that the dynamical system in Eq. (1) is
conservative, an alternative approach involves the use of La-
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Fig. 3: ECI reference frame and orbital elements, see [5].

grange planetary equations (see [8])
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Here, (a, e, i, M, w, Q) are the orbital elements, n is the
instantaneous mean motion given by n = /Gm/a3 and

R = RJQ + RSun + R]\4007h (3)

where R ,, Rsun and R ro0n are the disturbing functions
due to the gravitational harmonic J2, Sun and Moon, re-
spectively. Following [9], we use a single-averaged model,
obtained by averaging R over the mean anomaly M and ex-
panding the third-body disturbing functions R sun, Raroon
up to the tenth order in the paralax factor a/ry, where 74
(with b = Sun or Moon) is the distance of the third body
from the Earth. Orbit propagation with the averaged model
is validated by comparison with the Cartesian approach.
The accuracy and efficiency in the propagation of highly
eccentric orbits using the method by Kaufman and Dasen-
brock are discussed in detail in [10].
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2.2 Methodology of the Transfer

The LEO - GEO transfer strategy proposed here follows
the scheme represented in Fig.4 and the dynamical model
described by Eq. 1. The initial orbit is a circular orbit lo-
cated in LEO, the final orbit is a circular GSO. The blue,
green and yellow trajectories represent respectively the first,
second and third transfer orbits. The numbers from one to
four outline the sequence of the manoeuvres.

More in detail, the strategy consists of the following
steps:

1. Imagine we have a spacecraft in an initial circular orbit
in LEO, with radius 7, ; and inclination ¢;, that has to
reach the desired final orbit, a circular GSO, with ra-
dius rGggo and inclination 7y < ;. It enters a first trans-
fer orbit with a perigee radius r;, ; and an apogee radius
equal to 7, > rgeo. To enter this orbit from the initial
one a manoeuvre costing Av; is needed (Manoeuvre

1).

2. The perturbations act on the first transfer orbit up to
time 7'. Note that the initial orbital elements for the
propagation are those in the previous point (the semi-
major axis and eccentricity can be derived from 7, ;
and r,), and the RAAN and AOP are fixed.

3. At time 7T, a change of plane manoeuvre (or change
of inclination) is performed (Manoeuvre 2). This can
happen only at two points along the orbit, exactly at
the line of intersection of the two orbital planes. This
translates into the condition on the true anomaly 6§ =
180 deg — w and/or # = 360deg — w, which means
that for it to happen at the apogee, the AOP should be
w = 0deg or w = 180deg. The variation of incli-
nation of the change of plane manoeuvre is defined as
Ai = 4, — 1, where i, is different from iy. This
is because along the second and third transfer orbits
(green and yellow trajectories in Fig. 4) the inclination
will change, so ¢, is the inclination that will allow to
have the final inclination exactly equal to the desired
one. The delta-v relative to the plane change is Avs.

4. From the point of the second manoeuvre, the new
transfer orbit is propagated up until the next apogee.
Here, the third manoeuvre Awvg is performed so that
the next perigee 7, s has a radius rggo and is on the
desired GSO.

5. Once on the GSO, we perform a circularisation ma-
noeuvre to enter a circular orbit (Manoeuvre 4). Final
delta-v is Awvy. The total delta-v is the sum of all four
Avy = Avq + Avg + Avs + Awvy.
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As explained in the premise of this section, we want
to take advantage of the action of third-body perturbations
from the Sun and the Moon to lower the costs of manoeu-
vre 2. This translates into having a smaller A¢ than the one
we would have without letting the perturbations act on the
first transfer orbit for the time 7I'. Hence, the variation of
inclination over a fixed time interval (here fixed to a year)
should be monitored, in order to find its minimum and estab-
lish where and when the change of plane manoeuvre should
happen. The result of this process is the production of maps
that record the minimum variation of inclination while vary-
ing all the parameters of the problem. In particular, the
parameters that control the orientation of the transfer orbit
with respect to the Sun and the Moon are the date of depar-
ture, initial RAAN  and AOP w. The effect of third-body
perturbations depends also on the size of the transfer orbit,
meaning that if we fix the perigee 7, ;, the apogee radius r,
should be varied as well. Hence, the maps tell what are the
parameters to choose in order to run the four-burns transfer
strategy and compute the Av;.

Second transfer orbit

First transfer orbit

Third transfer orbit

Final orbit 4

Fig. 4: Scheme of the LEO - GSO transfer strategy.

3. Moon - GSO Connection

In the last few years, the interest in visiting and studying
the Moon has grown enormously. Also, the idea of manned
exploration has become popular with the concept of the Lu-
nar gateway among the others - a small space station in-
tended to orbit a Near-Rectilinear Halo Orbit (NRHO) about
Lagrange point Ly of the Earth-Moon system [11]. The
Lagrange points are advantageous locations for space mis-
sions, in particular Earth-Moon L4 could serve as a gateway
to other destinations in the Solar System, or it could be used
as a communication link between the Earth and the hidden
side of the Moon [12]. As this location will be more and
more crowded in the future, it was decided to try to connect
it with our desired GSO orbit in the Laplace plane. The lit-
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erature on the topic proposes different transfer strategies to
link Earth-Moon L, and Earth orbit [13, 14]. A first possi-
bility would be to use a more classical direct transfer (like
a Hohmann transfer), already proven in the past but among
the most fuel-consuming methods. Another strategy would
be to employ the invariant manifolds structures associated to
periodic orbits in a three-body system, see the Genesis mis-
sion profile in Earth-Sun system [12]. In the case of Earth-
Moon, the manifolds associated to Halo orbits do not ap-
proach the GSO directly, but they can be used to travel to the
vicinity of Earth in a cheap way. Another transfer approach
is the one used by the Hiten mission [15]. It employed
the weak stability boundaries transfer strategy, which ac-
counts for two patched three-body problems (Earth-Moon
and Earth-Sun in this case), and requires a more compli-
cated design.

The strategy proposed to transfer from the vicinity of the
Moon to the desired GSO through an invariant manifold is
explained in the following, starting from the peculiar dy-
namics in the Earth-Moon system.

3.1 The Circular Restricted Three-Body Problem

The Circular Restricted Three-Body Problem (CR3BP)
describes the motion of a smaller body under the gravita-
tional attraction of two massive bodies in a circular, co-
planar motion around their common centre of mass. This
model is used here to describe the motion of a spacecraft in
the Earth-Moon system. This motion is better described in
a rotating reference frame, centered at the centre of mass of
the system, with z-axis always directed towards the Moon,
z-axis aligned with the angular momentum vector of Earth
and Moon and y-axis completing the triad, see Fig.5. The
motion of the spacecraft is governed by the following equa-
tions

oU

ooy U

. Y ox

oU
§+20=—— 4

dy

.00

9z

which are normalised using the characteristic quantities
of the Earth-Moon system. In particular, the characteristic
length, velocity and time are respectively 3.850 x 10° km,
1.025km/s and 2.361 x 10%s, taken from [16]. U is the
effective potential of the system, expressed as
2 2} L—p )
T2

Page 5 of 21



73 International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright © 2022 by the authors. Published by the IAF, with permission and released to the IAF to publish in all forms.

ro=y (@ p)? 42+ 2
ry= /(2 =1+ p)? +y? + 22

which are, respectively, the distances of the spacecraft
from Earth and Moon. p is the mass parameter, that is the
ratio of the mass between the smaller primary (the Moon in
our case) and the total mass of the system. For the Earth-
Moon system, p = 0.01215.

Eq. 4 admits five equilibrium solutions, called Lagrange
points or libration points L;. As shown in Fig. 5, the points
L4, Lo and Lg lie on the x-axis of the rotating frame and are

Y
A . L4
L AN A .
A
Earth /' Moon
v LS

Fig. 5: The rotating frame of the CR3BP and the location of

called collinear points, while L4 and L lie on the vertex of the five Lagrange points.

an equilateral triangle. Different families of periodic and
quasi-periodic orbits exist about the Lagrange points [17,
18, 19]. Halo orbits are three-dimensional periodic orbits
that generate around the collinear points. Halo orbits about
the same point are divided into southern and northern fam-
ilies, symmetrical with respect to the xy-plane. “Northern”
means that the maximum out-of-plane amplitude A, of the
orbit is in the +z direction, “southern” means it is in the
—z direction. Halo orbits can be univocally defined by their
family (northern or southern) and their amplitude A,. In
this work, Halo orbits were generated by using a third-order
approximation developed by Richardson [20] as first guess,
refining it with a differential correction process, explained
more in detail in the work by Howell [21].

Another feature of the CR3BP is the existence of the in-
variant manifolds associated with the points L; and Ly and
with their periodic orbits [22]. These manifolds, also re-
ferred to as manifold “tubes”, provide solutions for the de-
sign of low-energy spacecraft trajectories, connecting differ-
ent realms of a three-body system. In short, stable/unstable
manifolds are phase space structures consisting of all the
vectors whose future/past positions converge to the orbit.
Hence, if a spacecraft is on a stable manifold, its trajectory
will wind onto the orbit, while if it is on the unstable one,
it will wind off of it. The procedure that was used in this
work to obtain invariant manifolds is cumbersome and re-
quires dynamical system tools. It follows the work by Koon
et al. [16], which is advised for a more detailed discussion
on the topic. The model and structures described here were
implemented in MATLAB R2021b and validated with the
software GMAT. The tolerance used in the integration pro-
cess was set to 10711,

3.2 Methodology of the Transfer

In this work, only Halo orbits about the Lo points were
considered, but the analysis can be easily extended to L; as
well. The transfer strategy used to connect a L, Halo orbit
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in the Earth-Moon system and our reference GSO circular
orbit is shown in Fig. 6. The numbers from one to three out-
line the sequence of the manoeuvres. The strategy simply
consists in the following steps:

1. N unstable manifolds are generated from N points on
a northern Halo orbit with fixed out-of-plane amplitude
A, . They are propagated for a maximum time 7. The
cost of leaving the Halo orbit (point 1 in Fig. 6) can be
approximated as zero, as they are always lower than
1m/s [14], opposed to the costs of the other manou-
vres (in the order of km/s).

2. All the intersections of the manifolds with the plane
that contains the final GSO (that is, the averaged
Laplace plane) are recorded. Of all of them, the in-
tersection point closer to Earth is saved (point 2 in
Fig.6). The Laplace plane is defined in the ECI ref-
erence frame, so a transformation between this frame
and the CR3BP rotating frame is needed to meet the
condition. For the sake of simplicity, the orbit of the
Moon about Earth was considered to be circular and
with a constant inclination.

3. A Lambert problem [5] (defined in the two-body prob-
lem) is used to connect this last point to the circular
GSO in the Laplace plane. The Lambert problem con-
sists in determining an orbit from two position vec-
tors and the time of flight between them. To employ
this method, the time spent on the arc and the entrance
point on the final orbit (point 3) must be fixed. At point
2, the first delta-v Avs is computed.

4. A manoeuvre is performed to enter the GSO. The cost
of this manoeuvre is Avs. The total cost of this transfer
strategy is then Avy = Avy + Aws.
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Unstable manifold

Halo orbit
Lambert arc

Fig. 6: Scheme of Moon - GSO transfer strategy.

4. GSO - Graveyard orbit Connection

At the end of its life, a decommissioned modular
space asset should be transferred from GSO to a super-
synchronous orbit that does not cross the GEO protected
region for at least 100 years (see [23]).

If for the LEO - GSO connection and the Moon - GSO
connection, the methodology discusses “how” to transfer
from a given region to GSO, in the case of the GSO - Grave-
yard orbit connection the question is “where” the object
should be moved at the end of its life. In the following, we
discuss some disposal options, analyse the long-term evolu-
tion on super-synchronous orbits under various effects and
propose a methodology of determining graveyard orbits.

A disposal orbit can be established after analysing the
long-term effects induced by all perturbations, including the
influence of the solar radiation pressure. By fulfilling the
following two conditions, the Inter-Agency Space Debris
Coordination Committee (IADC) assesses that the orbit re-
mains above the GEO protected region for a long interval of
time (see [23]):

1. A minimal increase in the perigee altitude of

A
235 km + 1000 C, — ,
m

(6)
where C). is the solar radiation pressure coefficient,
typically in the range of about 1.2 to 1.5, A/m is the
area to mass ratio in m? /kg.

2. An eccentricity less than 0.003.

Other options exist and in all situations a detailed anal-
ysis of the dynamics should be performed to guarantee that
the graveyard orbit will not interfere with the GEO protected
region for at least 100 years.

The strategy to transfer from GSO to a disposal orbit in-
volves a priory determination of the graveyard regions that
fulfil the IADC requirement according to which the orbits
are not crossing the GEO protected region. The averaged
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model defined by Eq. (2) and Eq. (3) and described in Sec-
tion 2.1 allows to perform a fast and accurate analysis of the
dynamics on secular time scales.

4.1 Orbital evolution on super-synchronous orbits

This Section characterizes the long-term evolution of
the known objects revolving around the Earth on super-
synchronous orbits. According to the Two-Line-Element
catalogue (see [24]), hereafter TLE, there are more than 350
objects orbiting on super-synchronous trajectories. Fig.7
and Fig. 8 report the variation of radial distance as a func-
tion of the semi-major axis and respectively the variation
of inclination as a function of the initial inclination of the
orbits of this population, over a fixed interval of time 7',
where T' = Oyears (top left), T = 20years (top right),
T = 50years (bottom left) and 7" = 100 years (bottom
right). Since the value of the A/m parameter is set to zero in
the two-line element set for this population (see [23]), each
orbit is propagated without considering the influence of the
solar radiation pressure.

The top left panel of Fig.7 shows that there are more
than 20 objects with perigee lower than the altitude of the
GEO protected region. In the absence of the solar radiation
pressure, since the orbital motion of this population is not
influenced by luni-solar secular resonances (see [25, 26, 27]
for the location of luni-solar resonances) the secular evo-
lution of the radial distance remains in the limits imposed
by the initial conditions. Fig. 8 shows that inclination vary
over secular times, a phenomenon well know from 60’s (see
[28]).

4.2 Effect of solar radiation pressure

For objects with moderate to high area-to-mass ratio, the
solar radiation pressure effect is non-negligible. The main
effect of solar radiation pressure is to produce long-term
variations of the eccentricity and inclination. The amplitude
and period of these variations depend on the initial condi-
tions of the given object and on its area-to-mass ratio.

We remark that objects in the graveyard region must have
a limited value of the area-to-mass ratio because of condi-
tion 1. from the previous section. However, it is important
to assess the evolution of orbits of objects with high area-
to-mass ratio. For instance, it could be used to describe
the dynamics of a spacecraft equipped with a solar sail in-
teracting with the debris in the GEO graveyard region, but
also to assess the threat of a particularly large piece of de-
bris which found itself in the graveyard region after a catas-
trophic event.

From [29] we know that a GEO object with high area-
to-mass ratio in an almost circular orbit is subjected to a
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Fig. 7: Radial distance variation for the objects from the TLE catalogue (A/m = 0 m? /kg), orbiting on super-synchronous
trajectories. Each object is represented by three coloured points, marked in black, blue and red, where the black point gives
the value of the semi-major axis, the red one provides the minimum perigee radius reached over the propagation time, while
the blue point corresponds to the maximum apogee radius reached over the time span. The horizontal green line marks the

location of the geostationary ring.

After 0years After 20 years

After 50 years After 100 years

30 30 30 30
o0 o0 o0
\%_9/20 K \_C@/ 20 :g/ 20 ) .
5 g (et i d
=10 / =10 =10 )

7 .
0 0 0 Seditin o 0 joee
0 10 20 0 10 20 0 10 20 0 10 20
i (deg) i (deg) i (deg) i (deg)

Fig. 8: Inclination variation of the super-synchronous orbits of the objects from the TLE catalogue, A/m = 0m? /kg.
Excluding the top left plot, in each panel, each object is represented by three coloured points, marked in black, blue and
red, where the black point gives the value of the inclination at initial time, the red one provides the minimum inclination
reached over the propagation time, while the blue point corresponds to the maximum inclination reached over the time

span.

yearly variation of the eccentricity, whose amplitude is pro-
portional to the square root of the area-to-mass ratio, rang-
ing from a maximum eccentricity of 0.1 if A/m = 5m? /kg
to a maximum eccentricity of 0.4 if A/m = 20m? /kg.

As far as the inclination is concerned, the maximum de-
viation from an equatorial orbit is of 45 deg, but the period
of such variations is inversely proportional to the square root
of the area-to-mass ratio. An object with an high value of
the effective area-to-mass ratio C,. A/m such as 10m? /s,
in an equatorial orbit around Earth (i = 0deg) will reach
the inclination of the Laplace plane in GEO in roughly five
years. Fig.9a and Fig. 9b show the evolution of the semi-
major axis, eccentricity and inclination of the objects in the
TLE catalog, assuming that all have the same area-to-mass

IAC-22-C1.6.10

ratio. Fig.9a describes the initial state of the TLE catalog
and it was obtained by propagating the orbits of all avail-
able objects to a common epoch. Fig. 9b describes the dis-
tribution of the orbital elements (a, e, i) after propagating
all objects assuming they have all the same area-to-mass ra-
tio, equal to 5m?/kg. As predicted by Valk [29], we can
appreciate a yearly variation of the eccentricity and also no-
tice that all objects are slowly but steadily increasing the
inclination. We conclude by noticing that the only way of
facilitating the connection from the graveyard region to the
GSO is to use a large solar sail, as doing so will diminish
the time necessary to reach the required connection.
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Fig. 9: Distribution of the orbital elements (a, e, 7) from the TLE catalog.

4.3 Determination of graveyard orbits

The methodology of determining graveyard orbits con-
sists in evaluating the eccentricity and inclination growth
over a period of 100 years. In this respect, the averaged
model, defined by Eqs (2), (3), in which the influence of the
solar radiation pressure is also considered, is used to propa-
gate orbits characterized by various parameters. To analyse
the IADC conditions mentioned above and also to explore
other options, we proceed as follows:

1. We propagate a set of 500 orbits, for which we fix the
initial eccentricity and inclination and vary the A/m
parameter in the range of 0m?/kg to 1m?/kg. For
each value of A/m, from the formula (6), we deter-
mine the initial perigee and hence the initial semimajor
axis. The other initial orbital elements, that is the an-
gles, are taken at random in the interval (0, 360) deg.

5. Results

This Section reports the results relative to the method-
ologies outlined in Sections 2,3 and 4. The results are anal-
ysed and discussed. Limitations and future extensions are
explored as well.

5.1 LEO - GSO Connection

Here, the results obtained following the procedure of
Section 2 are reported. The inclination of the targeted GSO
isequal to iy = 7.4 deg, which is the inclination of the aver-
aged Laplace plane [3]. The minimum variation of inclina-
tion As was mapped over the time span of a year varying all
the cited initial parameters: initial inclination ¢;, initial AOP
and RAAN, radius of perigee of the initial orbit, radius of
apogee of the first transfer orbit r, and departure date. A
total of 112 maps were generated with:

* Four initial inclinations 7, = (30, 60, 90, 120) deg.

2. For each orbit we record the minim perigee and max-
imum apogee reached over a given interval of time T’ « An initial radius fixed to r,,; = 7500 km.
and evaluate whether the orbit crosses the GEO pro- '
tected region (—200 km below and +200 km above the * A 360deg x 360 deg grid with 2 deg step for both the
geostationary ring). AOP and the RAAN.
3. We also record the minimum and maximum values of * Four radii of apogee for the first transfer orbit r, =

the inclination reached over time 7.

IAC-22-C1.6.10

(1.5, 3, 5, 7) x 10° km.
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e Seven departure dates:
21/3/2023, 28/3/2023,
23/9/2023 and 22/12/2023.

noon of 14/3/2023,
4/4/2023, 21/6/2023,

The propagation is stopped if the radius of the perigee gets
smaller than the equatorial radius of the Earth or if the Moon
is crossed. In that case, the information up to that point is
saved. The first maps in Fig. 10 (first column) show the min-
imum variation in inclination over the time span of a year
for ¢; = 60deg, rp; = 7500km, r, = 300000km and
three departure dates. The other maps in the figure (respec-
tively, second, third and fourth columns) show the radius of
perigee, propagation time and AOP recorded at the time the
minimum A3 is reached. Up to 300 000 km, these maps can
be obtained using Eq. (2), as this method is faster compared
to the propagation using the full Cartesian form of Eq. (1),
and the difference in numbers is small. Hence, this method
can be used up to a certain altitude to analyse the full pa-
rameter space, with a 360 deg x 360 deg grid in AOP and
RAAN, in order to understand the overall behaviour of or-
bital elements. In the case a more refined analysis is needed
or the transfer orbits have farther apogees, it is advised to
use the full Cartesian form to obtain the maps.

As previously mentioned, the orientation of the trans-
fer orbits with respect to the Sun and the Moon depends
on the departure date. That is why many different dates
were analysed: four of them following the position of the
Sun in a whole year (21/3/2023, 21/6/2023, 23/9/2023
and 22/12/2023), four of them following the position of
the Moon during its orbital period (14/3/2023, 21,/3,/2023,
28/3/2023 and 4/4,/2023). As it can be noted, Fig. 10a and
Fig. 10b, about only 20 days apart, show small differences in
numbers and patterns, which can be attributed to the motion
of the Moon. The maps in Fig. 10c, instead, are six months
distant and are consistently different from the previous ones,
as the Sun is in a new position.

From here, one must decide what is the area in the maps
that should be explored to find transfers with a lower delta-
v. As explained in Section 2, the change of plane manoeu-
vre should happen as far as possible from the central body,
translating into having the AOP of the orbit at the manoeu-
vring point (that is, when A¢ is minimum) as close as pos-
sible to 0 deg or 180 deg (wy in the maps). This means it
would not be efficient to analyse the whole parameter space,
one should instead restrict the search around those areas. In
this work, the search was restricted only to the vicinity of
wy¢ = 180 deg, as obtaining the maps using the full Carte-
sian equations requires a long computational time. Fig. 11
shows the detail of two of the maps in Fig. 10, this time re-
fined using the full Cartesian model.

From these refined maps, the delta-v s corresponding to
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the strategy of Section 2 were computed, see Fig. 12. The
first map of the three reports the total delta-v, the others
show the costs for the second (change of plane) and third
(change of perigee) manoeuvres of the strategy in Fig. 4.
The white areas are referred to the areas in the maps in
Fig. 11 that do not show a favourable variation in A (darker
red, means that for those initial conditions the inclination is
increasing instead of decreasing). Furthermore, when there
was a close passage with the Moon resulting in an eccentric-
ity bigger than one, the result was discarded. The computa-
tion was limited to a w; in the range (170, 190) deg. It can
be noticed how the Av, map follows the pattern of w; and
shows the very minimum where Ai gets smaller, while the
Aws follows the perigee and gets smaller as 7, increases.

The delta-vs corresponding to all the 112 maps were
computed and saved. Fig. 13 shows all of them against
the radius of apogee of the first transfer orbit for the four
initial inclinations. They were compared with with the
delta-v s of the theoretical transfers in a two-body problem:
two-impulses transfers (in Fig. 1), bi-elliptic transfers (in
Fig.2) and bi-parabolic transfers, that are bi-elliptic trans-
fers with the change of plane manoeuvre at infinite. The
values of these theoretical delta-v s are reported in Table 1.
It must be underlined how these transfer are not applicable
in a perturbed environment, but their values are given any-
way to give an idea of the numbers involved. The vertical
dashed line in Fig. 13 represents the two-impulses theoret-
ical value, the dashed-dotted line is the theoretical limit of
a bi-parabolic transfer and the solid coloured lines are bi-
elliptic theoretical values. From Fig. 13, one can draw the
following conclusions:

* For an initial inclination 7 = 30deg, the figure says
that the theoretical two-impulses strategy is always the
best option. This means that the difference in delta-v
spent to reach an apogee farther than a GEO is always
bigger than what we gain with a favourable action of
the perturbations. Also, when the change in inclination
is greater than ~ 39.9 deg, two-impulses transfer are
always cheaper than bi-elliptic transfers [6, 7]. On a
simple half-ellipse from LEO to GEO the third-body
perturbations can be considered small enough that the
two-body approximation gives good estimates of the
actual costs, so this theoretical result can be considered
reliable in this case as well.

¢ From ¢ = 60 deg we start to see how the strategy pro-
posed here outperforms the theoretical ones. For all
the initial apogees we can find solutions with lower
costs than the two-impulses strategy. As the initial
apogee increases, the minimum delta-v obtained gets
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smaller, overtaking the bi-elliptic values and even the
bi-parabolic theoretical limit of 4.2921 km//s.

 Similar considerations can be drawn for the i = 90 deg
and ¢ = 120deg cases. It seems more convenient to
raise the apogee farther than 150 000 km to have a con-
siderable gain over the bi-elliptic cases. For greater
inclinations, the delta-v is generally bigger compared
with the ¢ = 60 deg case, which is reasonable as in this
case, even with the action of perturbations, the Ad will
still be larger. Looking at Table 1, though, we can af-
firm that the higher is the inclination, the higher are the
savings.

Fig. 14 shows a detail of Fig. 13 with the solutions that
outperform the bi-elliptic theoretical values, Fig. 15 reports
some of these solutions (for © = 60 deg and two departure
dates) in the (w, Q) plane. From these figures one could
draw the conclusions that raising the apogee to 150 000 km
and let the perturbations act for a certain time period is never
convenient. This is wrong, as we are comparing our strat-
egy with an ideal case, that does not take into account the
presence of perturbations. In the case of a perturbed en-
vironment, the theoretical bi-elliptic transfer would not be
applicable anymore. We can suppose that, if the manoeuvre
were to be performed exactly at 150 000 km, this would not
be at the apogee anymore, but at a different point due to the
action of perturbations, meaning it would require a larger
delta-v than the theoretical one, and making our strategy
more convenient. This aspect will require a further future
analysis.

An important consideration is related to the times of
flight involved in the proposed transfers. As already ex-
plained, the perturbations are allowed to act for a maximum
of a year, to then find in this time interval the minimum
variation of inclination A4, in correspondence of which the
change of plane manoeuvre should be performed. This im-
plies that the total transfer times could be long, even more
than a year. Tables2, 3 and 4, show the time of flight and
the number of revolutions relating to the minima in Fig. 14
to give an idea of the numbers involved. As it can be no-
ticed, the AT associated with these results ranges from
about 14 days to more than a year, against the direct two-
impulses transfers that require larger costs (see Table 1) but
transfer times of about 10 hours, a considerably lower data.
In this case, it is necessary to make a trade-off between the
gain on manoeuvring costs and the increase of the transfer
times. For certain, the strategy proposed here will not be
convenient for commercial transfers that need to have a per-
fectly working service just a few days after launch, but it
could be convenient when many pieces of non-operational
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satellites have to be transported for a planned, non-urgent
re-manufacturing of an SPS (see the Introduction).

The transfer strategies proposed in this paper offer ad-
vantages as they outperform the classical transfer types in
terms of delta-v just with the help of natural dynamics,
though having the clear disadvantage of requiring longer
transfer times. Another limit could be given by the fact that
the action of third-body perturbations, and therefore the pos-
sibility of saving or not, strictly depends on the time of the
year, or, on the specific date of departure, meaning that our
strategy lacks the flexibility in the launch of a direct two-
impulses transfer. A future extension to this work will have
to explore more initial parameters in order to draw more
general conclusions. Another interesting analysis involves
the variation and optimisation of the number and sequence
of burns required to move from a LEO to a GSO. Finally,
it would be useful to extend this analysis to the case of a
LEO-GSO transfer that exploits low-thrust propulsion [30].

5.2 Moon - GSO Connection

The results obtained following the procedure in Section 3
are reported in the following. The orbit of the Moon about
the Earth is very complicated, so the assumptions made pre-
viously are still considered valid. Its inclination varies in
between ~ 18 deg and ~ 29 deg [31], for the sake of sim-
plicity in this work it was considered fixed to 7+ = 18.28 deg.
The unstable manifolds departing from the Lo northern Halo
were propagated for a maximum of 77 = 6 months. N =
1000 manifolds were generated from as many points on the
orbit. A total of 20 different Halo orbits were analysed, with
amplitude A, varying from 1000 km to 20 000 km, with a
1000 km step. As a reference, 10 manifolds propagated for
6 months from a Halo with amplitude A, = 20000 km are
represented in Fig. 16.

Once found the crossing point with the Laplace plane
closer to Earth, a Lambert arc was used to link it to our
target circular GSO with inclination ¢ = 7.4deg. To em-
ploy a Lambert problem, the time of flight AT on the arc
and the entrance point (defined as an angle, 8) on the final
orbit (point 3 in Fig. 6) must be fixed. Here, for each of the
1000 points related to the 20 orbits, a range of values were
analysed with:

* AT going from 10hours to 10days with a 4 hours
step.

* @ varying from 0 deg to 360 deg with a 1 deg step.

The map in Fig. 17, containing the total cost associated with
this method, was generated for all the parameters analysed.

From each map, the very minimum was found employ-
ing MATLAB’s fmincon function, using the minimum in
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Apogee (km) Awvfori=30deg Awvfori=60deg Awvfori=90deg Awvfori=120deg
(km/s) (km/s) (km/s) (km/s)

42241 (GEO) 3.8581 4.6576 5.5193 6.2436

150 000 4.1826 4.4088 4.6685 4.8928

300000 4.2402 4.3531 4.4847 4.5992

500 000 42618 4.3294 4.4088 4.4781

700 000 4.2707 4.3190 4.3758 4.4255

Infinite 4.2921 4.2921 4.2921 4.2921

Table 1: Theoretical delta-v s for two-body problem transfers. The first row refers to a classical two-impulses transfer, the
last row to a bi-parabolic transfer and the rest refer to bi-elliptic transfers with different radius of apogee.

Apogee (km) Aw(km/s) AT (days) Nr. revolutions
150000 4.49 264.35 106
300000 4.29 97.42 16
500000 4.19 14.20 2

700 000 3.81 59.08 3

Table 2: Minimum delta-v s for ¢ = 60 deg with the associ-
ated total propagation time and number of revolutions.

Apogee (km) Aw(km/s) AT (days) Nr. revolutions
150 000 4.73 279.65 113
300000 4.45 362.69 54
500000 4.27 13.42 2
700000 3.87 58.68 4

Table 3: Minimum delta-v s for ¢ = 90 deg with the associ-
ated total propagation time and number of revolutions.

Apogee (km) Aw(km/s) AT (days) Nr. revolutions
150 000 491 267.04 109
300000 4.55 270.47 40
500000 4.39 41.14 4

700 000 3.80 386.89 17

Table 4: Minimum delta-v s for ¢ = 120 deg with the asso-
ciated total propagation time and number of revolutions.
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the map as the initial point in the procedure, with the con-
straints respecting the previous ranges on AT and 6. All the
results are reported in Fig. 18 against the amplitude of the
Halo orbit. As it can be noted, the costs are varying from
a maximum of 2.94km/s to a minimum of ~ 1km/s, for
a total transfer time always below 183 days. The orders of
magnitude obtained are consistent to what is found in the
literature (see [14]), in which a slightly different method is
employed that still connects a GEO with LEO using invari-
ant manifolds.

A future extension to this work must analyse all the in-
tersections between the manifolds and the Laplace plane.
Here, only the intersection point closer to Earth was anal-
ysed, to limit the already long computation time due to the
big number of parameters, but other solutions could deliver
cheaper options. Furthermore, a similar analysis should
be conducted for other periodic orbits that have been pro-
posed for the future of Moon exploration, the already cited
NRHOs, the Distant-Retrograde Orbits (DRO) and so on.

5.3 GSO - Graveyard orbit Connection

Here, we report the results obtained by following the pro-
cedure described in Section4.3. Since the fact that the in-
clination of the GSO orbit is equal to ¢ = 7.4deg and a
manoeuvre changing the orbital plane is less probable in the
final stage of the life of a space asset, given the costs in-
volved, we assumed that the graveyard orbit has the same
initial inclination of 7.4 deg. We tested first the effective-
ness of the IADC conditions by taking the initial eccentric-
ity e = 0.003. The A/m parameter was let to vary from 0 to
1m?/kg and the perigee were computed using the Eq. (6).
The initial angles were taken randomly. Fig. 19 and Fig. 20
show the minimum value of the radial distance and the max-
imum value of the radial distance reached over time. The
purple horizontal lines are the edges of the GEO protected
region, while the green line corresponds to the geostation-
ary ring. These figures confirm that fulfilling the two IADC
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Fig. 16: N = 10 manifolds propagated for 6 months from a
Halo with amplitude A, = 20 000 km. The stars represent
the crossing points with the Laplace plane. The figure is
represented in the CR3BP rotating frame.
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Fig. 17: Delta-v maps for the Lambert arc connecting a
manifold with the target GSO, starting from a Halo with
amplitude Az = 10000 km.
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Fig. 18: Delta-vs for the Moon - GSO case for different
Halo amplitudes.
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conditions at the end of the disposal phase give orbits that
remains above the GEO Protected Region for more than
100 years.

We explored other options. By enhancing the value of ec-
centricity, for instance to e = 0.01, we report in Fig. 21 sim-
ilar results, but in this case, there are many orbits entering
the GEO protected region, which suggest that the formula
Eq. (6) is no longer valid, but could be adapted for slightly
larger eccentricities.

6. Conclusions

In this paper, two different methods for performing a
transfer from two orbital regimes to a circular GSO have
been developed along with an analysis on the disposal or-
bits . The first method consists in connecting an orbit in
LEO to the target GSO by exploiting the perturbations in
the Earth’s environment, in particular the third-body per-
turbations (from Sun and Moon). The proposed strategy
consists in a four-impulse transfer, that requires raising the
apogee of the first transfer orbit and then letting the per-
turbations act for a period of time, so that the total cost in
terms of delta-v is lower than that of an ideal case, in which
perturbations are not considered. By varying the initial pa-
rameters of the transfer orbit, such as inclination, apogee,
departure date, RAAN and AOP, we can see how, for incli-
nations greater than a certain value (30 deg in this case) the
proposed strategy outperforms the theoretical ones, like the
direct two-impulses, bi-elliptical and bi-parabolic transfers.
The limit of this approach is that the transfer time is con-
siderably longer, and also it lacks the flexibility of choosing
freely the initial conditions, such as the departure date. A
future extension of this work will have to explore more ini-
tial parameters in order to obtain more general conclusions.
The second method proposed in this paper concerns the con-
nection of a Halo orbit around the Lo point of Earth-Moon
system to the circular GSO, using the invariant manifolds
typical of the problem to approach the Earth, and then con-
nect to the target orbit with a Lambert problem. By varying
different parameters such as the amplitude of the Halo or-
bit, the time of flight on the arc and the entry point on the
GSO, interesting solutions have been obtained in terms of
delta-v and transfer time, that are comparable with the re-
sults in the literature that employ different transfer methods.
In the future, this analysis should be expanded to other or-
bits of interest in the Earth-Moon system (such as NRHOs,
DROs etc.). The third method deals with the analysis of
disposal orbits, rather than with transfer methodologies. If
for the first two cases, the focus is on exploiting those natu-
ral dynamical effects acting favorably on short/medium pe-

IAC-22-C1.6.10

riod of time, reducing thus the transfer costs, the third case
identifies the regions of the phase space that lead to small
variations of the orbital parameters, in particular of the ec-
centricity, on secular times. In the future, the analysis will
be extended to other regions in the parameter space and to
the modeling of on orbit fragmentation events.
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