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Abstract

This paper considers a class of neutral-type stochastic functional differential equations with
infinite delay (IDNSFDEs) and highly nonlinear coefficients (i.e., coefficients do not satisfy
the linear growth condition). These systems are often unstable. Main aim of this paper is
to design a delay feedback control to make them become stable with general decay rate. This
general decay stability contains the exponential stability and the polynomial stability. Finally, to
illustrate our results more clearly, as examples, this paper also introduces unstable scalar neutral-
type stochastic integro-differential equations and discusses their exponential and polynomial
stabilisation by delay feedback controls, respectively.
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1 Introduction

It is well recognized that the functional differential equations can describe systems whose changes

depend not only on the present state but also on some of their past states. It has also been well

recognized that such systems provide more realistic models for many applications in non-instant

transmission phenomena, for example, high velocity fields in wind funnel experiments, or other

memory processes, or biological applications such as species’ growth or incubating time on disease

models among many others; see, for example, [1–3]. However, in many real world applications such

as science and engineering, specially in the chemical engineering and the theory of aero-elasticity,

the future development of the system depends not only on the present and the past states, but
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also their derivatives with delays, these systems are often described by neutral-type functional

differential equations [4]. Moreover, when a system has different delay intervals while a unified

model is required (such as the pantograph equation in physics) or a complete influence of the whole

past of the state, it is necessary to consider systems with infinite delay [5,6]. Theory of functional

differential equations with infinite delay and its applications were developed in the 1970s and 1980s;

see [7] and references therein. Since many real world applications are inherently random, neutral

stochastic functional differential equations with finite delay or infinite delay have received growing

attention; see, for instance, [8–17].

This paper will consider the IDNSFDE

d[x(t)−D(xt, t)] = f(xt, t)dt+ g(xt, t)dB(t), (1.1)

where D : BC((−∞, 0];Rn)×R+ → Rn is a continuous functional, f : BC((−∞, 0];Rn)×R+ → Rn

and g : BC((−∞, 0];Rn) × R+ → Rn×m are Borel measurable. This system may be unstable (the

instability of stochastic systems could be verified by applying the known criteria [18, Theorem

3.5, P123] or numerical simulations). To make this system become stable, this paper introduces a

feedback control u(x(t− τ), t) such that the controlled system

d[x(t)−D(xt, t)] = [f(xt, t) + u(x(t− τ), t)]dt+ g(xt, t)dB(t) (1.2)

is stable, where τ > 0 is a constant that stands for the time lag between the time when the

observation of the state is made and the time when the feedback control reaches the system, the

control function u : Rn × R+ → Rn is Borel measurable.

Since Mao and his co-authors [19] examined the stabilisation problem for stochastic systems

by delay feedback controls, theory of stabilisation has been developed very quickly; for example,

[9, 20, 21] for the stabilisation by delay feedback controls, [22–24] for the stabilisation by discrete-

time feedback control. However, for the stabilisation problem of neutral stochastic differential

equations by delay feedback controls, the aforementioned papers only concern neutral stochastic

functional differential equations with finite delay (FDNSFDEs); for instance, [21] for a class of

linear and nonlinear FDNSFDEs, [9] for a class of nonlinear FDNSFDEs. It is therefore interesting

to consider the stabilisation problem for a class of IDNSFEDs by delay feedback controls.

Moreover, stability is one of the important issues for stochastic systems disturbed by uncertain-

ties and delays. According to the convergence speeds, stability includes exponential stability [25,26],

and polynomial stability [13,14,27] and so on. Existing results mainly concern the exponential sta-

bilization [20, 26]. However, some systems, such as the following Eq. (1.4), can only be stabilised

with a polynomial rate. In other words, these systems cannot be stabilised by using the tradition-

al stabilisation method with exponential speed. This paper hopes to introduce a delay feedback

control to stabilize IDNSFDEs with a general decay rate.

The key contribution of this paper are highlighted below:

• introducing the neutral term;

• considering infinite delay;
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• examining a more general decay rate.

In addition, in order to clarify our results clearly, as examples, we illustrate that our designed

controller can achieve not only the exponential stabilisation of the following scalar IDNSFDE with

exponential kernel function (the example in the final section shows that it is unstable):

d
[
x(t)−

∫ 0

−∞
x(t+ θ)e10θdθ

]
= f(xt, t)dt+ g(xt, t)dB(t), (1.3)

where 
f(xt, t) = −5x3(t) + 0.5x(t)

∫ 0

−∞
x(t+ θ)eθdθ + x(t)

g(xt, t) = 0.5|x(t)|3/2 + 0.5

∫ 0

−∞
|x(t+ θ)|3/2eθdθ,

but also the polynomial stabilisation of the following scalar IDNSFDE with polynomial kernel

function (the example in the final section shows that it is unstable):

d
[
x(t)−

∫ 0

−∞
x(t+ θ)(1− θ)−11dθ

]
= f(xt, t)dt+ g(xt, t)dB(t), (1.4)

where 
f(xt, t) = −5x3(t) + 5x(t)

∫ 0

−∞
x(t+ θ)(1− θ)−11dθ + x(t)

g(xt, t) = 0.5|x(t)|3/2 + 5

∫ 0

−∞
|x(t+ θ)|3/2(1− θ)−11dθ.

2 Notation and standing hypotheses

Let us introduce some notations and assumptions that will be used. Let {Ω,F , (Ft)t≥0,P} be

a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is

increasing, right continuous and F0 contains all P-null sets). Let B(t) = (B1(t), ..., Bm(t))T be

an m–dimensional Brownian motion defined on this probability space. If x(t) is an Rn–valued

stochastic process on t ∈ R, define xt = xt(θ) = {x(t + θ) : −∞ < θ ≤ 0} for t ≥ 0 and let

x̃(t) = x(t)−D(xt, t).

Let |x| be the Euclidean norm in Rn. Denote by C((−∞, 0];Rn) the family of continuous func-

tions from (−∞, 0] to Rn. Similarly, denote by BC((−∞, 0];Rn) the family of bounded continuous

functions from (−∞, 0] to Rn with the norm ∥ϕ∥ = supθ≤0 |ϕ(θ)| < ∞, which forms a Banach

space. Let Lp((−∞, 0];Rn) denote all functions h : (−∞, 0] → Rn such that
∫ 0
−∞ |h(s)|pds <∞. If

A is a vector or a matrix, its transpose is denoted by AT . For a matrix A, denote its trace norm

by |A| =
√

trace(ATA) and operator norm by ∥A∥ = sup|v|=1 |Av|. Let R+ = [0,∞) and τ > 0.

If both a and b are real numbers, then a ∧ b := min{a, b}, a ∨ b := max{a, b} and a+ := a ∨ 0.

Throughout the paper, C denotes a generic positive constant, whose value may change for different

usage. Similarly, denote by C(α) the generic positive constant depending on parameter α.

Let us first introduce the general decay function (ψ–type function) and stability with the general

decay rate (ψ–type stability), also see [13].
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Definition 2.1. The function ψ : R → (0,∞) is said to be the ψ–type function if this function

satisfies the following conditions:

(1) it is continuous and nondecreasing in R and differentiable in R+;

(2) ψ(0) = 1 and ψ(∞) = ∞;

(3) ϕ = supt≥0[ψ
′
(t)/ψ(t)] <∞;

(4) for any t, s ≥ 0, ψ(t) ≤ ψ(s)ψ(t− s).

It is obvious that functions ψ(t) = eαt, ψ(t) = (1 + t+)
α for any α > 0 are ψ–type functions

since they satisfy the above four conditions.

Definition 2.2. System (1.2) is said to be ψ–type stable in δ–th moment if there exists a pair of

positive constants q and δ such that for any initial data φ ∈ BC((−∞, 0];Rn) ∩ Lδ((−∞, 0];Rn),

lim sup
t→∞

lnE|x(t)|δ

lnψ(t)
≤ −q.

When δ = 2, it is said to be ψ–type stable in mean square.

Definition 2.3. System (1.2) is said to be almost surely ψ–type stable if there exists a pair of

positive constants q and δ such that for any initial data φ ∈ BC((−∞, 0];Rn) ∩ Lδ((−∞, 0];Rn),

lim sup
t→∞

ln |x(t)|
lnψ(t)

≤ −q a.s..

Clearly, the ψ–type stability implies the exponential stability and polynomial stability when

ψ(t) = eαt and ψ(t) = (1 + t+)
α for any α > 0, respectively.

Remark 2.1. Compared to the traditional stability, the ψ–type stability is a class of more general

stability, which includes the ordinary exponential stability and polynomial stability. In the example

behind, it can be observed that by the ψ–type stability, we can not only obtain the exponential

stability of the system (4.4), but also the polynomial stability of the system (4.6). In other words,

the different stability for different system can be examined simultaneously.

Lemma 2.2. Let ϕ ∈ BC((−∞, 0];Rn) ∩ Lp((−∞, 0];Rn) for some p > 0. Then for any q > p,

ϕ ∈ BC((−∞, 0];Rn) ∩ Lq((−∞, 0];Rn).

This lemma can be found in [14]. Denote by M0 the set of probability measures on (−∞, 0]. For a

given ψ which satisfies Definition 2.1, let us further define Mϵ for each ϵ > 0, the subset of M0, by

Mϵ =

{
µ ∈ M0; µϵ :=

∫ 0

−∞
ψϵ(−θ)µ(dθ) <∞

}
.

Lemma 2.3. Fix ϵ0 > 0. If µ ∈ Mϵ0, then for any ϵ ∈ (0, ϵ0), µϵ is continuously nondecreasing

and satisfies µϵ0 ≥ µϵ ≥ µ0 = 1.
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This lemma can be found in [13]. Let us impose the following assumptions:

Assumption 2.1. Assume for each integer h ≥ 1, there exists a positive constant kh such that

|f(ξ, t)− f(η, t)| ∨ |g(ξ, t)− g(η, t)| ≤ kh∥ξ − η∥ (2.1)

for all ξ, η ∈ BC((−∞, 0];Rn) with ∥ξ∥ ∨ ∥η∥ ≤ h and all t ∈ R+. Assume there exist positive

constants K, q1 > 1, q2 ≥ 1 and probability measures µj ∈ Mϵ0 (j = 1, 2) for some given ϵ0 > 0

such that for (ξ, t) ∈ BC((−∞, 0];Rn)× R+,
|f(ξ, t)| ≤ K

(∫ 0

−∞
|ξ(θ)|q1µ1(dθ) + |ξ(0)|q1 +

∫ 0

−∞
|ξ(θ)|µ1(dθ) + |ξ(0)|

)
,

|g(ξ, t)| ≤ K
(∫ 0

−∞
|ξ(θ)|q2µ2(dθ) + |ξ(0)|q2 +

∫ 0

−∞
|ξ(θ)|µ2(dθ) + |ξ(0)|

)
.

(2.2)

This assumption implies that f(0, t) = g(0, t) = 0.

Assumption 2.2. For ϵ0 given in Assumption 2.1, and there exists L∗ ∈ (0, 1) such that

{(q1 − 1)
[
(1− L∗)

−q1 + L∗
]
+ 2}L∗

2

(q1 + 1)(1− L∗)(q1−2)+(1− L
(q1−1)∧1
∗ )

+
L∗
2

≤ 1,

then there exist a probability measure µ3 ∈ Mϵ0 and a constant L ∈ (0, L∗) such that

|D(ξ, t)−D(η, t)| ≤ L

∫ 0

−∞
|ξ(θ)− η(θ)|µ3(dθ) (2.3)

for (ξ, η, t) ∈ BC((−∞, 0];Rn)×BC((−∞, 0];Rn)×R+. For the purpose of stability, assume that

D(0, t) = 0.

These two assumptions imply that Eq. (1.1) admits a trivial solution.

Assumption 2.3. For µj (j = 1, 2, 3) and L in Assumptions 2.1, 2.2, there exist positive constants

βj (1 ≤ j ≤ 4), kj (1 ≤ j ≤ 4) and p > 2 with (q1 + 1) ∨ (2q2 − q1 + 1) ≤ p and

[(q1 − 1)
(
(1−L)2−p−q1 +L

)
+ p](β1 + β2 + β3) < (p+ q1 − 1)(1−L)(q1−2)+(1−L(q1−1)∧1)β4 (2.4)

such that for (ξ, t) ∈ BC((−∞, 0];Rn)× R+,

[ξ(0)−D(ξ, t)]T f(ξ, t) +
q1
2
|g(ξ, t)|2

≤
3∑

j=1

βj

∫ 0

−∞
|ξ(θ)|pµj(dθ)− β4|ξ(0)|p +

3∑
j=1

kj

∫ 0

−∞
|ξ(θ)|2µj(dθ) + k4|ξ(0)|2. (2.5)

Remark 2.4. It is easily observed from (2.4) and (2.5) that β1 + β2 + β3 < β4 and

[ξ(0)−D(ξ, t)]T f(ξ, t) +
1

2
|g(ξ, t)|2

≤
3∑

j=1

βj

∫ 0

−∞
|ξ(θ)|pµj(dθ)− β4|ξ(0)|p +

3∑
j=1

kj

∫ 0

−∞
|ξ(θ)|2µj(dθ) + k4|ξ(0)|2.

By using a standard argument as in the proofs of [26, Theorem 2.5] and [13, Theorem 3.2], we can

prove that under Assumptions 2.1–2.3, Eq. (1.1) has a unique global solution for any given initial

data φ ∈ BC((−∞, 0];Rn) ∩ L2((−∞, 0];Rn).
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Before presenting the following Theorem 2.6, we prepare a lemma first.

Lemma 2.5. Let Assumption 2.2 holds. Then for any (ξ, t) ∈ BC((−∞, 0];Rn)× R+,
|ξ(0)−D(ξ, t)|q ≥ (1− L)(q−1)+

(
|ξ(0)|q − Lq∧1

∣∣∣ ∫ 0

−∞
ξ(θ)µ3(dθ)

∣∣∣q), q > 0,

|ξ(0)−D(ξ, t)|q ≤ (1− L)1−q|ξ(0)|q + L

∫ 0

−∞
|ξ(θ)|qµ3(dθ), q > 1.

Proof. Recall the elementary inequality: for q > 1, ϱ > 0, a, b ∈ R, |a + b|q ≤ (1 + ϱ)q−1(|a|q +
ϱ1−q|b|q) (see [18, Lemma 4.1, page211]). Setting ϱ = L/(1− L) gives

|a+ b|q ≤ (1− L)1−q|a|q + L1−q|b|q. (2.6)

Applying the Hölder inequality gives

|ξ(0)−D(ξ, t)|q ≤
[
|ξ(0)|+ L

∫ 0

−∞
|ξ(θ)|µ3(dθ)

]q
≤ (1− L)1−q|ξ(0)|q + L

∫ 0

−∞
|ξ(θ)|qµ3(dθ). (2.7)

While for 0 < q ≤ 1,

|a+ b|q ≤ |a|q + |b|q. (2.8)

Combining (2.6) and (2.8) yields that for any q > 0,

|a+ b|q ≤ (1− L)−(q−1)+ |a|q + L−(q−1)+ |b|q,

which implies for any q > 0,

|ξ(0)|q = |ξ(0)−D(ξ, t) +D(ξ, t)|q

≤ (1− L)−(q−1)+ |ξ(0)−D(ξ, t)|q + Lq∧1
∣∣∣ ∫ 0

−∞
ξ(θ)µ3(dθ)

∣∣∣q.
Hence,

|ξ(0)−D(ξ, t)|q ≥ (1− L)(q−1)+
(
|ξ(0)|q − Lq∧1

∣∣∣ ∫ 0

−∞
ξ(θ)µ3(dθ)

∣∣∣q). (2.9)

Then the desired assertion follows from (2.7) and (2.9) immediately.

Theorem 2.6. Let Assumptions 2.1–2.3 hold. For any given initial data φ ∈ BC((−∞, 0];Rn) ∩
Lq1+1((−∞, 0];Rn), the solution of Eq. (1.1) satisfies sup0≤t≤T E|x(t)|q1+1 <∞ for all T > 0.

By applying the Itô formula and Lemma 2.5, we first reveals sup0≤t≤T E|x̃(t)|q1+1 ≤ C. Then

the desired result follows easily. To keep the flow of the presentation, this proof is deferred to part

A1 in Section Appendix.
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3 Stabilisation with general decay rate

The system (1.1) may be unstable. The main aim of this section is to design a delay feedback

control u(x(t− τ), t) by which the controlled system (1.2) is stable with general decay rate. Before

presenting the main results, we give the following assumptions on the control function.

Assumption 3.1. There exists a positive number κ > 0 such that

|u(x, t)− u(y, t)| ≤ κ|x− y|

for all x, y ∈ Rn and all t ≥ 0. Moreover, assume that u(0, t) ≡ 0.

Under Assumptions 2.1–2.3 and 3.1, the controlled system (1.2) admits a unique global solution

and the solution satisfies sup0≤t≤T E|x(t)|q1+1 <∞ for all T > 0, which can be proved by the same

methods as Theorem 2.6, so the proof is omitted.

Assumption 3.2. For L, µj (1 ≤ j ≤ 3) and βj (1 ≤ j ≤ 4) given in Assumptions 2.1–2.3, there

exist positive constants αj, α̂j, β̂j (1 ≤ j ≤ 4) with α4 ≥ 2β4, αj ≤ 2βj (j = 1, 2, 3) and{ (
(q1 − 1)

[
(1− L)−q1 + L

]
+ 2

)
(β̂1 + β̂2 + β̂3) < (q1 + 1)(1− L)(q1−2)+(1− L(q1−1)∧1)β̂4,

α̂1 + α̂2 + α̂3 < α̂4.

(3.1)

such that for (ξ, t) ∈ BC((−∞, 0];Rn)× R+,

2[ξ(0)−D(ξ, t)]T [f(ξ, t) + u(ξ(0), t)] + |g(ξ, t)|2

≤
3∑

j=1

αj

∫ 0

−∞
|ξ(θ)|pµj(dθ)− α4|ξ(0)|p +

3∑
j=1

α̂j

∫ 0

−∞
|ξ(θ)|2µj(dθ)− α̂4|ξ(0)|2 (3.2)

and

[ξ(0)−D(ξ, t)]T [f(ξ, t) + u(ξ(0), t)] +
q1
2
|g(ξ, t)|2

≤
3∑

j=1

βj

∫ 0

−∞
|ξ(θ)|pµj(dθ)− β4|ξ(0)|p +

3∑
j=1

β̂j

∫ 0

−∞
|ξ(θ)|2µj(dθ)− β̂4|ξ(0)|2. (3.3)

It should be pointed out that there is a rich class of control functions which satisfy Assumptions

3.1 and 3.2 under Assumptions 2.1– 2.3. For example, choose a symmetric matrix A such that

∥A∥ = 1 and

λm := λmin(A) > λ∗ :=
{(q1 − 1)

[
(1− L∗)

−q1 + L∗
]
+ 2}L∗

2

(q1 + 1)(1− L∗)(q1−2)+(1− L
(q1−1)∧1
∗ )

+
L∗
2
.

Design u(x, t) = −κAx for κ > 0. Then u(x, t) satisfies Assumption 3.1 clearly. We will now

show that it satisfies Assumption 3.2 provided κ is sufficiently large. In fact, for any (ξ, t) ∈
BC((−∞, 0];Rn)× R+,(

ξ(0)−D(ξ, t)
)T
u(ξ(0), t) ≤ −

(
κλm − Lκ

2

)
|ξ(0)|2 + Lκ

2

∫ 0

−∞
|ξ(θ)|2µ3(dθ).
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It then follows from (2.5) that

2[ξ(0)−D(ξ, t)]T [f(ξ, t) + u(ξ(0), t)] + |g(ξ, t)|2

≤ 2

3∑
j=1

βj

∫ 0

−∞
|ξ(θ)|pµj(dθ)− 2β4|ξ(0)|p + 2

2∑
j=1

kj

∫ 0

−∞
|ξ(θ)|2µj(dθ)

+(2k3 + Lκ)

∫ 0

−∞
|ξ(θ)|2µ3(dθ)− (2κλm − Lκ− 2k4)|ξ(0)|2

and

[ξ(0)−D(ξ, t)]T [f(ξ, t) + u(ξ(0), t)] +
q1
2
|g(ξ, t)|2

≤
3∑

j=1

βj

∫ 0

−∞
|ξ(θ)|pµj(dθ)− β4|ξ(0)|p +

2∑
j=1

kj

∫ 0

−∞
|ξ(θ)|2µj(dθ)

+
(
k3 +

Lκ

2

)∫ 0

−∞
|ξ(θ)|2µ3(dθ)−

(
κλm − Lκ

2
− k4

)
|ξ(0)|2

hold for (ξ, t) ∈ BC((−∞, 0];Rn) × R+. Since L ∈ (0, L∗) and λm > λ∗, we can always choose κ

large enough such that
(
(q1 − 1)

[
(1− L)−q1 + L

]
+ 2

)(
k1 + k2 + k3

)
+ (q1 + 1)(1− L)(q1−2)+(1− L(q1−1)∧1)k4

<
{
(q1 + 1)(1− L)(q1−2)+(1− L(q1−1)∧1)

(
λm − L

2

)
−

(
(q1 − 1)

[
(1− L)−q1 + L

]
+ 2

)
L
2

}
κ,

k1 + k2 + k3 + k4 < (λm − L)κ,

which is equivalent to
(
(q1 − 1)

[
(1− L)−q1 + L

]
+ 2

)(
k1 + k2 + k3 +

Lκ
2

)
< (q1 + 1)(1− L)(q1−2)+(1− L(q1−1)∧1)

(
κλm − Lκ

2 − k4
)
,

2k1 + 2k2 + (2k3 + Lκ) < 2κλm − Lκ− 2k4.

(3.4)

This shows that the control function u satisfies Assumption 3.2.

Define L1V : BC((−∞, 0];Rn)× R+ → R by

L1V (ξ, t) = 2[ξ(0)−D(ξ, t)]T
[
f(ξ, t) + u(ξ(0), t)

]
+ |g(ξ, t)|2 + (q1 + 1)|ξ(0)−D(ξ, t)|q1−1

×
{
[ξ(0)−D(ξ, t)]T [f(ξ, t) + u(ξ(0), t)] +

q1
2
|g(ξ, t)|2

}
. (3.5)

The following lemma will plays an important role in this paper.

Lemma 3.1. Let Assumptions 2.1–2.3 and 3.1–3.2 hold. Then there exist positive constants ρ1–ρ6,

γj, γ̂j, γ̄j, γ̃j (j = 1, 2, 3) and ϵ∗ ∈ (0, ϵ0] such that

L1V (ξ, t) + ρ1
(
2|ξ(0)−D(ξ, t)|+ (q1 + 1)|ξ(0)−D(ξ, t)|q1

)2
+ ρ2|f(ξ, t)|2 + ρ3|g(ξ, t)|2

≤ −ρ4|ξ(0)|2 − ρ5|ξ(0)|q1+1 − ρ6|ξ(0)|p+q1−1 +

3∑
j=1

γjH
p+q1−1
j,ϵ∗ +

3∑
j=1

γ̂jH
q1+1
j,ϵ∗
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+

3∑
j=1

γ̄jH
p
j,ϵ∗ +

3∑
j=1

γ̃jH
2
j,ϵ∗ ,

where Hα
j,ϵ∗ =

∫ 0
−∞ |ξ(θ)|αµj(dθ)− µjϵ∗ |ξ(0)|α.

This proof is deferred to part A2 in Section Appendix. In the following, we will prove the

controlled system (1.2) is ψ–type stable with the help of Lemma 3.1. Define LV : BC((−∞, 0];Rn)×
R+ → R by

LV (ξ, t) = 2[ξ(0)−D(ξ, t)]T [f(ξ, t) + u(ξ(−τ), t)] + |g(ξ, t)|2

+(q1 + 1)|ξ(0)−D(ξ, t)|q1−1[ξ(0)−D(ξ, t)]T [f(ξ, t) + u(ξ(−τ), t)]

+
q1 + 1

2
|ξ(0)−D(ξ, t)|q1−1|g(ξ, t)|2

+
(q1 + 1)(q1 − 1)

2
|ξ(0)−D(ξ, t)|q1−3

∣∣[ξ(0)−D(ξ, t)]T g(ξ, t)
∣∣2. (3.6)

Recalling the definition of L1V and q1 > 1, it is obvious that

LV (ξ, t) ≤ 2[ξ(0)−D(ξ, t)]T [f(ξ, t) + u(ξ(−τ), t)] + |g(ξ, t)|2

+(q1 + 1)|ξ(0)−D(ξ, t)|q1−1
{
[ξ(0)−D(ξ, t)]T [f(ξ, t) + u(ξ(−τ), t)] + q1

2
|g(ξ, t)|2

}
= L1V (ξ, t) +

{
2 + (q1 + 1)|ξ(0)−D(ξ, t)|q1−1

}
×[ξ(0)−D(ξ, t)]T [u(ξ(−τ), t)− u(ξ(0), t)]. (3.7)

Theorem 3.2. Let conditions in Lemma 3.1 hold. For ρ1 – ρ4 and ϵ∗ in Lemma 3.1, if τ > 0

satisfies

τ <
(1− L)

√
ρ1ρ4

2κ2
∧ (1− L)

4
√
2κ

and τ ≤
(1− L)

√
ρ1ρ2√

2κ
∧ (1− L)2ρ1ρ3

κ2
, (3.8)

then there exists q∗ ∈ (0, ϵ∗] such that for any initial data φ ∈ BC((−∞, 0];Rn)∩L2((−∞, 0];Rn),

the solution of the controlled system (1.2) satisfies

E
∫ ∞

0
ψq∗(s)|x(s)|p̂ds < C, ∀p̂ ∈ [2, p+ q1 − 1] (3.9)

and

lim sup
t→∞

lnE|x(t)|p̂

lnψ(t)
≤ −q∗, ∀p̂ ∈ [2, q1 + 1]. (3.10)

The proof follows the idea in the proof of Theorem 3.6 in [26] by using the method of the

Lyapunov functionals. It is deferred to part A3 in Section Appendix.

Theorem 3.3. Let conditions of Theorem 3.2 hold. Then the controlled system (1.2) is almost

surely ψ–type stable.

The key is to E
(
sup0≤t<∞ ψq∗(t)|x(t)|2

)
<∞ by the Itô formula and inequality (3.9). Then the

desired result then follows easily. We defer the proof to part A4 in Section Appendix.
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Remark 3.4. The main aim of this paper is to examine the ψ–type stability, which shows the

general convergence speed. Compared to the conventional exponential stabilisation in [20, 26], the

results in Theorems 3.2 and 3.3 are more general results. Theorem 3.2 shows that the neutral term

has effect on the bound of τ by the parameter L. The smaller L will lead to the bigger τ . In this

paper, the stability conditions are imposed on the non-delay control in Assumption 3.2. To obtain

the stability results by the delay feedback control, in Lemma 3.1, ρ1, ρ2 and ρ3 represent stability

costs. The results in Theorem 3.2 also show that the bigger ρ1, ρ2 and ρ3 will lead to the bigger τ .

Remark 3.5. By virtue of the continuous semimartingale convergence theory, [13] established the

almost sure ψ–type stability of IDNSFDEs. In this paper, suppose that the given IDNSFDE is

unstable, and we are required to design a delay feedback control in the drift part so that the given

equation become ψ–type stable in moment and almost surely ψ–type stable. In this paper, since

the stability conditions are imposed on the non-delay control in Assumption 3.2, the continuous

semimartingale convergence theorem cannot be applied to obtain the almost sure ψ–type stability

of the delay controlled system, directly. To overcome this difficulty, new techniques are developed

to prove (3.9), which makes the almost sure ψ–type stabilisation possible.

Remark 3.6. The results of this paper are neither simple generalisations of the results in [9] from

finite delay to infinite delay, nor simply a case of adding a neutral item in [26]. In [9], only the

moment stabilisation is proved. This paper also examines the almost sure stabilisation possible

due to (3.9). Moreover, this paper also reveals the rate at which the solution tends to zero. In

addition, exponential stabilisation is only considered in [26]. Due to the coexistence of neutral term

and infinite delay, the method of Theorem 3.8 in [26] cannot be applied to obtain the almost sure

ψ–type stability. In order to overcome this difficulty, more delicate estimates and more complex

computations are needed.

4 Example

Many real phenomenon can be modeled by neutral functional or delay differential equations, for

instance, [28] examined a coupled oscillator-pendulum system. In particular, [29] discussed the

collision problem in electrodynamics by the neutral delay differential equation

ẋ(t) = f1(x(t), x(δ(t))) + f2(x(t), x(δ(t)))ẋ(δ(t)),

where δ(t) ≤ t. These systems can be generalized to the following neutral functional differential

equation

d[x(t)−D(xt, t)] = f(xt, t)dt.

Taking into account stochastic perturbations leads to the neutral stochastic functional differential

equation

d[x(t)−D(xt, t)] = f(xt, t)dt+ g(xt, t)dB(t). (4.1)
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In the following, as examples, two special cases will be discussed.

Case 1 : exponential kernel function. Let µ1(dθ) = µ2(dθ) = eθdθ, µ3(dθ) = 10e10θdθ for

θ ∈ (−∞, 0] and

f(xt, t) = −5x3(t) + 0.5x(t)

∫ 0

−∞
x(t+ θ)µ1(dθ) + x(t)

g(xt, t) = 0.5|x(t)|3/2 + 0.5

∫ 0

−∞
|x(t+ θ)|3/2µ2(dθ)

D(xt, t) = 0.1

∫ 0

−∞
x(t+ θ)µ3(dθ).

In this case, Eq. (4.1) can be rewritten as Eq. (1.3). Choosing ϵ0 = 0.9 and ψ(t) = et, it is easy to

see that

µ1ϵ0 =

∫ 0

−∞
e−ϵ0θdeθ = 10,

which implies that µ1 ∈M0.9. Similarly, µ2, µ3 ∈M0.9. Clearly, Assumption 2.1 holds with q1 = 3,

q2 = 1.5, K = 5 and Assumption 2.2 holds with L = 0.1. It can be found Assumption 2.3 holds

with p = 4, β1 = 0.0125, β2 = 0.375, β3 = 0.1375, β4 = 4, k1 = 0.25, k2 = 0.375, k3 = 0.05,

k4 = 1.45. Let the initial value

φ(t) =

{
5e0.01t − 5e−1, if t ∈ (−100, 0],

0, if t ∈ (−∞,−100].
(4.2)

By Remark 2.4 and Theorem 2.6, Eq. (1.3) has a unique solution with sup0≤t≤T E|x(t)|4 < ∞ for

any T > 0. The simulation (Figure 1(a)) shows the system (1.3) is not stable.

Let us now introduce a delay feedback control to stabilize the system (1.3). We take the control

function u : R× R+ → R as follows:

u(x, t) = −6x. (4.3)

Obviously, Assumption 3.1 is satisfied with κ = 6 and the controlled system

d
[
x(t)−

∫ 0

−∞
x(t+ θ)e10θdθ

]
= [f(xt, t) + u(x(t− τ), t)]dt+ g(xt, t)dB(t) (4.4)

has a unique global solution. Moreover, using the Cauchy inequality and the Young inequality gives

[x(t)−D(xt, t)]
T [f(xt, t) + u(x(t), t)] + 1.5|g(xt, t)|2

≤ xT (t)[f(xt, t) + u(x(t), t)] + |D(xt, t)||f(xt, t)|+ |D(xt, t)||u(x(t), t)|+ 1.5|g(xt, t)|2

≤ −4|x(t)|4 + 0.0125

∫ 0

−∞
|x(t+ θ)|4µ1(dθ) + 0.375

∫ 0

−∞
|x(t+ θ)|4µ2(dθ)

+0.1375

∫ 0

−∞
|x(t+ θ)|4µ3(dθ)− 4.25|x(t)|2 + 0.25

∫ 0

−∞
|x(t+ θ)|2µ1(dθ)

+0.375

∫ 0

−∞
|x(t+ θ)|2µ2(dθ) + 0.35

∫ 0

−∞
|x(t+ θ)|2µ3(dθ)

and

2[x(t)−D(xt, t)]
T [f(xt, t) + u(x(t), t)] + |g(xt, t)|2
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(a) The computer simulation of the sample path of the solution to E-

q. (1.3) using the Euler-Maruyama method with step size 10−4.
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(b) The computer simulation of the sample path of the solution to E-

q. (4.4) using the Euler-Maruyama method with step size 10−4.

Figure 1: with exponential kernel functions

≤ −8.5|x(t)|4 + 0.025

∫ 0

−∞
|x(t+ θ)|4µ1(dθ) + 0.25

∫ 0

−∞
|x(t+ θ)|4µ2(dθ)

+0.275

∫ 0

−∞
|x(t+ θ)|4µ3(dθ)− 9|x(t)|2 + 0.5

∫ 0

−∞
|x(t+ θ)|2µ1(dθ)

+0.25

∫ 0

−∞
|x(t+ θ)|2µ2(dθ) + 0.7

∫ 0

−∞
|x(t+ θ)|2µ3(dθ).

Hence, Assumption 3.2 holds with β̂1 = 0.25, β̂2 = 0.375, β̂3 = 0.35, β̂4 = 4.25, α1 = 0.025,

α2 = 0.25, α3 = 0.275, α4 = 8.5, α̂1 = 0.5, α̂2 = 0.25, α̂3 = 0.7 and α̂4 = 9. Let ϵ∗ = 0.1,

V (x̃(t)) = |x̃(t)|2 + |x̃(t)|4, ρ1 = 0.1, ρ2 = 0.05 and ρ3 = 8. We can check that

L1V (xt, t) + ρ1
(
2|x̃(t)|+ (q1 + 1)|x̃(t)|q1

)2
+ ρ2|f(xt, t)|2 + ρ3|g(xt, t)|2

≤ 0.0404H̃6
1 + 1.2111H̃6

2 + 1.3229H̃6
3 + 0.6306H̃4

1 + 3.1583H̃4
2 + 2.0828H̃4

3 + 0.5188H̃2
1

+ 2.2500H̃2
2 + 0.7080H̃2

3 − 1.0894|x(t)|6 − 14.7581|x(t)|4 − 4.4207|x(t)|2,

where H̃α
j =

∫ 0
−∞ |x(t+ θ)|αµj(dθ)− µjϵ∗ |x(t)|α. This implies Lemma 3.1 holds with γ1 = 0.0404,

γ2 = 1.2111, γ3 = 1.3229, γ̄1 + γ̂1 = 0.6036, γ̄2 + γ̂2 = 3.1583, γ̄3 + γ̂3 = 2.0828, γ̃1 = 0.5188,

γ̃2 = 2.2500, γ̃3 = 1.0894, ρ4 = 4.4207, ρ5 = 14.7581 and ρ6 = 1.0894. Accordingly, condition (3.8)

implies τ ≤ 0.0075. Theorem 3.3 shows the controlled system (4.4) is almost surely exponentially

stable provided τ ≤ 0.0075. When we choose τ = 0.007 and initial data (4.2), the simulation can

support our theoretical results, which is shown in Figure 1(b).
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(a) The computer simulation of the sample path of the solution to Eq. (1.4) using the

Euler-Maruyama method with step size 10−4.
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(b) The computer simulation of the sample path of the solution to Eq. (4.6) using the

Euler-Maruyama method with step size 10−4 .

Figure 2: with polynomial kernel functions

Case 2 : polynomial kernel function. Let µ1(dθ) = µ2(dθ) = (1 − θ)−2dθ, µ3(dθ) =

10(1− θ)−11dθ for θ ∈ (−∞, 0] and

f(xt, t) = −5x3(t) + 0.5x(t)

∫ 0

−∞
x(t+ θ)µ1(dθ) + x(t)

g(xt, t) = 0.5|x(t)|3/2 + 0.5

∫ 0

−∞
|x(t+ θ)|3/2µ2(dθ)

D(xt, t) = 0.1

∫ 0

−∞
x(t+ θ)µ3(dθ).

In this case, Eq. (4.1) can be rewritten as Eq. (1.4). Choosing ϵ0 = 0.9 and ψ(t) = 1 + t, it is easy

to see that

µ1ϵ0 =

∫ 0

−∞
(1− θ)ϵ0(1− θ)−2dθ = 10,

which implies that µ1 ∈M0.9. Similarly, µ2, µ3 ∈M0.9. Let the initial value

φ =

{
2(1− 0.01t), if t ∈ (−100, 0],

0, if t ∈ (−∞,−100].
(4.5)

The computer simulation (Figure 2(a)) shows Eq. (1.4) is not stable.

Letting ϵ∗ = 0.1, V (x̃(t)) = |x̃(t)|2 + |x̃(t)|4 and ρ1 = 0.1, ρ2 = 0.05, ρ3 = 8, by a similar

argument as Case 1, it is easy to show from Theorem 3.2 that the controlled system

d
[
x(t)−

∫ 0

−∞
x(t+ θ)(1− θ)−11dθ

]
= [f(xt, t) + u(x(t− τ), t)]dt+ g(xt, t)dB(t) (4.6)
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with control function (4.3) is almost surely polynomially stable provided τ ≤ 0.0075. The simulation

with τ = 0.007 and initial data (4.5) can support our theoretical results, which is shown in Figure

2(b).

Remark 4.1. The above examples shows the exponential stabilisation and polynomial stabilisation

simultaneously. We also see from the example that the control function (4.3) can stabilize not only

Eq. (1.3) with a exponential rate and Eq. (1.4) with a polynomial rate. In other words, the controlled

system (4.4) converges to zero exponentially while the controlled system (4.6) converges to zero

polynomially. Accordingly, it can be observed from Figure 1(b) and Figure 2(b) that the controlled

system (4.4) tends to zero much faster than the controlled system (4.6). These two examples also

show that some systems can only be stabilised with the lower decay rate, for example, Eq. (1.4)

can only be stabilised under a polynomial rate. In other words, this class of the system cannot be

stabilised by using the traditional stabilisation method with exponential speed.

5 Conclusion

In this paper, we consider a class of IDNSFDEs with highly nonlinear coefficients. These systems are

often unstable. Under suitable conditions, we prove that a delay feedback control can be designed

to stabilize these systems with general convergence rate. More precisely, we consider IDNSFDE

system (1.1) under Assumptions 2.1–2.3. Introducing a delay feedback control function satisfying

Assumptions 3.1 and 3.2, we prove that the corresponding controlled system (1.2) can be ψ–type

stable in moment as well as in probability one. The use of our theory depends on the design of the

control function u(x, t). We does not only show that there is a rich class of control functions which

satisfy Assumptions 3.1 and 3.2 but also explicitly explain how they can be designed.

Our Theorem 3.2 shows that for each control function satisfying Assumptions 3.1 and 3.2, there

is a pair of positive numbers τ and q∗ for (3.10) to hold. Note that q∗ is the indicator of the control

gain while τ is the tolerable delay in the feedback control. It is therefore more desired to have both

of them as larger as possible. However, our Lemma 3.1 could only show the existence of positive

numbers ρ1 – ρ4 and ϵ∗ but we still do not know how to determine them wisely so that we can have

the optimal τ and q∗. It is even more challenged to find a better control function among the rich

class so that we could have larger τ and q∗. We will tackle these open problems in the future.

Appendix: Technical complements

A1. Proof of Theorem 2.6.

By the Itô formula,

d|x(t)−D(xt, t)|q1+1 = LV (xt, t)dt+ dM̄(t), (A1.1)

where M̄(t) is a local martingale with M̄(0) = 0, while LV (xt, t) is defined by

LV (xt, t) = (q1 + 1)|x(t)−D(xt, t)|q1−1[x(t)−D(xt, t)]
T f(xt, t)

14

Stabilisation with general decay rate by delay feedback control for nonlinear neutral stochastic functional differential equations with infinite delay



+
q1 + 1

2
|x(t)−D(xt, t)|q1−1|g(xt, t)|2

+
(q1 + 1)(q1 − 1)

2
|x(t)−D(xt, t)|q1−3

∣∣[x(t)−D(xt, t)]
T g(xt, t)

∣∣2.
It is obvious that

LV (xt, t) ≤ (q1 + 1)|x(t)−D(xt, t)|q1−1
{
[x(t)−D(xt, t)]

T f(xt, t) +
q1
2
|g(xt, t)|2

}
. (A1.2)

Substituting (2.5) into (A1.2) yields

LV (xt, t) ≤ (q1 + 1)|x(t)−D(xt, t)|q1−1
{ 3∑

j=1

βj

∫ 0

−∞
|x(t+ θ)|pµj(dθ)− β4|x(t)|p

+
3∑

j=1

kj

∫ 0

−∞
|x(t+ θ)|2µj(dθ) + k4|x(t)|2

}

=

3∑
j=1

(q1 + 1)βj |x(t)−D(xt, t)|q1−1

∫ 0

−∞
|x(t+ θ)|pµj(dθ)

−(q1 + 1)β4|x(t)−D(xt, t)|q1−1|x(t)|p

+

3∑
j=1

(q1 + 1)kj |x(t)−D(xt, t)|q1−1

∫ 0

−∞
|x(t+ θ)|2µj(dθ)

+(q1 + 1)k4|x(t)−D(xt, t)|q1−1|x(t)|2

=: E1 − E2 + E3 + E4. (A1.3)

The Young inequality and the Hölder inequality yield

|x(t)−D(xt, t)|q1−1

∫ 0

−∞
|x(t+ θ)|pµj(dθ)

≤ q1 − 1

p+ q1 − 1
|x(t)−D(xt, t)|p+q1−1 +

p

p+ q1 − 1

∫ 0

−∞
|x(t+ θ)|p+q1−1µj(dθ) (A1.4)

and

|x(t)|p
∣∣∣ ∫ 0

−∞
x(t+ θ)µ3(dθ)

∣∣∣q1−1

≤ p

p+ q1 − 1
|x(t)|p+q1−1 +

q1 − 1

p+ q1 − 1

∣∣∣ ∫ 0

−∞
x(t+ θ)µj(dθ)

∣∣∣p+q1−1

≤ p

p+ q1 − 1
|x(t)|p+q1−1 +

q1 − 1

p+ q1 − 1

∫ 0

−∞
|x(t+ θ)|p+q1−1µj(dθ). (A1.5)

It then follows from (A1.4) and Lemma 2.5 that

E1 ≤ Q1(β1 + β2 + β3)|x(t)−D(xt, t)|p+q1−1 +Q2

3∑
j=1

βj

∫ 0

−∞
|x(t+ θ)|p+q1−1µj(dθ)

≤ Q1(1− L)2−p−q1(β1 + β2 + β3)|x(t)|p+q1−1 +Q1L(β1 + β2 + β3)

∫ 0

−∞
|x(t+ θ)|p+q1−1µ3(dθ)

15

Stabilisation with general decay rate by delay feedback control for nonlinear neutral stochastic functional differential equations with infinite delay



+Q2

3∑
j=1

βj

∫ 0

−∞
|x(t+ θ)|p+q1−1µj(dθ),

where

Q1 =
(q21 − 1)

p+ q1 − 1
and Q2 =

p(q1 + 1)

p+ q1 − 1
.

In light of Lemma 2.5 and (A1.5), we arrive at

−E2 ≤ −(q1 + 1)(1− L)(q1−2)+β4

[
|x(t)|q1−1 − L(q1−1)∧1

∣∣∣ ∫ 0

−∞
x(t+ θ)µ3(dθ)

∣∣∣q1−1
µ3(dθ)

]
|x(t)|p

≤ −(q1 + 1)(1− L)(q1−2)+β4|x(t)|p+q1−1 +Q2(1− L)(q1−2)+L(q1−1)∧1β4|x(t)|p+q1−1

+Q1(1− L)(q1−2)+L(q1−1)∧1β4

∫ 0

−∞
|x(t+ θ)|p+q1−1µ3(dθ).

Similar to estimation of E1, we derive

E3 + E4 ≤ C

3∑
j=1

∫ 0

−∞
|x(t+ θ)|q1+1µj(dθ) + C|x(t)|q1+1.

Substituting E1, E2, E3 + E4 into (A1.3) gives

LV (xt, t) ≤
3∑

j=1

Cj

∫ 0

−∞
|x(t+ θ)|p+q1−1µj(dθ) + C

3∑
j=1

∫ 0

−∞
|x(t+ θ)|q1+1µj(dθ)

−Q3|x(t)|p+q1−1 + C|x(t)|q1+1

≤
3∑

j=1

Cj

[ ∫ 0

−∞
|x(t+ θ)|p+q1−1µj(dθ)− |x(t)|p+q1−1

]

+C
3∑

j=1

[ ∫ 0

−∞
|x(t+ θ)|q1+1µj(dθ)− |x(t)|q1+1

]
+Q4, (A1.6)

where

C1 = Q2β1, C2 = Q2β2, C3 = Q2β3 +Q1L(β1 + β2 + β3) +Q1(1− L)(q1−2)+L(q1−1)∧1β4,

Q3 = (q1 + 1)(1− L)(q1−2)+β4 −Q2(1− L)(q1−2)+L(q1−1)∧1β4 −Q1(1− L)2−p−q1(β1 + β2 + β3),

Q4 = sup
u≥0

{−(Q3 − C1 − C2 − C3)u
p+q1−1 + Cuq1+1}.

According to (2.4), we have

Q3 − C1 − C2 − C3 > 0.

which implies Q4 < ∞. Let k0 be a sufficiently large integer such that ∥φ∥ < k0. For each integer

k > k0, we define the stopping time

σk = inf{t ≥ 0 : |x(t)| ≥ k}. (A1.7)

It then follows (A1.1) that

E|x̃(t ∧ σk)|q1+1 ≤ |x̃(0)|q1+1 + E
∫ t∧σk

0

{ 3∑
j=1

Cj

[ ∫ 0

−∞
|x(s+ θ)|p+q1−1µj(dθ)− |x(s)|p+q1−1

]
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+C

3∑
j=1

[ ∫ 0

−∞
|x(s+ θ)|q1+1µj(dθ)− |x(s)|q1+1

]
+Q4

}
ds. (A1.8)

Note that φ ∈ BC((−∞, 0];Rn) ∩ Lq1+1((−∞, 0];Rn). Lemma 2.2 shows φ ∈ BC((−∞, 0];Rn) ∩
Lp+q1−1((−∞, 0];Rn). Using the Fubini theorem and a substitution technique gives∫ t∧σk

0

[ ∫ 0

−∞
|x(s+ θ)|p+q1−1µj(dθ)− |x(s)|p+q1−1

]
ds

=

∫ 0

−∞
µj(dθ)

∫ t∧σk+θ

θ
|x(s)|p+q1−1ds−

∫ t∧σk

0
|x(s)|p+q1−1ds

≤
∫ t∧σk

−∞
|x(s)|p+q1−1ds−

∫ t∧σk

0
|x(s)|p+q1−1ds

=

∫ 0

−∞
|φ(s)|p+q1−1ds < C.

Similarly, ∫ t∧σk

0

[ ∫ 0

−∞
|x(s+ θ)|q1+1µj(dθ)− |x(s)|q1+1

]
ds < C.

It then follows from (A1.8) that

sup
0≤t≤T

E|x̃(t ∧ σk)|q1+1 < C(T ) <∞.

Note that σk → ∞ as k → ∞. Letting k → ∞ yields

sup
0≤t≤T

E|x̃(t)|q1+1 < C(T ).

Moreover, applying (2.6) gives

sup
−∞≤t≤T

E|x(t)|q1+1

≤ (∥φ∥q1+1) ∨
[

sup
0≤t≤T

E|x(t)−D(xt, t) +D(xt, t)|q1+1
]

≤ (∥φ∥q1+1) ∨
[
(1− L)−q1 sup

0≤t≤T
E|x̃(t)|q1+1 + L

∫ 0

−∞
( sup
0≤t≤T

E|x(t+ θ)|q1+1)µ3(dθ)
]

≤ ∥φ∥q1+1 + (1− L)−q1 sup
0≤t≤T

E|x̃(t)|q1+1 + L

∫ 0

−∞

(
sup

−∞≤t≤T
E|x(t)|q1+1

)
µ3(dθ)

= ∥φ∥q1+1 + (1− L)−q1 sup
0≤t≤T

E|x̃(t)|q1+1 + L sup
−∞≤t≤T

E|x(t)|q1+1,

which implies

sup
−∞≤t≤T

E|x(t)|q1+1 ≤ (1− L)−1∥φ∥q1+1 + (1− L)−(q1+1) sup
0≤t≤T

E|x̃(t)|q1+1.

Noting that φ ∈ BC((−∞, 0];Rn) and sup0≤t≤T E|x̃(t)|q1+1 < C(T ), we have sup0≤t≤T E|x(t)|q1+1 <

C(T ) <∞. The desired conclusion follows immediately.
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A2. Proof of Lemma 3.1.

Let

W (ξ, t) = L1V (ξ, t) + ρ1
(
2|ξ(0)−D(ξ, t)|+ (q1 + 1)|ξ(0)−D(ξ, t)|q1

)2
+ρ2|f(ξ, t)|2 + ρ3|g(ξ, t)|2. (A2.1)

Hence it suffices to prove

W (ξ, t) ≤ −ρ4|ξ(0)|2 − ρ5|ξ(0)|q1+1 − ρ6|ξ(0)|p+q1−1 +

3∑
j=1

γjH
p+q1−1
j,ϵ∗ +

3∑
j=1

γ̂jH
q1+1
j,ϵ∗

+
3∑

j=1

γ̄jH
p
j,ϵ∗ +

3∑
j=1

γ̃jH
2
j,ϵ∗ . (A2.2)

We divide the following proof into two steps.

Step 1: Estimation of L1V . Applying (3.2), (3.3) and (3.5) gives

L1V (ξ, t) =

3∑
j=1

αj

∫ 0

−∞
|ξ(θ)|pµj(dθ)− α4|ξ(0)|p +

3∑
j=1

α̂j

∫ 0

−∞
|ξ(θ)|2µj(dθ)− α̂4|ξ(0)|2

+(q1 + 1)|ξ(0)−D(ξ, t)|q1−1
{ 3∑

j=1

βj

∫ 0

−∞
|ξ(θ)|pµj(dθ)− β4|ξ(0)|p

+
3∑

j=1

β̂j

∫ 0

−∞
|ξ(θ)|2µj(dθ)− β̂4|ξ(0)|2

}
. (A2.3)

Similar to the estimation of (A1.6), we have for any ϵ ∈ (0, ϵ0],

(q1 + 1)|ξ(0)−D(ξ, t)|q1−1
{ 3∑

j=1

βj

∫ 0

−∞
|ξ(θ)|pµj(dθ)− β4|ξ(0)|p

+

3∑
j=1

β̂j

∫ 0

−∞
|ξ(θ)|2µj(dθ)− β̂4|ξ(0)|2

}

≤
3∑

j=1

Cj

∫ 0

−∞
|ξ(θ)|p+q1−1µj(dθ) +

3∑
j=1

Ĉj

∫ 0

−∞
|ξ(θ)|q1+1µj(dθ)−Q3|ξ(0)|p+q1−1 − Q̂3|ξ(0)|q1+1

=
3∑

j=1

CjH
p+q1−1
j,ϵ +

3∑
j=1

ĈjH
q1+1
j,ϵ −Qϵ

11|ξ(0)|p+q1−1 −Qϵ
22|ξ(0)|q1+1,

where Q3 and Cj (j = 1, 2, 3) come from the proof of Theorem 2.6 and

Ĉ1 = 2β̂1, Ĉ2 = 2β̂2,

Ĉ3 = 2β̂3 + (q1 − 1)L(β̂1 + β̂2 + β̂3) + (q1 − 1)(1− L)(q1−2)+L(q1−1)∧1β̂4,

Q̂3 = (q1 + 1)(1− L)(q1−2)+ β̂4 − 2(1− L)(q1−2)+L(q1−1)∧1β̂4 − (q1 − 1)(1− L)−q1(β̂1 + β̂2 + β̂3),

Qϵ
11 = Q3 − C1µ1ϵ − C2µ2ϵ − C3µ3ϵ,
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Qϵ
22 = Q̂3 − Ĉ1µ1ϵ − Ĉ2µ2ϵ − Ĉ3µ3ϵ.

It then follows from (A2.3) that for any ϵ ∈ (0, ϵ0],

L1V (ξ, t) ≤
3∑

j=1

CjH
p+q1−1
j,ϵ +

3∑
j=1

ĈjH
q1+1
j,ϵ +

3∑
j=1

αjH
p
j,ϵ +

3∑
j=1

α̂jH
2
j,ϵ

−Qϵ
11|ξ(0)|p+q1−1 −Qϵ

22|ξ(0)|q1+1 −Qϵ
33|ξ(0)|p −Qϵ

44|ξ(0)|2, (A2.4)

where Qϵ
33 = α4 − α1µ1ϵ − α2µ2ϵ − α3µ3ϵ and Q

ϵ
44 = α̂4 − α̂1µ1ϵ − α̂2µ2ϵ − α̂3µ3ϵ.

Step 2: Estimation of W (ξ, t). Employing Lemma 2.5 gives

ρ1(2|ξ(0)−D(ξ, t)|+ (q1 + 1)|ξ(0)−D(ξ, t)|q1)2

≤ 8ρ1|ξ(0)−D(ξ, t)|2 + 2ρ1(q1 + 1)2|ξ(0)−D(ξ, t)|2q1

≤ 8ρ1(1− L)−1|ξ(0)|2 + 8ρ1L

∫ 0

−∞
|ξ(θ)|2µ3(dθ)

+2ρ1(q1 + 1)2(1− L)1−2q1 |ξ(0)|2q1 + 2ρ1(q1 + 1)2L

∫ 0

−∞
|ξ(θ)|2q1µ3(dθ),

and from (2.2),

ρ2|f(ξ, t)|2 + ρ3|g(ξ, t)|2

≤ 4ρ2K
2
[ ∫ 0

−∞
|ξ(θ)|2q1µ1(dθ) + |ξ(0)|2q1 +

∫ 0

−∞
|ξ(θ)|2µ1(dθ) + |ξ(0)|2

]
+4ρ3K

2
[ ∫ 0

−∞
|ξ(θ)|2q2µ2(dθ) + |ξ(0)|2q2 +

∫ 0

−∞
|ξ(θ)|2µ2(dθ) + |ξ(0)|2

]
.

Recalling that (q1 + 1) ∨ (2q2 − q1 + 1) ≤ p and
(
|ξ(θ)|2q1 ∨ |ξ(θ)|2q2

)
≤ |ξ(θ)|2 + |ξ(θ)|p+q1−1, we

have

ρ1(2|ξ(0)−D(ξ, t)|+ (q1 + 1)|ξ(0)−D(ξ, t)|q1)2 + ρ2|f(ξ, t)|2 + ρ3|g(ξ, t)|2

≤ 4ρ2K
2

∫ 0

−∞
|ξ(θ)|p+q1−1µ1(dθ) + 4ρ3K

2

∫ 0

−∞
|ξ(θ)|p+q1−1µ2(dθ)

+2ρ1(q1 + 1)2L

∫ 0

−∞
|ξ(θ)|p+q1−1µ3(dθ)

+8ρ2K
2

∫ 0

−∞
|ξ(θ)|2µ1(dθ) + 8ρ3K

2

∫ 0

−∞
|ξ(θ)|2µ2(dθ)

+(8ρ1L+ 2ρ1(q1 + 1)2L)

∫ 0

−∞
|ξ(θ)|2µ3(dθ)

+(2ρ1(q1 + 1)2(1− L)1−2q1 + 4ρ2K
2 + 4ρ3K

2)|ξ(0)|p+q1−1

+(8ρ1(1− L)−1 + 2ρ1(q1 + 1)2(1− L)1−2q1 + 8ρ2K
2 + 8ρ3K

2)|ξ(0)|2.

Substituting this and (A2.4) into (A2.1) yields that for any ϵ ∈ (0, ϵ0],

W (ξ, t) ≤ (C1 + 4ρ2K
2)Hp+q1−1

1,ϵ + (C2 + 4ρ3K
2)Hp+q1−1

2,ϵ + (C3 + 2ρ1(q1 + 1)2L)Hp+q1−1
3,ϵ
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+

3∑
j=1

ĈjH
q1+1
j,ϵ +

3∑
j=1

αjH
p
j,ϵ + (α̂1 + 8ρ2K

2)H2
1,ϵ + (α̂2 + 8ρ3K

2)H2
2,ϵ

+
(
α̂3 + 8ρ1L+ 2ρ1(q1 + 1)2L

)
H2

3,ϵ

−
[
Qϵ

11 −Qϵ
55

]
|ξ(0)|p+q1−1 −Qϵ

22|ξ(0)|q1+1 −Qϵ
33|ξ(0)|p −

[
Qϵ

44 −Qϵ
66

]
|ξ(0)|2.(A2.5)

where

Qϵ
55 = 4ρ2K

2µ1ϵ + 4ρ3K
2µ2ϵ + 2ρ1(q1 + 1)2Lµ3ϵ + 2ρ1(q1 + 1)2(1− L)1−2q1 + 4ρ2K

2 + 4ρ3K
2,

Qϵ
66 = 8ρ2K

2µ1ϵ + 8ρ3K
2µ2ϵ +

(
8ρ1L+ 2ρ1(q1 + 1)2L

)
µ3ϵ + 8ρ1(1− L)−1

+2ρ1(q1 + 1)2(1− L)1−2q1 + 8ρ2K
2 + 8ρ3K

2.

By (2.4) and (3.1), we have

Q3 − C1 − C2 − C3 > 0, Q̂3 − Ĉ1 − Ĉ2 − Ĉ3 > 0 and α4 − α1 − α2 − α3 > 0.

Recalling α̂1 + α̂2 + α̂3 < α̂4, by Lemma 2.3, there exists ϵ̄ ∈ (0, ϵ0] sufficiently small such that for

any ϵ ∈ (0, ϵ̄],

Qϵ
11 = Q3 − C1µ1ϵ − C2µ2ϵ − C3µ3ϵ > 0,

Qϵ
22 = Q̂3 − Ĉ1µ1ϵ − Ĉ2µ2ϵ − Ĉ3µ3ϵ > 0,

Qϵ
33 = α4 − α1µ1ϵ − α2µ2ϵ − α3µ3ϵ > 0,

Qϵ
44 = α̂4 − α̂1µ1ϵ − α̂2µ2ϵ − α̂3µ3ϵ > 0.

We can choose appropriate positive constants ρj (1 ≤ j ≤ 3) sufficiently small such that{
8ρ2K

2 + 8ρ3K
2 + 2ρ1(q1 + 1)2L+ 2ρ1(q1 + 1)2(1− L)1−2q1 < 0.5Qϵ

11,

16ρ2K
2 + 16ρ3K

2 +
(
8ρ1L+ 2ρ1(q1 + 1)2L

)
+ 8ρ1(1− L)−1 + 2ρ1(q1 + 1)2(1− L)1−2q1 < 0.5Qϵ

44,

then there exists ϵ̃ ∈ (0, ϵ0] sufficiently small such that Qϵ
55 ≤ 0.5Qϵ

11 and Qϵ
66 ≤ 0.5Qϵ

44 for any

ϵ ∈ (0, ϵ̃]. It then follows from (A2.5) that there exists ϵ∗ ∈ (0, ϵ̄ ∧ ϵ̃] such that

W (ξ, t) ≤ (C1 + 4ρ2K
2)Hp+q1−1

1,ϵ∗ + (C2 + 4ρ3K
2)Hp+q1−1

2,ϵ∗ + (C3 + 2ρ1(q1 + 1)2L)Hp+q1−1
3,ϵ∗

+
3∑

j=1

ĈjH
q1+1
j,ϵ∗ +

3∑
j=1

αjH
p
j,ϵ∗ + (α̂1 + 8ρ2K

2)H2
1,ϵ∗ + (α̂2 + 8ρ3K

2)H2
2,ϵ∗

+
(
α̂3 + 8ρ1L+ 2ρ1(q1 + 1)2L

)
H2

3,ϵ∗ − 0.5Qϵ∗
11|ξ(0)|p+q1−1 −Qϵ∗

22|ξ(0)|q1+1

−0.5Qϵ∗
44|ξ(0)|2.

This implies (A2.2) holds with γ1 = C1 + 4ρ2K
2, γ2 = C2 + 4ρ2K

2, γ3 = C3 + 2ρ1(q1 + 1)2L,

γ̂j = Ĉj(j = 1, 2, 3), γ̄j = αj for j = 1, 2, 3, γ̃1 = α̂1 + 8ρ2K
2, γ̃2 = α̂2 + 8ρ3K

2, γ̃3 = α̂3 + 8ρ1L+

2ρ1(q1 + 1)2L, ρ4 = 0.5Qϵ∗
44, ρ5 = Qϵ∗

22 and ρ6 = 0.5Qϵ∗
11. This completes the proof.

A3. Proof of Theorem 3.2.

20

Stabilisation with general decay rate by delay feedback control for nonlinear neutral stochastic functional differential equations with infinite delay



Let V (x̃(t)) = |x̃(t)|2 + |x̃(t)|q1+1 and

U(xt, t) = V (x̃(t)) + λ

∫ 0

−τ

∫ t

t+s
J(v)dvds, t ≥ 0, (A3.1)

where J(t) = [τ |f(xt, t)+u(x(t− τ), t)|2+ |g(xt, t)|2] and λ is a positive constant to be determined

later. Let us also define

LU(xt, t) = L1V (xt, t) +
{
2 + (q1 + 1)|x̃(t)|q1−1

}
[x̃(t)]T [u(x(t− τ), t)− u(x(t), t)]

+λτJ(t)− λ

∫ t

t−τ
J(v)dv. (A3.2)

In the following, let us divide this proof into three steps.

Step 1 : Estimation of LU(xt, t). Applying the Itô formula to V (x̃(t)) yields

dV (x̃(t)) = LV (xt, t)dt+ dM(t), (A3.3)

where LV comes from (3.6) and M(t) is a continuous local martingale with M(0) = 0. On the

other hand,

d
(
λ

∫ 0

−τ

∫ t

t+s
J(v)dvds

)
=

(
λτJ(t)− λ

∫ t

t−τ
J(v)dv

)
dt. (A3.4)

It then follows from (A3.1)–(A3.4) that

dU(xt, t) =
(
LV (xt, t) + λτJ(t)− λ

∫ t

t−τ
J(v)dv

)
dt+ dM(t),

that is, U(xt, t) is an Itô process as claimed. It then follows from (3.7) and (A3.2) that

dU(xt, t) ≤ LU(xt, t)dt+ dM(t).

Recalling |u(x(t), t)| ≤ κ|x(t)| and xT y ≤ |x||y|, we get

[2 + (q1 + 1)|x̃(t)|q1−1][x̃(t)]T [u(x(t− τ), t)− u(x(t), t)]

≤
(
2|x̃(t)|+ (q1 + 1)|x̃(t)|q1

)
κ|x(t− τ)− x(t)|

≤ ρ1
(
2|x̃(t)|+ (q1 + 1)|x̃(t)|q1

)2
+

κ2

4ρ1
|x(t)− x(t− τ)|2. (A3.5)

Let λ = κ2/ρ1(1− L)2. From (3.8), 2λτ2 ≤ ρ2 and λτ ≤ ρ3. It then follows from Lemma 3.1 that

LU(xt, t) ≤ L1V (xt, t) + ρ1
(
2|x̃(t)|+ (q1 + 1)|x̃(t)|q1

)2
+

κ2

4ρ1
|x(t)− x(t− τ)|2

+ρ2|f(xt, t)|2 + 2λτ2κ2|x(t− τ)|2 + ρ3|g(xt, t)|2 − λ

∫ t

t−τ
J(v)dv

≤ −
(
ρ4 −

4τ2κ4

ρ1(1− L)2

)
|x(t)|2 − ρ5|x(t)|q1+1 − ρ6|x(t)|p+q1−1

+
3∑

j=1

γjH̄
p+q1−1
j (t) +

3∑
j=1

γ̂jH̄
q1+1
j (t) +

3∑
j=1

γ̄jH̄
p
j (t) +

3∑
j=1

γ̃jH̄
2
j (t)
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+
( κ2
4ρ1

+
4τ2κ4

ρ1(1− L)2

)
|x(t)− x(t− τ)|2 − κ2

ρ1(1− L)2

∫ t

t−τ
J(v)dv, (A3.6)

where H̄α
j (t) =

∫ 0
−∞ |x(t+ θ)|αµj(dθ)− µjϵ∗ |x(t)|α.

Step 2 : Estimation of Eψq(t ∧ σk)U(xt∧σk
, t ∧ σk). For σk given in (A1.7) and any q ∈ (0, ϵ∗],

applying the Itô formula yields

Eψq(t ∧ σk)U(xt∧σk
, t ∧ σk) ≤ U(x0, 0) + E

∫ t∧σk

0
ψq(s)[qϕU(xs, s) + LU(xs, s)]ds,

where ϕ = sups≥0[ψ
′
(s)/ψ(s)] <∞. Note that (3.8) shows ρ4 >

4τ2κ4

ρ1(1−L)2
. Let a = (ρ4− 4τ2κ4

ρ1(1−L)2
)∧

ρ5. We deduce from the definition of U and (A3.6) that

Eψq(t ∧ σk)U(xt∧σk
, t ∧ σk)

≤ U(x0, 0) + E
∫ t∧σk

0
ψq(s)

[
− a(|x(s)|2 + |x(s)|q1+1)− ρ6|x(s)|p+q1−1

+qϕ(|x̃(s)|2 + |x̃(s)|q1+1)
]
ds+R1 +R2 +R3 −R4, (A3.7)

where

R1 = qϕ
κ2

ρ1(1− L)2
E
∫ t∧σk

0
ψq(s)

∫ 0

−τ

∫ s

s+l
J(v)dvdlds

R2 = E
∫ t∧σk

0
ψq(s)

{ 3∑
j=1

γjH̄
p+q1−1
j (s) +

3∑
j=1

γ̂jH̄
q1+1
j (s) +

3∑
j=1

γ̄jH̄
p
j (s) +

3∑
j=1

γ̃jH̄
2
j (s)

}
ds

R3 =
( κ2
4ρ1

+
4τ2κ4

ρ1(1− L)2

)
E
∫ t∧σk

0
ψq(s)|x(s)− x(s− τ)|2ds

R4 =
κ2

ρ1(1− L)2
E
∫ t∧σk

0
ψq(s)

∫ s

s−τ
J(v)dvds.

It is obvious that

R1 ≤ qϕ
κ2

ρ1(1− L)2
E
∫ t∧σk

0
ψq(s)τ

∫ s

s−τ
J(v)dvds = qϕτR4. (A3.8)

Note that φ ∈ BC((−∞, 0];Rn) ∩ L2((−∞, 0];Rn). Lemma 2.2 shows φ ∈ BC((−∞, 0];Rn) ∩
Lp+q1−1((−∞, 0];Rn). Using the Fubini theorem and a substitution technique gives∫ t∧σk

0
ψq(s)H̄p+q1−1

j (s)ds

=

∫ t∧σk

0
ψq(s)

[ ∫ 0

−∞
|x(s+ θ)|p+q1−1µj(dθ)− µjϵ∗ |x(s)|p+q1−1

]
ds

=

∫ 0

−∞
µj(dθ)

∫ t∧σk

0
ψq(−θ)ψq(s+ θ)|x(s+ θ)|p+q1−1ds− µjϵ∗

∫ t∧σk

0
ψq(s)|x(s)|p+q1−1ds

≤
∫ 0

−∞
ψq(−θ)µj(dθ)

∫ t∧σk+θ

θ
ψq(s)|x(s)|p+q1−1ds− µjϵ∗

∫ t∧σk

0
ψq(s)|x(s)|p+q1−1ds

≤ µjq

∫ t∧σk

−∞
ψq(s)|x(s)|p+q1−1ds− µjϵ∗

∫ t∧σk

0
ψq(s)|x(s)|p+q1−1ds
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≤ µjϵ∗

∫ 0

−∞
ψq(s)|x(s)|p+q1−1ds ≤ µjϵ∗

∫ 0

−∞
|φ(s)|p+q1−1ds < C.

Similarly,∫ t∧σk

0
ψq(s)H̄q1+1

j (s)ds < C,

∫ t∧σk

0
ψq(s)H̄p

j (s)ds < C,

∫ t∧σk

0
ψq(s)H̄2

j (s)ds < C,

which implies

R2 < C. (A3.9)

Moreover, applying Lemma 2.5 and the Fubini theorem yields

|x(s)− x(s− τ)|2 ≤ 1

1− L

∣∣∣ ∫ s

s−τ
[f(xv, v) + u(x(v − τ), v)]dv +

∫ s

s−τ
g(xv, v)dB(v)

∣∣∣2
+L

∫ 0

−∞
|x(s+ θ)− x(s− τ + θ)|2µ3(dθ)

and ∫ t∧σk

0
ψq(s)

∫ 0

−∞
|x(s+ θ)− x(s− τ + θ)|2µ3(dθ)ds

=

∫ 0

−∞

∫ t∧σk+θ

θ
ψq(s− θ)|x(s)− x(s− τ)|2dsµ3(dθ)

≤
∫ 0

−∞
ψq(−θ)µ3(dθ)

∫ 0

−∞
ψq(s)|x(s)− x(s− τ)|2ds

+

∫ 0

−∞
ψq(−θ)µ3(dθ)

∫ t∧σk

0
ψq(s)|x(s)− x(s− τ)|2ds

≤ C + µ3q

∫ t∧σk

0
ψq(s)|x(s)− x(s− τ)|2ds.

Noting that µ30 = 1 and L ∈ (0, L∗), by Lemma 2.3, we always can choose q(1) ∈ (0, ϵ∗] sufficiently

small such that Lµ3q(1) < 1. Using the Hölder inequality and the Fubini theorem yields that for

any q ∈ (0, q(1)],

R3 ≤ C +
2

(1− L)(1− Lµ3q)

( κ2
4ρ1

+
4τ2κ4

ρ1(1− L)2

)
E
∫ t∧σk

0
ψq(s)

∫ s

s−τ
J(v)dvds.

By (3.8), κτ < (1− L)/4
√
2. Hence,

2

(1− L)2

( κ2
4ρ1

+
4τ2κ4

ρ1(1− L)2

)
<

3κ2

4ρ1(1− L)2
.

Then there exists q(2) ∈ (0, q(1)] sufficiently small such that for any q ∈ (0, q(2)],

2

(1− L)(1− Lµ3q)

( κ2
4ρ1

+
4τ2κ4

ρ1(1− L)2

)
≤ 3κ2

4ρ1(1− L)2
.

It then follows that for any q ∈ (0, q(2)],

R3 ≤ C +
3κ2

4ρ1(1− L)2
E
∫ t∧σk

0
ψq(s)

∫ s

s−τ
J(v)dvds = C +

3

4
R4. (A3.10)
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Inserting (A3.8)–(A3.10) into (A3.7) gives that for any q ∈ (0, q(2)],

Eψq(t ∧ σk)U(xt∧σk
, t ∧ σk)

≤ C −
(1
4
− qϕτ

)
E
∫ t∧σk

0
ψq(s)

∫ s

s−τ
J(v)dvds+ E

∫ t∧σk

0
ψq(s)

[
− a(|x(s)|2 + |x(s)|q1+1)

−ρ6|x(s)|p+q1−1 + qϕ(|x̃(s)|2 + |x̃(s)|q1+1)
]
ds.

Choosing q(3) ∈ (0, ϵ∗] sufficiently small such that q(3)ϕτ ≤ 1
4 , then for any q ∈ (0, q(2) ∧ q(3)],

Eψq(t ∧ σk)U(xt∧σk
, t ∧ σk) ≤ C + E

∫ t∧σk

0
ψq(s)

[
− a(|x(s)|2 + |x(s)|q1+1)− ρ6|x(s)|p+q1−1

+qϕ(|x̃(s)|2 + |x̃(s)|q1+1)
]
ds. (A3.11)

Step 3 : proof of (3.9) and (3.10). Let h(t, q) = ψq(t)(|x(t)|2 + |x(t)|q1+1) and h̃(t, q) =

ψq(t)(|x̃(t)|2 + |x̃(t)|q1+1). We derive from (A3.11) that for any q ∈ (0, q(2) ∧ q(3)],

Eh̃(t ∧ σk, q) ≤ C − aE
∫ t∧σk

0
h(s, q)ds+ qϕE

∫ t∧σk

0
h̃(s, q)ds− ρ6E

∫ t∧σk

0
ψq(s)|x(s)|p+q1−1ds.

By Lemma 2.5, we have

|x̃(s)|2 ≤ (1− L)−1|x(s)|2 + L

∫ 0

−∞
|x(s+ θ)|2µ3(dθ)

|x̃(s)|q1+1 ≤ (1− L)−q1 |x(s)|q1+1 + L

∫ 0

−∞
|x(s+ θ)|q1+1µ3(dθ), (A3.12)

which implies∫ t∧σk

0
h̃(s, q)ds =

∫ t∧σk

0
ψq(s)(|x̃(s)|2 + |x̃(s)|q1+1)ds

≤
∫ t∧σk

0
ψq(s)

{
(1− L)−q1(|x(s)|2 + |x(s)|q1+1)

+L

∫ 0

−∞
(|x(s+ θ)|2 + |x(s+ θ)|q1+1)µ3(dθ)

}
ds

= (1− L)−q1

∫ t∧σk

0
h(s, q)ds+ L

∫ t∧σk

0

∫ 0

−∞
ψq(s)(|x(s+ θ)|2 + |x(s+ θ)|q1+1)µ3(dθ)ds

≤ (1− L)−q1

∫ t∧σk

0
h(s, q)ds+ L

∫ t∧σk

0

∫ 0

−∞
ψq(−θ)h(s+ θ, q)µ3(dθ)ds. (A3.13)

Therefore, for any q ∈ (0, q(2) ∧ q(3)],

Eh̃(t ∧ σk, q) ≤ C − (a− qϕ(1− L)−q1)E
∫ t∧σk

0
h(s, q)ds

+qϕLE
∫ t∧σk

0

∫ 0

−∞
ψq(−θ)h(s+ θ, q)µ3(dθ)ds

−ρ6E
∫ t∧σk

0
ψq(s)|x(s)|p+q1−1ds. (A3.14)
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However,

LE
∫ t∧σk

0

∫ 0

−∞
ψq(−θ)h(s+ θ, q)µ3(dθ)ds

≤ LE
∫ 0

−∞
ψq(−θ)µ3(dθ)

∫ t∧σk+θ

θ
h(s, q)ds

≤ Lq

∫ 0

−∞
ψq(s)[|x(s)|2 + |x(s)|q1+1]ds+ LqE

∫ t∧σk

0
h(s, q)ds

≤ Lq

∫ 0

−∞
[|φ(s)|2 + |φ(s)|q1+1]ds+ LqE

∫ t∧σk

0
h(s, q)ds, (A3.15)

where Lq = L
∫ 0
−∞ ψq(−θ)µ3(dθ). Since φ ∈ BC((−∞, 0];Rn) ∩ L2((−∞, 0];Rn), by Lemma 2.2,∫ 0

−∞[|φ(s)|2 + |φ(s)|q1+1]ds < ∞. Noting that L ∈ (0, 1) and
∫ 0
−∞ ψq(−θ)µ3(dθ) → 1 as q → 0,

we can always choose q(4) ∈ (0, ϵ∗] sufficiently small such that Lq ∈ (0, 1) for any q ∈ (0, q(4)].

Therefore, from (A3.14) we see that for any q ∈ (0, q(2) ∧ q(3) ∧ q(4)],

Eh̃(t ∧ σk, q) ≤ C −
(
a− qϕ(1− L)−q1 − qϕLq

)
E
∫ t∧σk

0
h(s, q)ds− ρ6E

∫ t∧σk

0
ψq(s)|x(s)|p+q1−1ds.

Choosing q(5) ∈ (0, ϵ∗] sufficiently small such that q(5)ϕ(1− L)−q1 + q(5)ϕLq(5) < a, we get that for

any q ∈ (0, q(2) ∧ q(3) ∧ q(4) ∧ q(5)],

Eh̃(t∧σk, q) ≤ C−
[(
a−qϕ(1−L)−q1−qϕLq

)
∧ρ6

]
E
∫ t∧σk

0
ψq(s)

[
|x(s)|2+|x(s)|q1+1+|x(s)|p+q1−1

]
ds.

Noting that p > 2 and |x(s)|q1+1 ≤ |x(s)|2 + |x(s)|p+q1−1, then there exists q∗ ∈ (0, q(2) ∧ q(3) ∧
q(4) ∧ q(5)] such that

Eh̃(t ∧ σk, q∗) ≤ C, E
∫ t∧σk

0
ψq∗(s)

[
|x(s)|2 + |x(s)|p+q1−1

]
ds ≤ C.

Letting k → ∞, and then t→ ∞ gives

lim sup
t→∞

Eh̃(t, q∗) ≤ C, E
∫ ∞

0
ψq∗(s)

[
|x(s)|2 + |x(s)|p+q1−1

]
ds ≤ C. (A3.16)

Similar method to (A3.13) can give

Eh(t, q∗) = Eψq∗(t)(|x(t)|2 + |x(t)|q1+1) ≤ (1−L)−q1Eh̃(t, q∗) +LE
∫ 0

−∞
ψq∗(−θ)h(t+ θ, q∗)µ3(dθ).

Hence,

sup
−∞≤s≤t

Eh(s, q∗)

≤ (∥φ∥2 + ∥φ∥q1+1) ∨
(
(1− L)−q1 sup

0≤s≤t
Eh̃(s, q∗) + L

∫ 0

−∞
ψq∗(−θ)

(
sup
0≤s≤t

Eh(s+ θ, q∗)
)
µ3(dθ)

)
≤ ∥φ∥2 + ∥φ∥q1+1 + (1− L)−q1 sup

0≤s≤t
Eh̃(s, q∗) + L

∫ 0

−∞
ψq∗(−θ)

(
sup

−∞≤s≤t
Eh(s, q∗)

)
µ3(dθ)
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= ∥φ∥2 + ∥φ∥q1+1 + (1− L)−q1 sup
0≤s≤t

Eh̃(s, q∗) + Lq∗ sup
−∞≤s≤t

Eh(s, q∗), (A3.17)

which implies

sup
−∞≤s≤t

Eh(s, q∗) ≤ (1−Lq∗)
−1(∥φ∥2 + ∥φ∥q1+1) + (1−Lq∗)

−1(1−L)−q1 sup
0≤s≤t

Eh̃(s, q∗). (A3.18)

This, together with (A3.16), leads to lim supt→∞ Eh(t, q∗) ≤ C. This implies E[|x(t)|2+|x(t)|q1+1] ≤
Cψ−q∗(t) for all t ≥ 0. Therefore,

lim sup
t→∞

lnE[|x(t)|2 + |x(t)|q1+1]

lnψ(t)
≤ −q∗. (A3.19)

Noting that |x(t)|p̂ ≤ |x(t)|2+ |x(t)|p+q1−1 for p̂ ∈ [2, p+ q1− 1] and |x(t)|p̂ ≤ |x(t)|2+ |x(t)|q1+1 for

p̂ ∈ [2, q1+1], the required assertion (3.9) and (3.10) follows from (A3.16) and (A3.19) immediately.

A4. Proof of Theorem 3.3.

Let us divide this proof into two steps.

Step 1 : Estimation of E
(
sup0≤t<∞ ψq∗(t)|x(t)|2

)
. For q∗ given in Theorem 3.2 and any T > 0,

applying the Itô formula yields

E
(

sup
0≤t≤T∧σk

ψq∗(t)|x̃(t)|2
)

≤ |x̃(0)|2 + E sup
0≤t≤T∧σk

∫ t

0
ψq∗(s)

{
q∗ϕ|x̃(s)|2 + 2x̃

′
(s)[f(xs, s) + u(x(s− τ), s)]

+|g(xs, s)|2
}
ds+ E

(
sup

0≤t≤T∧σk

Γt

)
≤ |x̃(0)|2 + E

∫ T∧σk

0
ψq∗(s)

{
q∗ϕ|x̃(s)|2 + 2|x̃(s)||f(xs, s)|+ 2|x̃(s)||u(x(s− τ), s)|

+|g(xs, s)|2
}
ds+ E

(
sup

0≤t≤T∧σk

Γt

)
, (A4.1)

where σk is given in (A1.7), ϕ = sups≥0[ψ
′
(s)/ψ(s)] < ∞ and Γt = 2

∫ t
0 ψ

q∗(s)x̃T (s)g(xs, s)dB(s).

The Burkholder-David-Gundy inequality gives

E
(

sup
0≤t≤T∧σk

Γt

)
≤ 12E

(∫ T∧σk

0
ψ2q∗(s)|x̃T (s)g(xs, s)|2ds

) 1
2

≤ 12E
[(

sup
0≤s≤T∧σk

ψq∗(s)|x̃(s)|2
) 1

2
(∫ T∧σk

0
ψq∗(s)|g(xs, s)|2ds

) 1
2
]

≤ 1

2
E
(

sup
0≤s≤T∧σk

ψq∗(s)|x̃(s)|2
)
+ CE

∫ T∧σk

0
ψq∗(s)|g(xs, s)|2ds.

Substituting this into (A4.1) and using (A3.12) yields

E
(

sup
0≤t≤T∧σk

ψq∗(t)|x̃(t)|2
)

≤ |x̃(0)|2 + CE
∫ T∧σk

0
ψq∗(s)

{
|x̃(s)|2 + |x̃(s)||f(xs, s)|+ |x̃(s)||u(x(s− τ), s)|
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+|g(xs, s)|2
}
ds

≤ |x̃(0)|2 + CE
∫ T∧σk

0
ψq∗(s)

{
|x(s)|2 +

∫ ∞

0
|x(s+ θ)|2µ3(dθ)

+|x̃(s)||f(xs, s)|+ |x̃(s)||u(x(s− τ), s)|+ |g(xs, s)|2
}
ds. (A4.2)

Note that (q1 + 1) ∨ (2q2) ≤ p + q1 − 1 and
(
|x(s)|q1+1 ∨ |x(s)|2q2

)
≤ |x(s)|2 + |x(s)|p+q1−1. By

Assumption 2.1, we infer from the Young inequality and (A3.12) that

|x̃(s)||f(xs, s)| ≤ C
(∫ ∞

0
|x(s+ θ)|q1+1µ1(dθ) + |x(s)|q1+1 +

∫ ∞

0
|x(s+ θ)|2µ1(dθ)

+|x(s)|2 + |x̃(s)|q1+1 + |x̃(s)|2
)

≤ C
(∫ ∞

0
|x(s+ θ)|p+q1−1µ1(dθ) + |x(s)|p+q1−1 +

∫ ∞

0
|x(s+ θ)|2µ1(dθ)

+|x(s)|2 +
∫ ∞

0
|x(s+ θ)|p+q1−1µ3(dθ) +

∫ ∞

0
|x(s+ θ)|2µ3(dθ)

)
(A4.3)

and

|g(xs, s)|2 ≤ C
(∫ ∞

0
|x(s+ θ)|2q2µ2(dθ) + |x(s)|2q2 +

∫ ∞

0
|x(s+ θ)|2µ2(dθ)

+|x(s)|2 + |x̃(s)|2q2 + |x̃(s)|2
)

≤ C
(∫ ∞

0
|x(s+ θ)|p+q1−1µ2(dθ) + |x(s)|p+q1−1 +

∫ ∞

0
|x(s+ θ)|2µ2(dθ)

+|x(s)|2 + |x̃(s)|p+q1−1 + |x̃(s)|2
)

≤ C
(∫ ∞

0
|x(s+ θ)|p+q1−1µ2(dθ) + |x(s)|p+q1−1 +

∫ ∞

0
|x(s+ θ)|2µ2(dθ)

+|x(s)|2 +
∫ ∞

0
|x(s+ θ)|p+q1−1µ3(dθ) +

∫ ∞

0
|x(s+ θ)|2µ3(dθ)

)
. (A4.4)

Similarly, it follows from Assumption 3.1, the Young inequality and (A3.12) that

|x̃(s)||u(x(s− τ), s)| ≤ C(|x̃(s)|2 + |x(s− τ)|2)

≤ C
(
|x(s)|2 +

∫ ∞

0
|x(s+ θ)|2µ3(dθ) + |x(s− τ)|2

)
. (A4.5)

Substituting (A4.3)–(A4.5) into (A4.2) and using (3.9) yields

E
(

sup
0≤t≤T∧σk

ψq∗(t)|x̃(t)|2
)

≤ C + CE
∫ T∧σk

0
ψq∗(s)

{ 3∑
j=1

∫ ∞

0

[
|x(s+ θ)|p+q1−1 + |x(s+ θ)|2

]
µj(dθ)

+|x(s− τ)|2
}
ds. (A4.6)

Note that φ ∈ BC((−∞, 0];Rn) ∩ L2((−∞, 0];Rn). Similar method to (A3.15) can give

CE
∫ T∧σk

0
ψq∗(s)

{ 3∑
j=1

∫ ∞

0

[
|x(s+ θ)|p+q1−1 + |x(s+ θ)|2

]
µj(dθ)

}
ds
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≤ C + CE
∫ T∧σk

0
ψq∗(s)[|x(s)|p+q1−1 + |x(s)|2]ds.

Moreover,

CE
∫ T∧σk

0
ψq∗(s)|x(s− τ)|2ds ≤ CE

∫ T∧σk

0
ψq∗(τ)ψq∗(s− τ)|x(s− τ)|2ds

≤ C + CE
∫ T∧σk

0
ψq∗(s)|x(s)|2ds.

Therefore, it follows from (3.9) and (A4.6) that

E
(

sup
0≤t≤T∧σk

ψq∗(t)|x̃(t)|2
)
≤ C + CE

∫ ∞

0
ψq∗(s)[|x(s)|p+q1−1 + |x(s)|2]ds ≤ C.

Similar the way to derive (A3.17) and (A3.18) can give

E
(

sup
0≤t≤T∧σk

ψq∗(t)|x(t)|2
)
≤ C.

Letting k → ∞, and then T → ∞ gives

E
(

sup
0≤t<∞

ψq∗(t)|x(t)|2
)
≤ C. (A4.7)

Step 2 : Almost sure stability. It follows from (A4.7) that

sup
0≤t<∞

ψq∗(t)|x(t)|2 <∞ a.s..

Therefore,

lim sup
t→∞

q∗ lnψ(t) + 2 ln |x(t)|
lnψ(t)

= 0 a.s.,

which implies

lim sup
t→∞

ln |x(t)|
lnψ(t)

= −q∗/2 a.s..

That is, the controlled system (1.2) is ψ–type stable. This completes the proof.
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