
1 

Acceptance Reliability Sampling Plan for Items with Two 
Failure Modes 

Ji Hwan Cha1,a and Maxim Finkelsteinb,c  

aDepartment of Statistics, Ewha Womans University, Seoul, 120-750, Rep. of Korea. 
e-mail: jhcha@ewha.ac.kr

b Department of Mathematical Statistics, University of the Free State, Bloemfontein, South 
Africa 

E-mail: FinkelM@ufs.ac.za
cUniversity of Strathclyde, Glasgow, UK 

Abstract 
Existing reliability sampling plans reported in the literature assume that the items have only 
one failure mode. However, in practice, the items can fail due to two or more failure modes. 
In this paper, we study acceptance reliability sampling plan for items, which can fail due to 
the normal ageing and an external fatal shock during field operation. Two-stage reliability 
sampling plan that takes into account these two factors is developed. The lifetimes of items in 
a population before and after the acceptance test are stochastically compared.  

Keywords: Failure mode; variables reliability sampling plan; life test; shock; stochastic 
comparison of lifetimes  

1. Introduction

The manufactured products are usually grouped into lots by a supplier. A consumer can draw 
a random sample from a lot and, based on the reliability/lifetime test, the consumer can 
decide to accept or reject this lot of products. Thus, the information obtained through testing 
of some items from a lot is the basis for acceptance or rejection of the whole lot. 
   The acceptance sampling plans have become an effective and convenient tool in statistical 
quality control providing a method that screens out the products of poor quality. A general 
introduction to the theory and practice of acceptance sampling plans can be found in Stephens 
[1] and Montgomery [2]. Specifically, when the lifetime of a product is the main
characteristic of its quality, the corresponding sampling plans are called the life test reliability
sampling plans.

Various types of acceptance reliability sampling plans have been suggested and studied in 
the literature. For instance, in life testing, a fixed number of items are often tested for some 
fixed period of time (Type I censoring) or until some fixed number of items on test fail (Type 
II censoring) (Cha [3]). Initially, reliability sampling plans were implemented for items with 
lifetimes described by the exponential distributions. See Epstein [4], Epstein and Sobel [5,6], 
Blugren and Hewette [7], Fairbanks [8] for different acceptance reliability sampling plans in 
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this case. Ferting and Mann [9] and Schneider [10] have used the Weibull distribution, which 
is popular in practice, as the baseline lifetime distribution for the corresponding acceptance 
reliability sampling plans. More advanced reliability sampling plans have been developed 
later. See, for instance, Seidel [11], Edgeman and Salzberg [12], Pérez-González and 
Fernández [13], Kim and Yum [14], Lam and Choy [15], Tsai and Wu [16], Balakrishnan et al. 
[17] to name a few. Aslam et al. [18] has developed a time-truncated skip-lot sampling plan 
(type V) for an accelerated life test. 

 Cha [3] has studied the reliability improvement of a population of items after the tests as 
compared with reliability characteristics before the tests. Recently, Cha and Finkelstein [19] 
have developed a reliability sampling plan for discrete lifetime models. 

As listed above, most reliability sampling plans reported in the literature assume that the 
items can fail due to only one failure mode. However, frequently in practice, failures can 
occur due to two or more failure modes. In this paper, we study acceptance reliability 
sampling plan for items which can fail due to the normal ageing and an external fatal shock 
during field operation. We assume that the items are subject to the external shock process 
following the nonhomogeneous Poisson process (NHPP). On each shock, if the strength of 
the item is greater than the magnitude of the shock, then the item survives, or it fails 
otherwise. Taking into account the two failure modes, a two-stage reliability sampling plan is 
developed.  

Furthermore, the lifetime of the population before the acceptance test and that of the 
population which have passed the sampling test are stochastically compared and the 
reliability improvement due to the test is analyzed.  

As far as we know, the acceptance reliability sampling plans reported in the literature have 
been developed only for the items with one failure mode. However, items with multiple 
failure modes can be frequently encountered in practice as well. Therefore, the goal and 
contribution of this paper is in developing a new variables acceptance reliability sampling 
plan for items with two different failure modes. Moreover, our approach is general in the 
sense that it can be applied to any parametric distribution (whereas in most publications, the 
plans are distribution-specific). We believe that this as an important contribution of our study.   

This paper is organized as follows. In Section 2, we describe the failure model with two 
failure modes and the structure of the population of manufactured items. Basic concepts for 
stochastic orders and related properties to be used in the rest of the paper are also introduced. 
In Section 3, a two-stage reliability sampling plan is designed and the feasibility of the 
proposed sampling plan is briefly discussed. Besides, an algorithm for obtaining the relevant 
parameters of this plan is suggested. In Section 4, we discuss reliability improvement of items 
in the population after the acceptance test. For this, the lifetime of the population before the 
acceptance test and that of the population that has passed the sampling test are stochastically 
compared. A numerical example which supports our theoretical findings is also provided. 
Finally, in Section 5, the concluding remarks are given. 
 

2. Items with Two Failure Modes and Structure of the Population  
 
In this section, we describe the lifetime of items with two failure modes and the 
corresponding population structure. For a convenient description of the model, first, we 
assume that a population of items is a homogeneous one. We assume that the item can fail 
due to: (i) normal failure mode caused by the internal ageing of items; (ii) failure mode due to 
external shocks. The failure model due to external shock considered in this paper is similar to 
the stress-strength model in reliability (see, e.g., Rao et al. [20], Srinivasa et al. [21], Rao et al. 
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[22]). Denote the lifetime of an item in the absence of the failure mode (ii) by NT . The 
corresponding survival function is 

0

( ) exp{ ( ) }
t

NP T t r s ds = − , 

where ( )r s  is the failure rate function for NT .  
Denote the lifetime of an item in the absence of the failure mode (i) by ST .  We will 

define now the distribution of ST . Assume that an item is subject to external shocks and the 
shock process is the nonhomogeneous Poisson process (NHPP) { ( ), 0}N t t   with rate ( )t  
(Cha and Finkelstein [23]). Denote by iS  the magnitude (stress) of the i th external shock. 
Assume that ,...2,1, =iSi  are i.i.d. random variables with the common cumulative 

distribution function (Cdf) )Pr()( sSsM i =  ( )(1)( sMsM − ) and the corresponding 
probability density function (pdf) )(sm . Let R  be the unobserved random strength of the 
item with the corresponding Cdf, survival function and the pdf, )(rG , )(rG , )(rg , 
respectively. On the i th shock, the item survives if RSi   and fails if RSi  , 
‘independently of everything else’, ,..2,1=i . When R  is deterministic: rR = , the survival 
probability of our system in [0, ), 0t t  , is given by (see Cha and Finkelstein [24]). 

0

0 0

( )
( ) ( ( )) exp{ ( ) }

!
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x dx
P T t M r x dx
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  = −
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0

exp{ ( ) ( ) }
t

M r x dx−  ,                               

and the corresponding failure rate function is given by 

( , ) ( ) ( )S t r M r t = , 

respectively (see also Cha and Finkelstein [24]). When R  is random, 

0 0

( ) exp{ ( ) ( ) } ( )
t

SP T t M r x dx g r dr


 = −  , 

and the corresponding failure rate is (see also Cha and Finkelstein [24])   
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. 

Denote by T  the lifetime of the item in the presence of the two failure modes (i) and (ii). 
Then, as the lifetime model in this case is the competing risks model, the survival function of 
T  is given by 

0 0

( ) (min{ , } ) exp{ ( ) }exp{ ( ) ( ) }
t t

N SP T t P T T t r s ds p s s ds =  = − −  . 

In the above, we have described the lifetime of the item with two failure modes belonging 
to a homogeneous population. However, in practice, a population of manufactured items is 
often composed of two ordered subpopulations – the subpopulation with relatively high 
reliability (to be called the main or strong subpopulation), which contains items having longer 
lifetimes and the subpopulation with relatively poor reliability (to be called the ‘freak’ or 
weak subpopulation), which contains items having shorter lifetimes. In practice, items in the 
weak subpopulation can be produced along with the items of the main subpopulation because 
of, e.g., faulty resources and components, human errors, unstable production environment, etc. 
(see Jensen and Petersen [25], Kececioglu and Sun [26]). Thus, in this paper, we assume that 
the population of manufactured items is composed of two ordered subpopulations, i.e., the 
strong and the weak ones. Let us call it the mixed population. The composition of our mixed 
population is as follows: the proportion of the strong subpopulation is  , whereas the 
proportion of the weak subpopulation is 1 − . Denote by 1NT  and 2NT  the lifetimes due to 
the normal failure mode of the item (in the absence of failure mode (ii)) from strong and 
weak subpopulations, respectively. Also, denote by 1ST  and 2ST  the lifetimes due to the 
shock failure mode of the item (in the absence of failure mode (i)) from strong and weak 
subpopulations, respectively. Then, the survival functions of 1NT  and 2NT  are assumed to 
be given by 

0

( ) exp{ ( ) }
t

Ni iP T t r s ds = − , 1,2i = , 

where ( )ir s  is the failure rate function of 1NT , 1,2i = , respectively. On the other hand, the 
survival functions of 1ST  and 2ST  are assumed to be given by 

0 0 0

( ) exp{ ( ) ( ) } ( ) exp{ ( ) ( ) }
t t

Si i iP T t M r x dx g r dr p s s ds 


 = − = −   , 1,2i = ,     (1) 

where  

0 0

0 0

( ) exp{ ( ) ( ) } ( )
( )

exp{ ( ) ( ) } ( )

t

i

i t

i

M r M r x dx g r dr
p t

M r x dx g r dr









 −



−

 

 

 

and ( )ig r , 1,2i = , are the pdf of random strength iR  of the item belong to the strong and 
weak subpopulations, respectively. The corresponding Cdf and the survival function are 
denoted by ( )iG r , ( )iG r , 1,2i = , respectively. Note that, in Eq. (1), the distribution of the 
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magnitude of the external shock ( )M r  and the intensity of the external shock ( )t  are 
common for the two subpopulations because items from the two subpopulations are operated 
under the same environment. Then, the survival functions of the lifetimes iT , 1,2i = , of the 
items from strong and weak subpopulations in the presence of the two failure modes (i) and 
(ii) are given by 

0 0 0

( ) exp{ ( ) } exp{ ( ) ( ) } ( )
t t

i i iP T t r s ds M r x dx g r dr


 = − −    

0 0

exp{ ( ) }exp{ ( ) ( ) }
t t

i ir s ds p s s ds= − −  , 1,2i = . 

  As mentioned before, items from the strong subpopulation have longer lifetimes, whereas 
those from the weak subpopulation exhibit shorter lifetimes. To represent this relationship 
properly, we need some conditions on the functions ( )ir s  and ( )ig r  in the expression for  

( )iP T t , 1,2i = . For this and for our discussion on stochastic comparison in this paper, we 
need to introduce some basic concepts of stochastic orders that will be employed in what 
follows. For more details, the readers could refer to Shaked and Shanthikumar [27]. 
 
Definition 1. Let 1Z  and 2Z  be two nonnegative continuous or discrete random variables 
with respective failure rate functions 1( )t  and 2 ( )t , such that 

1 2( ) ( )t t  , for all 0t . 

Then 1Z  is said to be smaller than 2Z  in the sense of failure rate order, which is denoted 
by 21 ZZ fr . 
 
Definition 2. Let 1Z  and 2Z  be two nonnegative continuous or discrete random variables 
with respective survival functions 1( )H t  and 2 ( )H t , such that 

1 2( ) ( )H t H t , for all 0t . 

Then 1Z  is said to be smaller than 2Z  in the sense of usual stochastic order, which is 
denoted by 21 ZZ st . 
 
Definition 3. Let 1Z  and 2Z  be two nonnegative continuous (discrete) random variables 
with respective probability density functions (probability mass functions) 1( )h t  and 2 ( )h t , 
such that 

1

2

( )
( )

h t
h t

 is decreasing for all 0t . 

Then 1Z  is said to be smaller than 2Z  in the sense of likelihood ratio order, which is 
denoted by 21 ZZ lr . 
 
Due to Shaked and Shanthikumar [27], it holds that 

212121 ZZZZZZ stfrlr  .                        (2) 
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Furthermore, for stochastic comparison of populations to be discussed in the next section, we 
need the following lemma. The proof can also be found in Shaked and Shanthikumar [27]. 

 
Lemma 1.  
(i)Let 1Z  and 2Z  be two nonnegative random variables satisfying 21 ZZ st . Then 

][][ 21 ZEZE  . 

(ii)If 21 ZZ st  and ( )k   is any increasing [decreasing] function, then 1 2( ) [ ] ( )st stk Z k Z  . 

 
Throughout this paper, we assume that  

(i) 1 2( ) ( )r t r t  (failure rate order), for all 0t ,  
and  

(ii) 1 2( ) ( )G r G r  (usual stochastic order), for all 0r  , 
which describe two aspects of stochastic ordering of the two subpopulations, i.e,, the stronger 
subpopulation has the smaller failure rate with respect to the normal failure mode and the 
larger threshold with respect to the shock failure mode.   

Then, 

1 1 2 2
0 0

( ) exp{ ( ) } exp{ ( ) } ( )
t t

N NP T t r s ds r s ds P T t = −  − =   , for all 0t .    (3) 

Furthermore,  

0 0 0

( ) exp{ ( ) ( ) } ( ) [exp{ ( ) ( ) }]
t t

Si i iP T t M r x dx g r dr E M R x dx 


 = − = −   , 

where 
0

exp{ ( ) ( ) }
t

M r x dx−   is an increasing function of r . Then, from the assumption 

1 2( ) ( )G r G r , for all 0r  , and Lemma 1,  

1 1 2 2
0 0

( ) [exp{ ( ) ( ) }] [exp{ ( ) ( ) }] ( )
t t

S SP T t E M R x dx E M R x dx P T t  = −  − =   ,   (4) 

for all 0t . Then, from (3) and (4), 

1 1 1 1
0 0 0

( ) ( ) exp{ ( ) } exp{ ( ) ( ) } ( )
t t

S t P T t r s ds M r x dx g r dr


  = − −    

2 2 2 2
0 0 0

exp{ ( ) } exp{ ( ) ( ) ( ) ( ) ( )
t t

r s ds M r x dxg r dr P T t S t


 − − =     ,  

for all 0t , which implies that 1 2stT T .  

Denote by ( )if t  and ( )i t  the pdf and the failure rate functions which corresponds to 
( )iS t , 1,2i = , respectively, i.e., ( ) ' ( )i if t S t= −  and ( ) ( ) / ( )i i it f t S t = , 1,2i = . In our 

population, the proportion of the strong subpopulation is  , whereas the proportion of the 
weak subpopulation is 1 − . Then, the mixture (population) survival function is given by 

1 2( ) S ( ) (1 ) ( )S t t S t  = + − .                         (5) 
Denote by T  the lifetime of the item which corresponds to the mixture distribution in (5). 
Then the population failure rate that describes T  is defined as  
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1 2

1 2

 ( ) (1 ) ( )( )
 S ( ) (1 ) ( )
f t f tt

t S t

 


 

+ −
=

+ −
 

1 2
1 2

1 2 1 2

( ) (1 ) ( )( ) ( )
 ( ) (1 ) ( )  ( ) (1 ) ( )

S t S tt t
S t S t S t S t

 
 

   

−
= +

+ − + −
. 

In this paper, the quality of a lot will be defined in terms of the mean time to failure of the 
item drawn from the lot, which is given by  

1 2
0 0 0

( ) [ ] ( ) S ( ) (1 ) ( )E T S t dt t dt S t dt    
  

 = = + −   . 

Note that the causes for the heterogeneity in the population (faulty resources and components, 
human errors, unstable production environment, etc.) are variable and, the proportion of the 
items from the strong subpopulation   in a lot may also change depending on them. 
Intuitively, the larger   results in the better quality of the corresponding lot, which can be 
formally shown by considering the function 

1 2 2
0 0 0

( ) S ( ) ( ) ( )t dt S t dt S t dt  
   

= − + 
 
    

that is increasing in   as 1 2
0 0

S ( ) ( ) 0t dt S t dt
 

−    and thus, a lot having large   is a lot of 

good quality, whereas a lot having small   is a lot of poor quality.  
 

3. Two-Stage Reliability Sampling Plan 
 
We will now design a sampling plan for items with two failure modes to assure that the mean 
time to failure of an item is larger than the predetermined level. Denote by 1  and 2 , 

1 2  , the mean time to failure of an item in a lot specified as the higher quality level and 
that specified as the lower one, respectively. The consumer requires that the lot acceptance 
probability should be smaller than the specified consumer’s risk   at the lower quality level 

2 , whereas the producer requires that the lot rejection probability should be smaller than the 
specified producer’s risk   at the higher quality level 1 .  

As [ ]E T  is monotonically increasing in  , the lower quality level 2  and the higher 
level 1  can equivalently be defined in terms of the value of  : the lower quality level is 
defined by 2 =  and the higher quality level is defined by 1 = , where 1  and 2  
( 1 2  ) are two values which satisfy [ ]

i iE T = , 2,1=i , respectively.  
It should be emphasized that, in the field operation, items along with a normal failure mode 

can fail due to shocks of a random magnitude. However, the laboratory environment under 
which the reliability sampling test is usually performed is a controlled environment and such 
external shocks do not exist. Thus, the reliability sampling plan will be designed in such a 
way that, at the first stage, a simulated shock test with a fixed magnitude is performed and, at 
the second stage, a normal truncated life test is carried out. The detailed procedure for this 
two-stage reliability sampling plan is as follows.  
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[Two-Stage Reliability Sampling Plan] 
(Step 1) The total number of n  items are randomly chosen from the lot to be tested.  
(Step 2) At the first stage, n  items are exposed to a shock with constant magnitude 0 0s  . 
The failed items are discarded and items that have survived the shock are used for the second 
stage of the test. 
(Step 3) At the second stage, items that have survived the first stage are tested during the time 
interval ],0( 0t , where 0t  is a predetermined testing time.  
(Step 4) If the number of items that have failed during the two-stage test exceeds the 
threshold number c  (integer), then the lot is rejected; otherwise, the lot is accepted.  

 
The diagram for the two-stage reliability sampling plan is given in Figure 1. 

 
Figure 1. The diagram for the two-stage reliability sampling plan 

      
Note that, the important aim of the sampling test is to distinguish the lots of good quality and 
those of bad quality. For this, through the sampling test, the items from strong and weak 
subpopulations should be distinguished efficiently. For example, in the first stage of the 
reliability sampling plan, if the shock magnitude 0s  is too large, all tested items would fail. 
If the shock magnitude 0s  is too small, none of the tested items would fail. In these cases, 
the first stage of the reliability sampling test will not be, obviously, efficient. Therefore, for 
this stage, we suggest to determine the shock magnitude 0s  in the following way 

0 0 1 2 0 2 1arg max ( ( ) ( )) arg max ( ( ) ( ))s ss G s G s G s G s = − = − , 

that is, we choose 0s  which maximizes the difference of the survival probabilities (failure 
probabilities) of items from strong and weak subpopulations. By this we ensure that 0s  
achieves the maximal ‘difference’ between items from the two subpopulations that is crucial 
for the test. 

Observe that the probability that an item from the strong subpopulation will survive the 
two-stage reliability sampling test is 

Acceptance reliability sampling plan for items with two failure modes

[Step 1] 

n items are 
randomly chosen 

from the lot 

[Step 3] 

The items that have 
survived are tested 

during the fixed time 
interval 

.. 

[Step 2] 

The shock test is 
performed to the n 
items and the failed 
items are discarded 

[Step 4] 
H the number of 
failed items > c, 

then the lot is rejected; 
Otherwise, the lot is 

accepted 



9 

 

0

11 0 0 0 1
0

( , ) ( ) exp{ ( ) }
t

s t G s r s ds  − , 

whereas the probability that an item from the weak subpopulation will survive the two-stage 
reliability sampling test is  

0

22 0 0 0 2
0

( , ) ( ) exp{ ( ) }
t

s t G s r s ds  − . 

Assuming that the lot size is large enough, the acceptance probability of the lot as the 
function of   is given by 

1 0 0 2 0 0 1 0 0 2 0 0
0

( ) (1 [ ( , ) (1 ) ( , )]) ( ( , ) (1 ) ( , ))
c

i n i

i

n
L s t s t s t s t

i
       −

=

 
= − + − + − 

 
 . 

As   is the proportion of the strong subpopulation, for the proposed sampling test to be 
‘reasonable’, ( )L   should be increasing in  . The following theorem states that the 
proposed sampling plan satisfies this requirement. Before stating the theorem, we need a 
simple preliminary lemma. In the following, denote by ,n pZ  the binomial random variable 
with the number of trials n  and the success probability p . 

 
Lemma 2. If 1 2p p , then 

1 2, ,n p lr n pZ Z . 
Proof. 
The ratio of the probability mass functions of 

1,n pZ  and 
2,n pZ  for 1 2p p  is given by  

1 1
1 1 2

2 2 1
2 2

! (1 )
1 1!( )!

! 1 1(1 )
!( )!

i n i
n i

i n i

n p p
p p pi n i

n p p pp p
i n i

−

−

−
   − −−

=    
− −   −

−

, 

which is decreasing in i . Then, according to Definition 3, 
1 2, ,n p lr n pZ Z . 

■ 
 
Theorem 1. If 1 2( ) ( )r t r t , for all 0t , and 1 2( ) ( )G r G r , for all 0r  , ( )L   is 
increasing in  , that is,  

( ) ( ')L L  , for '  . 
Proof. 
If 1 2p p , from Lemma 2 and relation (2), 

1 2, ,n p st n pZ Z  and, according to Definition 2, we 
can order the corresponding Cdfs as   

1 1 2 2
0 0

! !(1 ) (1 )
!( )! !( )!

c c
i n i i n i

i i

n np p p p
i n i i n i

− −

= =

−  −
− −

  , for any 0 c n  . 

  Under the assumption that 1 2( ) ( )r t r t , for all 0t , and 1 2( ) ( )G r G r , for all 0r  , 

1 0 0 2 0 0( , ) ( , )s t s t   and thus, for '  ,   

1 0 0 2 0 0 1 0 0 2 0 01 [ ( , ) (1 ) ( , )] 1 [ ' ( , ) (1 ') ( , )]s t s t s t s t      − + −  − + − . 
Thus,  

Acceptance reliability sampling plan for items with two failure modes



10 

 

1 0 0 2 0 0 1 0 0 2 0 0
0

( ) (1 [ ( , ) (1 ) ( , )]) ( ( , ) (1 ) ( , ))
c

i n i

i

n
L s t s t s t s t

i
       −

=

 
= − + − + − 

 
  

1 0 0 2 0 0 1 0 0 2 0 0
0

(1 [ ' ( , ) (1 ') ( , )]) ( ' ( , ) (1 ') ( , )) ( ')
c

i n i

i

n
s t s t s t s t L

i
        −

=

 
 − + − + − = 

 
 . 

■ 
 
Note that the proposed sampling plan is characterized by two parameters ),( cn . As both 

n  and c  are integers, one cannot obtain parameters ),( cn  that exactly meet the 
consumer’s and producer’s risks. Thus, we will find the integers n  and c  that will attain 
the nearest acceptance probabilities: 

 1( ) 1L   −  and 2( )L   .                       (3) 
 
The following proposition can help in obtaining parameters ),( cn  that agree with (3). The 
proof is similar to that in Cha [3] and, therefore, is omitted. 
 
Proposition 1. The acceptance probability 

1 0 0 2 0 0 1 0 0 2 0 0
0

( ) (1 [ ( , ) (1 ) ( , )]) ( ( , ) (1 ) ( , ))
c

i n i

i

n
L s t s t s t s t

i
       −

=

 
= − + − + − 

 
  

is decreasing in n  for any fixed 0   and c . 
 

Due to Proposition 1, the search of parameters ),( cn  could be significantly simplified. 
For the fixed 1n  , define now ( )c n  as a nonnegative integer which satisfies the following 
equation 

1 1 1 0 0 1 2 0 0 1 1 0 0 1 2 0 0
0

( ) (1 [ ( , ) (1 ) ( , )]) ( ( , ) (1 ) ( , )) 1
c

i n i

i

n
L s t s t s t s t

i
         −

=

 
= − + − + − = − 

 
 . 

As 1( )L   decreases in n  for any fixed 1 0   and c  due to Proposition 1, we have: 
( ) ( 1)c n c n + , 1,2,...n = , which gives a lower bound in the following sequential procedure. 

To find parameters ( , )n c  satisfying the two equations in (3), the following sequential 
procedure can be applied: 
(Step 1)  
Fix 1n =  and find the integer 0 (1) 1c   such that  

(1)
1

1 1 0 0 1 2 0 0 1 1 0 0 1 2 0 0
0

1
(1 [ ( , ) (1 ) ( , )]) ( ( , ) (1 ) ( , )) 1

c
i i

i
s t s t s t s t

i
        −

=

 
− + − + − = − 

 
 . 

If 
(1)

1
2 1 0 0 2 2 0 0 2 1 0 0 2 2 0 0

0

1
(1 [ ( , ) (1 ) ( , )]) ( ( , ) (1 ) ( , ))

c
i i

i
s t s t s t s t

i
        −

=

 
− + − + − = 

 
 , then 

choose ))1(,1( c  as the desired parameters; otherwise go to Step 2. 

(Step 2)  
Fix 2n =  and find the integer )2(c , where (1) (2) 2c c  , such that  
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(2)
2

1 1 0 0 1 2 0 0 1 1 0 0 1 2 0 0
0

2
(1 [ ( , ) (1 ) ( , )]) ( ( , ) (1 ) ( , )) 1

c
i i

i
s t s t s t s t

i
        −

=

 
− + − + − = − 

 
 . 

If 
(2)

2
2 1 0 0 2 2 0 0 2 1 0 0 2 2 0 0

0

2
(1 [ ( , ) (1 ) ( , )]) ( ( , ) (1 ) ( , ))

c
i i

i
s t s t s t s t

i
        −

=

 
− + − + − = 

 
 , then 

choose ))2(,2( c  as the desired parameters; otherwise go to Step 3. 

(Step 3)  
Fix 3n =  and find the integer )3(c , where (2) (3) 3c c  , such that  

(3)
3

1 1 0 0 1 2 0 0 1 1 0 0 1 2 0 0
0

3
(1 [ ( , ) (1 ) ( , )]) ( ( , ) (1 ) ( , )) 1

c
i i

i
s t s t s t s t

i
        −

=

 
− + − + − = − 

 
 . 

If 
(3)

3
2 1 0 0 2 2 0 0 2 1 0 0 2 2 0 0

0

3
(1 [ ( , ) (1 ) ( , )]) ( ( , ) (1 ) ( , ))

c
i i

i
s t s t s t s t

i
        −

=

 
− + − + − = 

 
 , then 

choose ))3(,3( c  as the desired parameters; otherwise go to the next Step 4 with 4n = ,…, 
and so on. 

As an illustrative example, let 1( ) 0.1, 0r t t=  , 2 ( ) 1.0, 0r t t=  , ( ) exp{ }, 0M r r r= −  , 

1( ) exp{ 0.1 }, 0G r r r= −  , 2( ) exp{ 2 }, 0G r r r= −  . Then, the assumptions (i) 1 2( ) ( )r t r t , 

0t , and (ii) 1 2( ) ( )G r G r , for all 0r  , are satisfied. In this case, to fine the shock 
magnitude 0s  satisfying  

0 0 1 2 0 2 1arg max ( ( ) ( )) arg max ( ( ) ( ))s ss G s G s G s G s = − = − , 
the graph of 1 2( ) ( )G s G s−  is obtained in Figure 2. 

 
Figure 2. The graph for 1 2( ) ( )G s G s−  

 
  It can be seen that 0s  is given by 0 1.58s = . Let 0.10 =t , 05.0= , 10.0= . Then, 

following the sequential procedure described above, the parameters ),( cn  have been 
obtained for 1 0.950 =  and different values of 2 . 
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Table 1. The parameters ),( cn  for 05.0= , 10.0= . 
 

1  2  ),( cn  

0.950  

0.700  ( 56, 20)n c= =  
0.675 ( 48, 18)n c= =  
0.650  ( 37, 14)n c= =  
0.625 ( 29, 11)n c= =  
0.600  ( 26, 10)n c= =  

 
Observe that when the difference between 1  and 2  is larger, the smaller number of 
testing items n  are required, and vice versa. This is since it is easier to identify lots of good 
and bad quality when there is a larger difference in the quality levels. 
 

4. Analysis of the Reliability Improvement after the Acceptance Test 
 
In this section, we discuss reliability improvement in the population after the acceptance test. 
It should be noted that, in practice, the proportion of the strong subpopulation   and that of 
the weak subpopulation 1 −  can often change from lot to lot. This can happen, e.g., due to 
unstable production environment which is varying in time, the proportion of faulty resources 
and components is subject to change in time, etc. Therefore, it is natural to assume that the 
proportion of the strong subpopulation is a random variable to be denoted by   with the 
pdf ( )   and support in [0,1]. The following discussion will address this setting.  

First, we will describe the population distribution before the reliability testing procedure. 
Let T  be the lifetime of an item randomly selected from the population before testing. Then 
the corresponding mixture survival function of T , ( )mS t , is  

1

1 2
0

( ) [ S ( ) (1 ) ( )] ( )mS t t S t d    = + − ,                       (4) 

with the pdf ( )mf t  
1

1 2
0

( ) [  ( ) (1 ) ( )] ( )mf t f t f t d    = + − .                       (5) 

and the failure rate ( )m t   
1

1 2
0
1

1 2
0

[  ( ) (1 ) ( )] ( )
( )( )
( )

[ S ( ) (1 ) ( )] ( )

m
m

m

f t f t d
f tt
S t

t S t d

    



    

+ −

= =

+ −
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1
1 2 1 2

1 2 1
1 2 1 20

1 2
0

( ) (1 ) ( ) [  ( ) (1 ) ( )] ( )( ) ( )
 ( ) (1 ) ( )  ( ) (1 ) ( )

[ S ( ) (1 ) ( )] ( )

S t S t S t S tt t d
S t S t S t S t

t S t d

     
  

   
    

 − + −
= + 

+ − + −  + −




   

1

0

( ) ( | )t t d   =  ,                                                       (6) 

where  

1 2
1

1 2
0

[  ( ) (1 ) ( )] ( )( | )
[ S ( ) (1 ) ( )] ( )

S t S tt
t S t d

   
 

    

+ −
=

+ −

, 

which is the conditional distribution of   given tT  , ( | )T t   and ( )t is the 
corresponding conditional failure rate given by the first multiplier in the integrand of the 
second row of (6). General introductions to mixture distributions can be found in Cha and 
Finkelstein [28] and Finkelstein and Cha [29].  

We will describe now the lifetime distribution of items in the population that is composed 
of lots that were accepted in the reliability sampling test. Denote by *T  the lifetime of an 
item randomly selected from this population. The survival function, the probability density 
function and the failure rate function of the population conditional on the acceptance are 
denoted by *( )mS t , *( )mf t  and *( )m t , respectively. Furthermore, we denote by *( )   the 
conditional pdf of ( | )N c   and by *( )  the corresponding Cdf, where N  is the 
number of items which have failed during the test. We also denote by ( ; , )k n p  the Cdf of 
the binomial random variable with parameters ( , )n p , that is,  

0

!( ; , ) (1 )
!( )!

k
i n i

i

nk n p p p
i n i

−

=

  −
−

 . 

 
Theorem 2. The survival function, the probability density function and the failure rate 
function for items in the population of lots accepted in the sampling test are given by 

1
* 1 0 0 2 0 0

1 2 1
0

1 0 0 2 0 0
0

( ; ,1 [ ( , ) (1 ) ( , )]) ( )( ) [ S ( ) (1 ) ( )]
( ; ,1 [ ( , ) (1 ) ( , )]) ( )

m
c n s t s tS t t S t d

c n s t s t d

    
  

     

 − + −
= + −

 − + −




, 

1
* 1 0 0 2 0 0

1 2 1
0

1 0 0 2 0 0
0

( ; ,1 [ ( , ) (1 ) ( , )]) ( )( ) [  ( ) (1 ) ( )]
( ; ,1 [ ( , ) (1 ) ( , )]) ( )

m
c n s t s tf t f t f t d

c n s t s t d

    
  

     

 − + −
= + −

 − + −




, 

1
* 1 2

1 2
1 2 1 20

( ) (1 ) ( )( ) ( ) ( )
 ( ) (1 ) ( )  ( ) (1 ) ( )m

S t S tt t t
S t S t S t S t

 
  

   

 −
= + 

+ − + − 
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1 2 1 0 0 2 0 0
1

1 2 1 0 0 2 0 0
0

[  ( ) (1 ) ( )] ( ; ,1 [ ( , ) (1 ) ( , )]) ( )

[ S ( ) (1 ) ( )] ( ; ,1 [ ( , ) (1 ) ( , )]) ( )

S t S t c n s t s t d
t S t c n s t s t d

      


       

+ −  − + −


+ −  − + −

,     (7) 

respectively.  
Proof. 
Clearly, for the accepted lots, the distribution of   should be changed to the conditional 
distribution of ( | )N c  , as the number of items which have failed during the test is less 
than or equal to c  if a lot is accepted. As the conditional probability of ( | )P N c   =  is 
given by 1 0 0 2 0 0( | ) ( ; ,1 [ ( , ) (1 ) ( , )]),P N c c n s t s t     = =  − + − the joint distribution of 
( , )N c   =  is   

1 0 0 2 0 0( ; ,1 [ ( , ) (1 ) ( , )]) ( )c n s t s t     − + − , 

and, therefore, the conditional pdf of ( | )N c   can be obtained as 

* 1 0 0 2 0 0
1

1 0 0 2 0 0
0

( ; ,1 [ ( , ) (1 ) ( , )]) ( )( )
( ; ,1 [ ( , ) (1 ) ( , )]) ( )

c n s t s t

c n s t s t d

    
 

     

 − + −


 − + −

. 

Thus, the role of ( )   in (4), (5) and (6) in the population before the test is now taken by 
*( )   in the population which is composed of lots accepted in the reliability sampling test. 

Then, the desired results is obtained by substitution of ( )   in (4), (5) and (6) with *( )  , 
respectively.  

■ 
We will now compare stochastically the population before the test and the population 

which is composed of lots accepted in the reliability sampling test. For this, we compare the 
proportions of the strong subpopulation in the populations before and after the test and the 
lifetimes of items randomly selected before and after the test. 
 
Theorem 3. If 1 2( ) ( )r t r t , for all 0t , and 1 2( ) ( )G r G r , for all 0r  , the following 
results hold:  
(i) ( | )lr N c    ; 
(ii) *

frT T , that is,  

*( ) ( )m mt t  , for all 0t . 

Proof. 
In the proof of Theorem 1, it has been shown that 1 0 0 2 0 0( ; ,1 [ ( , ) (1 ) ( , )])c n s t s t   − + −  is 
increasing in   and, thus, the ratio *( ) / ( )     

*
1 0 0 2 0 0

1

1 0 0 2 0 0
0

( ; ,1 [ ( , ) (1 ) ( , )])( )
( )

( ; ,1 [ ( , ) (1 ) ( , )]) ( )

c n s t s t

c n s t s t d

   

 
     

 − + −
=

 − + −

 

is increasing in   and *( ) / ( )     is decreasing in  . This implies that ( | )lr N c    .  
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We will now prove that *
frT T . Observe that, from (6), )(tm  can be written as: 

( | )( ) [ ( )]m T tt E t   = , 

where ‘ ( | )[ ]T tE  
’ stands for the conditional expectation with respect to the conditional 

distribution of   given tT  , which is given by 

1 2
1

1 2
0

[  ( ) (1 ) ( )] ( )( | )
[ S ( ) (1 ) ( )] ( )

S t S tt
t S t d

   
 

    

+ −
=

+ −

. 

Similarly, *( )m t  in (7) can be expressed as: 

*( | )
( ) [ ( )]m T t
t E t  
= , 

where ‘ *( | )
[ ]

T t
E

 
’ represents the conditional expectation with respect to the conditional 

distribution of   given *T t , which is specified as: 

* 1 2 1 0 0 2 0 0
1

1 2 1 0 0 2 0 0
0

[  ( ) (1 ) ( )] ( ; ,1 [ ( , ) (1 ) ( , )]) ( )( | )
[ S ( ) (1 ) ( )] ( ; ,1 [ ( , ) (1 ) ( , )]) ( )

S t S t c n s t s tt
t S t c n s t s t d

      
 

       

+ −  − + −


+ −  − + −

. 

Observe that  
1

1 2 1 0 0 2 0 0
0

1*

1 2
0

[ S ( ) (1 ) ( )] ( ; ,1 [ ( , ) (1 ) ( , )]) ( )
( | )
( | )

[ S ( ) (1 ) ( )] ( )

t S t c n s t s t d
t
t

t S t d

       
 

 
    

+ −  − + −

=

+ −





 

1 0 0 2 0 0

1
( ; ,1 [ ( , ) (1 ) ( , )])c n s t s t  


 − + −

 

is decreasing in  , implying that 
*( | ) ( | )lrT t T t     , for all 0t . 

Also, note that 

1 2
1 2

1 2 1 2

( ) (1 ) ( )( ) ( ) ( )
 ( ) (1 ) ( )  ( ) (1 ) ( )

S t S tt t t
S t S t S t S t

 
  

   

−
= +

+ − + −
 

is decreasing in   as  

1

1 2

( )
 ( ) (1 ) ( )

S t
S t S t



 + −
 

is increasing in   and 1 2( ) ( )t t  , for all t . Then, according to Lemma 1,  

*
*

( | ) ( | )
( ) [ ( )] [ ( )] ( )m T t mT t
t E t E t t       
=  = , for all 0t . 
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■ 
   

From Theorem 3, we can see that both the proportion of the strong subpopulation in the 
population and the lifetime of the items have increased after the test.  
 
Remark 1. Intuitively, the reliability characteristics of lots after the test that accepts not more 
than c failures in the test should improve, which can be loosely written as ( | )N c     
and *T T . However, the main questions arise: in what stochastic sense these inequalities 
hold and what are the assumptions? Theorem 3 gives answers to these questions. Thus, 
similar to Bayesian reasoning, the additional information updates the distribution of  in a 
specified way.   
 
Example 1. As in the example in Section 3, let 1( ) 0.1, 0r t t=  , 2 ( ) 1.0, 0r t t=  , 

( ) exp{ }, 0M r r r= −  , 1( ) exp{ 0.1 }, 0G r r r= −  , 2( ) exp{ 2 }, 0G r r r= −  , with 0.10 =t , 
05.0= , 10.0=  and ( ) 1, 0t t =  . We assume that   follows the beta distribution 

with parameters (4,1.8) , i.e., 
3 0.8(5.8)( ) (1 )

(4) (1.8)
   


= −
 

, 0 1  . 

The two quality levels are specified as 1 0.950 =  and 2 0.650 = . Then, from Table 1, the 
two parameters of the reliability test are given by ( 37, 14)n c= = . Under the given setting, 
first we compare the proportions of the strong subpopulation in the populations before and 

after the test. Define the Cdfs of   and ( | )N c   as 
0

( ) ( )d


       and 

* *

0

( ) ( )d


      , respectively. The Cdf’s and the pdf’s of   and ( | )N c   are plotted 

in Figures 2 and 3. We can see that the random variable ( | )N c   is stochastically larger 
than   ((i) of Theorem 3). Also note that, the proportion of   which is smaller than the 
lower quality level 2 0.650 =  has dramatically decreased after the test.  
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Figure 3. The Cdf’s ( )  and *( ) . 

 
Figure 4. The pdf’s ( )   and *( )  . 

 

The failure rate functions ( )m t  and *( )m t  are plotted in Figure 5. We can see that 
*( ) ( )m mt t  , for all 0t , implying that *T  is larger than T  in the sense of the failure 

rate order, which illustrates (ii) of Theorem 3.  
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Figure 5. Failure rate functions )(tm  and *( )m t . 

 
5. Concluding Remarks 
 
Existing reliability sampling plans reported in the literature assume that items can fail due 

to only one failure mode. However, frequently in practice, failures can occur due to two or 
more failure modes. In this paper, we have proposed the acceptance reliability sampling plan 
for items which can fail due to the normal (internal) ageing and external fatal shocks during a 
field operation. 
   We have discussed the feasibility of the proposed plan and provided an algorithm for 
obtaining the corresponding parameters. Reliability improvement in the population after the 
acceptance test has been also discussed by stochastically comparing the lifetimes in the 
population before the acceptance test and that in the population of items that have passed the 
sampling test. Specifically, we show that these two population’s lifetimes are ordered in the 
sense of the failure rate ordering. Our findings have been supported by the relevant numerical 
example.  

It is important to note that the exact values for n  and c  matching the requirement for   
(producer risk) and   (consumer risk) cannot be obtained. Therefore, the producer’s and the 
consumer’s risks are not exactly achieved. This can be considered as the limitation of our 
study. however, this is the inevitable problem that cannot be improved in this field. 

As listed earlier, most reliability sampling plans reported in the literature assume that the 
items can fail due to only one failure mode. However, frequently in practice, failures can 
occur due to two or more failure modes. In this case, the conventional reliability acceptance 
testing plans for items with one failure mode cannot be applied. The proposed study can be 
applied to such cases. Ji, I think this paragraph should be deleted. Everything is OK without it 
(see the first paragraph).  

To the best of the authors’ knowledge, this is the first work to study the reliability sampling 
plan for items with two different failure modes. Furthermore, in most of the existing studies, 
acceptance reliability sampling plans have been developed for specific parametric 
distributions. In this paper, we do not specify the lifetime distribution and thus, the results 
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obtained in this paper can be regarded to be general in the sense that they can be applied to 
any parametric distributions.  

Neutrosophic statistics, introduced by Smarandache [30], is the extension of classical 
statistics and is applied when the data is coming from a complex process or from an uncertain 
environment. Recently, neutrosophic statistics theory has been applied to the inspection, 
inference, and process control (see, e.g., Aslam [31-33], Chen et al. [34]). The current study 
can be extended using neutrosophic statistics in the future research. 
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