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Abstract—This paper investigates the power loss minimization
problem of solar DC nanogrids that are designed to provide
energy access to households in off-grid areas. We consider nano-
grids with distributed battery storage energy systems and that
are enabled by multi-port DC-DC converters. As the nano-grids
are not connected to the national grid and have batteries and con-
verters distributed in each household, addressing the power loss
problem while ensuring supply-demand balance is a challenge.
To address the challenge, we propose a novel quasi-consensus
based distributed control approach. The proposed approach
consists of two algorithms namely, incremental loss consensus
algorithm and voltage consensus algorithm. The incremental loss
consensus algorithm is proposed to optimally schedule the battery
charge/discharge operation while ensuring that supply-demand
balance and the battery constraints are satisfied. The voltage
consensus algorithm is proposed to determine optimal distri-
bution voltage set points which act as optimal control signals.
Both algorithms are implemented in a distributed manner, where
minimal information exchange between households is required
to obtain the optimal control actions. Simulation results of a
solar DC nano-grid with five interconnected households verify the
effectiveness of the proposed approach at addressing the nano-
grid power loss problem.

Index Terms—Energy access, multi-port converter, solar DC
nano-grid, power losses, distributed control, battery storage
energy system.

NOMENCLATURE

Rdc,i Distribution line resistance
rb,i Battery’s internal resistance at time t
vdc,i Distribution voltage at time t
Vdc,i Constant distribution voltage
Vdc,n Nominal distribution voltage
vb,i Battery terminal voltage at time t
vpv,i Solar panel terminal voltage at time t
vL,i Load terminal voltage at time t
vboc,i Battery’s open circuit voltage at time t
vdcmin,i Minimum distribution voltage
vdcmax,i Maximum distribution voltage
V bn,i Nominal battery voltage
Cb,i Battery capacity
idc,i Distribution line current at tme t
ib,i Battery charge/discharge current at time t
Ib,i Referred battery charge/discharge current
Pb,i Battery power output at time t
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PL,i Load power at time t
Ppv,i Solar power at time t
P closs,i Converter loss at time t
P−c,i Converter’s minimum power output
P+
c,i Converter’s maximum power output

∆t Battery charge/discharge time step
eλ Current convergence factor
ev Voltage convergence factor
SoC0,i Battery’s initial State of Charge (SoC)
SoCi Battery’s SoC at time t
SoCmin,i Battery’s minimum SoC
SoCmax,i Battery’s maximum SoC
λ Lagrange multiplier for equality constraint
µi, σi Lagrange multipliers for inequality constraints
ηchb,i, η

dis
b,i Battery charge and discharge efficiency

αi, βi, γi Power loss coefficients

I. INTRODUCTION

THIS paper investigates the power loss minimization prob-
lem of solar DC nanogrids that are designed to provide

energy access to households in off-grid areas.
The increase in need to provide affordable energy access

using renewable energy resources has accelerated the devel-
opment and deployment of solar DC nano-grids in off-grid
communities [1]. Solar DC nano-grids (or simply nano-grids
for easy of reference) can be defined as small self-sufficient
energy systems which can be scaled-up on demand. Fig. 1
shows a typical architecture of a nano-grid. The primary
energy source is the rooftop solar photovoltaic (PV) panels.
The batteries act as storage units, storing excess energy from
the panels during day-time and supplying any deficit power
when there is insufficient power produced from the panels.

Compared to micro-grids and mini-grids which have in-
stalled capacities ranging from kilowatts to megawatts, nano-
grids have small installed capacities ranging from few watts
to kilowatts [2], [3]. Thus, due to their size, nano-grids
are cheaper and quicker to install and deploy even in the
remotest locations compared to micro-grids, mini-grids and
grid extension [4]–[6]. As majority of AC electrical appliances
in rural areas such as electronic lighting (fluorescent and LED
bulbs), mobile phone chargers, radios, TVs and DC motors
(fans, pumps) are DC-compatible, DC nano-grids are preferred
to AC nano-grids [7], [8]. Also, DC nano-grids do not have
synchronization issues due to absence of frequency compared
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Fig. 1. Diagram of a solar DC nano-grid.

to AC nano-grids. Thus, we consider DC nano-grids in this
paper.

Although the nano-grid concept supports the bidirectional
exchange of energy between households, offering advantages
in terms of increased diversity in power generation and con-
sumption, it also introduces operational, control and technical
challenges. Due to lack of a national grid connection, main-
taining balance between demand and renewable generation
which is intermittent in nature is a challenge. As households
in rural areas tend to be far apart from each other, control
of the distributed batteries becomes difficult. Power losses
which include battery charge and discharge losses, distribution
line losses and converter losses are significant in nano-grids
deployed in rural areas. The nano-grids can have energy
efficiencies as low as 50% especially for distribution voltages
less than 120 V [9], which certainly deserves consideration.
Thus, to unlock the potential benefits of nano-grids, the above-
mentioned challenges must be addressed.

In [5], [10], [11], decentralized voltage control methods
are proposed to minimize distribution losses while meeting
supply-demand balance in islanded DC micro-grid. Battery
and converter losses are however not considered. Also, despite
scalability and robustness, decentralized control methods do
not guarantee that the locally made decisions can contribute to
the global optimal decision of the system. Optimal power flow
strategies and heuristic methods such as genetic algorithms are
proposed in [12]–[15] to minimize battery, converter and/or
distribution line losses of a DC micro-grid. Both strategies
are centralized in nature, requiring information from all the
households in the nano-grid to make control decisions. This
may increase the storage and computational requirements of
the controllers, making the whole control system expensive.
Greedy algorithms including coalition game theory are pro-
posed in [16]–[19] to minimize distribution line losses in clus-
ters of DC micro-grids. Despite simplicity, greedy algorithms
are known to be sub-optimal; their optimality depends on
the number of participating micro-grids, i.e. the higher the
number of micro-grids, the higher the number of possible
coalitions and therefore the lower the power loss [19]. A
consensus-based algorithm is proposed in [20] to minimize
in a distributed manner the battery losses of a DC micro-grid.

Although a distributed approach is considered, converter and
distribution line losses are not taken into account. Distribution
losses are considered in [21]–[24] without taking battery and
converter losses into account. Although several methods have
been proposed in the above-mentioned studies, none of them
comprehensively considers all the three types of losses namely,
battery losses, converter losses and distribution losses in a
distributed manner. As ensuring supply-demand balance in a
nano-grid is key, accounting for any power loss during nano-
grid operation is crucial.

In this paper, a novel quasi-consensus based distributed
control algorithm (QCDCA) is proposed to minimize nano-
grid battery losses, converter losses and distribution line losses.
The proposed algorithm addresses the power loss problem in a
distributed manner by finding optimal distribution voltage con-
trol signals. It should be noted that this paper is a continuation
of our work presented in Part I [25] where the same power
loss problem was addressed in a centralized manner. Thus,
we adopt the power loss optimization problem formulation
described in Part I. The main contributions of this paper are
summarized as follows:
• A QCDCA is proposed to address the power loss problem

of a multi-port converter enabled nano-grid in a dis-
tributed manner. The QCDCA consists of two algorithms
namely, incremental loss consensus algorithm (ILCA) and
voltage consensus algorithm (VCA).

• The ILCA is proposed to optimally schedule the battery
charge/discharge operation while ensuring that supply-
demand balance and the battery constraints are satisfied.

• The VCA is proposed to determine optimal distribution
voltage set points while ensuring that supply-demand
balance is achieved in the distribution network.

The rest of the paper is organised as follows. Section II
presents the system model. Section III presents the problem
formulation. Section IV presents the proposed control algo-
rithm. Simulation results that verify the performance of the
proposed method are given in Section V. Section VI concludes
the paper.

II. SYSTEM MODEL

Fig. 1 shows the solar DC nano-grid considered in this
paper. It consists of multiple households (labelled H1 to Hn)
that are connected to a central hub (H0) in a spoke and
hub manner in order to lower the cost associated with the
distribution lines. Four port DC-DC converters (FPCs) are used
as multi-port converters to manage the power flow in the nano-
grid. The structure of the FPC is shown in Fig. 2.

Each terminal (port) of the FPC is controlled independently
without affecting operation of devices connected to other
terminals. The load port is controlled to maintain a constant
load voltage (e.g. 12 V), since most DC loads in rural areas
such as light emitting diode bulbs can operate at constant
voltage. The solar port can be independently controlled to
either maintain a net zero power injection (in the case of
households without solar panels) or operate in maximum
power point tracking mode by tracking the appropriate solar
panel voltage (if a household/hub has solar panels). The
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Fig. 2. Integration of the (optional) solar panel, battery, DC loads and
distribution line in every household/hub, Hi of the nano-grid using a FPC.

battery port is not directly regulated and serves as a slack
terminal, absorbing and supplying any power imbalance in the
network. Power exchange between the hub and households
is achieved by regulating the distribution line voltage. This
implies that to minimize the power losses in the nano-grid,
optimal distribution line voltages should be determined. To
formulate and subsequently solve the nano-grid power loss
problem, the nano-grid must be modelled first as follows.

A. Distribution Line Model

Every distribution line connecting a household to the hub is
modelled by its resistance, Rdc,i. In the hub, these distribution
lines are connected to a common DC bus bar having voltage,
vbus as shown in Fig. 2. The current, idc,i received by Hi from
the distribution line is calculated as

idc,i = (vbus − vdc,i) /Rdc,i i = 0, 1, . . . , n (1)

Applying Kirchhoff’s Current Law (KCL) at the DC bus, vbus
can be obtained as

vbus =
n∑
i=0

vdc,i
Rdc,i

/ n∑
i=0

1

Rdc,i
(2)

B. Solar Panel Model

Solar panels directly convert solar irradiance and tempera-
ture into DC power, Ppv,i and voltage, vpv,i. The solar panel
model presented in [26] is used in this paper.

C. Load Model

We consider constant-power loads such as sewing machines,
water pumps, light emitting diode lights, Television sets, radios
and cell phone chargers. Other load types which include
constant-current loads such as welding machines and constant-
impedance loads such as stove tops and water heaters are
beyond the scope of this paper. Thus, we model the loads
by their load voltage vL,i and load power PL,i.

D. Battery Model

Key properties of a battery are its cell open circuit voltage,
vboc,i, cell internal resistance, rb,i and SoC, SoCi. The vboc,i
and rb,i are related to SoCi as given in (3) [12].
vboc,i = a0e

−a1SoCi + a2 + a3SoCi − a4SoC2
i + a5SoC

3
i

rs = b0e
−b1SoCi + b2 + b3SoCi − b4SoC2

i + b5SoC
3
i

rts = c0e
−c1SoCi + c2 , rtl = d0e

−d1SoCi + d2

rb,i = rs + rts + rtl
(3)

where a0, . . . , a5, b0, . . . , b5, c0, . . . , c2 and d0, . . . , d2 are
coefficients (of 860 mAh, 3.7 V Lithium-ion battery cell),
which are given in [25].

The battery cell current, icell,i for a given Pb,i can be
obtained as

icell,i = 0.5vboc,i/rb,i−0.5

√(
vboc,i/rb,i

)2 − 4Pb,i/ (NsNprb,i)
(4)

where Ns = V bn,i/3.7 and Np = Cb,i/0.86 are numbers of
equivalent 860 mAh, 3.7 V Lithium-ion battery cells connected
in series and parallel respectively. The SoCi is estimated in
discrete time domain [12] as

SoCi =

{
SoC0,i − ηchb,iPb,i∆t/Cb,i , Pb,i < 0

SoC0,i − Pb,i∆t/
(
ηdisb,i Cb,i

)
, Pb,i ≥ 0

(5)

The ηchb,i and ηdisb,i can be calculated as

ηchb,i = vboc,i/vb,i , ηdisb,i = vb,i/v
b
oc,i (6)

where vb,i for a given Pb,i can be calculated as

vb,i = Pb,i/ib,i , (ib,i = Npicell,i) (7)

E. Four-port DC-DC Converter Model

The structure of the considered FPC is shown in Fig. 2.
The key physical phenomenon of the FPC is the power loss
which occurs as currents and voltages are converted from one
form to another. The FPC loss pcloss,i can be expressed as a
quadratic function of load power, PL,i as follows [25]

pcloss,i = 17.765 + 0.00175PL,i + 0.000791P 2
L,i (8)

F. Solar DC Nano-Grid Model

As Ppv,i and PL,i can be known, and that pcloss,i is a
function of PL,i, these can treated as constants at every time
instant. Denoting the ratio of vdc,i to vb,i as nb,i in Fig.2, the
battery’s vboc,i and rb,i at the FPC battery port can be moved
to the distribution line side of the FPC to form the nano-
grid equivalent circuit model as shown in Fig. 3. Here, the
(referred) battery output current and power is given as

Ib,i = ib,i/nb,i (9a)
Pb,i = Ib,ivdc,i (9b)

The mismatch current, Im,i is the difference between Ppv,i,
PL,i and pcloss,i as follows

Im,i =
(
Ppv,i − PL,i − pcloss,i

)
/vdc,i (10)

Power loss minimisation of off-grid solar DC nano-grids - part II: a quasi-consensus-based distributed control algorithm
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Fig. 3. Equivalent circuit model of a FPC-enabled solar DC nano-grid.

For households without a solar panel, Ppv,i = 0 in (10). The
current, idc,i received by each Hi, i = 0, . . . , n in Fig. 3 must
satisfy the KCL as follows

idc,i = −Im,i − Ib,i (11)

By conservation of current, the algebraic sum of currents, ∆I
in the nano-grid must be equal to zero as follows

∆I =
n∑
i=0

idc,i =
n∑
i=0

(ID,i − Ib,i) = 0 , (ID,i = −Im,i)

(12)

III. OPTIMIZATION PROBLEM FORMULATION

The main objective of this paper is to minimize the total
nano-grid power losses, J in a distributed manner. The power
losses considered are battery charge and discharge losses,
distribution line losses and FPC losses. According to Fig. 3,
J can be expressed as

J =
n∑
i=0

[
(−Im,i − Ib,i)2Rdc,i + I2b,in

2
b,irb,i + pcloss,i

]
(13)

To minimize the power losses, the batteries must be optimally
dispatched. To achieve this, we adopt a two-step optimization
problem formulation approach proposed in our earlier work in
[25]. The approach consists of two sub-problems, the optimal
battery dispatch problem (OBDP) and the optimal current flow
problem (OCFP).

The main objective of the OBDP is to find Ib =[
I∗b,0, . . . , I

∗
b,n

]T
, a vector of battery charge and discharge

currents that minimizes J given by (13) while satisfying
some constraints. Using (13) and the expressions developed
in Section II, the OBDP can be stated as follows

minimize:
Ib

J =
n∑
i=0

(
αiI

2
b,i + βiIb,i + γi

)
(14a)

subject to:
n∑
i=0

Ib,i =
n∑
i=0

ID,i (14b)

P bmin,i ≤ Pb,i ≤ P bmax,i (14c)

vdcmin,i ≤ vdc,i ≤ vdcmax,i (14d)

where

αi =

(
vdc,i
vb,i

)2

rb,i +Rdc,i (15a)

βi =
2Rdc,i
vdc,i

(
Ppv,i − PL,i − pcloss,i

)
(15b)

γi =
Rdc,i
v2dc,i

(
Ppv,i − PL,i − pcloss,i

)2
+ pcloss,i (15c)

P bmax,i = min

(
P+
c,i,

ηdisb,i Cb,i (SoC0,i − SoCmin,i)
∆t

)
(15d)

P bmin,i = max

(
P−c,i,

Cb,i (SoC0,i − SoCmax,i)
ηchb,i∆t

)
(15e)

Equation (14a) is the objective function of the optimization
problem, which in its current form is non-convex due to the
non-linear relationship that exists between vdc,i, vb,i (which
are used to calculate the power loss coefficients; αi, βi and γi
in (15)) and the decision variables, Ib. To convert (14a) to a
convex function and (14) to a convex optimization problem
thereof, vdc,i and vb,i are treated as constants before each
solution iteration and then they get updated for the next
solution iteration.

Equation (14b) ensures that currents in the nano-grid are
balanced. Inequality (14c) (where Pb,i = Ib,ivdc,i as given
by (9b)) ensures that the battery does not overcharge or over-
discharge, which otherwise shortens the lifetime of the battery
[27]. It ensures that the minimum SoC, SoCmin,i, maximum
SoC, SoCmax,i and converter power limits (i.e. P+

c,i during
battery discharging and P−c,i during battery charging) are
satisfied. The second term on the right hand side of equation
(15d) places an upper power limit on the battery discharge, and
is obtained from (5) for SoCi = SoCmin,i. Similarly, a lower
power limit is placed on the battery charge through the second
term on the right hand side of (15e) for SoCi = SoCmax,i.

Lastly, the voltage limits in (14d) ensures that the vdc,i is
within the acceptable range where vdcmin,i is the lower limit
and vdcmax,i is the upper limit. In this paper, vdc,i = Vdc,i at
every iteration to have a convex optimization problem which
gets updated at the next iteration.

The main objective of the OCFP is to find distribution
voltages, Vdc = [vdc,0, . . . , vdc,n]

T that corresponds to Ib
obtained from the OBDP (14) by simultaneously solving (1),
(2), (10) and (11).

IV. PROPOSED CONTROL ALGORITHM

Fig. 4 shows the schematic diagram of the proposed
QCDCA. The proposed algorithm consists of two consensus-
based algorithms, ILCA and VCA running sequentially. The
ILCA allows the agents to solve the OBDP. The VCA allows
the agents to solve the OCFP.

As detailed in Part I of this paper [25], the solution to
OBDP (without inequality constraints) can be achieved when
the incremental loss λi = ∂J/∂Ib,i for every i-th battery in
the nano-grid is equal to the global incremental loss λ given
by

λ =

(
n∑
i=0

βi
2αi

+
n∑
i=0

ID,i

)/ n∑
i=0

(
1

2αi

)
(16)

Power loss minimisation of off-grid solar DC nano-grids - part II: a quasi-consensus-based distributed control algorithm



5

Fig. 4. Schematic diagram of the proposed control algorithm.

The optimal battery charge and discharge current I∗b,i and
power P ∗b,i for the i-th battery can be obtained from (16) as

I∗b,i =
λ− βi

2αi
, P ∗b,i = vdc,iI

∗
b,i (17)

Then, taking the constraints given by (14c) into consideration,
the optimal P ∗b,i can be modified as follows

Pb,i =



P ∗b,i , if 0 ≤ P ∗b,i ≤ P bmax,i &SoCi ≥ SoCmin,i
P ∗b,i , if P bmin,i ≤ P ∗b,i < 0 &SoCi ≤ SoCmax,i
P bmax,i , if P ∗b,i > P bmax,i & SoCi ≥ SoCmin,i
P bmin,i , if P ∗b,i < P bmin,i & SoCi ≤ SoCmax,i
0 , otherwise.

(18)
The optimal I∗b,i can be modified as

I∗b,i = Pb,i/vdc,i (19)

The solution to OCFP is achieved when: (i) the sum of
distribution currents (12) is zero, i.e.

∑n
i=0 idc,i = 0 and (ii)

the bus voltage vbus,i = vdc,i+ idc,iRdc,i estimated from each
i-th household is equal to vbus expressed in (2).

Thus, by satisfying these two optimality conditions, i.e.
λ = λi and vbus = vbus,i for all i = 0, 1, . . . , n, total
nano-grid power losses can be minimized. In Part I, these two
conditions were satisfied in a centralized manner using a single
central controller and two-way communication link between
every household and the controller. This has a disadvantage of
heavy computational burden on the single controller. To avoid
this draw back, the two optimality conditions are achieved
in a quasi-distributed manner in this paper. The agents reach
consensus on the common λ and vbus through exchange
of the incremental loss and voltage information with their
neighbours.

The ILCA allows the agents to reach consensus on the
common λ, thus solving the OBDP. The VCA allows the
agents to reach consensus on the common vbus, thus solving
the OCFP. To obtain ∆I = 0, one agent, hereafter referred
to as a leader agent is chosen to have access to ∆Ii and
idc,i information from the households. The other n-1 agents,
hereafter referred to as follower agents do not have to compute
for ∆I . Thus, on one hand the leader agent behaves like
a centralised controller when accessing the ∆Ii and idc,i
information from the households while on the other hand, it

behaves like a distributed controller when handling the λ = λi
and the vbus = vbus,i conditions. For this reason, the proposed
algorithm is referred to as quasi and offers advantages of
both the centralised and distributed control approaches such
as accuracy and low computation burden for large nano-grids.

A. The Incremental Loss Consensus Algorithm

The main objective of the proposed ILCA is to allow an
i-th agent to reach consensus on the common λ by running
the following proposed ILCA

λ
(k+1)
i =

n∑
j=1

dijλ
(k)
j + ε∆I(k) , ε ∈ [0, eλ] (20)

where k is the iteration number, λ(k)i is the incremental
loss of agent i at k-th iteration, λ(k+1)

i is the update of
λ
(k)
i with respect to λ

(k)
j from neighbouring agents j, ∆I

is given by (14b), eλ is a small positive number and dij is
the communication gain between agent i-and j [28], which is
expressed as follows

dij =


2

di+dj+1 if i 6= j

1−
∑
j∈Ni

(
2

di+dj+1

)
if i = j

0 otherwise

(21)

where Ni is set of neighbours of agent i, di and dj are number
of neighbouring agents to agent i and agent j respectively.

Since the follower agents do not have to compute for ∆I ,
substituting ε = 0 in (20) represents the ILCA for the follower
agents and for the leader agent otherwise. Each agent i updates
its optimal battery charge/discharge power, P ∗b,i and current,
I∗b,i at every k-th iteration by substituting (20) in (17), (18) and
(19). Convergence and optimality of the proposed algorithm
was proved as follows. Denoting the leader agent by index 0,
convergence of the ILCA (20) is analysed by first rewriting it
in matrix form as follows

λ(k+1) = Dλ(k) + E(k) (22)

where λ(k) =
[
λ
(k)
0 , . . . , λ

(k)
n

]T
, E(k) = [ε∆I(k), 0, . . . , 0]T

and D = (dij)n × n is a doubly stochastic matrix which
describes the information exchange on a communication graph
[28].

Then, pre-multiplying (22) by 1T and taking limits as k →
∞ on both sides of (22), the following expression is obtained

lim
k→∞

1Tλ(k+1) = lim
k→∞

1TDλ(k) + lim
k→∞

1TE(k) (23)

Noting that 1TD = 1 because D is doubly stochastic and that
at equilibrium, ∆I = 0 making E(k) = 0, (23) simplifies to
the following expression

lim
k→∞

1Tλ(k+1) = lim
k→∞

1Tλ(k) (24)

That is, as k → ∞, the equal incremental loss principle,
λi(∞) = λj(∞) = λ is always achieved and that the ILCA

Power loss minimisation of off-grid solar DC nano-grids - part II: a quasi-consensus-based distributed control algorithm



6

converges. The ILCA can be initialised using (17) and (14b)
as follows 

∆I(0) = 0

I
(0)
b,i = ID,oi

λ
(0)
i = 2αoiI

(0)
b,i + βoi

(25)

To ensure that the ILCA converges regardless of the number
of households, the convergence factor eλ ∈ [0, 1] at every
iteration k can be updated as eλ ← 0.95eλ, where 0.95 is a
decay factor and eλ = 1 at iteration k = 0.

B. The Voltage Consensus Algorithm

The main objective of the proposed VCA is to allow each
agent in the nano-grid to reach consensus on the common vbus
by running the following proposed VCA

v
(q+1)
bus,i =

n∑
j=0

(
dijv

(q)
bus,j

)
− εI(q)sum , ε ∈ [0, ev] (26)

where Isum =
n∑
i=0

idc,i, q is the iteration number, v(q)bus,i is the

bus voltage estimated by i-th agent at q, v(q+1)
bus,i is the update of

v
(q)
bus,i with respect to v(q)bus,j from neighbouring agents j, dij is

given by (21), and ev is a small positive convergence factor. At
every iteration q, ev ∈ [0, 1] can be updated as ev ← 0.95ev ,
where 0.95 is a decay factor and ev is initialized as ev = 1.

Similar to the ILCA, substituting ε = 0 in (26) represents
the VCA for the follower agents and leader agent otherwise.
Taking constraint (14d) into account, every agent updates its
distribution voltage after every q-th iteration as follows

v
(q+1)
dc,i =


v
(q+1)
bus,i −Rdc,iidc,i,

if vdcmin,i ≤ v
(q+1)
bus,i −Rdc,iidc,i ≤ vdcmax,i

vdcmax,i , if v
(q+1)
bus,i −Rdc,iidc,i > vdcmax,i

vdcmin,i otherwise.
(27)

Due to the voltage limits in (27), each agent computes a
new distribution line current as follows

i
(q+1)
dc,i =

v
(q+1)
bus,i − v

(q+1)
dc,i

Rdc,i
(28)

Thereafter the leader agent collects the i(q+1)
dc,i from the agents

to calculate Isum. Convergence of the VCA is achieved and the
iterations are stopped when Isum = 0 or when a pre-defined
maximum number of iterations is exceeded.

Similar to the ILCA, denoting the leader agent by index
0, convergence of the VCA is analysed by rewriting (26) in
matrix form as follows

Vbus
(q+1) = DVbus

(q) + H(q) (29)

where Vbus
(q+1) =

[
v
(q+1)
bus,0 , . . . , v

(q+1)
bus,n

]T
, D = (dij)n×n is

the doubly stochastic matrix and H(q) = [−εI(q)sum, 0, . . . , 0]T .
Then, pre-multiplying (29) by 1T and taking limits as q →

∞ on both sides of (29), the following expression is obtained

lim
q→∞

1TVbus
(q+1) = lim

q→∞
1TDVbus

(q) + lim
q→∞

1TH(q)

(30)

(a) (b)

Fig. 5. (a) Star and (b) ring communication graphs for information exchange
between the agents. Agents 0, 1, 2, 3, 4 belong to H0, H1, H2, H3 and H4.

Since 1TD = 1 and that at equilibrium, Isum = 0 making
H(q) = 0, (30) simplified to the following expression

lim
q→∞

1TVbus
(q+1) = lim

q→∞
1TVbus

(q) (31)

That is, as q →∞, all the bus voltages converges as, v(∞)
bus,i =

v
(∞)
bus,j = vbus for any initial values of the DC bus voltage.

Thus, VCA can be initialised as follows{
I
(0)
sum = 0

v
(0)
bus,i = vnom

(32)

where vnom is the nominal distribution voltage.

V. SIMULATION RESULTS

The performance of the proposed algorithm is tested with
a nano-grid which consists of four households (n = 4) and
a hub as shown in Fig. 1. Battery and line parameters of the
nano-grid are given in Table I. FPC simulation parameters
are listed in [29]. The vdcmin,i and vdcmax,i are taken to be
100 V and 120 V, ∀i = 0, 1, . . . , n respectively. P+

c,i and
P−c,i are taken to be -120 W and 120 W, ∀i = 0, 1, . . . , n
respectively. The SoCmin,i and SoCmax,i are 20% and 95%,
∀, i = 0, 1, . . . , n respectively. The batteries in the households
and hub are assumed to have equal initial SoC of 50%. A
2×250 W, 24 V solar panel [30] is used as primary power
source at H0.

TABLE I
BATTERY AND LINE PARAMETERS.

H0 H1 H2 H3 H4
Cb,i (kWh) 0.96 1.32 2.40 1.80 1.80
Rdc,i (Ω) 0.01 3.0 2.0 1.5 3.0
Vdc,n (V) 110 110 110 110 110
V b
n,i (V) 12 12 12 12 12

A. Convergence Analysis of ILCA and VCA for Different
Communication Graphs

In this section, convergence of the proposed ILCA and
VCA is analysed for two different communications graphs:
star and ring communication graphs as shown in Fig. 5. The
load demands at H0, H1, H2, H3, and H4 are taken to be 74.15
W, 30.171 W, 57.03 W, 57.03 W and 57.03 W respectively.
According to (8), the considered load demands give a total

Power loss minimisation of off-grid solar DC nano-grids - part II: a quasi-consensus-based distributed control algorithm
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(a)

(b)

Fig. 6. Convergence speeds of (a) ILCA and (b) VCA for the star commu-
nication graph.

FPC loss of 114.57 W. A power generation of 300 W at H0
is considered so that neither of the batteries are charged nor
discharged with absolute maximum power.

Fig. 6 shows that both the ILCA and VCA can converge
for the star communication graph. We can observe that at
convergence, the supply-demand mismatch current is zero and
the household incremental losses stabilise at λ = −0.86 W/A.
It was verified that the obtained λ = −0.86 W/A is equal to
that obtained in centralized manner using (16). Also, the bus
voltage converges to 110.6 V after five number of iterations.

Considering the ring communication graph, the results are
given in Fig. 7. Comparing Fig. 6 to Fig. 7, we can observe
that both algorithms converge to their respective same values.
This shows that the proposed algorithm is accurate regardless
of the changes in the communication graphs.

B. Execution Time of the QCDCA

In this section, execution time of the proposed QCDCA for
80 households is presented. The power generation of 500 W
at H0 and load demand values considered in the previous case
studies are used for simulation. For brevity, the simulation
parameters of H4 are duplicated in the extra households, Hi,
i = 4, 5, . . . , 80. The results of the simulation are shown in
Fig. 8.

Fig. 8 shows that the execution time increases with the
increase in the number of households. For a nano-grid with 80
households, the execution time of the algorithm is less than a
minute. As the resolution of solar and demand data is usually
more than a minute and that nano-grids in rural areas have
less than 80 households, the algorithm is therefore expected
to produce control signals in reasonable time.

(a)

(b)

Fig. 7. Convergence speeds of (a) ILCA and (b) VCA for the ring
communication graph.

Fig. 8. Variation of the algorithm’s execution time with the increase in number
of households in a nano-grid.

Fig. 9. Plug and play operation of the ILCA.

C. Performance Analysis of the Proposed algorithm under
Plug and Play Operation

Using the ILCA as an example, we show in this section how
the ILCA responds to changes in the communication graph
due to plug-and-play operation of the system. We use the star
communication graph and the simulation parameters used in
Section V-A. By disconnecting and connecting H4 back to
the system at iteration number 150 and 250 respectively, the
results are as shown in Fig. 9.

After disconnecting H4 at 150, the battery in H4 supports its

Power loss minimisation of off-grid solar DC nano-grids - part II: a quasi-consensus-based distributed control algorithm
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(a) 48 h load profiles (b) Total load & generation (c) Battery SoC

(d) Battery power (e) Distribution voltage (f) Power exchange

Fig. 10. Power management performance of the proposed QCDCA.

local load while the other batteries cooperate to collaboratively
support the remaining loads while minimizing the power
losses. We can observe that the incremental loss for H4
increases from -0.86 W/A to 0.42 W/A according to (17)
to increase the discharge power. The incremental loss for
other households except H4 decrease from -0.86 W/A to -
0.98 W/A (17), reducing the discharge power. We can also
observe that by reconnecting H4 to the system at iteration
number 300 that all the incremental losses converge to the
initial incremental loss of -0.86 W/A. The supply-demand
mismatch current remains at zero throughout the plug-and-
play operation. This shows that the proposed algorithm can
deal with plug-and-play operations in the nano-grid.

D. Power Management Performance of the QCDCA

In this section, performance of the proposed QCDCA for
time varying load demand and solar panel output power is
presented. The results are shown in Fig. 10.

We can observe that the proposed algorithm can coordinate
the charge and discharge operation of the batteries while
keeping the battery output power within ±120 W and the
battery SoC between 20% and 95%. The battery at H0 charges
faster than other batteries for most periods because it is
situated near the solar panels. Further, we can observe that
the batteries charges when PV generation is high and discharge
when PV generation is low to meet the total load demand. The
proposed algorithm effectively facilitates the power exchange
between the households while keeping the voltages within their
limits.

VI. CONCLUSION

A novel QCDCA is developed in this paper to minimise
power losses of multi-port converter enabled solar DC nano-
grids. Firstly, a two-stage convex power loss optimization
problem consisting of an OBDP and an OCFP is formulated.
Then, two consensus-based algorithms, ILCA and VCA, which

together form the proposed QCDCA are developed to solve the
OBDP and OCFP in a quasi-distributed manner respectively.
Simulation results have shown that the proposed algorithm
(i) can optimally minimize the power losses while satisfying
battery and power balance constraints and (ii) can deal with
plug-and-play operations in the nano-grid. The proposed al-
gorithm can be advanced by validating the results through
an experiment and investigating the effects of time-delays
in the communication networks, and effects of faults in the
communication links.
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