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Abstract: Polymers are sustainable and renewable materials that are in high demand due to their ex-
cellent properties. Natural and synthetic polymers with high flexibility, good biocompatibility, good
degradation rate, and stiffness are widely used for various applications, such as tissue engineering,
drug delivery, and microfluidic chip fabrication. Indeed, recent advances in microfluidic technology
allow the fabrication of polymeric matrix to construct microfluidic scaffolds for tissue engineering
and to set up a well-controlled microenvironment for manipulating fluids and particles. In this review,
polymers as materials for the fabrication of microfluidic chips have been highlighted. Successful
models exploiting polymers in microfluidic devices to generate uniform particles as drug vehicles or
artificial cells have been also discussed. Additionally, using polymers as bioink for 3D printing or as
a matrix to functionalize the sensing surface in microfluidic devices has also been mentioned. The
rapid progress made in the combination of polymers and microfluidics presents a low-cost, repro-
ducible, and scalable approach for a promising future in the manufacturing of biomimetic scaffolds for
tissue engineering.

Keywords: polymers; microfluidics; lab-on-chip; biomedical engineering; drug carrier; artificial cell;
3D bioprinting

1. Introduction

Polymeric biomaterials have been used to provide artificial matrices that can mimic
the biological cell. This requires appropriate biophysical and biochemical properties, such
as certain topography, stiffness, signaling, and growth factors [1]. Polymers are commonly
used in tissue engineering scaffolds and wound dressing due to their ability to enhance
cellular regeneration. Further, drugs are encapsulated in the polymeric particles to generate
drug vehicles that can improve drug uptake into the disease sites and bioavailability. How-
ever, the physical and self-assembled properties of polymers, such as charges, composition,
biodegradation, shape, size, and surface chemistry, play a dominant role in determining
polymer behavior within biological environments [2]. Further, these interactions are di-
rected by the physicochemical properties of the polymers in micro or nanostructures. The
developed polymeric models are able to navigate the body, infect and transform cells, or
repair damaged cells. The incorporation of cells into polymeric matrix can be performed
by cell implantation into readily prepared polymer matrix. This strategy has a significant
drawback, namely the lack of good integration between cells and polymer matrix. Another
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alternative strategy relies on the fabrication the polymer matrix with encapsulated cells,
which allows development of complex cellular microenvironments. New techniques, such
as microfluidics, 3D printing, and electrospinning, enable direct cell integration into the
matrix to mimic the matrix of desired tissue [1].

Microfluidics technology, also known as lab-on-chip technology, has been used as
a platform for biomedical engineering applications [3]. Generally, a microfluidic chip
is network of microchannels incorporated into the microenvironment by several holes
throughout the chip. Microfluidics allow the integration of biological and chemical pro-
cesses on a single platform. These microdevices allow controlling of the flow behavior of
small volumes of fluids in micro-chambers in the range of tens to hundreds of micrometers.
Microfluidics are widely used to synthesize polymeric particles for various applications
involving drug carrier vehicles, as well as bioarchitecture models mimicking cell-like
structures or extracellular matrix (ECM). Furthermore, recent studies have demonstrated
the possibility of using microfluidic chips as an artificial cell chassis. Depending on the
application, glass or polymer can be used to manufacture microfluidic devices and several
parameters should be taken into consideration in the fabrication of a microfluidic chip, such
as the compatibility of constructed materials with various solvents and channel geome-
tries [4–7]. Polymer-based chips are usually selected due to their cost efficiency, suitable
optical transparency, elasticity, and appropriate mechanical and chemical properties [8].
Several polymers, such as polydimethylsiloxane (PDMS) and poly(methyl methacrylate)
(PMMA), are employed to fabricate microfluidic devices [3]. However, polymers have some
limitations regarding their properties, including operation temperature range limitations,
higher autofluorescence, and the limited availability of surface modification techniques [9].
The fabrication of polymer microfluidic devices is relatively simple, and hazardous etching
reagents are not needed to create the polymer microstructure [10].

It is common to use natural polymers, such as polysaccharides and bacterial polyesters,
to generate polymer-based therapeutics, while it is common to use synthetic polymers as
building blocks for microfluidic devices. Figure 1 shows different applications of utilizing
polymers and microfluidics. Biodegradable and bioreducible polymers that are used for
polymeric drug/gene delivery systems are rapidly emerging in pharmaceutical fields.
Combining therapeutic agents with polymers can improve their safety and efficacy by
controlling the rate, time, and preferentially delivers the therapeutic agents to the target site
in the body [11]. Combining microfluidic devices and polymers presents unique advantages
for the development of efficient carriers of a wide range of drugs and genetic materials
(e.g., polymersomes). Microfluidic technology enables the production of highly stable,
uniform, monodispersed particles with higher encapsulation efficiency [5]. Furthermore,
many studies showed the possibility of using polymer-based bioinks in 3D printing for
applications in tissue engineering and regenerative medicine. There are several natural
(e.g., alginate, collagen, agarose) and synthetic (e.g., Pluronic and poly(ethylene glycol)
(PEG)) polymeric biomaterials that are used as bioinks for 3D printing based on their
ability to support cell growth, mechanical properties, and printability. Combining of cells,
biomedical polymers and biosignals is the basic requirement to develop 3D tissues or
organ structures [12]. The fabrication of vessel-like microfluidic channels is an example of
organ fabrication and thick tissue. Besides supporting the mechanical integrity, the printed
3D microfluidic network enables fluid transport. The microfluidic architecture allows
media transport, including nutrients, oxygen, water, and removal of the waste in the same
manner [13]. Recent developments in droplet microfluidics allowed the creation of versatile
vesicles with a structure that resembles the biological membrane. These artificial cell-like
structures with well-defined size enable the implementation of various biological reactions
within a compartment separated by a membrane that mimics a natural cell membrane [3].
In this perspective, this review deals with polymers used to either fabricate microfluidic
devices or create functional particle/matrix models using polymers and microfluidic chips.
The review first provides an overview of the different types of polymers. Then, it highlights
some of the recent advances in the design of microfluidics and polymers for various
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biomedical engineering applications, including drug delivery, 3D bioprinting, and artificial
cell-like structures.
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Figure 1. Utilizing of microfluidic chips and polymers for various applications (Created with
Biorender.com, accessed on 12 October 2022).

2. Polymers Used in Microfluidic Devices

A single polymer unit may be composed of hundreds or millions of monomers. They
have one of the four basic polymer structures: linear, branched, cross-linked, or networked
(Figure 2). The two types of polymers are natural and synthetic. Natural polymers can
be extracted from biological systems such as plants, algae, microorganisms, and animals,
which have a similar ECM structure to native tissues. Synthetic polymers are similar to
natural polymers, but they are much cheaper, can be produced at large scale, and have
long shelf life compared with natural polymers. As such, generally, they present good
cellular attachment, which improves the cellular behaviors and prevents immunological
reactions [1,14].
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Choosing the right material is the first and most critical step in designing a successful
microfluidic device. A wide range of constraints and requirements dictates the selection of
the material for a specific component. The design of the device, the compatibility of the
material with the chemicals, as well as the applied temperature and pressure are crucial
considerations in material selection. Additionally, the final application of the device is
an essential consideration. For example, devices intended for in vivo applications in tis-
sue engineering must be nontoxic, exhibit a slow and predictable degradation rate, have
nontoxic and safe degradation products, and potentially capable of mimicking certain
physical and chemical properties of the native ECM or of supporting other agents that
play such roles. The architecture of the device can also influence the choice of materials.
For example, in devices that contain microfluidic systems, the materials have to be me-
chanically robust but have a controlled degree of flexibility [15,16]. The material also has
to be compatible with microfabrication techniques, easily processed in mild conditions,
and cheap to manufacture, among others [17]. Polymers are classified into two major
groups: biodegradable and biostable polymers. These two types of polymers are commonly
used as scaffolds or bioactive coatings in biomedical applications [8,15]. The next section
focuses on these two classes of polymers for the manufacture of microfluidic devices and
their biomedical applications.

2.1. Biodegradable Polymers

Sustainable polymers from various renewable resources can be directly obtained from
biomass (proteins and polysaccharides), or through chemical modifications of natural
polymers [18]. However, there are many sources of natural and synthetic biodegradable
polymers. Natural polymers are derived from natural raw materials and available in
large quantities while synthetic polymers are synthesized by the chemical polymerization
of bio-monomers.

2.1.1. Natural Biodegradable Polymers

In this section, we distinguish between natural polymers, which are produced outside
the human body (xenobiotic polymers), and proteins, which are native to the human body,
such as the ECM proteins. The use of natural biopolymers in microfluidics provides many
advantages, such as surface chemistry biocompatibility and having the same mechanical
properties of the native proteins of interest [16,19].

Natural polymers, such as chitosan, alginate, and gelatin, are also biologically derived
and biodegradable polymers. They are used in the manufacturing of biodevices that are
intended to interact with the biological systems of the human body. The crosslinking ability
of these natural polymers, which is induced by physical and chemical stimuli, makes
them ideal for the preparation of microgels for microfluidic devices. The two natural
biopolymers, alginate and gelatin, were used as substrates to make two types of hydrogel-
based microfluidics. Subsequently, the fabricated hydrogel microchannels can be used as
platforms to provide 3D cell culture environments for mammalian cells: fibroblasts and
vascular endothelial cells. The developed enclosed microchannel models are simple and
reproducible and do not require complicated operations [16,19].

One class of natural biomaterials that is a good candidate for microfluidic devices is
silk fibroin (SF) [20]. SF protein, originally found in the silkworm Bombyx mori, is a high-
molecular-weight protein that primarily consists of hydrophobic residues. This protein is
approved by Food and Drug Administration (FDA) for many medical applications, such
as drug delivery and tissue engineering. SF can be easily processed to form hydrogels,
films, and nanofiber mats under mild conditions [21]. In recent years, SF has also been used
to fabricate microfluidic devices due to its excellent biocompatibility, robust mechanical
properties, and slow proteolytic degradation rate [16,20]. The solubility and mechanical
properties of SF materials are linked to its secondary structure. Whereas self-assembled
β-sheet structures are responsible for the mechanical stability and water insolubility of SF,
the amorphous regions, including random coil, α helix, and β turn structures, contribute
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to the elasticity and solubility of the biomaterial. Thus, SF-based microfluidic fabrication
strategies allow the rapid and scalable production of devices without the need for harsh
processing conditions that require cytotoxic reagents. Mao et al. used SF and chitosan
to construct porous SF–CS scaffolds with predefined microfluidic channels. The gener-
ated model showed structural properties suitable for seeding and growth of hepatic cells.
Mass transport and uniform cell distribution within the 3D scaffold were successfully
achieved [19].

In addition to all the above-mentioned advantages of natural polymers, the inclusion
of natural ECM proteins into microfluidic devices allows the reproduction native cell–
biomaterial interactions in vitro [22]. The use of ECM proteins is crucial in controlling
cell function overall via other physicochemical mechanisms such as specific cell binding
domain sequences. Proteins, such as fibronectin, vitronectin, and collagen I, contain the
amino acid sequence of arginine–glycine–aspartic acid (RGD), which supports the adhesion
of cells and to control stem cell differentiation. For example, Arik et al. reported the
fabrication of a collagen-I-based membrane incorporated in an organ-on-chip device [23].
The membrane demonstrated permeability, as well as the adhesion of both endothelial
and epithelial cells. Moreover, they characterized the degradation and remodeling of the
basement membrane by a protease. Natural proteins offer an environment that more closely
mimics that of the body and more realistically mimics the cell–ECM interactions, which
are crucial for tissue engineering. However, these biomaterials have a complex structural
composition that prevents complete control over their composition and other factors, such
as molecular weight, immune response, degradation, and mechanical properties. As
an alternative, scientists have focused on the development and use of synthetic polymers,
which have more tunable properties [22].

2.1.2. Synthetic Biodegradable Polymers

Synthetic polymers were proposed as ideal candidates for the fabrication of biodegrad-
able microstructures, including microfluidic biomaterials [16,24]. Poly(glycolic acid) (PGA),
poly(lactic acid) (PLA), and their copolymer poly(lactic acid-co-glycolic acid) (PLGA), be-
long to the linear aliphatic polyesters family [25] (Figure 3). This polymer family is one of
the most widely used in tissue engineering and drug delivery [25,26]. These polymers have
several advantages, such as low cost, ease of processing, and well-characterized biological
behavior. These polymers (PLA, PGA, and PLGAs) are among the few synthetic polymers
approved by the U.S. FDA for certain human clinical applications [26]. These polymers
degrade through the hydrolysis of the ester bonds [27]. Although PGA and PLA belong
to the same family, they also display distinct properties. For instance, because of its very
hydrophilic nature, PGA rapidly degrades in aqueous solutions. However, PGA and PLA
show the same behavior in vivo: they lose mechanical integrity in a period between two and
four weeks [28]. Conversely, PLA contains a methyl group, which renders the chains more
hydrophobic and hence reduces the affinity to water, and displays a slower hydrolysis rate
(months to years) [28]. This class of biodegradable polymers is suitable for microfluidics
because of the wide range of tunable properties [27]. They can be modulated by adjusting
the lactide-to-glycolide ratio. The physical properties of the copolymer PLGA are defined
by the properties of both pure PGA and PLA [25]. The presence of PLA makes it more hy-
drophobic than PGA. Hence, lactide-rich PLGA copolymers are less hydrophilic and more
slowly degrade. Additionally, PLA exhibits relatively a high glass transition temperature
(Tg = 50–80 ◦C) and melting point (Tm = 173–178 ◦C). PLGA blends of various copolymer
ratios exhibit a reduced phase transition temperature (Tg, PLGA75/25 = 54 ◦C) and melting
point (Tm, PLGA75/25 = 80 ◦C) [29]. Poly(caprolactone) (PCL) is another example of
an aliphatic polyester used in microfluidics. PCL demonstrates advantageous properties
for replica molding strategies, such as a low melting point (Tm = 57 ◦C) and low glass-
transition temperature (Tg = −62 ◦C) [30]. PCL can be degraded by micro-organisms as
well as by the hydrolysis of its ester linkage in physiological conditions [31]. However,
PCL materials have a substantially slower biodegradation rate than PLA and PGA, mak-
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ing it suitable for the use in long-term implantable systems. Biodegradable cell-support
scaffolds play an important role in the growth of engineered tissue and the delivery of
biologically active agents. Therefore, the concept of biodegradable microfluidic devices
formed by various biodegradable polymers has attracted considerable research attention.
For example, microstructured PLGA films were used to construct a high-resolution and
high-precision 3D device. The developed device allows diffusion distance reduction in
cell-seeded scaffolds with convective transport [32]. PLA microchannels have been widely
generated by 3D printing. Kadimisetty et al. developed a microfluidic immunoarray using
PLA and a 3D printer. The fabricated device was low cost and could sensitively detect
prostate cancer biomarker proteins [33].
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Poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) (APS) is another biodegrad-
able elastomeric polymer used to construct microfluidic scaffolds. The simple microchannel
network design exhibited a very low degradation rate while retaining the elastomeric
properties required for tissue scaffold applications [24].

2.2. Biostable Polymers

PDMS is a mineral–organic polymer structurally composed of silane-oxygen back-
bones covered with alkyl groups. Depending on the size of the monomer chain, non-
cross-linked PDMS may be almost liquid (low amount of n monomer) or semi-solid (high
amount of n monomer) [34]. The high level of viscoelasticity displayed by the polymer
chain is due to the siloxane bonds in the polymer structure. After cross-linking with
a curing agent, PDMS becomes a hydrophobic elastomer [34]. One of the main reasons for
the success of PDMS in microfluidics is the ease of PDMS device fabrication, which also
allows mass production. Among many other methods, PDMS microchips can be fabricated
through microscale molding processes [35]. For example, a silicon wafer with patterns
can be used as a mold master. Prepolymer PDMS is poured into the mold master. Then,
cured PDMS is peeled off from the master to be pasted on a flat plate, i.e., PMMA, glass,
etc. [34]. The flat support should be drilled in advance to provide access ports for the
introduction of reagents and samples. PDMS can precisely replicate structures down to the
submicron size [36]. Due to the favorable optical properties of PDMS (almost no absorbance
in the visible wavelength range), fluorescent dyes are widely used for the detection and
quantification of molecules in most biochemical analyses. In addition, PDMS is transparent,
biocompatible, nontoxic, and displays high gas permittivity, so has been traditionally used
as a biomaterial in catheters, insulation for pacemakers, and ear and nose implants [10].
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The combination of its elastic properties, easy processability, and the other proper-
ties mentioned above make PDMS an ideal candidate for use in microfluidic devices for
biomedical and cell applications.

Many studies have been performed to further examine the compatibility of PDMS with
both microfluidic technology and biomedical applications [37]. In terms of microfluidic
technology, the effects of the structure and surface of PDMS in widely used microfluidics
methods, such as spin coating and chemical immersion, on different liquid chemicals have
been studied. Successful spin-coating of PDMS depends on the crosslinking ratio; increased
amounts of crosslinker agent in the formulation decrease film thickness. Additionally,
whereas chemical immersion (solvents such as alcohol, toluene, acetone, etc.) does not
result in major changes in the surface hydrophilicity of PDMS, macrotexture distortion and
destructions are observed with strong acids (hydrofluoric, nitric, sulfuric, and hydrofluoric
acids) and bases (potassium hydroxide). For biomedical applications, the effect of oxygen
plasma and sterilization and the exposure to tissue culture media was also explored.
Oxygen plasma exposure increases PDMS surface hydrophilicity, whereas a following
exposure to air leads to hydrophobic recovery. UV and alcohol sterilization do not affect
the PDMS surface microtexture, element concentration, hydrophilicity, or mechanical
properties. Finally, immersion in tissue culture media increases the surface concentration
of oxygen relative to silicon [38].

Despite all these advantages, the use of PDMS is limited due to challenges encountered
in microfluidics. For example, incomplete curing of PDMS leaves uncrosslinked oligomers
within the material, which can leach out and contaminate the culture medium. Other
problems, such as incompatibility with some organic solvents, water evaporation, channel
deformation, and adsorption of biomolecules onto channel walls, present severe limitations
to the use of PDMS for microfluidics applications [39].

Thermoplastics

Thermoplastics are plastic polymer materials that have emerged as a commercially
viable material. Their use has recently increased, being widely applied to fabricate mi-
crofluidics platforms for biomedical applications. The most commonly used thermoplastics
are PMMA, polycarbonate (PC), polystyrene (PS), polyvinyl chloride (PVC), Cyclo-olefin-
copolymer (COC), and Cyclo-olefinpolymer (COP) [39,40] (Figure 4).
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Figure 4. Most used thermostable polymers structures for microfluidic chips.

Because of their linear structure, their thermoplastic rigidity resists temperature and
pressure changes. The properties of the most common thermoplastics used for chips
fabrication are summarized in Table 1. Thermoplastic-based materials have good physical
and chemical characteristics, such as high chemical and mechanical stability; low water-
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absorption capacity; acid/base resistivity; and are suitable for mass production at low
cost. In term of fabrication, thermoplastics can be softened after exposure to heat at their
transition temperature (Tg), making them processable around this temperature. During
cooling, the softened polymer hardens, and it takes the shape of the container or mold,
without any chemical change. They can be reshaped multiple times by reheating, which is
important for the molding and microfluidics fabrication process [41].

Table 1. Properties of the most used biocompatible thermoplastics in the microfluidic field.

Thermoplastics
Young’s

Modulus
(Gpa)

Tg
(◦C) Tm (◦C)

Solubility
Parameter
δ (MPa)1/2

Water Ad-
sorption

(%)

O2
Permeability

(×10−13 cm3 .cm
cm −2 s−1 Pa−1)

Transparency Auto-
fluorescence Study

Polymethylmethacrylate
(PMMA) 2.4–3.4 105 250–260 20.1 0.1–0.4 0.1 Transparent Low [42]

Polyethylene
terephthalate

(PET)
2–2.7 70 255 20.5 0.16 0.03 Transparent Medium [43]

Polypropylene
(PP) 1.5–2 −20 160 16.3 0.01–0.1 1.7

Both opaque
and

transparent
Medium [41,44]

Polystyrene
(PS) 3–3.5 95 240 18.7 0.02–0.15 2 Transparent High [45]

Polycarbonate
(PC) 2.6 145 260–270 19.4 0.23 1 Transparent High [41]

Polyvinyl chloride
(PVC) 2.4–4.1 80 100–260 19.4 0.04–0.4 0.04 Transparent High [46]

Polyamide
(Nylon) 2.5 47–60 190–350 28 1.6–1.9 0.03 Transparent High [47]

Polytetrafluoroethylene
(PTFE) 0.4 115 326 12.6 0.005–0.01 3 Transparent High [48]

Polyetheretherketone
(PEEK) 4–24 143 343 21.9 0.1–0.5 0.1 Opaque N/A [49]

One of the first properties to consider in cell biology is biocompatibility. According to
Table 1, most of the thermoplastics are biocompatible. However, for long-term applications,
some of the materials can be problematic. For example, polycarbonates can be experience
surface erosion during in vivo applications. In addition, bisphenol A (BPA), which is
hazardous in food contact situations, might be released during hydrolysis.

PVC can release toxic gases during manufacturing, and nylon is a heat-sensitive mate-
rial. Resistance to solvents is also a main criterion that must be considered for microdevice
fabrication and biomedical applications (sterility). PS is widely used in molecular and
cell biology studies due to its biocompatibility and its high resistivity to alcohols, polar
solvents, and alkalis [50]. PMMA is affected by ethanol, isopropyl alcohol, acetone, and
other important solvents used in microfabrication and sterilization [51]. When working
with cell cultures, low water absorption is beneficial because the cells consume more oxygen
from water, which can be limited by the absorption of water onto the polymer surface.

The optical properties of the selected material (e.g., transparency and autofluorescence)
are crucial. Consequently, PMMA, polyethylene terephthalate (PET), and polypropylene
(PP) are less suitable for applications that require further reactions inside the microfluidic
devices under a microscope. Additionally, PC displays high autofluorescence, so PC is
difficult to use when working with fluorescently labelled cells or materials. In contrast, PS
has high transparency, and the surface of PS is suitable for long-term cell studies [41]. Table 2
highlights some studies that used polymers as a chassis or to functionalize sensing surface.
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Table 2. Some studies using polymers for microfluidics devices for various biological applications.

Polymer Cell Type Application Study

Polydimethylsiloxane (PDMS)
Alveolar epithelial cells,

Macrophages, Mycobacter-
ium tuberculosis

Rapid and uncontrolled bacterial growth
in the mammalian cells can cause

a surfactant deficiency in the lung-on-chip
infection model.

[52]

PDMS,
Carboxymethylated cellulose

nanofibrils (CNF)
HCT 116 colon cancer cell

The functionalized chip was able to
capture the cancer cells from the whole

blood with >97% efficiency which may use
as rapid diagnostic tool.

[53]

PDMS,
Dimethylallylamine (DMAA) Escherichia coli

The encapsulated bacteria with
a membrane with a selective permeability

of tetracycline cultured on the PDMS
composition and functionalized with

DMAA inhibit the bacterial growth which
can be used as a diagnostic tool to
evaluate the bacterial resistance.

[54]

PDMS microchannel layer and
PDMS membrane

Human mesenchymal stem cells
(hMSCs)

The two layer-microfluidic chips with
three different stretching modes (uniaxial,
radial, and gradient) showed different cell
responses which may enhance the study

of cells on biomaterials under various
stretching stimuli.

[55]

Combination between PDMS and
polymer substrate using

a PrimeCoat-Epoxy adhesive
layer by selective stamp bonding

Human lung epithelial cells
The cells cultured inside the device

showed a similar viability comparing to
the conventional cell culture technique.

[56]

Rapidly Integrated Debubbler
(RID) from PMMA

human umbilical vein
endothelial cells

The RID module showed a potential
method to prevent the bubble entry into

the microfluidics which may lead to
device delamination and cell damage.

[57]

PDMS champers separated by
thin layer of polyester

(PE) membrane

Primary human small airway
epithelial cells

The microfluidics airway system showed
a highly controllable and readily accessible

physiologic pulmonary environments
tailored for lung epithelial cells.

[58]

Combination of PDMS
hydrophilic surface treatment and
vacuum filling system equipped

with bubble trap.

Mouse pancreatic islets

The system showed normal cell viability
and morphology, normal insulin secretion,

and normal intracellular
calcium signaling.

[59]

PDMS Endothelial cells

The actin filaments alignments directions
of the cells cultured in microfluidics

channels was significantly higher
compering to the cells cultured in the

static condition.

[60]

PDMS-glass Human umbilical vein endothelial
cells (VECs)

The synergistic effect of wall shear stress
(WSS) and adenosinetriphosphate (ATP)

signals played a vital role in the VEC Ca2+
signal transduction on the

microfluidic device.

[61]

Photopolymer and chitosan Hepatic oval cells (HOCs)

Electrochemical sensor is developed to
rare cancer cells. Photopolymer is used to

construct a 3D-printed continuous flow
system and a chitosan film is served as

a scaffold for the immobilization of
anti-OV6-antibodies.

[62]

3. Polymers as Drug Carriers

Generally, a drug is any bioactive molecule, including medicine, small molecules,
and proteins, e.g., growth factors and nucleic acids [63]. Different polymers have been
used in drug delivery approaches: i. a drug can be directly incorporated onto scaffolds
throughout the casting process [64], ii. bulk hydrogels [65,66], iii. drug reversibly and
covalently conjugated to the matrix [67], iv. micro- or nanodrug particles spread on the
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surface [68–70]. However, all of these methods have advantages and disadvantages in terms
of drug stability [63]. When manufacturing new drug delivery system, different factors
should be taken into consideration for instance cost, efficacy, and properties differences.
Advances in manufacturing techniques may produce more complex drug carrier designs
to allow specific drug release targeted to a particular disease [71]. Using a microfluidic
platform approach can allow generation of drug carriers that can meet the sophisticated
requirements of biomedical applications [72] (Figure 5).

Polymers 2022, 14, x FOR PEER REVIEW 11 of 20 
 

 

to allow specific drug release targeted to a particular disease [71]. Using a microfluidic 

platform approach can allow generation of drug carriers that can meet the sophisticated 

requirements of biomedical applications [72] (Figure 5). 

 

Figure 5. A scheme of different approaches of using polymer for drug delivery. Microfluidics con-

trol synthesis of various drug delivery systems. Subsequently, microfluidic chips can be used for 

cell culture and drug toxicity screening (Created with Biorender.com, accessed on 12 October 2022). 

Drug delivery devices have potential to be used for various clinical applications, such 

as tissue regeneration, diabetes, oncology, and infectious diseases. Moradikhah et al. used 

a cross-junction microfluidic device to prepare alendronate-loaded chitosan nanoparti-

cles. They showed that this system substantially enhanced the osteogenic differentiation 

of human adipose MSCs, so can be a suitable component of bone tissue engineering scaf-

folds [73]. Mora-Boza et al. illustrated that their fabricated hMSC-laden microcarriers 

based on in situ ionotropic gelation of water-soluble chitosan in a microfluidic device us-

ing antioxidant glycerlphytate and tripolyphosphate maintained cell viability over time 

and increased the secretion of paracrine factor [74]. An example of oral delivery drug was 

examined by Jaradat et al.; insulin was encapsulated into various PLGA nanoparticles 

prepared by the microfluidic technique. They found that the mucopenetrating heparin 

sulfate-conjugated PLGA nanoparticles enhance insulin permeability in a triple-cultured 

intestinal model compared with unmodified and free insulin nanoparticles [75]. Another 

model developed by Damiati et al. used PLGA to generate indomethacin-loaded PLGA 

microparticles employing a 3D flow-focusing microfluidic chip. This model not only suc-

cessfully incorporates indomethacin, which is a poorly water-soluble drug and nonsteroi-

dal anti-inflammatory drug, but the authors also developed an artificial neural network 

as in silico tool to predict size microparticles [76,77]. 

An example of using polymers in drug delivery in cancer is biodegradable polymeric 

nanocapsules. Oxaliplatin, irinotecan, and 5-fluorouracil chemotherapy drugs were en-

capsulated and carried on a coaxial glass capillary microfluidic device, which the potential 

for targeting tumors as the drug release could be controlled [78]. Hong et al. reported that 

the synthesized amphiphilic tri-chain tricarballylic acid-poly (ε-caprolactone)-methoxy-

polyethylene glycol (Tri-CL-mPEG) and enzyme-targeted tetra-chain pentaerythritol-

poly (ε-caprolactone)-polypeptide (PET-CL-P) using microfluidics continuous 

Figure 5. A scheme of different approaches of using polymer for drug delivery. Microfluidics control
synthesis of various drug delivery systems. Subsequently, microfluidic chips can be used for cell
culture and drug toxicity screening (Created with Biorender.com, accessed on 12 October 2022).

Drug delivery devices have potential to be used for various clinical applications, such
as tissue regeneration, diabetes, oncology, and infectious diseases. Moradikhah et al. used
a cross-junction microfluidic device to prepare alendronate-loaded chitosan nanoparticles.
They showed that this system substantially enhanced the osteogenic differentiation of
human adipose MSCs, so can be a suitable component of bone tissue engineering scaf-
folds [73]. Mora-Boza et al. illustrated that their fabricated hMSC-laden microcarriers
based on in situ ionotropic gelation of water-soluble chitosan in a microfluidic device using
antioxidant glycerlphytate and tripolyphosphate maintained cell viability over time and
increased the secretion of paracrine factor [74]. An example of oral delivery drug was
examined by Jaradat et al.; insulin was encapsulated into various PLGA nanoparticles
prepared by the microfluidic technique. They found that the mucopenetrating heparin
sulfate-conjugated PLGA nanoparticles enhance insulin permeability in a triple-cultured
intestinal model compared with unmodified and free insulin nanoparticles [75]. Another
model developed by Damiati et al. used PLGA to generate indomethacin-loaded PLGA
microparticles employing a 3D flow-focusing microfluidic chip. This model not only suc-
cessfully incorporates indomethacin, which is a poorly water-soluble drug and nonsteroidal
anti-inflammatory drug, but the authors also developed an artificial neural network as in
silico tool to predict size microparticles [76,77].

An example of using polymers in drug delivery in cancer is biodegradable poly-
meric nanocapsules. Oxaliplatin, irinotecan, and 5-fluorouracil chemotherapy drugs
were encapsulated and carried on a coaxial glass capillary microfluidic device, which
the potential for targeting tumors as the drug release could be controlled [78]. Hong et al.
reported that the synthesized amphiphilic tri-chain tricarballylic acid-poly (ε-caprolactone)-
methoxypolyethylene glycol (Tri-CL-mPEG) and enzyme-targeted tetra-chain pentaerythritol-

Biorender.com


Polymers 2022, 14, 5132 11 of 19

poly (ε-caprolactone)-polypeptide (PET-CL-P) using microfluidics continuous granulation
technology improved the bioavailability and antitumor effects of curcumin in a mouse
model [79]. A recent review by Salari et al. provides a comprehensive assessment of studies
in the field of polymer-based drug delivery for anti-cancer therapy. In their study, 71 papers
were investigated, and they conclude that the polymeric nanoparticles have influential roles
in cancer treatment comparing to the conventional chemotherapy. Polymeric nanoparticles
were able to reduce the cytotoxicity following chemotherapy drug administration, enhance
therapeutic agents solubility, and inhibit tumor growth rate [80].

As bacterial infections are posing a major threat to human health, in addition to
increasing antibiotic resistance, new methods for bacterial detection are necessary to reduce
disease spread. Recently, advances in antibiotic treatment have focused on the targeted
delivery of antibiotics, as well as antibiotics alternatives, such as antimicrobial polymers,
peptides, nucleic acids, and bacteriophages [81]. Borro et al. reported that by using
polymyxin B-aliginate-Ca2+ microgels prepared by 3D printing, the microfluidic mixer
affected the charge contrast and composition of the microgel formation and the interaction
with bacteria-mimicking liposomes at different ionic strengths [82]. Additionally, a P-based
nanoparticles delivery system was used as therapy against bacterial biofilm infections.
Huang et al. used PLGA-based nanoformations combined with carbon quantum dots
(CQDs) using a microfluidic flow-focusing pattern to load different types of antibiotics,
e.g., azithromycin and tobramycin. They found that the azithromycin-loaded CQD–PLGA
hybrid nanoparticles showed synergistic chemo-photothermally antibiofilm effects against
Pseudomonas aeruginosa [83]. Norries et al. illustrated that the hydrogel developed from
the poly(2-hydroxyethyl methacrylate) (PHEMA) and coated with ciprofoxacin antibiotic
reduced the biofilm production of Pseudomonas aeruginosa [84].

4. Polymers as Bioink for 3D Printing

Three-dimensional (3D) printing is a development technique that has been used during
the last decade to produce microfluidic devices. It has many advantages such as low cost,
enabling the easy design of complex 3D structures and rapid prototyping. However, 3D
printing has some limitations regarding the size of the microchannels and some final steps
that are related to the laborious fabrication [85].

Different methods can be used to produce printed porous materials: i. curing a porous
monolithic polymer sheet into the chosen pattern with photolithography, ii. screen-printing
silica gel particles with gypsum, and iii. dispensing silica gel particles with polyvinyl
acetate binder using a 3D printer. All three approaches can be successfully used in
microfluidics [86].

Hydrophilic and hydrophobic polymers can be used to generate 3D-printed microflu-
idic droplets to prevent water-in-oil or oil-in-water droplets from sticking to the interior
device surfaces. Warr et al. investigated two different approaches to avoid this issue: First,
different resins were tested to evaluate their suitability for droplet formation and material
properties. They found that the hexanediol diacrylate/lauryl acrylate resin forms the best
hydrophobic solid polymer that prevents aqueous droplets from attaching to the device
wall. Second, they formed a fully 3D microfluidic annular channel-in-channel geometry
that forms droplets that do not contact channel walls. As such, this geometrical approach
can be used with hydrophilic reins [87].

Distler et al. found that 3D-printed hydrogel is more electroactive and cytocompatible
and enhances cell adhesion and proliferation compared with a 2D flat hydrogel. This
kind of hydrogel formulation has shown promise in in vitro studies, cell therapy, and
assisted tissue engineering electrical stimulation [88]. Wright et al. used a hydrogel
composed of calcium crosslinked alginate (polypyrrole–alginate composite) as bioink for
tissue engineering. They found that PC12 neural cells adhere and proliferate slightly better
than alginate scaffold alone [89]. A compensation between metallic and polymer materials
was used to fabricate a novel complex 3D structure. A soft polymer was cast and cured into
a 3D-printed thin-shelled metallic mold, followed by metallic mold etching in an acidic
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solvent, which did not affect the soft polymer. This approach provided various polymeric
complex structures [90].

At present, organ failure is a worldwide issue, and allograft organ transplantations
are seriously limited due to donor organ shortages, immune rejection, and ethical conflicts,
so finding an alternative solution is crucial [91–93]. Several polymers have been used
for bioartificial organ manufacturing with different types of cells, e.g., stem cells, various
growth factors, and vascular and neural networks. However, 3D bioprinting technology is
a challenging engineering approach. Cooperation is required between different fields, such
as biomaterials, biology, medicine, physics, chemistry, bioinformatics, and engineering, to
fulfill all the requirements from the molecular to organ levels. Further, 3D bioprinting of
polymers needs to meet several basic requirements to be applied in clinical applications.
These requirements include biocompatibility, biostability, good mechanical properties,
bioprintability, biodegradability, suturable with host vascular and nerves, permeability for
nutrients and gases, and sterilizability [93].

5. Polymers as Artificial Cells or Organs

Numerous researchers have been trying to reduce the gap between the structures that
can be designed and produced in the laboratory and those found in biology. Biological
cells provide multiple functions, such as synthesizing proteins and lipids, storing genetic
materials, storing and harvesting energy, etc. [92,94] (Figure 6). Additionally, homogeneous
cells organize into specific tissues, whereas heterogeneous cells aggregate into an organ
with specific physiological functions [93]. As such, creating an artificial cell or organ
that has the same compartmentalized, multifunctional architecture is a challenging task.
Two fundamental approaches have been considered for artificial cell constriction: top-down
and bottom-up approaches. The top-down approach starts from living organisms, moving
down the genome to the lowest number of genes that are essential for maintaining cell
viability and functionality. The bottom-up approach starts from scratch by using biological
and nonbiological molecules to build up a “living” artificial organelle or cell [95].
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Several researchers have tried to mimic the natural cell or tissue function and reduce
the gap between normal and artificial cells. In studies involving artificial cells, microfluidics
provides a powerful tool to produce a large number of compartments with different size
ranges [96,97]. For instance, a circular design PDMS microfluidic compartmentalized
co-culture platform was developed by Park et al. In the fabricated model, neurons and
oligodendrocytes are co-cultured in two separate compartments connected by arrays of
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shallow axon-guiding microfluidic channels. The chip design offers physical and fluidic
isolation between the soma and the axon/glia compartments [98]. In an attempt to mimic
the structure of biological cells, alginate was used as a biomaterial in artificial systems,
and four types of glass microfluidics with flow-focusing or co-flowing droplet generators
were used to produce alginate droplets. The generated alginate microgels exhibited various
architectures, including individual monodisperse or polydisperse beads, small clusters, and
multicompartment systems [99]. For cell culture, microfluidic systems are mainly fabricated
with silicon, PDMS, and borosilicate. These materials have been used to test the mammalian
embryos within microfluidic systems [100]. Moreover, many microfluidic devices have
been reported to enhance cell growth, differentiation, and micro-environmental changes
in various perfusion system [101–104]. In 3D cellular environment, combining PDMS and
hydrogel into hybrid device has been used to produce 3D-ECM of aligned for endothelial
cell cultures [105]. A study by Leclerc et al. illustrated that the culture of fetal human
hepatocytes (FHHs) microfluidic bioreactors is promising for liver tissue engineering. They
found that the albumin production by FHHS was four times higher than in static culture
which can be influenced to the potentiality of fetal liver cells maturation [106].

These fabricated models show the use of a variety of polymers as distinctive biomate-
rials and the ease of using microfluidic platforms, which can be used to construct simple
mimics of cellular environments or cellular architectures, and thus offer a promising ap-
proach for synthesizing bioarchitectures. Table 3 summarizes some studies used polymers
and microfluidics in applications described in this review.

Table 3. Summary of some studies used polymers and microfluidics for several applications include
drug delivery, 3D printing, and artificial cells.

Polymers Microfluidic Chip Type Applications Study

Alginate
Alginate-based bioinks with
cartilage cells used to print
hollow constructs

The vessels-like printable microfluidic
channels were capable to transport
nutrients, biomolecules, oxygen through
the construct and can support cell growth.

[13]

PLGA Quartz Droplet X-Junction Chip
insulin was encapsulated into PLGA
nanoparticles and then appended with
heparin sulfate for oral insulin delivery.

[75]

PDMS
Deep channels or single layer
pattern using soft
lithography method

High-throughput drug screening can
perform using a single chip where
enzymatic assays are in
picolitre-scale droplets.

[107,108]

PLGA 3D flow-focusing
microfluidic chip

Indomethacin was encapsulated into
microparticles to develop in silico tool to
predict size particles.

[77]

Collagen and alginate PDMS microfluidic
encapsulation device

3D microenvironment of human tumor
developed by encapsulating MCF-7 cancer
cells in the collagen core of microcapsules
with an alginate hydrogel shell for
miniaturized 3D culture. Then the
cytotoxicity of doxorubicin hydrochloride
was assessed.

[109]

Chitosan and alginate Coaxial flow microfluidic chip

HepG2 cells encapsulated in the
chitosan-alginate fibers to guide growth,
alignment, and migration of
encapsulated cells.

[110]

PDMS and graphene oxide (GO)

Nano-sized GO -modified
nanopillars on microgroove
hybrid polymer array (NMPA)
were fabricated using sequential
laser interference lithography and
microcontact printing technique.

Mouse myoblast cells (C2C12) were
significantly differentiated into skeletal
muscle cells on the micro-sized line
pattern with GO coating (<10 nm).

[111]
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Table 3. Cont.

Polymers Microfluidic Chip Type Applications Study

1,6-hexanediol diacrylate
(HDDA), lauryl acrylate (LA),
polyethylene glycol
diacrylate (PEGDA)

3D-printed microfluidic
droplet generator

the hydrophobic HDDA/LA
3D printing resin allows droplet
formation in 3D-printed planar
microfluidics for the basic
geometries while hydrophilic
PEGDA resin allows droplet
formation in non-planar
3D geometry.

[87]

Elastin-like protein (ELP)

Two custom-designed chips: one
with ready-made channel and
another with sacrificial
gel-made channel

ELP hydrogels with cell-adhesive
RGD amino acid sequence was
used as bioinks for constructing
3D in vitro models with on-chip
vascular-like channels. The
developed model was compatible
with both single cell suspensions
of neural progenitor cells (NPCs)
and spheroid aggregates of breast
cancer cells.

[112]

PDMS Microfluidic-based droplet system

The high-throughput
tree-branched microfluidic
droplet system for multicellular
spheroids formation showed
a high protentional to mimic the
in vivo solid tumor structure with
heterogeneous cell types and for
anti-cancer drug
screening applications.

[113]

Alginate Flow-focusing or co-flowing
droplet generators

Generated alginate microgels
exhibited various architectures,
including individual
monodisperse or polydisperse
beads, small clusters, and
multicompartment systems.

[99]

Au-PEG-PFPE
diblock-copolymer surfactant

Microfluidic flow-
focusing junction

Lipid vesicles (LUVs or GUVs)
were encapsulated into
copolymer-stabilized droplets.
Generated synthetic cells were
able to be loaded with
biomolecules, such as
FoF1-ATP synthase.

[114]

6. Conclusions

The combination of natural/synthetic polymers and new biofabrication techniques,
such as microfluidics, offers promising approach for tissue engineering scaffolds. Polymers
and microfluidics enable rapid prototyping, reliability, as well as easy and low-cost man-
ufacturing in research laboratories and for commercialization. Currently, there are many
polymer-based drug delivery systems approved by FDA that are available on the market.
Further, for commercial mass production, thermoplastics are used to develop standard
microfluidic devices. However, despite scientific progress in biofabrication technologies,
we are still in the early stages of the development of microfluidic technology for tissue engi-
neering applications. There are serious obstacles to be overcome in producing a functional,
complex, and large-scale system.
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