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ABSTRACT
This article aims to design a linear delay feedback control to stabilize an unstable
hybrid stochastic delay differential equation in distribution. Under the global Lip-
schitz condition, sufficient criteria are established to guarantee the stability of the
controlled system. Then LMI techniques are employed to design the control law in
two structure forms: state feedback and output injection.
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1. Introduction

In practice, hybrid systems have been widely used to model many scientific and indus-
trial systems when these systems may experience abrupt changes in their structures
and parameters (see e.g. (Athans, 1987; Luo & Mao, 2009; Sworder & Robinson, 1973)).
When the futures of hybrid systems depend on their past states, hybrid stochastic dif-
ferential delay equations(SDDEs), or SDDEs with Markovian switching, have been
frequently applied as models. Basic theories and applications about hybird SDDEs
can be found in (Mao, Matasov & Piunovskiy, 2000) and (Mao & Yuan, 2006).

From the view of automatic control, asymptotic stability and stabilization are two
important issues. Toward those systems having trivial solutions (or equilibrium states),
most of literatures have focused on stability in the sense of moment and almost sure.
Rich results have been achieved on stability analysis (see e.g. (Ji & Chizeck, 1990;
Lewis, 2000; Mao, 1999; Mao, Matasov & Piunovskiy, 2000; Shaikhet, 1996; Sun, Lam,
Xu & Zou, 2007; Yue & Han, 2005; Zhu, Tian & Wang, 2015) and refereces therein)
and stabilization (see e.g. (Cheng, Park & Wu, 2021; Cheng, Park, Yan & Wu, 2022;
Jiang, Hu, Lu, Mao & Mao, 2021; Mao, Jiang, Hu & Mao, 2022; Mao, 2013; Mao, Lam
& Huang, 2008; Mao, Liu, Hu, Luo & Lu, 2014; Song, Wang, Li & Chen, 2021; Song,
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Zhang, Zhu & Li, 2022)).
The case of stability in distribution arises when a system has no trivial solutions

frequently met, for example, in fault tolerant control systems and multiple target
tracking(Athans, 1987; Basak, Bisi & Ghosh, 1996; Luo & Mao, 2009; Mariton, 1990;
Sworder & Robinson, 1973). In many practical applications, such as population mod-
els for some species (Bahar & Mao, 2004; Mao, 1997), it will be more appropriate to
study the stability in distribution when the system is persistent (Mao, 2011; Yuan, Zou
& Mao, 2003). There are fewer references on the stability in distribution for SDDEs.
(Yuan, Zou & Mao, 2003) is the first article proposing sufficient conditions for stability
in distribution of an SDDE. After that, some improved results have been proved by
applying different techniques and arguments, such as in (Du, Dang & Dieu, 2014).
While in (Hu & Wang, 2012), the stability in distribution of neutral stochastic func-
tional delay equations(SFDEs) has been studied with the help of a suitable Lyapunov
function. We also have seen articles by Bao and his coauthors (Bao, Yin & Yuan,
2014; Bao, Yin, Yuan & Wang, 2014; Bao, Yin & Yuan, 2017) about the existence
and uniqueness of the invariant measure for different classes of SFDEs. In (Wang, Wu
& Mao, 2019), stability-in-distribution criteria for SFDEs have been proposed, where
the coefficients involving delay components are highly non-linear.

In recent years, we have seen plenty of references dealing with problems of stabilizing
SDDEs in the sense of moment or almost sure with various controls. But to authors’
knowledge, there are no reports on stabilization in distribution for SDDEs. This article
aims to show that we can stabilize an SDDE in distribution even by the classical delay
feedback control. In (You, Hu, Lu & Mao, 2022), a procedure has been proposed to
design a delay feedback control for stabilization in distribution for an SDE. Although
the problem discussed in this article can seen as an extension of that in (You, Hu, Lu
& Mao, 2022), the rules for designing the control function are quite different, because
SDDEs are infinite-dimensional dynamical systems with more complex structures.

Indeed, there are rich sets of control laws used for stabilizing SDDEs in the sense
of moment and almost sure. Here we mention some of them. Delay feedback controls
have been applied to stabilize SDEs in the sense of almost sure in (Mao, Lam &
Huang, 2008). After discrete-time feedback controls first proposed in (Mao, 2013),
they have been frequently applied for designing control laws even in SDDEs with
highly non-linear coefficients as in (Mao, Liu, Hu, Luo & Lu, 2014; Song, Zhang, Zhu
& Li, 2022). Quantized feedback stabilization with discrete-time observations has been
analysed in non-linear hybrid SDDEs (Song, Wang, Li & Chen, 2021). (Cheng, Park,
Yan & Wu, 2022) has studied the dynamic output feedback control issue for a non-
homogeneous Markov switching system with an event-triggered round-robin protocol.
To periodic systems with singular perturbations, hidden Markov model based controls
are discussed in (Cheng, Park & Wu, 2021). Intermittent controls have attracted many
researcher’s attention, and been applied as controllers in (Jiang, Hu, Lu, Mao & Mao,
2021; Mao, Jiang, Hu & Mao, 2022).

As the first try on stabilization in distribution for SDDEs, analyses will be done
toward equations satisfying the global Lipschitz condition. We will show that we can
stabilize such system by applying the classical delay feedback control. Our contribu-
tions are mainly focused on

(1) giving a procedure for designing a linear delay feedback control to stabilize an
unstable SDDE in distribution;

(2) proposing a suitable Lyapunov functional with simpler structures than those
used for stabilization in the sense of moment or almost sure;
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(3) applying LMI techniques to obtain the coefficient matrices of the linear con-
trollers.

This article is arranged as follows. In section 2, some fundamental concepts and
notations are listed. In section 3, main theorems are stated. LMIs are applied to
calculate the matrices of linear controls as discussed in section 4. Two illustrative
examples are given in section 5 to verify derived results and show effectiveness of our
algorithm. Conclusions and future research aspects are made and discussed in the last
section.

2. Preliminaries and Notations

Throughout this article, following notations will be used. Let Rn be the n-dimensional
Euclidean space and B(Rn) be the family of all Borel measurable sets in Rn. For δ > 0,
Cδ (or C([−δ, 0];Rn)) denotes the family of continuous functions ξ : [−δ, 0]→ Rn with
norm ‖ξ‖δ = sup−δ≤u≤0 |ξ(u)|. B(Cδ) denotes the family of all Borel measurable sets
in Cδ. Denote by |x| the Euclidean norm of a vector x ∈ Rn. For a matrix A, its

trace norm is denoted by |A| =
√

trace(ATA) and its operator norm is denoted by
‖A‖ = max{|Ax| : |x| = 1}. For a symmetric matrix A (A = AT ), denote by λmin(A)
and λmax(A) its smallest and largest eigenvalues, respectively. By A > 0 and A ≥ 0,
we mean A is positive and non-negative definite, respectively. Denote a∧b = min{a, b}
and a ∨ b = max{a, b} for a, b ∈ R.

Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0 sat-
isfying the usual conditions, and B(t) = (B1(t), B2(t), ..., Bm(t))T be anm-dimensional
Brownian Motion defined on this space. Also, there is a right continuous irreducible
Markov chain r(t), t ≥ 0, taking values in a finite state space S = {1, 2, ..., N} with
generator Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆), i 6= j

1 + γii∆ + o(∆), i = j

where ∆ > 0, and γij > 0(i 6= j) is the transition rate from state i to j with γii =
−
∑
j 6=i

γij . Assume that r(t) and B(t) are independent.

Consider a hybrid SDDE defined on t ≥ 0,

dX(t) = f(X(t), X(t− δ), r(t))dt+ g(X(t), X(t− δ), r(t))dB(t), (1)

with the initial condition

{X(t)| − δ ≤ t ≤ 0} = ξ ∈ Cδ, r(0) = i0 ∈ S (2)

where X(t) takes values in Rn and f : Rn × Rn × S → Rn, g : Rn × Rn × S → Rn×m
are the drift and diffusion coefficients, respectively.

In order that the equation (1), with the initial condition (2), exists a unique solution,
we make following traditional assumptions.

Assumption 2.1. There is a pair of positive constants a1 and a2 such that

|f(x, z1, i)− f(y, z2, i)|2 ≤ a1(|x− y|2 + |z1 − z2|2)

3

Stabilization in distribution by delay feedback controls for hybrid stochastic delay differential equations



and

|g(x, z1, i)− g(y, z2, i)|2 ≤ a2(|x− y|2 + |z1 − z2|2)

for all x, y, z1, z2 ∈ Rn and i ∈ S.

It is easy to derive from Assumption 2.1 that

|f(x, z, i)|2 ≤ 2a1(|x|2 + |z|2) + a0, (3)

|g(x, z, i)|2 ≤ 2a2(|x|2 + |z|2) + a0 (4)

hold for all (x, z, i) ∈ Rn × Rn × S, where a0 = 2 max
i∈S

(|f(0, 0, i)|2 ∨ |g(0, 0, i)|2).

It can be shown as in (Mao & Yuan, 2006) that the hybrid SDDE (1) has a unique
global solution X(t) on t ≥ −δ. Furthermore, (Yuan, Zou & Mao, 2003) has proposed
some sufficient conditions leading to stability in distribution for the SDDE as (1). Now
there comes a new question: if the original system (1) is unstable in distribution, can
we design a control u such that the controlled system is stable in distribution?

Due to the lag between the time when the observation is made and the time when the
control reaches the system, it will be more reasonable to use a delay feedback control
for stabilization, which means that we need to design a delay control u(X(t− τ), r(t))
such that the controlled system

dX(t) = [f(X(t), X(t− δ), r(t)) + u(X(t− τ), r(t))]dt

+ g(X(t), X(t− δ), r(t))dB(t) (5)

becomes stable in distribution.
In this article, we will look for a linear feedback control u(X(t − τ), r(t)) =

A(r(t))X(t − τ), where A(i) = Ai ∈ Rn×n for all i ∈ S. The underlying controlled
system (5) therefore becomes

dX(t) =
(
f(X(t), X(t− δ), r(t)) + A(r(t))X(t− τ)

)
dt

+ g(X(t), X(t− δ), r(t))dB(t). (6)

It is valuable to mention here that other control modes as listed in the introduction
section may also be applied to design the control laws for stabilization in distribution.
A direct proof is (Li, Liu, Luo & Mao, 2022), in which a control law based on discrete-
time observation has been built for stabilization in distribution for an SDE. But we
should note that the Markov property of the controlled system should be guaranteed
for further discussion. When we use a feedback control with a constant delay, the
segment of the solution for the controlled system (6) will form a time homogeneous
Markov process, as explained below.

Let δ̄ = δ ∨ τ . Redefine ξ(t) = ξ(−δ) for t ∈ [−δ̄,−δ) and set an initial condition
suitable for (6) as

{X(t)| − δ̄ ≤ t ≤ 0} = ξ ∈ Cδ̄, r(0) = i0 (7)

based on (2) for the initial system (1). It is obvious that ‖ξ‖δ̄ = ‖ξ‖δ. In following
discussion, we will ignore the subscript when we use such norms and their meanings
can be seen from contexts.
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It is known (see, e.g., (Mao & Yuan, 2006)) that under Assumption 2.1, the con-
trolled SDDE (6), with the initial data (7), has a unique global solution Xξ,i0(t) on

t ≥ −δ̄. Moreover, define Xξ,i0
t = {Xξ,i0(t + u) : −δ̄ ≤ u ≤ 0} for t ≥ 0, which is

a Cδ̄-valued process. It has been shown (see, e.g., (Mao & Yuan, 2006)) that for any
t ≥ 0,

E‖Xξ,i0
t ‖2 ≤ γt(1 + ‖ξ‖2) (8)

where γt is a positive constant dependent on t but independent of (ξ, i0).

Denote Y ξ,i0(t) = (Xξ,i0
t , r(t)) be a Cδ̄ × S valued process. Then Y (t) is a time

homogeneous Markov process and denote p(t, ξ, i0, dζ×{j}) the transition probability
of Y ξ,i0(t). The process Y ξ,i0(t) is said to be stable in distribution, if there exists a
probability measure π(·) on Cδ̄ × S such that p(t, ξ, i0, dζ × {j}) converges weakly to
π(dζ × {j}) as t → ∞ for any initial data (ξ, i0) ∈ Cδ̄ × S. Let P

(
Cδ̄
)

be the space
of all probability measures on Cδ̄. As explained in (Anderson, 1991), the law of the
irreducible Markov chain discussed in this article will converge to its unique stationary

distribution. So we only need to show that the probability measure L(Xξ,i0
t ), generated

by Xξ,i0
t ∈ Cδ̄, converges to some probability measure µδ̄ ∈ P

(
Cδ̄
)
.

For two probability measures P1, P2 ∈ P
(
Cδ̄
)
, define following distance d between

P1 and P2 as

d(P1, P2) = sup
ψ∈L

∣∣∣∣∣
∫
ψ(ξ)P1(dξ)−

∫
ψ(ξ)P2(dξ)

∣∣∣∣∣
where

L = {ψ : Cδ̄ → R
∣∣|ψ(ξ)− ψ(η)| ≤ ‖ξ − η‖ and |ψ(·)| ≤ 1 for any (ξ, η) ∈ Cδ̄ × Cδ̄}.

We will use following equivalent definition on stability in distribution of (6) for dis-
cussion.

Definition 2.2. The controlled system (6) is said to be stable in distribution, if there
exists a probability measure µδ̄ ∈ P

(
Cδ̄
)

such that

lim
t→∞

d(L(Xξ,i0
t ), µδ̄) = 0

holds for any initial data (ξ, i0) ∈ Cδ̄ × S.

The procedure for designing a linear delay feedback control A(r(t))X(t−τ) has two
steps:

(1) looking for N matrices Ai, i ∈ S such that the linear control without delay,
u = A(r(t))X(t), can stabilize the unstable system (1), which means that the
auxiliary controlled system

dX(t) =
(
f(X(t), X(t− δ), r(t)) + A(r(t))X(t)

)
dt

+ g(X(t), X(t− δ), r(t))dB(t) (9)

is stable in distribution.

5

Stabilization in distribution by delay feedback controls for hybrid stochastic delay differential equations



(2) applying suitable Lyapunov functionals to get the bound for the delay τ such
that the delay feedback controlled system (6) is stable in distribution.

In the first step, Ai, i ∈ S will be found based on the stability of the auxiliary system
(9). Although we have used a control without delay, (9) is still an infinite dimensional
system. We will apply the argument in (Yuan, Zou & Mao, 2003) on stability in
distribution for hybrid SDDEs. And we need following Assumption 2.3 that will be
more complex than Assumption 3.1 in (You, Hu, Lu & Mao, 2022) for an SDE.

Assumption 2.3. There exist two positive numbers λ1, λ2 with λ1 > λ2 and N sym-
metric positive definite matrices Wi (1 ≤ i ≤ N) such that

Ψ(x, y, z1, z2, i) := 2(x− y)TWi[f(x, z1, i)− f(y, z2, i) +Ai(x− y)]

+ trace[(g(x, z1, i)− g(y, z2, i))
TWi(g(x, z1, i)− g(y, z1, i))]

+

N∑
j=1

γij(x− y)TWj(x− y)

≤ −λ1|x− y|2 + λ2|z1 − z2|2 (10)

holds for all (x, y, z1, z2, i) ∈ Rn × Rn × Rn × Rn × S.

As shown in (Yuan, Zou & Mao, 2003), under Assumption 2.1 and 2.3, the con-
trolled system with feedback control u = A(r(t))X(t), i.e. equation (9), is stable in
distribution. So we have completed the first step in above procedure. In following dis-
cussion, we will show that the delay feedback controlled system (6) will remain stable
in distribution if the time lag τ is less than τ∗ as defined in (21) later.

It is straightforward to show from Assumptions 2.1 and 2.3 that

Φ(x, z, i) :=2xTWi[f(x, z, i) + Aix] + trace[g(x, z, i)TWig(x, z, i)] +

N∑
j=1

γijx
TWjx

≤− λ1|x|2 + λ2|z|2 + λ3|x|+ λ4|z|+ λ0 (11)

holds for all (x, z, i) ∈ Rn × Rn × S, where λ3, λ4 and λ0 are positive numbers. Set

α1 = max
i∈S
‖Ai‖2 and α2 = max

i∈S
‖WiAi‖ (12)

for subsequent discussion.

3. Main Results

In the second step of the procedure, the constant delay τ will be determined. In those
references on stabilization in the sense of moment and almost sure with delay feedback
controls, two methods are usually used to obtain sufficient bounds for delay sizes. One
is estimating E|x(t)− x(t− τ)| as a function of τ , and setting an upper bound for the
expectation, such as in (Li, Liu, Luo & Mao, 2022; Mao, 2013; Mao, Lam & Huang,
2008; Mao, Liu, Hu, Luo & Lu, 2014; Sun, Lam, Xu & Zou, 2007). The other one
is applying Lyapunov method with suitable Lyapunov functions or functionals, as in
(Cheng, Park & Wu, 2021; Cheng, Park, Yan & Wu, 2022; Li & Mao, 2020; Lu, Hu
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& Mao, 2019; Song, Wang, Li & Chen, 2021; Song, Zhang, Zhu & Li, 2022). The
frequently used Lyapunov functional has the form of

U(x(t)) + θ

∫ 0

−ω

∫ t

t+s
[ω|f(x(v), x(v − δ), r(v))|2 + |g(x(v), x(v − δ), r(v))|2]dvds.

For details about such Lyapunov functional, one can refer to (You, Liu, Lu, Mao & Qiu,
2015). This type of Lyapunov functional has been proved to be efficient specially in
SDDEs with highly nonlinear coefficients. Because the equation studied in this article
satisfies the global Lipschitz condition, we won’t need such complex functional but
apply functionals of the form (13) with simpler structures.

The Lyapunov functionals used in this article will be of the form

V (X̂t, r(t), t) := XT (t)W (r(t))X(t)

+

∫ t

t−τ

∫ t

s

[
θ1|X(v)|2 + θ2|X(v − δ)|2 + θ3|X(v − τ)|2

]
dvds (13)

for t ≥ τ . Here Wi, i ∈ S are the matrices specified in Assumption 2.3, while θ1, θ2 and
θ3 are three free positive numbers.

It is useful to observe that

c1|X(t)|2 ≤ V (X̂t, r(t), t) ≤ c2|X(t)|2 + c3

∫ t

t−τ−δ̄
|X(v)|2dv, (14)

where c3 = τ(θ1 ∨ θ2 ∨ θ3), c1 = min
i∈S

λmin(Wi) and c2 = max
i∈S

λmax(Wi).

Applying the generalized Itô formula to V (X̂t, r(t), t), we have

dV (X̂t, r(t), t) = LV (X̂t, r(t), t)dt+ dM(t) (15)

for t ≥ τ , where

LV (X̂t, r(t), t)

= Φ(X(t), X(t− δ), r(t))− 2XT (t)Wr(t)Ar(t)(X(t)−X(t− τ))

+ θ1τ |X(t)|2 − θ1

∫ t

t−τ
|X(s)|2ds

+ θ2τ |X(t− δ)|2 − θ2

∫ t

t−τ
|X(s− δ)|2ds

+ θ3τ |X(t− τ)|2 − θ3

∫ t

t−τ
|X(s− τ)|2ds (16)

and M(t) is a martingale with M(0) = 0 (whose form is of no use in this paper).
Making use of (11) and introducing the fourth free positive number θ4 ∈ (0, λ1/α2),
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we get, from (16), that

LV (X̂t, r(t), t)

≤ −(λ1 − α2θ4 − θ1τ)|X(t)|2 + λ3|X(t)|
+ (λ2 + θ2τ)|X(t− δ)|2 + λ4|X(t− δ)|+ λ0

+ θ3τ |X(t− τ)|2 + (α2/θ4)|X(t)−X(t− τ)|2

− θ1

∫ t

t−τ
|X(s)|2ds− θ2

∫ t

t−τ
|X(s− δ)|2ds− θ3

∫ t

t−τ
|X(s− τ)|2ds (17)

for t ≥ τ .
Applying the Hölder inequality and the martingale inequality, it can be derived

from (3) that

E|X(t)−X(t− τ)|2

≤2τE
∫ t

t−τ
|f(X(s), X(s− δ), r(s)) + A(r(s))X(s− τ)|2ds+ 2E

∫ t

t−τ
|g(X(s), X(s− δ), r(s))|2ds

≤4τ

(
E
∫ t

t−τ
(2a1(|X(s)|2 + |X(s− δ)|2) + a0)ds+ E

∫ t

t−τ
α1|X(s− τ)|2ds

)
+ 2E

∫ t

t−τ

(
2a2(|X(s)|2 + |X(s− δ)|2) + a0

)
ds

≤(4a0τ
2 + 2a0τ) + (8τa1 + 4a2)

∫ t

t−τ
E|X(s)|2ds

+ (8τa1 + 4a2)

∫ t

t−τ
E|X(s− δ)|2ds+ 4τα1

∫ t

t−τ
E|X(s− τ)|2ds. (18)

We therefore obtain that

E(LV (X̂t, r(t), t))

≤ −(λ1 − α2θ4 − θ1τ)E|X(t)|2 + λ3E|X(t)|
+ (λ2 + θ2τ)E|X(t− δ)|2 + λ4E|X(t− δ)|
+ θ3τE|X(t− τ)|2 +

(
λ0 + (α2/θ4)(4a0τ

2 + 2a0τ)
)

−
(
θ1 −

α2

θ4
(8τa1 + 4a2)

)∫ t

t−τ
E|X(s)|2ds

−
(
θ2 −

α2

θ4
(8τa1 + 4a2)

)∫ t

t−τ
E|X(s− δ)|2ds

−
(
θ3 −

α2

θ4
4τα1

)∫ t

t−τ
E|X(s− τ)|2ds (19)

holds for t ≥ τ .
Let four free positive parameters θ1 ∼ θ4 take values in the set

Θ = {(θ1, θ2, θ3, θ4)|θ1θ4 > 4a2α2, θ2θ4 > 4a2α2, θ3 > 0, α2θ4 < λ1 − λ2} (20)
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and set

τ∗ = sup
(θ1,θ2,θ3,θ4)∈Θ

(
λ1 − λ2 − α2θ4

θ1 + θ2 + θ3
∧ θ1θ4 − 4a2α2

8a1α2
∧ θ2θ4 − 4a2α2

8a1α2
∧ θ3θ4

4α1α2

)
. (21)

Lemma 3.1. For τ < τ∗, the solution for equation (6) satisfies

E‖Xξ,i0
t ‖2 ≤ C1(1 + ‖ξ‖2) (22)

for any t > 0, where C1 is a positive constant independent of (ξ, i0).

Proof. Set β0 = λ0 + (α2/θ4)(4a0τ
2 + 2a0τ), β1 = λ1 − α2θ4 − θ1τ , β2 = λ2 + θ2τ ,

β3 = θ3τ and

β4 = min

(
θ1 −

α2

θ4
(8τa1 + 4a2), θ2 −

α2

θ4
(8τa1 + 4a2), θ3 −

α2

θ4
4τα1

)
.

From (19), we have

E(LV (X̂t, r(t), t)) ≤ β0 − β1E|X(t)|2 + λ3E|X(t)|

+ β2E|X(t− δ)|2 + λ4E|X(t− δ)|+ β3E|X(t− τ)|2 − β4

∫ t

t−τ−δ̄
E|X(s)|2ds. (23)

Set

β̂ =
β1 − β2 − β3

3
> 0,

and rewrite above inequality (23) as

E(LV (X̂t, r(t), t)) ≤ β0 − (β1 − β̂)E|X(t)|2 + (β2 + β̂)E|X(t− δ)|2 + β3E|X(t− τ)|2

+ (−β̂E|X(t)|2 + λ3E|X(t)|) + (−β̂E|X(t− δ)|2 + λ4E|X(t− δ)|)

− β4

∫ t

t−τ−δ̄
E|X(s)|2ds. (24)

Obviously, we have −β̂E|X(t)|2+λ3E|X(t)| ≤ λ2
3

4β̂2
and−β̂E|X(t−δ)|2+λ4E|X(t−δ)| ≤

λ2
4

4β̂2
.

And then (24) gives

E(LV (X̂t, r(t), t))

≤
(
β0 +

λ2
3 + λ2

4

4β̂2

)
− (β1 − β̂)E|X(t)|2 + (β2 + β̂)E|X(t− δ)|2 + β3E|X(t− τ)|2

− β4

∫ t

t−τ−δ̄
E|X(s)|2ds. (25)

By the definition of τ∗, we can find a constant κ1 > 0 such that c3τκ1 < β4 and
c2κ1 − (β1 − β̂) + (β2 + β̂)eκ1δ + β3e

κ1τ < 0 hold at the same time. Applying Ito’s
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lemma to eκ1tV (X̂t, r(t), t), we will have

eκ1tE(V (X̂t, r(t), t))− eκ1τE(V (X̂τ , r(τ), τ))

=

∫ t

τ

(
κ1e

κ1sEV (X̂s, r(s), s) + eκ1sELV (X̂s, r(s), s)
)
ds

≤
∫ t

τ

(
β0 +

λ2
3 + λ2

4

4β̂2

)
eκ1sds

+

∫ t

τ
eκ1s

(
−(β1 − β̂ − κ1c2)E|X(s)|2 + (β2 + β̂)E|X(s− δ)|2 + β3E|X(s− τ)|2

)
ds

− (β4 − c3τκ1)

∫ t

τ
eκ1s

∫ s

s−τ−δ̄
E|X(v)|2dvds

≤ 1

κ1

(
β0 +

λ2
3 + λ2

4

4β̂2

)
eκ1t − (β1 − β̂ − κ1c2)

∫ t

τ
eκ1sE|X(s)|2ds

+ (β2 + β̂)eκ1δ

∫ t−δ

τ−δ
eκ1sE|X(s)|2ds+ β3e

κ1τ

∫ t−τ

0
eκ1sE|X(s)|2ds

≤ 1

κ1

(
β0 +

λ2
3 + λ2

4

4β̂2

)
eκ1t + (β2 + β̂)eκ1(δ+τ)

∫ τ

τ−δ
E|X(s)|2ds+ β3e

2κ1τ

∫ τ

0
E|X(s)|2ds.

(26)

By (8) and (11), we can conclude that as t ≥ τ ,

E|X(t)|2 ≤ C2(1 + ‖ξ‖2)

holds for some positive constant C2 independent on (ξ, i0).
Applying the well-known BDG inequality, we can derive following bound for E‖Xt‖2

as t ≥ τ + δ̄, which is

E‖Xt‖2 ≤3E|X(t− δ̄)|2 + 3E

(
sup

t−δ̄≤s≤t

∣∣∣∣∫ s

t−δ̄
[f(X(v), X(v − δ), r(v)) +A(r(v))X(v − τ)]dv

∣∣∣∣2
)

+ 3E

(
sup

t−δ̄≤s≤t

∣∣∣∣∫ s

t−δ̄
g(X(v), X(v − δ), r(v))dBv

∣∣∣∣2
)

≤3C2(1 + ‖ξ‖2) + 6δ̄E
(∫ t

t−δ̄
2
(
2a1(|X(v)|2 + |X(v − δ)|2)

)
+ a0 + a3|X(v − τ)|2dv

)
+ 12E

(∫ t

t−δ̄
[2a2

(
|X(v)|2 + |X(v − δ)|2

)
+ a0]dv

)
≤C1(1 + ‖ξ‖2) (27)

with C1 independent on the initial data. Then the required assertion (22) can be
verified from (8) and (27) together.

Lemma 3.2. If τ < τ∗, then for any (ξ, η, i0) ∈ Cδ̄ × Cδ̄ × S,

E‖Xξ,i0
t −Xη,i0

t ‖ ≤ C3‖ξ − η‖2e−κ2t (28)
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for all t ≥ τ + δ̄, where C3 and κ2 are positive constants independent of (ξ, η, i0).

Proof. Set H(t) = Xξ,i0(t) − Xη,i0(t) and Ĥt = {H(t + u)| − τ − δ̄ ≤ u ≤ 0} as
t ≥ τ + δ̄.

Obviously, we have following differential rule for H(t),

dH(t) =
[
f(Xξ,i0(t), Xξ,i0(t− δ), r(t))− f(Xη,i0(t), Xη,i0(t− δ), r(t)) + A(r(t))H(t− τ)

]
dt

+
[
g(Xξ,i0(t), Xξ,i0(t− δ), r(t))− g(Xη,i0(t), Xη,i0(t− δ), r(t))

]
dBt.

By this rule, we can estimate

E|H(t)−H(t− τ)|2

≤2τE
∫ t

t−τ

∣∣∣f(Xξ,i0(s), Xξ,i0(s− δ), r(s))− f(Xη,i0(s), Xη,i0(s− δ), r(s)) + A(r(s))H(s− τ)
∣∣∣2 ds

+ 2E
∫ t

t−τ

∣∣∣g(Xξ,i0(s), Xξ,i0(s− δ), r(s))− g(Xη,i0(s), Xη,i0(s− δ), r(s))
∣∣∣2 ds

≤(4a1τ + 2a2)E
∫ t

t−τ

(
|H(s)|2 + |H(s− δ)|2

)
ds+ 4α1τE

∫ t

t−τ
|H(s− τ)|2ds (29)

and use the same symbols as in Lemma 3.1 to get

LV (Ĥt, r(t), t) =Ψ
(
Xξ,i0(t), Xη,i0(t), Xξ,i0(t− δ), Xη,i0(t− δ), r(t)

)
− 2HT (t)W (r(t))A(r(t))

(
H(t)−H(t− τ)

)
+ θ1τ |H(t)|2 − θ1

∫ t

t−τ
|H(s)|2ds+ θ2τ |H(t− δ)|2 − θ2

∫ t

t−τ
|H(s− δ)|2ds

+ θ3τ |H(t− τ)|2 − θ3

∫ t

t−τ
|H(s− τ)|2ds

≤− (λ1 − α2θ4 − θ1τ)|H(t)|2 + (λ2 + θ2τ)|H(t− δ)|2 + θ3τ |H(t− τ)|2

− θ1

∫ t

t−τ
|H(s)|2ds− θ2

∫ t

t−τ
|H(s− δ)|2ds− θ3

∫ t

t−τ
|H(s− τ)|2ds

+ α2/θ4|H(t)−H(t− τ)|2.

Taking expectation on both sides and using (29) yields

ELV (Ĥt, r(t), t) ≤− (λ1 − α2θ4 − θ1τ)E|H(t)|2 + (λ2 + θ2τ)E|H(t− δ)|2 + θ3τE|H(t− τ)|2

−
(
θ1 − α2/θ4(4a1τ + 2a2)

)
E
∫ t

t−τ
|H(s)|2ds

−
(
θ2 − α2/θ4(4a1τ + 2a2)

)
E
∫ t

t−τ
|H(s− δ)|2ds

−
(
θ3 − 4α1α2τ/θ4

)
E
∫ t

t−τ
|H(s− τ)|2ds.

As λ1−λ2−α2θ4− (θ1 + θ2 + θ3)τ > 0, θ1−α2(4a1τ + 2a2)/θ4 > 0, θ2−α2(4a1τ +

11
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2a2)/θ4 > 0 and θ3 − 4α1α2τ/θ4 > 0, we have

ELV (Ĥt, r(t), t) ≤ −β1E|H(t)|2+β2E|H(t−δ)|2+β3E|H(t−τ)|2−β5

∫ t

t−τ−h
E|X(s)|2ds

where β1, β2, β3 are defined as in Lemma 3.1 with β1 > β2 + β3 and

β5 = min

(
θ1 −

α2

θ4
(4τa1 + 2a2), θ2 −

α2

θ4
(4τa1 + 2a2), θ3 −

α2

θ4
4τα1

)
> 0.

Now following the same argument as in Lemma 3.1, and fixing some 0 < κ2 <
min

(β1−β2−β3

c2
, β5

c3τ

)
, we can show that E|H(t)|2 ≤ C3‖ξ − η‖2e−κ2t for some positive

constant C3 independent on (ξ, η) and i0. And then (28) can be derived similarly as
(22).

Lemma 3.3. If τ < τ∗, then for any R > 0,

lim
t→∞

d(L(Xξ,i
t ),L(Xη,j

t )) = 0

holds uniformly for any (ξ, i, η, j) ∈ K × S×K × S, where K = {ζ|‖ζ‖ ≤ R}.

Proof. By the ergodic property of the Markov chain, the stopping time τij =
inf{t|ri(t) = rj(t)} is finite.

Given any ε ∈ (0, 1), there is a T1 > 0 such that P(τij ≤ T1) > 1− ε
6 holds for any

i, j ∈ S because of the finiteness of S.
As shown in (Mao & Yuan, 2006), the solution of equation (6) satisfies

sup
(ξ,i)∈K×S

E

(
sup

−δ̄≤t≤T1

|Xξ,i(t)|2
)
<∞,

so that there exists a large number R1 such that

P(Ωξ,i) > 1− ε

12

holds for any (ξ, i) ∈ K × S, where Ωξ,i is defined by

Ωξ,i = {ω ∈ Ω| sup
−h≤t≤T1

|Xξ,i(t, ω)| ≤ R1}.

Fix any (ξ, i, η, j) ∈ K × S×K × S. For any ψ ∈ L and t > T1, it will be held that

|Eψ(Xξ,i
t )− Eψ(Xη,j

t )|

≤E|ψ(Xξ,i
t )− ψ(Xη,j

t )|

=E
(
I{τij>T1}|ψ(Xξ,i

t )− ψ(Xη,j
t )|

)
+ E

(
I{τij≤T1}|ψ(Xξ,i

t )− ψ(Xη,j
t )|

)
≤2P

(
τij > T1

)
+ E

(
I{τij≤T1}|ψ(Xξ,i

t )− ψ(Xη,j
t )|

)
≤ ε

3
+ E

(
I{τij≤T1}|ψ(Xξ,i

t )− ψ(Xη,j
t )|

)
. (30)
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Let ξ̄ = Xξ,i
τij , η̄ = Xη,j

τij and τ̄ = ri(τij) = rj(τij). Notice that

E
(
I{τij≤T1}|ψ(Xξ,i

t )− ψ(Xη,j
t )|

)
=E
(
I{τij≤T1}E

(
|ψ(Xξ,i

t )− ψ(Xη,j
t )|

)
|Fτij

)
=E
(
I{τij≤T1}E

(
|ψ(X ξ̄,τ̄

t−τij )− ψ(X η̄,τ̄
t−τij )|

))
≤E
(
I{{τij≤T1}∩Ωξ̄,τ̄∩Ωη̄,τ̄}E

(
|ψ(X ξ̄,τ̄

t−τij )− ψ(X η̄,τ̄
t−τij )|

))
+ E

(
IΩ̄ξ̄,τ̄∪Ω̄η̄,τ̄E

(
|ψ(X ξ̄,τ̄

t−τij )− ψ(X η̄,τ̄
t−τij )|

))
.

By Lemma 3.2, for any ω ∈ {τij ≤ T1} ∩ Ωξ̄,τ̄ ∩ Ωη̄,τ̄ , we see ‖ξ̄‖ ≤ R1 and ‖η̄‖ ≤ R1,
so that there exists another T2 > 0 such that for any t > T1 + T2,

E‖X ξ̄,τ̄
t−τij −X

η̄,τ̄
t−τij‖ <

ε

3
,

and then

E
(
I{{τij≤T1}∩Ωξ̄,τ̄∩Ωη̄,τ̄}E

(
|ψ(X ξ̄,τ̄

t−τij )− ψ(X η̄,τ̄
t−τij )|

))
≤ ε

3
(31)

holds by the definition of ψ.
On the other hand, we have

E
(
IΩ̄ξ̄,τ̄∪Ω̄η̄,τ̄E

(
|ψ(X ξ̄,τ̄

t−τij )−ψ(X η̄,τ̄
t−τij )|

))
≤ 2P

(
Ω̄ξ̄,τ̄∪Ω̄η̄,τ̄

)
≤ 2
(
P(Ω̄ξ̄,τ̄ )+P(Ω̄η̄,τ̄ )

)
≤ ε

3
,

(32)
Substituting (31) and (32) into (30), it is directly derived that for any t > T1 + T2,

|Eψ(Xξ,i
t )− Eψ(Xη,j

t )| ≤ ε.

Subsequently, we have

lim
t→∞

d(L(Xξ,i
t ),L(Xη,j

t )) = 0.

for any (ξ, i, η, j) ∈ K × S ×K × S.

Theorem 3.4. If τ < τ∗, there exists a unique probability measure µδ̄ ∈ P(Cδ̄) such
that

lim
t→∞

d(L(Xξ,i0
t ), µδ̄) = 0

for any (ξ, i0) ∈ Cδ̄ × S.

Proof. Firstly, we show that for fixed (ξ, i0) ∈ Cδ̄ × S, {L(Xξ,i0
t )|t ≥ 0} is Cauchy in

the metric space P
(
Cδ̄
)

with the metric measure d.
We will show that for any ε ∈ (0, 1), there exists a positive number T̄1 = T̄1(ε) > 0

such that for any t > T̄1 and s > 0,

d(L(Xξ,i0
t+s),L(Xξ,i0

t )) < ε. (33)
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By Lemma 3.1, there exists a R̄ > 0 such that for any s > 0,

P{ω ∈ Ω
∣∣‖Xξ,i0

s ‖ ≤ R̄} ≥ 1− ε/4. (34)

For any ψ ∈ L, it can be derived that

|Eψ(Xξ,i0
t+s)− Eψ(Xξ,i0

t )|
= |E

(
E
(
ψ(Xξ,i0

t+s)|Fs
))
− Eψ(Xξ,i0

t )|

=
∣∣∣ ∑
i∈S

∫
Cδ̄ Eψ(Xζ,j

t )p(s, ξ, i0; dζ × {j})− Eψ(Xξ,i0
t )

∣∣∣
≤

∑
i∈S

∫
Cδ̄

∣∣∣Eψ(Xζ,j
t )− Eψ(Xξ,i0

t )
∣∣∣p(s, ξ, i0; dζ × {j}).

(35)

Define a compact set K = {ζ
∣∣‖ζ‖ ≤ R̄} and denote its complementary set as Kc.

By (34) and the definition of ψ, we can get

∑
i∈S

∫
Kc

∣∣∣Eψ(Xζ,j
t )− Eψ(Xξ,i0

t )
∣∣∣p(s, ξ, i0; dζ × {j}) ≤ 2P{ω ∈ K̄} ≤ ε/2. (36)

While by Lemma 3.3, there exists another positive number T̄2 such that for any t > T̄2,

d(L(Xζ,j
t ),L(Xξ,i0

t )) < ε/2. Then by the definition of d, we see

∑
i∈S

∫
K

∣∣∣Eψ(Xζ,j
t )− Eψ(Xξ,i0

t )
∣∣∣p(s, ξ, i0; dζ × {j}) ≤ d(L(Xζ,j

t ), Xξ,i0
t )) < ε/2. (37)

From (36) and (37), (33) will be true for t > T̄1 ∨ T̄2.
Taking ξ = 0 and i0 = 1 as the initial data, there exists a unique probability measure

µδ̄ ∈ P(Cδ̄) such that lim
t→∞

d(L(X0,1
t ), µδ̄) = 0 holds as {L(X0,1

t )|t ≥ 0} is a Cauchy
sequence.

Then for any (ξ, i0) ∈ Cδ̄ × S, applying the triangle inequality

d(L(Xξ,i0
t ), µδ̄) ≤ d(L(Xξ,i0

t ),L(X0,1
t )) + d(L(X0,1

t ), µδ̄),

and Lemma 3.3, we get lim
t→∞

d(L(Xξ,i0
t ), µδ̄) = 0 as required.

4. LMIs for calculating Ais

In this section, we will apply LMI techniques to seek matrices Ai, i ∈ S for stabilization.
Generally, choose N positively definitely symmetric matrices Wi > 0, i ∈ S and

express coefficients f and g as

2(x− y)TWi[f(x, z1, i)− f(y, z2, i)]

+ trace[(g(x, z1, i)− g(y, z2, i))
TWi(g(x, z1, i)− g(y, z2, i))]

≤(x− y)TW 1
i (x− y) + (z1 − z2)TW 2

i (z1 − z2), (38)
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where W 1
i and W 2

i , i ∈ S are N pairs of symmetric matrices. Then we look for N
matrices Ai, i ∈ S and a constant a > 0 such that following LMIs hold

W 1
i +WiAi +ATi Wi +

N∑
j=1

γijWj + aI < 0

aI −W 2
i > 0. (39)

If Ai, i ∈ S make (38) and (39) hold, we can see that (10) will be held with

λ1 = −max
i∈S

λmax

(
W 1
i +WiAi +ATi Wi +

N∑
j=1

γijWj

)
and

λ2 = max
i∈S

λmax

(
W 2
i

)
,

because we have λ1 > a > λ2.
In the case of a linear system, we can find Wi and Ai, i ∈ S by LMIs simultaneously.

Let us discuss that in detail. Suppose f and g have following linear forms

f(x, z, i) =ki +K1
i x+K2

i z,

g(x, z, i) =(li1 + L1
i1x+ L2

i1z, li2 + L1
i2x+ L2

i2z, · · · , lim + L1
imx+ L2

imz), i ∈ S, (40)

where ki, lij ∈ Rn and K1
i ,K

2
i , L

1
ij , L

2
ij ∈ Rn×n. It can be directly verified that

Ψ(x, y, z1, z2, i) in Assumption 2.1 has the form of

Ψ(x, y, z1, z2, i) ≤ (x− y)TUi(x− y) + (z1 − z2)TVi(z1 − z2) (41)

with

Ui = Wi(K
1
i +Ai) + (K1

i +Ai)
TWi +Wi + 2

m∑
l=1

(L1
il)
TWiL

1
il +

N∑
j=1

γijWj

and

Vi = (K2
i )TWiK

2
i + 2

m∑
l=1

(L2
il)
TWiL

2
il.

Set Di = WiAi. Now we can state following corollary for a linear system.

Corollary 4.1. If there exist N pairs of matrices (Wi, Di), i = 1, 2, · · · , N and a
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positive number a > 0 such that following linear matrix inequalities are held

−Wi < 0, i = 1, 2 · · · , N

WiK
1
i + (K1

i )TWi +Di +DT
i +Wi + 2

m∑
l=1

(L1
il)
TWiL

1
il +

N∑
j=1

γijWj + aI < 0

−aI + (K2
i )TWiK

2
i + 2

m∑
l=1

((L2
il)
TWiL

2
il) < 0 (42)

then the controlled system (6) with linear coefficients f, g as in (40) will be stable in
distribution, where the controller is given by Ai = W−1

i Di and τ < τ∗ calculated by
(21).

The frequently used linear controllers have two structure forms: state feedback and
output injection. In the case of state feedback, Ai has the form Ai = FiGi with given
Gi ∈ Rl×n and unknown Fi ∈ Rn×l, where l is a fixed integer. Substituting Ai = FiGi
into (42), we can easily get following rules for designing Fi.

Corollary 4.2. If the following LMIs

Wi > 0, i = 1, 2 · · · , N

WiK
1
i + (K1

i )TWi + EiGi +GTi E
T
i +Wi + 2

m∑
l=1

(L1
il)
TWiL

1
il +

N∑
j=1

γijWj + aI < 0

−aI + (K2
i )TWiK

2
i + 2

m∑
l=1

((L2
il)
TWiL

2
il) < 0

(43)

have the solution (Wi, Ei), i = 1, 2, · · · , N and a > 0, then the controller can be ex-
pressed by Ai = W−1

i EiGi and τ∗ given by (21).

In the second case of output injection, Ai has the same form of Ai = FiGi, but with
given Fi and unknown Gi. In order to get LMIs by applying Schur complement, we
add two auxiliary positive constants a, b > 0 satisfying ab < 1 and rewrite (42), so
that Gi can be given by solving LMIs.

By multiplying Ŵi = (Wi)
−1 from both the left and the right hands, the second

inequality in (42) is equivalent to

K1
i Ŵi + Ŵi(K

1
i )T + FiGiŴi + ŴiG

T
i F

T
i + Ŵi

+2

m∑
l=1

Ŵi(L
1
il)
T (Ŵi)

−1L1
ilŴi +

N∑
j=1

γijŴi((Ŵj)
−1)Ŵi +

1

a
ŴiŴi < 0

and the third is then rewritten as

−bI + (K2
i )T (Ŵi)

−1K2
i + 2

m∑
l=1

(L2
il)
T (Ŵi)

−1L2
il < 0.

Now we can conclude as following corollary.

16

Stabilization in distribution by delay feedback controls for hybrid stochastic delay differential equations



Corollary 4.3. If there exist two positive constants a, b with ab < 1 and matrices
Ŵi, Êi, i = 1, 2, · · · , N such that the following LMIs hold:

−Ŵi < 0, i = 1, 2 · · · , N
U i11 U i12 U i13 Ŵi

(U i12)T U i22

(U i13)T U i33

Ŵi −aI

 < 0, i = 1, 2 · · · , N

 −bI (K2
i )T V i

13

K2
i −Ŵi

(V i
13)T V i

33

 < 0, i = 1, 2 · · · , N (44)

where

U i11 =K1
i Ŵi + Ŵi(K

1
i )T + FiÊi + ÊiF

T
i + (1 + γii)Ŵi

U i12 =[
√

2Ŵi(L
1
il)
T , · · · ,

√
2Ŵi(L

1
im)T ]

U i13 =[
√
γi1Ŵi, · · · ,

√
γi(i−1)Ŵi,

√
γi(i+1)Ŵi, · · · ,

√
γiNŴi]

U i22 =diag
(
− Ŵi, · · · ,−Ŵi)

U i33 =diag
(
− Ŵ1, · · · ,−Ŵi−1,−Ŵi+1, · · · ,−ŴN

)
V i

13 =[
√

2Ŵi(L
2
il)
T , · · · ,

√
2Ŵi(L

2
im)T ]

V i
33 =U i22

then the controller can be expressed by Ai = FiÊiŴ
−1
i and τ∗ given by (21).

5. Illustrative examples

Example 5.1. As the first example, consider following SDDE defined in R2,

dx(t) =[k(r(t)) +K1(r(t))x(t) +K2(r(t))x(t− δ)]dt
+ [l(r(t)) + L1(r(t))x(t) + L2(r(t))x(t− δ)]dB(t) (45)

where B(t) is a one dimensional Brownian motion, and r(t) is an independent Markov

chain defined in S = {1, 2} with the transition matrix Γ =

(
−2 2
2 −2

)
. The matrices

are given by

k1 =

(
0.5
0.3

)
, K1

1 =

(
0.1 0
0 0.1

)
, K2

1 =

(
0.1 0.1
0.2 0.3

)
,

k2 =

(
1

0.5

)
, K1

2 =

(
0.1 0
0 0.1

)
, K2

2 =

(
0 0
0 0

)
,

l1 =

(
0.3
0.1

)
, L1

1 =

(
0 0
0 0

)
, L2

1 =

(
0.1 0
0.1 0.2

)
,

l2 =

(
0.4
0.6

)
, L1

2 =

(
0.1 0
0 0.1

)
, L2

2 =

(
0.1 0
0 0.1

)
,
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and δ = 0.5.

Computer simulation is performed to show that the system (45) is unstable in
distribution, as illustrated in Figure 1. The middle and down sub-graphs show the
trajectories of E(x1(t)) with different constant initial conditions (4, 4)T and (−4,−4)T ,
which show that E(x1(t)) tends to +∞ and −∞, respectively.

Figure 1. Up: the trajectory of r(t). Middle: the trajectory of E(x1(t)) with the constant initial condition
ξ = (4, 4)T . Down: the trajectory of E(x1(t)) with the constant initial condition ξ = (−4,−4)T .

Now we try to seek linear controls to stabilize (45) in distribution.
(1) In the first case of state feedback, set G1 = (1, 1) and G2 = (0, 1). The feasible

matrices can be calculated from LMIs in (43) as

W1 =

(
3.2568 −5.6426
−5.6426 24.5533

)
,W2 =

(
22.8685 15.0330
15.0330 11.9438

)
,

E1 =

(
−29.2424
−9.7990

)
, E2 =

(
23.0111
−29.8024

)
,

and a = 8.0339. And then the controllers are given by

A1 =

(
−16.0677 −16.0677
−4.0916 −4.0916

)
, A2 =

(
0 15.3329
0 −21.7941

)
.

In order to calculate τ , we firstly use above matrices to get λ1 = 10.8920, λ2 =
4.9040, α1 = 710.0798, α2 = 43.6150, a1 = 0.2987 and a2 = 0.1047. Then setting
(θ1, θ2, θ3, θ4) = (133.5766, 133.5766, 40, 0.137) lying in Θ as defined in (20), we will
have a feasible choice τ = 4.15× 10−5.

(2) In the case of output injection, set F1 =

(
1

1.5

)
and F2 =

(
0
1

)
. Solve LMIs

in (44) to give

Ŵ1 =

(
1.1226 1.6032
1.6032 3.3268

)
, Ŵ2 =

(
0.3202 0.3795
0.3795 3.8245

)
,

Ê1 =
(
−4.3214 −6.1808

)
, Ê2 =

(
0.4786 −10.6519

)
.
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Subsequently, the definitely positive matrices in the Lyapunov functional are

W1 =

(
2.8571 −1.3768
−1.3768 0.9641

)
,W2 =

(
3.5395 −0.3513
−0.3513 0.2963

)
,

and the coefficient matrices of the controller are

A1 =

(
−3.8368 −0.0089
−5.7552 −0.0134

)
, A2 =

(
0 0

5.4355 −3.3246

)
,

and as in the first case to get λ1 = 0.1487, λ2 = 0.1099, α1 = 47.8441, α2 = 9.3012
with a1 and a2 unchanged. Finally, we can have a choice of τ = 4.1917 × 10−6 as
(θ1, θ2, θ3, θ4) = (1298.5, 1298.5, 2.5, 0.003) ∈ Θ.

Example 5.2. A high dimensional system will be used for illustrating effectiveness
of our algorithm. Consider a system with the same structure as (45) defined in R4.
As in the first example, B(t) is a one dimensional Brownian motion, while r(t) is an
independent Markov chain taking values in S = {1, 2, 3, 4} with the transition matrix

Γ =


−4 2 1 1
1 −5 2 2
3 1 −6 2
1 1 1 −3

 .

Set δ = 1. The coefficient matrices of the system are listed as follows, where we set
k(i) = ki,K

j(i) = Kj
i , l(i) = li and Lj(i) = Lji for j = 1, 2, i = 1, 2, 3, 4.

k1 =


0.1
0.1
0.4
−0.2

 , k2 =


1

0.5
−0.5
−0.2

 , k3 =


0

0.5
0
−0.5

 , k4 =


−1
−0.5

0
0


l1 =


−0.1
−0.2

0
0.4

 , l2 =


−0.1

1
0
0

 , l3 =


0.3
−0.5
−0.1

0

 , l4 =


−0.1

0
0.2
0.1



K1
1 =


−0.1 0 0.1 −0.3
−0.3 0.2 −0.2 0.1
0.5 −0.1 −0.1 −0.5
0 0 0 1

 , K1
2 =


0.1 0.1 0 0
0.2 0.3 0 0
0 0 0.1 0.1
0 0 0.2 0.3

 ,

K1
3 =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

 , K1
4 =


0 0 0 0
0 0 1 1
1 0 1 0
1 1 1 1

 ,
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K2
1 =


0 0 0 −0.3
0 0 −0.3 0.2
0 −0.3 0.1 0.1
−0.3 0 0 0

 , K2
2 =


0.1 0.1 0.1 0.1
0.2 0.2 0 0.2
−0.1 0 0 0

0 −0.2 0 −0.5

 ,

K2
3 =


0.1 0 −0.1 −0.3
−0.5 −0.2 0 −0.1

0 0.1 0.1 0
−1 0 0 −1

 , K2
4 =


−0.1 0 0.1 −0.3
−0.3 0.2 −0.2 0.1
0.5 −0.1 −0.1 −0.5
0 0 0 1



L1
1 =


0.2 −0.1 0.2 −0.1
0 0 0 0

0.1 0.1 0.2 0.2
−0.2 −0.2 −0.1 −0.1

 , L1
2 =


0.1 0.1 0 0
0 0.1 0.1 0
0 0 0.1 0.1

0.1 0 0 0.1

 ,

L1
3 =


−0.1 0 0 0

0 −0.1 0 0
0 0 −0.1 0
0 0 0 −0.1

 , L1
4 =


0.1 0 0 0
0 0.1 0.1 0.1
0 0 0 0.1
0 0 0 0.1



L2
1 =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

 , L2
2 =


−0.1 0 0 0
−0.1 −0.2 0 0
−0.1 −0.1 −0.2 0
−0.1 −0.1 −0.1 −0.1

 ,

L2
3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , L2
4 =


−0.1 0 0 0

0 −0.1 0 0
0 0 −0.1 0
0 0 0 −0.1


Here we use the state feedback control for stabilization with

G1 =

(
1 1 1 1
0 1 1 0

)
, G2 =

(
0 0 1 1
0 0 1 0

)
G3 =

(
1 1 0 0
0 0 1 1

)
, G4 =

(
1 0 1 0
0 1 0 1

)
.

We can directly apply LMIs (43) to produce one set of feasible solutions:

W1 =


4.0928 −0.1761 2.3207 −3.1409
−0.1761 1.1037 −1.2724 0.2173
2.3207 −1.2724 4.5765 −0.4927
−3.1409 0.2173 −0.4927 4.1171

 E1 =


−6.0538 −25.9843
35.4331 −41.7372
36.1974 −37.8158
−3.2591 −30.5235



W2 =


5.5101 −0.6837 −0.0655 1.9670
−0.6837 3.7078 1.2528 −0.1613
−0.0655 1.2528 0.9906 0.3422
1.9670 −0.1613 0.3422 1.2313

 E2 =


9.1423 −10.6372
2.2402 0.6844
5.3025 −18.0000
−4.1924 2.9955



20

Stabilization in distribution by delay feedback controls for hybrid stochastic delay differential equations



W3 =


3.7156 −1.7555 1.9321 −0.0307
−1.7555 2.0838 0.2395 −0.4869
1.9321 0.2395 6.4631 −1.2916
−0.0307 −0.4869 −1.2916 0.7623

 E3 =


−4.9064 52.3325
−2.3717 45.7642
−44.4054 2.6805
−46.1512 −8.0896



W4 =


3.3035 −0.2948 −2.7857 0.5552
−0.2948 2.2537 1.1668 −1.2070
−2.7857 1.1668 3.7545 −0.0958
0.5552 −1.2070 −0.0958 1.4683

 E4 =


−2.7797 5.8412
−4.5255 −1.6292
−8.7301 4.6770
−4.9080 −3.5401


and a = 1.8399. Subsequently, the coefficients Ai, i ∈ S will be given as

A1 =


−114.3054 −104.4025 −104.4025 −114.3054
141.1668 65.2918 65.2918 141.1668
96.0826 61.7054 61.7054 96.0826
−83.9446 −83.9134 −83.9134 −83.9446

 ,

A2 =


0 0 −7.2716 12.1328
0 0 13.3108 −7.3515
0 0 −38.0702 26.1715
0 0 22.9686 −31.0232

 ,

A3 =


2.3198 2.3198 60.1909 60.1909
−26.6591 −26.6591 77.0599 77.0599
−33.3528 −33.3528 −18.4974 −18.4974
−133.9942 −133.9942 9.6937 9.6937

 ,

and

A4 =


−15.0105 159.3179 −15.0105 159.3179

8.9606 −167.8571 8.9606 −167.8571
−16.0265 166.7797 −16.0265 166.7797

8.6543 −189.7630 8.6543 −189.7630

 ,

respectively. Following steps to calculate the delay size, some key quantities are listed:

λ1 = 2.1829, λ2 = 1.7092, α1 = 23591.6583, α2 = 99.2097, a1 = 12.7446, a2 = 0.3966.

Now after checking inequalities in (20), we get a feasible set of θ1 ∼ θ4 as
(θ1, θ2, θ3, θ4) = (1.6×105, 1.6×105, 104, 10−3), and then we can take τ = 1.0681×10−7

as the delay size by (21).

6. Conclusions and discussions

In this article, we have considered the problem of stabilizing a class of hybrid SDDEs
in distribution by delay feedback controls. Under the global Lipschitz condition, We
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have designed the control law with the help of a suitable Lyapunov functional. Toward
an unstable linear hybrid SDDE, LMIs can be applied to get coefficients of the con-
trol efficiently, which has been proved by a high-dimensional system as in the second
illustrative example. Two special delay feedback structures, including state feedback
and output injection, have been discussed.

Although we can tackle the problem by a complete set of arguments, the derived
results are conservative in some aspects. We discuss them for improvement and point
out some future research directions.

The first is on the delay size τ∗. In practice, we will expect a largest value for the
delay size, so that we will have more time to input the control into the original system.
In this article, the delay size has been calculated by the supreme defined in (21). We
can find that four free parameters θ1 ∼ θ4 will affect the value of τ∗. Can we have
efficient methods to give the best θ1 ∼ θ4 so that τ∗ gets the largest? On the other
hand, we have made use of the Lyapunov functional (13) to derive the rules for τ∗. Is
there another choice of Lyapunov functional? We have seen many different Lyapunov
functions or functional used for stabilizing in the sense of moment or almost sure. Now
we have no idea if those Lyapunov functions or functionals are feasible for stabilization
in distribution.

The second is the choice of the control law. As listed in the introduction section, we
have seen various of control laws with more practical significances. It has been reported
as in (Li, Liu, Luo & Mao, 2022) that feedback controls based on discrete-time state
observations have been applied for stabilizing an unstable SDE in distribution. We can
look forward to other control laws to be used for stabilizing SDDEs in distribution.
Of course, there will arise some new technique questions, e.g. the time-homogeneous
Markov property of the controlled system and new Lyapunov functionals for discussion.

The final one is on the equation under discussed. We have discussed the problem for
the equation satisfying the global Lipschitz condition. For an equation satisfying the
local Lipschitz condition and the linear growth condition, we find that the Lyapunov
functional (38) will be no longer efficient for the discussion. New arguments and rules
are necessary for discussion. Meanwhile, for other types of delay equations, such as
neutral stochastic delay differential equations, we can also discuss the same problem.
We will leave above unsolved questions for future researches.
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