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ABSTRACT
With the ever increasing pace of introduction of energy intensive
devices and services, such as electric vehicle (EV) charging and heat
pumps, the transition to smart metering for three-phase electric
installations for nationwide smart meter roll-outs is underway. In
this paper, we explore how three-phase metering can benefit non-
intrusive load monitoring (NILM), especially for those appliances
that are difficult to disaggregate and not widely reported in the
literature. Traditionally, the NILM literature tends to tackle three-
phase metering by summing the three phases, without exploiting
the potential benefits of load disaggregation per phase. Emphasis
is placed on the disaggregation performance and loss that is intro-
duced when using different levels of granularity of low-frequency
data. Finally, we augment a public dataset with which phase the
appliance is connected to, and release a three-phase electric vehicle
dataset from three-phase aggregate measurements.

CCS CONCEPTS
• Computing methodologies → Neural networks; Machine
learning; • General and reference→ Reliability; Validation;
Verification.
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1 INTRODUCTION
Three-phase (3𝜙) installations, predominant in commercial and in-
dustrial settings as well as in residential settings in the majority of
the central and northern Continental Europe [20]—due to the tra-
ditionally lower limits of power availability per phase—are slowly
becoming the new standard for residential buildings [6] to support
the surge in end-user demand from high loads, such as EV charg-
ers, and meeting emission targets with the additional inclusion
of renewable energy sources. The introduction of 3𝜙 installations
enables the installation of larger domestic solar photovoltaic (PV)
systems, when compared to current ones that are capped at a lower
maximum power levels [14], imposed by the maximum load that
single-phase installations’ can handle. 3𝜙 residential installations
can also benefit the stability of the grid.

Recent standardisation for 3𝜙 smart metering in UK and Europe
[5, 13], are making it obligatory for manufactures to produce me-
tering devices that are capable to measure and transmit the power,
voltage, current and angle between the different phases of a 3𝜙 in-
stallation. Distribution of residential loads across the three phases
is expected to reduce the disaggregation noise on a per phase basis.
This provides an opportunity in potentially improving disaggrega-
tion accuracy of non-intrusive load monitoring (NILM) algorithms
by exploiting the load distribution across the three phases.

In this paper, a detailed and robust methodology for evaluation of
load disaggregation of energy intensive appliances from 3𝜙 house-
hold installations is presented. The main contributions of this paper
are: 1) adapting sequence-to-subsequence (seq2subseq) [15] deep
learning (DL)-based NILM algorithm from [7] providing full de-
tails of the proposed pre-processing, hyper-parameter tuning and
post-processing steps for different appliances; 2) quantifying gain
in disaggregation accuracy when using per phase and aggregate
signal, taking into account noisiness and sparsity metrics, and dif-
ferent data granularities; 3) proposing a method of appliance phase
identification and releasing information regarding the phase on
which each appliance of the ECO dataset [3] is connected to 1; 4)
labelling the EV usage of a single 3𝜙 household in Germany for a
period of 1-year via transfer learning with manual verification, and
releasing the labelled dataset 2.
1Appliance phase identification data for the ECO dataset can be accessed at: https:
//doi.org/10.15129/deddd9a7-0cff-4db2-8478-42abc93fba9f
2The research data supporting this publication can be accessed at: https://doi.org/10.
15129/c41a6a02-5df5-4ed7-b8e6-6488895d43f7
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2 NILM APPROACHES FOR 3𝜙 DATA
With plans for 3𝜙 smart metering in residential settings only emerg-
ing, NILM approaches for 3𝜙 data are scarce for residential buildings.
However, different NILM approaches are proposed for industrial
buildings, e.g., an event detection approach based on composite
window analysis for 3𝜙 industrial metering [22], concluding that a
significant improvement in classification performance is obtained
compared to detection on the sum of phases approach.

Due to the inherent complexity of measuring electricity con-
sumption in 3𝜙 installations and the requirement of additional
hardware, 3𝜙 datasets are limited. In an in-depth review [8] of DL
based approaches for low-frequency NILM, only three 3𝜙 datasets
were identified, namely iAWE [2], ECO [3] and BLOND [11]. Of
these, iAWE [2] consists of a single house in Delhi where electric-
ity, gas and water were monitored for 73 days, ECO [3] contains
electricity readings from 6 houses in Switzerland for a period of 8
months, and, BLOND [11] contains energy readings from an office
for 213 days. This paper uses the ECO one since it is the only that
contains measurements from multiple houses over several months.

ECO [3] dataset is widely used and contains information about
voltage, current, active power per phase etc. as well as sub-metering
of several house appliances. A comparison of performance of four
different NILM algorithms on this dataset is presented in [3], where
it was concluded that to achieve adequate results, a supervised
approach was required. An Artificial Neural Networks (ANNs)-
based approach for disaggregation of the ECO dataset is proposed
in [10], where data were resampled to 10 min intervals. Again, only
the aggregate signal of the phases was used as an input. Multi Layer
Perceptron ANNs performed poorly and therefore only DNNs were
further explored. Results, varied greatly between the appliances
that were studied—i.e. fridge, freezer, PC and washing machine,
with fridges performing best and PCs worst. Lastly, authors in [17,
18] proposed the use of a 4-layered bidirectional long short-term
memory (LSTM) model to disaggregate several datasets, including
the aggregate signal of ECO dataset. Signal Aggregate Error (SAE)
ranged from 1.3% up to 64.9%, with dishwashers having an SAE
of 28.8%, fridges 12.1%, washing machines 64.1% and microwaves
43.7%. To the best of our knowledge, there are no NILM methods
designed to exploit the three phase by disaggregating per phase.

3 METHODOLOGY
Following the recent NILM review papers [1, 4, 8, 16, 19], we adapt
the DL seq2subseq NILM approach of [15], shortlisted in [8] as
one of the best performing on standard household appliances and
demonstrated on the PECAN [9] dataset in [21].

3.1 Data Selection & Preparation
This study focuses on the following, regularly used, energy inten-
sive appliances in the ECO dataset: 1) House 1: coffee machine
(CM)–113 days; dryer (TD), freezer (FRZ). fridge (FRD) and wash-
ing machine (WM)–231 days; 2) House 2: dishwasher (DW), FRZ
and FRD–240 days; 3) House 4: FRZ–192 days; FRD and microwave
(MW)–194 days; 4) House 5: CM and FRD–218 days. Measurements
were resampled to granularities of 10, 30 and 60 sec—by averaging
the power consumption over the aforementioned duration—to in-
vestigate disaggregation accuracy when using low-and very-low

frequency data, considering data collection and storage limitations
as well as end-users’ privacy, as per smart meter standards [5, 13].

A fundamental factor that affects the accuracy of NILM algo-
rithms is the amount of activations of each appliance available to
train models. We estimate this via sparsity measure for each ap-
pliance in a dataset, calculated as: 𝑆 = 𝑇On/𝑇Total, where 𝑇On is the
duration that the appliance is on and 𝑇Total is the total duration.
Another metric used to assess how difficult it is for a NILM method
to disaggregate an appliance is Noisiness measure [12] that is pos-
itively correlated with the disaggregation performance [21], and
is defined as: 𝑁𝑀 (𝑇 ) =

(∑𝑇
𝑡=1

���𝑦𝑡−∑𝑀
𝑚=1 𝑦

(𝑚)
𝑡

���)/(∑𝑇
𝑡=1 𝑦𝑡

)
, where 𝑇 is

the total monitoring duration in the number of samples, 𝑦𝑡 is the
aggregated load measured at sampling instant 𝑡 and 𝑦

(𝑚)
𝑡 is the

submetered measurement of load/appliance𝑚 at sampling instant
𝑡 . 𝑀 denotes the number of appliances that are disaggregated. In
Table 1, the sparsity and the noisiness metrics for each appliance
both for per-phase (𝑁𝑀𝜙 ) and aggregated (𝑁𝑀Agg) signal is pre-
sented, where all other loads are considered as noise. 𝜙 denotes the
phase that the appliance is drawing current from.

3.2 Sequence-to-Subsequence Parameters
The seq2subseq NILM algorithm with conditional Generative Ad-
versial Network (GAN) is implemented as in [21], using the same
approach on data splitting between training (60%), validation (10%)
and testing (30%) as well as on the post-processing steps. Seq2subseq
targets the middle part of a sequence and therefore offers a trade-off
between the computational load of sequence-to-point—where the
algorithm targets a single point—and the convergence speed of
the sequence-to-sequence—where the algorithm targets the whole
sequence. Training and testing was performed on the same house.
The window size (WS) 𝜔 is set to the first element in the set
{20, 21, ..., 2𝑛, ...} that is larger than 2 × 𝐿 × 𝑓 , where 𝐿 [in sec]
is the usual length of appliance cycle period and 𝑓 [in Hz] is the
frequency of the samples. The WS used are: 1) for CM, FRZ, FRD
and MW: 256, 128 and 64; 2) for DW and TD: 2048, 512 and 256; 3)
for WM: 1024, 512 and 128, for granularities of 10, 30 and 60 sec,
respectively. The rest of the hyperparameters were chosen based on
the performance on the validation set. L1 loss was used in all setups.
Stochastic Gradient Descent (learning rate = 0.001) and the ADAM
optimiser (learning rate = 0.0005, momentum term =0.5), were used
for the discriminator and generator filters, respectively. The weights
on L1 and GAN term for the generator gradient were 100 and 1,
respectively. The layers used were: 1) 7 for 256 ≤ 𝜔 ≤ 2048; 2) 6
for 𝜔 = 128; and 3) 5 for 𝜔 = 64. The number (n) of generator and
discriminator filters in the first convolutional layer was given as
n = 𝜔/4, i.e., n ∈ [16, 512]. Using the early stopping criterion on
the validation set, the number of epochs was chosen to be 120.

3.3 Accuracy Improvement & Granularity Loss
The improvement in accuracy, when using the signal only from
the phase where the appliance is connected, is given as: 𝐺phase =
𝐴𝑐𝑐phase/𝐴𝑐𝑐aggregate − 1, where 𝐴𝑐𝑐 , is the standard 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metric
[21]. Furthermore, the loss, introduced by lower-sampled data, was
used in order to correlate the disaggregation loss with the use of less
granular data, given as: 𝐿𝑜𝑠𝑠 = 𝐴𝑐𝑐𝑖/𝐴𝑐𝑐 𝑗 − 1, where 𝐴𝑐𝑐𝑖 and 𝐴𝑐𝑐 𝑗
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Table 1: Phase 𝜙 , Sparsity 𝑆 [%] and relative disaggregation performance in accuracy [%] due to per-phase disaggregation.

Aggregated Phases Appliance Phase Gain 𝐺phase

House Appliance 𝜙 𝑆 𝑁𝑀Agg 𝑁𝑀𝜙 10 sec 30 sec 1 min 10 sec 30 sec 1 min 10 sec 30 sec 1 min

1

CM 2 0.64 98.56 96.18 75.15 58.54 - 79.77 71.97 59.81 6.15 22.94 -
TD 3 3.25 91.98 56.30 40.73 36.47 16.82 79.27 78.06 75.49 94.62 114.04 348.8
FRZ 1 54.45 93.54 86.32 85.32 83.59 81.28 93.53 92.69 90.69 9.62 10.89 11.58
FRD 2 36.92 92.66 78.76 69.52 69.05 68.00 83.79 82.06 80.51 20.53 18.84 18.40
WM 1 6.70 91.79 82.64 80.33 67.70 47.12 88.02 83.30 72.23 9.57 23.04 53.29

2
DW 1 1.43 92.73 87.78 62.70 43.22 81.56 67.17 60.27 87.80 7.13 39.45 7.65
FRZ 1 50.16 87.36 78.80 91.09 87.89 83.14 92.05 89.64 85.32 1.05 1.99 2.62
FRD 1 34.09 88.63 80.92 85.48 82.49 76.76 87.32 84.72 79.58 2.15 2.70 3.67

4
FRZ 1 28.90 96.76 94.64 81.80 80.05 80.60 85.32 83.61 83.98 4.30 4.45 4.19
FRD 1 84.83 79.80 66.59 50.12 47.73 46.98 54.70 54.98 54.19 9.14 15.19 15.35
MW 1 1.39 98.12 96.90 64.88 60.45 58.13 74.28 74.22 69.70 14.49 22.78 19.90

5 CM 3 1.44 99.32 98.48 74.56 66.41 54.52 83.48 79.67 72.57 11.96 19.97 33.11
FRD 3 35.70 94.39 87.37 75.10 74.54 70.20 89.42 89.31 87.13 19.07 19.81 24.12

are the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metrics when using lower and higher frequency
data, respectively. Here, 𝑖 = 30 ⊻ 60 sec and 𝑗 = 10 sec.

3.4 Phase Identification & Load Labelling
As ECO does not contain information on which phase each appli-
ance is connected to, this information was inferred from the data.
To that end, for each appliance, we train and test the seq2subseq
model on each phase separately, with parameters described in 3.2.
The models are trained and tested on a small subset—30% of the
total dataset—of known timestamped activations of each appliance
for each phase—training and testing sets do not contain the same
set of activations. We expect that the models on the phase where
the appliance is connected will result in high estimated consump-
tion output with high confidence whereas in all other phases the
model predicted consumption output will be low. This assumption
was further validated through manual inspection of the signal. In
order to compare the performance of the three different models,
Match Rate (MR) [21] was used since it measures how “well” the
model’s output matches the ground truth, when compared to other
commonly used metrics that are only averaging the output. The
resulting MR on the phase where the appliance is connected will
be relatively higher than on the other two phases, thus indicating
which phase (𝜙) the appliance is connected to.

Furthermore, the 3𝜙 meter readings from an unlabelled German
household were also used to demonstrate the value of per-phase
disaggregation for dataset labelling. Measurements spanned a pe-
riod of one year: 01/01/2021—31/12/2021, where an EV symmetrical
load charger was installed. In the absence of sub-metering data
for EV charging, the dataset was labelled via transfer learning, i.e.,
training the seq2subseq algorithm as per [21] with the one-phase
PECAN Dataport [9], and disaggregating the load per phase. The
training houses from PECAN were chosen such that they had a
similar power level (∼3kW) as one phase of the German household.
The symmetric EV load distribution across the 3 phases enabled
the elimination of false positives, due to other loads, as activations.

These activations were validated by manually inspecting the entire
period of the dataset and annotating symmetrical 3𝜙 loads.

4 EXPERIMENTAL RESULTS
Results obtained on the ECO dataset are summarised in Table 1.
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metric is presented for data sampled at 10, 30 and 60
sec when using the aggregate and the per-phase signal. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
metric, also referred as Total Energy Correctly Assigned, is demon-
strated [21] to be a more accurate measure of the performance of
a regression network when compared to traditional used metric
such as the Mean Absolute Error (MAE) and normalised Signal
Aggregate Error (SAE). The Gain as introduced in Section 3 is also
presented. In house 1, as the CM signal consisted of very short
pulses, in the range of 30–60 sec, the algorithm was unable to dis-
aggregate the signal when using a sampling rate of 1 minute. In
addition, when comparing the CM of house 1 to the one of house
5—where more activations, as indicated by the 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 metrics,
were present—disaggregation accuracy for 10 sec data is similar,
whereas in 30 sec data sparser signal lead to increased performance.
As expected, due to the reduced noise in the signal—summarised in
Table 1—results demonstrate that accuracy is increased when using
the per-phase signal. In house 1, per-phase disaggregation accuracy
of the dryer is greatly increased, especially for lower granular data.
This is partially due to the reduced noise, confirmed by 𝑁𝑀𝜙 in
the signal and manual observation, which indicated false positives
due to an appliance with a multi-state load profile—connected to a
difference phase than dryer—in the aggregate of 3 phases.

Similar performance on refrigeration appliances, across houses,
is observed with improved performance for freezers relative to
fridges, which can be attributed to the higher load of freezers, and
their more constant current draw when compared to the more
variable load of fridges that are used more often—opening/closing
the door. An exception exists in house 4, where, despite the noisiness
metric indicating the signal of the fridge is less noisy than other
houses, the disaggregation performance appears to be poor. This
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was the result of a second fridge with an almost identical signature
that was present, not sub-metered [3] and connected to the same
phase. Therefore, the algorithmwas also detecting the second fridge
that was installed in the house which led to a decrease in accuracy.
It is also worth noting, that although fridges and freezers present a
very similar consumption pattern, the algorithm discriminate these
devices due to the small difference in the peak energy levels as well
as to the differences in the duration of the activations of the two
appliances. It is also worth noting that refrigeration appliances that
demonstrate a lower 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 metric tend to be disaggregated more
easily especially for less granular data.

Table 2 presents the loss in accuracy, for the aggregate and the
appliance phase signals, when using 30-sec and 1-min instead of
10-sec data. Negative values indicate drop in accuracy. In general,
there is a positive correlation between the loss and the granularity.
Accuracy of refrigeration appliances in all houses, except house 2,
when using the phase signal is almost invariant w.r.t. granularity
levels. This is expected as these appliances tend to have a constant
periodic signal. Furthermore, a significant decrease in accuracy of
the dryer and the washing machine in house 1 when using lower
granularity data is observed. This is especially visible when using
the aggregate, as the combination of higher levels of noise and the
reduction in the granularity led to about 50% decrease in accuracy.

Therefore, it can be concluded that, in general, disaggregation
of refrigeration appliances can be highly effective when using data
with granularities in the range of 1 min, whereas devices with
sparse activations and multi-state load profiles require a higher
sampling frequency to achieve similar performance. Furthermore,
appliances with sparse activations and variable multi-state current
draws with less granular data, benefit from per-phase disaggrega-
tion, as is the case with the dryer in house 1. However, as observed
from both Tables 1 and 2, disaggregation accuracy of dishwasher
does not follow the same pattern as performance improved when
using less granular data. This is because the dishwasher’s signal
consists of one or more high energy pulses with lower energy lev-
els around the main pulses. There were some activations with low
energy—probably corresponding to rinse cycles—whose energy was
spread across many samples for more granular data. The algorithm
was unable to disaggregate the pattern of the energy consumption
outside the main pulses when using data of higher granularity as
well as these low-energy uses. On the contrary, when using 1-min
data, as these low-powered level signals were aggregated over a
minute, the algorithm could assign the disaggregated energy to
the dishwasher. Lastly, disaggregation results for both coffee ma-
chines in houses 1 and 5 as well as microwave in house 4 indicate
that a higher sampling frequency can greatly increase accuracy for
appliances with sparse loads (see Table 1) and short activations.

To demonstrate applicability of the proposed approach to ap-
pliance phase labelling, an EV charger on an unseen 3𝜙 metered
dataset was labelled using the methodology presented in Section 3.4.
In Table 3, estimated Accuracy results both for 1-and 15-min data
are presented. The estimation of the EV’s charger signal as described
was used to juxtapose the signal obtained from the algorithm. This
example of labelling a dataset where ground truth data are absent,
underlines the importance of using the per phase signal when com-
pared to the phase-aggregate, as otherwise the elimination of the
false positives from similar loads would be difficult.

Table 2: Granularity loss (𝐿𝑜𝑠𝑠) [%] disaggregating on 30-and
60-sec measurements, compared to 10-sec.

Aggregated Phases Appliance Phase

House Appliance 30 sec 1 min 30 sec 1 min

1

CM -22.10 - -9.78 -25.02
TD -10.46 -58.70 -1.53 -4.77
FRZ -2.03 -4.74 -0.90 -3.04
FRD -0.68 -2.19 -2.06 -3.91
WM -15.72 -41.34 -5.36 -17.94

2
DW -31.07 30.08 -10.27 30.71
FRZ -3.51 -8.73 -2.62 -7.31
FRD -3.50 -10.20 -2.98 -8.86

4
FRZ -2.14 -1.47 -2.00 -1.57
FRD -4.77 -6.26 0.51 -0.93
MW -6.83 -10.40 -0.08 -6.17

5 CM -10.93 -26.88 -4.56 -13.07
FRD -0.75 -6.52 -0.12 -2.56

Table 3: Estimated accuracy [%] of EV labelling.

𝜙1 𝜙2 𝜙3 𝜙Agg

1 min 90.65 93.13 90.98 91.84
15 min 86.99 87.46 86.74 87.46

5 CONCLUSIONS AND RECOMMENDATIONS
In this paper, we demonstrate, quantitatively, the improvement of
load disaggregation per phase in 3𝜙 installations, over the tradi-
tional approach of disaggregating the sum of three phases. This
is especially timely given the update in national smart meter 3𝜙
roll-outs to provide for the growing number of households that
include high power loads such as EVs. We also show that appliances
that tend to be hard to disaggregate in the literature, due to sparse
activations and variable load profiles, are more prone to noise from
unknown appliances and therefore disaggregating per phase miti-
gates the effect of false positives. The appliances that benefit mostly
from disaggregation per phase are washing machines, dryers, coffee
machines and microwaves. Devices with similar load profiles, bene-
fit from being spread across different phases. This demonstrates the
importance of carefully picking the phase on which each appliance
is connected to during a 3𝜙 installation, to facilitate more accurate
disaggregation. For example, it is recommended to distribute refrig-
eration appliances, when more than one exist, on different phases,
as well as connecting resistive appliances with similar profiles such
as kettles, coffee machines and stoves on different phases. The feasi-
bility of accurately labelling an EV charger without the presence of
ground truth data using the per-phase signals as well as knowledge
transferred from another one-phase dataset was also demonstrated,
and the annotated dataset released. Lastly, as smart metering is
moving towards less granular data with the main concern being
data privacy of the end users, disaggregation using lower sampling
frequencies in the area of 15 min should be explored further.
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