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Abstract
We study the equilibria of a photoresponsive nematic elastomer ribbon within a continuum
theory that builds upon the statistical mechanics model put forward by Corbett and Warner
(Phys. Rev. E 78:061701, 2008). We prove that the spontaneous deformation induced by
illumination is not monotonically dependent on the intensity I . The ribbon’s deflection first
increases with increasing I , as expected, but then decreases and abruptly ceases altogether
at a critical value Ie of I . Ie, which is enclosed within a hysteresis loop, marks a first-
order shape transition. Finally, we find that there is a critical value of the ribbon’s length,
depending only on the degree of cross-linking in the material, below which no deflection
can be induced in the ribbon, no matter how intense is the light shone on it.

Keywords Photoresponsive elastomers · Nematic liquid crystals · Shape transition · Ribbon
elasticity

Mathematics Subject Classification 74B20 · 74K10 · 74K35 · 76A15 · 82D30

1 Introduction

Nematic elastomers are elastic materials comprising cross-linked polymer networks made of
nematogenic, rod-like molecules which at sufficiently low temperatures develop a collective
orientational order. Despite polymer strands being cross-linked, the constituting monomers
are quite loose; they are the fluid component of a mixture whose other component is a solid-
like matrix kept together by the cross-linking bonds [1].

These materials can be reversibly activated by changing the temperature across the
nematic-isotropic transition. Upon increasing the temperature, the nematic order is de-
creased, the fluid becomes isotropic and the larger availability of orientational states pro-
duces a mechanical contraction of the solid matrix along the nematic director designat-
ing the pre-existing average molecular orientation. Conversely, decreasing the temperature
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Fig. 1 Cartoons illustrating the
photoactivation of isomerizable
molecules. They are straight in
their trans-state and bent in their
cis-state. Forward activation is
induced by a photon absorption;
backward relaxation is induced
by thermal agitation, with no
change in temperature involved.
In our model, photoresponsive
molecules are part of the polymer
chains, within which, upon
activation, they deplete nematic
order. The case envisioned here is
listed as case (ii) in the text

across the nematic-isotropic transition, an elongation takes place along the newly reconsti-
tuted nematic director, as molecules would tend to be mostly oriented in that direction. This
is perhaps the most remarkable mechanical property of nematic liquid crystal elastomers
(LCEs): they can undergo a shape change of up to 400% in a relatively narrow temperature
range (including the nematic-isotropic transition of the fluid component).

Such a thermal activation mechanism was the only one known and studied until the
groundbreaking work [2] was published in 2001. That paper explored a new possible av-
enue for mechanical activation of nematic LCEs: using light instead of heat. The idea is
simple: if a macroscopic change in shape is caused by a change in molecular order, the
latter should result in the former, whatever means are employed. Now, order can either be
decreased by raising the temperature or by disturbing molecules otherwise, making it harder
for them to be oriented alike.

Since the pioneering work of Eisenbach [3], this could be achieved by dispersing in the
material photoisomerizable molecules, such as azobenzene and other dyes, which undergo a
trans-cis isomerization upon absorbing a photon of appropriate frequency. These molecules,
which are typically rod-like in the trans-state, become bent in the cis-state. Such a change in
shape has a disrupting effect on surrounding molecules in the nematic phase, which remain
straight, decreasing their degree of order (as first shown in [4]).1 The specific situation en-
visioned in this paper is illustrated in Fig. 1, which also shows dye molecules in both trans-
and cis-states.

Such a disruption of the nematic order is reversible. Photoresponsive molecules do not
stay indefinitely in the cis-state; this, although locally stable, has greater energy than the
trans-state, and thermal relaxation suffices to overcome the energy barrier that prevents ex-
cited molecules to drop to the trans-state right away. Once photoresponsive molecules are
back in the trans-state, their reacquired rod-like shape no longer contrasts the alignment of
monomers in the polymer strands, and nematic order can be reinstated. Thus, with no change
in temperature, a change in order induced by light can produce a typical thermo-mechanical
effect.

There are at least three possibilities for a photoisomerizable molecule to play its actuating
role within a nematic elastomer network: (i) by being freely dispersed through it, (ii) by
being part of the network itself, linked at a polymer chain at both its ends, (iii) by being

1Similar effects could also be imparted on the director n, but they will be ignored in this paper, as here n
will be enslaved to the macroscopic deformation, an assumption which will be further discussed and justified
below.
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linked to a polymer chain side-wise at an end, with the other end dangling freely. They may
all be effective.

Here, we shall consider case (ii): for simplicity, we shall further assume that when
photoresponsive molecules are in the trans-state they have the same length a as the pho-
toinert nematic monomers in the polymer strands. In their trans-state, photoresponsive
molecules are indistinguishable from nematogenic molecules, they obey the same statis-
tics (see Fig. 1a). Light activation induces the trans-cis transition and changes the distance
between the ends of the two arms of photoresponsive molecules (see Fig. 1b) from a to
b < a. This transition causes a depletion in the population of rods obeying nematic statis-
tics and a repletion in the population of isotropically distributed rods: as such we regard
photoresponsive molecules in the cis-state.

The stationary equilibrium between the light-induced trans-cis transition and its reverse
thermal relaxation determines the fraction φ of the cis-population in terms of the nematic
scalar order parameter S and the orientation of the nematic director n relative to the wave
polarization unit vector e [5, 6]. Both φ and S in turn affect the step tensor L describing the
distribution of chain elements in a representation of polymer strands as freely jointed rigid
rods.

The intricate interplay between these microscopic processes is described by the model
recalled in Sect. 2. This model is originally due to Corbett and Warner [5–7] (see also [1, 8]).

In Sect. 3, we build the macroscopic theory that we shall adopt here. Its main ingredient is
the celebrated trace formula for the elastic free-energy density (per unit volume) of nematic
LCEs that has long been studied [9–12] (see also Chap. 6 of [13]).

As effectively recalled in [14], nematic LCEs have also come to be known in the spe-
cialized literature under a variety of names, including liquid crystal polymers, cross-linked
liquid crystal polymers, and liquid crystal polymer networks. What marks the difference be-
tween these names is their different range of applicability, which is essentially decided by
the extent of cross-linking: the higher this is, the stiffer the material becomes and the more
is the nematic director n linked to the polymer matrix. When n is completely enslaved to the
macroscopic deformation, which is the case of extreme cross-linking, also the name nematic
polymer network (NPN) is used for these materials.2

It has recently become clear [16] that the mechanical response changes continuously with
the extent of cross-linking. To fix ideas, we find at the NPN end of the spectrum a transition
temperature ranging from 60 to 100◦ C with shear modulus parallel to the nematic director
in the range of 1–2 GPa. At the opposite end of the spectrum transition temperatures are
below 25 ◦C with shear moduli about 100 MPa or lower [14].

Since in our model the scalar order parameter S is not the driving parameter of spon-
taneous deformation, as the temperature is kept fixed, a further potential must supplement
the trace formula, which penalizes departures from the equilibrium value S0 of S, which is
dictated by temperature. This role will be played here (as was in [17]) by the Maier-Saupe
potential [18].

In Sect. 3, we shall also adapt to the present setting the surface elastic free-energy density
(per unit area) obtained in [19] for a thin NPN sheet by extending a method of dimension
reduction, which is standard in the theory of plates and also known as the Kirchhoff-Love
hypothesis [20]. This surface free energy features both stretching and bending contributions,
which here are reformulated in the language of the model illustrated in Sect. 2.

In Sect. 4, we apply the reduced elastic free energy for a sheet to a narrow ribbon and
study its equilibrium configurations in terms of a dimensionless intensity parameter I . Re-
sorting to a uniformity approximation, we simplify the total free-energy functional for a

2As well as nematic glass, as for example in [15].
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ribbon to an extent that makes it possible to find its critical points in closed form. The bi-
furcation analysis that ensues reveals a non-monotonic dependence on I of the maximum
deflection angle of an illuminated ribbon.

Our conclusions are collected and discussed in Sect. 5 together with comparisons of our
work with that of others. The paper is closed by an Appendix, where for completeness we
recall the reasoning that is followed in [7] to justify both the equilibrium value φ of the
cis-population and the expressions for the principal chain steps (i.e., the eigenvalues of L)
after photoactivation.

A vast, nearly intimidating literature is available on nematic LCEs. The classical ref-
erence is the influential book by Warner and Terentjev [13]; the theoretical literature that
preceded and prepared for it [9, 21–25] is also of interest. General continuum theories have
also been proposed [26–28], some also very recently. Applications are abundant; a collec-
tion can be found in a book [29] and a recent special issue [30]. Finally, the interested reader
can gain some valuable guidance from the reviews [31–37].

The specific theme of this paper is photoactivation of NPN sheets; the recent studies
[17, 38, 39] are closely related to it and, notwithstanding the differences, they have been
inspirational to us.

2 The Corbett-Warner Model

In this section, mainly following [5–7], we present a statistical mechanics model put forward
by Corbett and Warner to describe the interaction of an incoming polarized light wave with
a nematic elastomer containing photoactivable molecules in its polymer strands, as depicted
in Fig. 1. For completeness, the reasoning that led these authors to their understanding of
shape effects induced on polymer networks by the trans-cis transition is described in more
detail in Appendix A. Here, our main focus is on the foundations of the model and its main
outcomes, which will form the basis for our macroscopic theory laid down in the following
section.

The model is based on the following assumptions:

1. Photoresponsive molecules in their trans-state and photoinert (non-photoresponsive)
molecules are assumed to be statistically identical.

2. Photoresponsive molecules in the cis-state are statistically isotropic.
3. The forward trans-cis photoisomerization is powered by light, whereas the backward

cis-trans transition is spontaneously driven by thermal agitation.
4. The trans-cis reaction is treated at the single-molecule level: equilibrium at one molecule

is not affected by its interaction with surrounding molecules.

Polymer strands, constituted of both photoresponsive and photoinert molecules, are rep-
resented as chains of freely jointed rigid rods; the orientation in space of an individual rod
will be represented by a unit vector u ∈ S

2. The order tensor Q describing the alignment of
mesogenic monomers is defined as

Q :=
〈
u ⊗ u − 1

3
I
〉
, (1)

where I is the identity tensor and the brackets 〈· · · 〉 designate ensemble averaging. We shall
assume that Q is uniaxial, and so it can be represented as

Q = S

(
n ⊗ n − 1

3
I
)

, (2)
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where S is the scalar order parameter, ranging in the interval [− 1
2 ,1], and n ∈ S

2 is the
nematic director.3 It readily follows from (2) that

S = 〈P2(u · n)〉, (3)

where P2 is the second Legendre polynomial.
In the following, S and n will represent the scalar order parameter and the nematic di-

rector in the present (photoactivated) configuration of the material, after the spontaneous
deformation of the body induced by illumination has taken place. Since we also assume that
prior to photoactivation the polymer system had been cross-linked in the nematic phase, we
shall denote by S0 and n0 the scalar order parameter and the nematic director in the refer-
ence configuration, prior to illumination. Q0, related to S0 and n0 as Q is to S and n in (2),
will denote the corresponding order tensor.

The nematic order in the material is also reflected by the step tensor, which describes the
spatial organization of polymer strands (see Appendix A.1 for a formal definition). Since
there are two different polymer organizations, in the reference and present configurations,
there will correspondingly be two step tensors, L0 and L. They have the same uniaxial form
as Q0 and Q, respectively, and are represented as

L0 = �0⊥I + (�0‖ − �0⊥)n0 ⊗ n0, (4a)

L = �⊥I + (�‖ − �⊥)n ⊗ n, (4b)

where (�0⊥, �0‖) and (�⊥, �‖) are the corresponding principal chain steps in the directions
orthogonal and parallel to the directors n0 and n (see Appendix A.1).

The principal chain steps (�0⊥, �0‖) in the reference configuration are related to the scalar
order parameter S0 in the following way,

�0⊥ = a(1 − S0), �0‖ = a(1 + 2S0), (5)

where a is the step length that both photoinert nematogenic molecules and photoresponsive
ones in the trans configuration are assumed to have in common.

A statistical mechanics argument of Corbett and Warner [5, 6] justifies writing the prin-
cipal chain steps (�⊥, �‖) in the present configuration as

�⊥ = a

[
(1 − φ)(1 − S) + φ

(
b

a

)2
]

, �‖ = a

[
(1 − φ)(1 + 2S) + φ

(
b

a

)2
]

, (6)

where S is the scalar order parameter after photoactivation, b < a is the step length of
photoresponsive nenatogens in the cis configuration, and φ is the number fraction of these
molecules (see Appendix A.1). It should be noted that for φ = 0 equation (6) reduces to (5),
only with S instead of S0.

The equilibrium value of φ depends on how light impinges on the material. Letting the
unit vector e ∈ S

2 denote the polarization of the incoming light, that is, the direction of
vibration of the electric field, it was shown in [6] that in equilibrium

φ = A
I[1 + S(3(n · e)2 − 1)]

3Ic + I[1 + S(3(n · e)2 − 1)] , (7)

3Q is the deviatoric part of the second-moment distribution of monomer u’s: S = − 1
2 when all u’s are

uniformly distributed in the plane orthogonal to n, while S = 1 when all u’s are aligned with n, and S = 0
when all u’s are isotropically distributed (and n is undefined), see, for example, Chap. 1 of [40].
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where A is the fraction of photoresponsive nematogens in a polymer strand, I is the intensity
of light, and Ic a characteristic intensity, related to both forward and reverse isomerization
rates.

We show in Appendix A.2 how (7) can be derived with the aid of appropriate averages
of the scalar product u · e of the molecular direction u and the polarisation direction e

[5, 6, 17]. This derivation also shows that, for unpolarized light, which is the case that we
shall consider in this paper, (n · e)2 should be replaced in (7) by its average over a uniform
distribution of e in the unit circle S

1
k lying in the plane orthogonal to the unit vector k ∈ S

2

designating the direction of propagation of light. Since

〈
(n · e)2

〉
S

1
k
= n · 〈e ⊗ e〉

S
1
k
n = n · 1

2
(I − k ⊗ k)n = 1

2
(1 − (n · k)2), (8)

equation (7) will be replaced here by

φ = A
I

[
1 + S

2 (1 − 3(n · k)2)
]

3 + I
[
1 + S

2 (1 − 3(n · k)2)
] , (9)

where

I := I
Ic

(10)

is the relative intensity, a dimensionless quantity that in our analysis will play the role of a
control parameter.

It is a simple matter to check that for S < 1 the function delivering φ in (9) tends to the
asymptotic value A for I → ∞ (the bleaching limit). Moreover, letting ϑ be the angle that
k makes with n, for a given intensity I , φ is either a monotonic increasing or decreasing
function of ϑ for either S > 0 or S < 0, respectively. Thus, for positive S, the photoacti-
vation mechanism described above is most efficient when n and k are at right angles. If a
deformation of the body moves n closer to k, at a given intensity, photoactivation may be
weakened.

In general, light is absorbed in a material in a way that depends on the penetration depth
and direction of propagation of the radiation, as described, for example, by Beer’s law [41]
(see also Chap. 1 of [42]). Here, this classical picture is further complicated by the fact that
absorption also depends on the population of photoresponsive molecules in the trans-state,
but not on those in the cis-state. To account properly for this would require coupling the
population evolution equation resulting in (7) at equilibrium with an attenuation equation
for the intensity, as proposed in [8].

Here, we shall only be concerned with thin films, and we shall make the approximation
that the intensity of light remains unaffected through the thickness of the body. We shall refer
to this as the photo-uniformity approximation. Of course, this will have a price: we shall not
be able to capture the symmetry breaking associated with the direction of propagation of
light. Whatever instability we shall be able to predict with our continuum theory, flipping
towards or away from light, such as in the experiments described in [43], [44], or [45], will
come from extrinsic ad hoc considerations. We shall be contented with capturing exactly
(possibly in a closed form) just the flipping (in either direction), if any.
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3 Free-Energy Functional

Our continuum theory is based on the trace formula for the elastic free energy per unit
volume (in the reference configuration) of nematic LCEs in the form put forward in [46],

fe = 1

2
μ0

{
tr(FL0FTL−1) + ln

(
det L
det L0

)}
, (11)

where F is the deformation gradient and the shear elastic modulus μ0 is given by

μ0 = nskBT , (12)

in terms of the number density of polymer strands ns, the Boltzmann constant kB , and the
absolute temperature T .

Equation (11) is the nematic generalization of the classical elastic energy density for
elastomers, which Rivlin [47] called neo-Hookian (see also [48] and the detailed account in
Sect. 95 of [49], which sets this constitutive law within the larger class of Mooney-Rivlin
materials),

f0 := 1

2
μ0 tr Cf , (13)

where Cf := FTF is the (three-dimensional) right Cauchy-Green tensor associated with a
deformation f . A statistical mechanics justification has also been derived for (13) from
various theories of long chain molecules.4

The function in (11) is obtained by adapting the simplest realization of these theories
[51] to the case where in both the reference and present configurations the distribution of
monomers in a polymer chain is anisotropic.

When the principal chain steps (�0⊥, �0‖) and (�⊥, �‖) in both the reference and present
configurations are prescribed, as is the case where the corresponding scalar order parameters
S0 and S are given as functions of temperature,5 the second term in (11) is not affected by
the deformation and can be omitted, thus reducing (11) to the bare trace formula of [9] (also
discussed in [53]), which depends only on F and n.6

Our theory will be based on two further assumptions:

(a) We assume that the director n is enslaved to the deformation, so that

n = Fn0

|Fn0| , (14)

which says that the nematic director n0 imprinted in the polymer network at the cross-
linking time is conveyed by the solid matrix of the body.

(b) We assume that the material is incompressible, so that F is subject to the constraint

det F = 1. (15)

4An exposition of statistical theories for rubber can be found in the landmark book [50].
5No photoactivation takes place in this case and a spontaneous deformation of the body is induced by a
change in temperature, as recently considered, for example, in [19, 52] and in many other studies reviewed in
[37].
6An alternative theory building on the bare trace formula is presented in [28], where the existence of an
isotropic reference configuration plays a central role.
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Clearly, assumption (a) is expected to be more realistic for strongly cross-linked poly-
mers than for weakly cross-linked ones.7 In real life, NPNs (or glassy nematics) are good
examples of the former category, as are ordinary nematic LCEs of the latter. On the other
hand, while ordinary nematic LCEs have Poisson ratio ν close to 1/2, and so they are nearly
incompressible, NPNs may have ν ∈ (1/2,2) [37, 54].

The above assumptions will simplify our analysis a great deal, making tractable the non-
linear problem discussed in the next section. We believe that our model is most appropriate
for NPNs and that the conclusions reached here for these materials remain qualitatively
valid, should either (14) or (15) be partly relaxed, for example, by means of a penalizing
potential.8

It is a matter of laborious, but simple algebra, also making use of (14) and (4a), (4b) to
give fe in (11) the following form

fe = 1

2
μ0

{
�0⊥
�⊥

tr Cf + 1

�‖
(�0‖ − �0⊥)n0 · Cf n0

+ �0⊥
(

1

�‖
− 1

�⊥

)
n0 · C2

f n0

n0 · Cf n0
+ ln

�‖
�0‖

+ 2 ln
�⊥
�0⊥

}
.

(16)

In our model, the scalar order parameter S is not prescribed, but is free to adjust itself
in response to illumination. The elastic free energy must then be supplemented by the bulk
condensation energy for the nematic component. Here we depart from [46]. While they
adopted the Landau-deGennes phenomenological approach, we derive the appropriate con-
densation potential fc (per unit volume) from the Maier-Saupe mean-field formulation of
nematic condensation (from the isotropic phase), as described in Sect. 1.3 of [55]. We set

fc = nnkBT (1 − φ)ψMS(S), (17)

where nn is the number density of nematogenic molecules, here appropriately reduced to
account for their fraction in the cis-state (which are no longer in the nematic phase), and

ψMS(S) := J

(
1

3
S2 − 2

3
S

)
− ln

(
daw(

√
JS)√

JS

)
. (18)

In (18), J is the Maier-Saupe molecular interaction energy (scaled to kBT ) and daw denotes
the Dawson integral, defined as

daw(x) := e−x2
∫ x

0
et2

dt for x ∈R. (19)

The minimizer of ψMS depends only on J , which will be chosen so that ψMS attains its
minimum at S = S0, the scalar order parameter prior to illumination.

7We shall see shortly below how this difference is accounted for by the choice of a dimensionless model
parameter.
8However, relaxing (14) completely might ignite pattern formation at a fine scale (such as those studied in
[17]), which might change the overall picture.
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Scaling the total energy density ft := fe + fc to nnkBT (so as to make it dimensionless),
we arrive at

ft = 1

2

{
μ

[
�0⊥
�⊥

tr Cf + 1

�‖
(�0‖ − �0⊥)n0 · Cf n0

+ �0⊥
(

1

�‖
− 1

�⊥

)
n0 · C2

f n0

n0 · Cf n0
+ ln

�‖
�0‖

+ 2 ln
�⊥
�0⊥

]

+ 2(1 − φ)ψMS(S)

}
,

(20)

where

μ := ns

nn
(21)

is the reduced shear modulus. It is precisely the value of μ that describes in our model the
degree of cross-linking in the material: the larger μ, the stronger the cross-linking. Here, fol-
lowing [6], we shall identify two values of μ as representatives for two alternative regimes:
μ = 1/10, for strongly cross-linked polymers, and μ = 1/50, for weakly cross-linked ones.

3.1 Dimension Reduction

To treat (in the following section) the equilibrium of a thin sheet, we must first perform
an appropriate reduction of the total free-energy density ft (per unit volume) in (20) to a
surface free energy (per unit area) to be attributed to a surface in three-dimensional space
representing the deformed shape of the sheet.

We accomplish this task following mainly [19].9 We perform an expansion of ft retain-
ing up to the cubic terms in the sheet’s thickness, thus identifying stretching and bending
contents in the surface energy by the power in the thickness they scale with.10

We identify the undeformed body with a slab S of thickness 2h and midsurface S0 in
the (e1, e2) plane of a Cartesian frame. We further assume that n0 is imprinted in S so that
it does not depend on the x3 coordinate and n0 · e3 ≡ 0. Moreover, we represent the three-
dimensional deformation f as

f (x, x3) = y(x) + �(x, x3)ν, (22)

where x varies in S0, x3 ranges in the interval [−h,h], ν is the normal to the surface S =
y(S0), which is the image in the deformed slab f (S) of the midsurface S0 (see Fig. 2), and
�(x, x3) is a function to be determined,11 enjoying the property

�(x,0) = 0. (23)

9See also [52] for the specific case of a thermally activated ribbon, which differs from the optically activated
one studied in the following section.
10The reader is referred to [56] for an alternative theory for nematic elastomer plates.
11In the classical theory of plates, the Kirchhoff-Love hypothesis stipulates that � ≡ x3 (see, for example,
[57], for a modern treatment). In [20], the Kirchhoff-Love hypothesis was reformulated in the more general
form adopted here and criteria were suggested to identify the function �, none of which delivered exactly the
original Kirchhoff-Love form.
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Fig. 2 Schematic representation of the deformation of a thin sheet. S0 is the planar midsurface of the slab
S of thickness 2h representing the reference configuration of the body. In the deformed slab f (S), S is the
image under the mapping y of the midsurface S0; it is an oriented surface with unit normal ν. S0 lies in the
plane (e1, e2) of Cartesian frame (e1, e2, e3)

As shown in [19], the constraint of incompressibility (15) determines � in the form

�(x, x3) = x3 − Hx2
3 + 1

3
(6H 2 − K)x3

3 + O(x4
3 ), (24)

where H and K are the mean and Gaussian curvature of S , respectively, defined as

H(y(x)) := 1

2
tr(∇sν) and K(y(x)) := det(∇sν), (25)

in terms of the two-dimensional curvature tensor ∇sν at the point y(x) on S .12

The following formula for F was justified in [19] as a consequence of (23),

F = ∇y + �∇ν + �′ν ⊗ e3+ν ⊗ ∇�, (26)

where �′ denotes the derivative of � with respect to x3 and ∇ is the gradient in x, so that,
in particular,

∇ν = (∇sν)(∇y). (27)

Since (23) also implies that ∇�(x,0) ≡ 0, for h sufficiently small we have

|∇�| � �′ (28)

and so the last term on the right-hand-side of (26) is of order o(�′). From now on, we shall
ignore it and use the approximate expression for F

F ≈ ∇y + �∇ν + �′ν ⊗ e3. (29)

12A different approach was taken in Sect. 4.2 of [58], where a Koiter-like theory for thin nematic elastomers
was proposed based on a representationn for the deformation f similar to (22) with � ≡ x3 and ν replaced by
a vector b to be appropriately determined via a minimum principle. Many other dimension-reduction approx-
imations have been proposed in the literature for both classical and nematic elasticity, either in the presence
or in the absence of the constraint of incompressibility. These approximations are mostly based on the method
of �-convergence (an introduction to which can be found in the book [59]). A vast literature is available; with
no attempt at completeness (which would be vain), we mention [60–62] for the compressible classical case
and [63–66] for the incompressible one. For nematic elastomers, in addition to [58], the following should also
be heeded [67, 68].
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Since n0 · e3 ≡ 0, it follows from (29) and (14) that the nematic director n in the present
configuration f (S) is delivered by

n(f (x, x3)) = (I + �∇sν)(∇y)n0

|(I + �∇sν)(∇y)n0| , (30)

where (27) has also been used. Since (∇y)n0 · ν ≡ 0 and ∇sν is a symmetric tensor mapping
the local tangent plane to S into itself, (30) shows that n · ν = 0 everywhere within f (S),
but n is not uniform on the fibers along ν, as � depends on x3.

Moreover, by (29), the three-dimensional right Cauchy-Green tensor Cf can be written
as

Cf = C� + �′2e3 ⊗ e3, (31)

where

C� := C + �C1 + �2C2. (32)

In (32),

C := (∇y)T(∇y) (33)

is the two-dimensional right Cauchy-Green tensor,

C1 := 2(∇y)T(∇sν)(∇y), and C2 := (∇y)T(∇sν)2(∇y). (34)

By (24), (31) becomes a (rather involved) function of the mapping y and the variable x3.
Our next task is to integrate in the latter variable the expression for ft in (20). To this end,

we make further use of the photo-uniformity approximation discussed at the end of Sect. 2:
we shall take (�⊥, �‖) and S as independent of x3. In particular, by (30) and (23), in (9) we
shall express n as

n(f (x,0)) = (∇y)n0

|(∇y)n0| = (∇y)n0

(n0 · Cn0)1/2
, (35)

which is the nematic director evaluated on S and appears to be conveyed by the deforma-
tion of S0, in accordance with the three-dimensional constraint (14). The three-dimensional
incompressibility (15) of the sheet is assured by the form of the function � given in (24). In
the spirit of the reduction to two dimensions, we make the additional assumption that

det C = 1, (36)

a constraint that predicates the inextensibility of the midsurface S0.13

Reasoning as in [19], we identify the stretching and bending contents of the surface
elastic free energy, as the y-dependent components scaling like h and h3, respectively, of
the three-dimensional density ft integrated in x3 over the thickness of S. Denoting by Fs

and Fb the resulting stretching and bending elastic contents, respectively, both scaled to

13Our assumption differs from the requirement that C minimizes the stretching content of the energy (to be
introduced immediately below). This requirement was enforced, for example, in [68] to justify their metric
constraint [see, in particular, their equation (1.6)].
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nnkBT h, with essentially the same computations illustrated in [19], which would be too
boring to reproduce here, we arrive at

Fs[S,y;I ] := μ

∫
S0

{
�0⊥
�⊥

+ �0⊥
�‖

tr C + 1

�‖
(�0‖ − �0⊥)n0 · Cn0

− �0⊥
(

1

�‖
− 1

�⊥

)
1

n0 · Cn0

}
dA

(37)

and

Fb[S,y;I ] := 1

3
h2μ

∫
S0

{
2
�0⊥
�⊥

(8H 2 − K)

−
[

�0⊥
�‖

tr C + 1

�‖
(�0‖ − �0⊥)n0 · Cn0

+ 3�0⊥
(

1

�‖
− 1

�⊥

)
1

n0 · Cn0

]
K

+ 4�0⊥
(

1

�‖
− 1

�⊥

)
(2H − κn)κn

1

n0 · Cn0

}
dA,

(38)

where A here denotes the area measure and

κn := n · (∇sν)n. (39)

Note that the energies Fs and Fb do indeed depend on S and I , namely via the step-lengths
�0⊥ and �0‖ which also depend on the number fraction φ. This latter in turn also depends on
S and I according to (9).

Fs and Fb embody two separate components of the elastic free energy at the level of
approximation we consider. To obtain the total free energy Ft (likewise scaled to nnkBT h),
we must supplement Fs + Fb with the integral (again across the slab’s thickness) of the
components of ft independent of the deformation y,

Ft[S,y;I ] := Fs[S,y;I ] + Fb[S,y;I ]

+
∫

S0

{
μ

[
ln

�‖
�0‖

+ 2 ln
�⊥
�0⊥

]
+ 2(1 − φ)ψMS(S)

}
dA.

(40)

It is worth noting that by the scaling chosen here Ft has the physical dimensions of an area;
to obtain a dimensionless energy, we should normalize Ft to the area of S0 (which by (36)
is the same as the area of S ), as will be done in the following section.

If light is impinging at right angles from above on S0, so that k = −e3 (see Fig. 2), by
(35), the cis-population fraction φ in (9) depends on k and n through

(n · k)2 = (e3 · (∇y)n0)
2

n0 · Cn0
. (41)

In [6], a few realistic values were suggested for the parameters that still need to be pre-
scribed to solve a specific equilibrium problem. They suggested to take

A = 1

6
,

b

a
= 1

2
, and S0

.= 0.61, corresponding to T
.= 0.91TNI, (42)
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where TNI is the nematic-to-isotropic transition temperature. In our parameterization of the
Maier-Saupe potential ψMS in (18), this value of S0 corresponds to J

.= 7.5. As for the
relative intensity I , Eisenbach [69] suggests that it should not exceed 15, whereas for Serra
and Terentjev [70] it could go up to 80. In the application of our theory presented in the
following section, we shall take the above values for A, b/a, S0, and J , and we shall never
consider going beyond I = 70.

4 Ribbon Deflection

We now consider a thin, narrow ribbon originally parallel to the (e1, e2) plane. Its midsurface
S0 is a narrow strip of length l and width w, represented by the set S0 = {(x1, x2) : 0 � x1 �
l, 0 � x2 � w}. We further assume that the ribbon remains at all times homogeneous in x2

and parallel to the e2 direction so that the scalar order parameter S is a function S = S(x1)

of the x1 coordinate only.
We represent y as

y(x1, x2) = y1(x1)e1 + y2(x2)e2 + y3(x1)e3, (43)

which allows the ribbon to come out of the (e1, e2) plane while its normal remains in the
(e1, e3) plane at all times.

In order to make the inextensibility constraint (36) explicit, we note that

∇y = y ′
1(x1)e1 ⊗ e1 + y ′

2(x2)e2 ⊗ e2 + y ′
3(x1)e3 ⊗ e1 (44)

and so

C = {[y ′
1(x1)]2 + [y ′

3(x1)]2
}
e1 ⊗ e1 + [y ′

2(x2)]2e2 ⊗ e2. (45)

Hence, the requirement det C = 1 becomes
{[y ′

1(x1)]2 + [y ′
3(x1)]2

} [y ′
2(x2)]2 = 1. (46)

Separation of variables shows that this is satisfied only if there are a scalar λ > 0 and a
function ϑ such that

C = 1

λ2
e1 ⊗ e1 + λ2e2 ⊗ e2 (47)

and

y1(x1) = 1

λ

∫ x1

0
cosϑ(x)dx, y3(x1) = 1

λ

∫ x1

0
sinϑ(x)dx, y2(x2) = λx2. (48)

A value of λ > 1 corresponds to a contraction of the length of the ribbon together with an
extension of its width.

The cross-section of the ribbon in the (e1, e3) plane is described by the curve γ where

γ (x1) = (y1(x1), y3(x1)) . (49)

As

γ ′(x1) =
(

1

λ
cosϑ(x1),

1

λ
sinϑ(x1)

)
, (50)



A.M. Sonnet, E.G. Virga

we see that ϑ(x1) is simply the angle that the tangent to the ribbon makes at y(x1, x2) with
the e1 axis. A standard computation shows that there the curvature κ of the ribbon is

κ(x1) = λ|ϑ ′(x1)|. (51)

The ribbon is now determined entirely by the curve γ and so by its cross section in
the (e1, e3) plane. It thus resembles a one-dimensional beam. However, it still has more
structure than a simple beam. Any possible contraction in the length of the ribbon will need
to be accompanied by an extension in its width.

4.1 Ribbon Free Energy

To make the free energy of the ribbon explicit, we write the director imprinted in S0 as

n0 = cosϕ0e1 + sinϕ0e2. (52)

As before, we assume that unpolarized light is shone upon the ribbon from above with
k = −e3. The right-hand-side of equation (41) can now be computed by using also (44),
(47), and (48); we find that

(n · k)2 = sin2 ϑ cos2 ϕ0

cos2 ϕ0 + λ4 sin2 ϕ0
. (53)

At this point, it is worth remarking that the representation in (43) for y and hence the
expression (53) are realistic only for either ϕ0 = 0 or ϕ0 = π

2 . For 0 < ϕ0 < π
2 , a more

general class of deformations y should be considered, which also allows for twist. As can be
seen from (53), the case ϕ0 = π

2 is almost trivial, as the number fraction φ of cis molecules
given by equation (9) would then be independent of ϑ . Therefore, we focus on the case
ϕ0 = 0, which will turn out to be rich enough to allow the ribbon to change shape.

The free-energy density of the narrow ribbon is independent of x2, and so the total free
energy Ft given by (40) can be simplified to

Ft[S,λ,ϑ;I ] :=
∫ l

0

{
μ

[
4

3
λ2h2ϑ ′2 + �0⊥

�⊥
+ �0⊥

�‖

(
1

λ2
+ λ2

)

+ 1

�‖
(�0‖ − �0⊥)

(
1

λ2
cos2 ϕ0 + λ2 sin2 ϕ0

)

− �0⊥
(

1

�‖
− 1

�⊥

)
λ2

cos2 ϕ0 + λ4 sin2 ϕ0

+ ln
�‖
�0‖

+ 2 ln
�⊥
�0⊥

]
+ 2(1 − φ)ψMS(S)

}
dx1,

(54)

where we have scaled to nnkBT hw and only the integration over x1 along the length of the
ribbon remains.

Before introducing further simplifications, we give the free energy a dimensionless form
by defining ξ := x1/l; the energy further scaled to the length l of the ribbon then becomes

Ft[S,λ,ϑ;I ] =
∫ 1

0

{
4

3
μ

(
h

l

)2

λ2ϑ ′2 + f (ϑ,λ,S;I )

}
dξ, (55)
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Fig. 3 The ribbon, depicted in
grey, is clamped at the origin with
its left end. Without illumination,
it lies on the y1-axis. Upon
illumination, its right end is free
to rise, with the curvature at the
free end prescribed to be zero.
The black bars indicate the
nematic director, which is aligned
along the length of the ribbon

where

f (ϑ,λ,S;I ) := μ

[
�0⊥
�⊥

+ �0⊥
�‖

(
1

λ2
+ λ2

)
+ 1

�‖
(�0‖ − �0⊥)

(
1

λ2
cos2 ϕ0 + λ2 sin2 ϕ0

)

− �0⊥
(

1

�‖
− 1

�⊥

)
λ2

cos2 ϕ0 + λ4 sin2 ϕ0
+ ln

�‖
�0‖

+ 2 ln
�⊥
�0⊥

]

+ 2(1 − φ)ψMS(S) . (56)

To keep notation simple, we have used the same symbol Ft to denote the free-energy
functionals in equations (40), (54), and (55). Clearly, this is a double abuse of notation: the
functionals and also their dimensions differ. Furthermore, the primes in equations (54) and
(55) denote differentiation with respect to the argument of ϑ , i.e., x1 in the former and ξ in
the latter equation.

4.2 Clamped Ribbon Geometry

We consider a ribbon clamped at one end and free at the other. Specifically, we prescribe the
boundary conditions

ϑ(0) = 0 and ϑ ′(1) = 0, (57)

that is, the curvature (51) vanishes at the free end. We assume that the director is imprinted
so as to lie along the length of the ribbon, ϕ0 = 0.

By symmetry, ϑ ≡ 0 is always a critical point of Ft. Indeed, f in equation (56) is an
even function of ϑ for all values of the intensity I , see (53). Therefore, all other critical
points of Ft come in pairs of opposite signs, one member corresponding to an increasing
function y3(ξ), the other to a decreasing function. We take the increasing companion as
representative of each pair: 0 � ϑ � ϑm, see the discussion at the end of Sect. 2. Figure 3
shows a sketch of two ribbons, one undistorted and the other in a bent configuration.

The integrand in the free energy (55) has two distinct contributions: the first term depends
only on the derivative ϑ ′, and the second term, f as given by (56), depends only on ϑ . If we
assume that ϑ is constant, then the entire integrand is constant. For given light intensity I ,
the free energy is then minimized if f is the minimum with respect to λ and S. In Fig. 4 we
show the minimizing values λ0 and S0 for the case ϑ ≡ 0 and the two values μ = 1/10 and
μ = 1/50 for 0 ≤ I ≤ 50.
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Fig. 4 Minimizers (λ0(I ), S0(I )) of f in (56) for the given light intensity I and ϑ = 0. These values also
minimize the free energy (55) in the case ϑ ≡ 0. Both the scalar order parameter S and the stretching λ vary
on very slightly with the light intensity I . The situation is similar for other values of ϑ (not shown)

The magnitude of the deviation of S and λ from their values at zero light intensity re-
mains very small for all intensities. Motivated by this observation, we make the following
simplification. We replace f in (56) by

f0(ϑ;I ) := f (ϑ,λ0(I ), S0(I );I ) (58)

where λ0(I ) and S0(I ) are the minimizers for f when ϑ = 0. The energy functional then
becomes

Ft[ϑ;I ] :=
∫ 1

0

{
4

3
μ

(
h

l

)2

[λ0(I )]2 ϑ ′2 + f0(ϑ;I )

}
dξ, (59)

which now depends on the single unknown function ϑ .

4.3 Euler-Lagrange Equation

Any equilibrium profile of the ribbon needs to satisfy the Euler-Lagrange equation derived
from (59),

8

3
μ[λ0(I )]2

(
h

l

)2

ϑ ′′ − ∂f0(ϑ;I )

∂ϑ
= 0. (60)

Since ∂f0(ϑ;I )

∂ϑ

∣∣∣
ϑ=0

= 0, the profile of the undistorted ribbon with ϑ ≡ 0 is always a solution

of equation (60) satisfying the boundary conditions (57); we shall call it the trivial solution.
We analyze equation (60) using a hybrid approach: We first derive a range of explicit ex-
pressions that then serve as a basis for producing numerically a range of illustrating graphs
using the parameters given in (42).

For non-trivial solutions, multiplying equation (60) by ϑ ′ and integrating shows that a
conservation law holds in the form

4

3
μ[λ0(I )]2

(
h

l

)2

(ϑ ′)2 − f0(ϑ;I ) = c (61)



Model for a Photoresponsive Nematic Elastomer Ribbon

with a constant c. This constant can be determined by using the boundary condition ϑ ′(1) =
0, we have

c = −f0(ϑ(1);I ). (62)

Equation (61) is autonomous (i.e., it does not depend explicitly on ξ ) and we are interested
in its solutions with ϑ ′ ≥ 0. We call simple every such solution, if existing, alongside its
mirror image, for which ϑ ′ ≤ 0. If ϑ ′ ≥ 0, ϑ ranges monotonically in the interval [0, ϑ(1)],
and so we find that ϑ(1) = ϑm, namely that the largest ribbon angle is found at the free
end. Moreover, it readily follows from (50) that the corresponding equilibrium profile of
the ribbon is convex (as sketched in Fig. 3). If the requirement of monotonicity, ϑ ′ ≥ 0,
is dropped, more convoluted solutions could be constructed by stitching together simple
solutions at points where ϑ ′ = 0. However, we expect such solutions to have higher energy
than the simple ones.

Using the constant (62) in equation (61) we find that

ϑ ′(ξ) = dϑ

dξ
= l

2hλ0(I )

√
3

μ

√
f0(ϑ(ξ);I ) − f0(ϑm;I ), (63)

where for clarity we have here included the argument ξ . Separating variables and integrating
yields

ξ = 2hλ0(I )

l

√
μ

3

∫ ϑ

0

dη√
f0(η;I ) − f0(ϑm;I )

. (64)

Recalling that ϑ(1) = ϑm, we find that

l

h
= 2λ0(I )

√
μ

3

∫ ϑm

0

dϑ√
f0(ϑ;I ) − f0(ϑm;I )

, (65)

which is a compatibility condition for the solution profile. It links the ratio l/h of length to
thickness of the ribbon, the light intensity I , and the maximum angle ϑm.

A condition for a bent solution to bifurcate from the trivial one can be obtained by com-
puting the limit of equation (65) as ϑm → 0, assuming that it exists. To find the limit of the
integral, we consider the Taylor series of f0 near zero,

f0(ϑ) = f0(0) + 1

2
f ′′

0 (0)ϑ2 + O(ϑ4), (66)

where, for brevity, the parameter I has been dropped from the argument of f0 and a prime
denotes differentiation with respect to ϑ . Use of (66) in (65) shows that the existence of the
limit requires to have f ′′

0 (0) < 0, as

lim
ϑm→0

∫ ϑm

0

dϑ√
f0(ϑ) − f0(ϑm)

=
√

−2

f ′′
0 (0)

lim
ϑm→0

∫ ϑm

0

dϑ√
ϑ2

m − ϑ2
= π

2

√
−2

f ′′
0 (0)

, (67)

and so a bifurcation is found when

l∗

h
= πλ0(I )

√
−2μ

3f ′′
0 (0)

. (68)
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Fig. 5 For I = 2 in (a) and I = 30 in (b) the black graph shows the values of l/h required to satisfy the
compatibility condition (65) as a function of ϑm. The grey line shows the limit l∗/h of l/h as ϑm → 0, see
equation (68). For I = 2, there are two different regimes depending on the value of l/h, while for I = 30,
there are three regimes

Figure 5 shows for the two intensities I = 2 and I = 30 the value of l∗/h as a grey
horizontal line and, as a black graph, the values of l/h obtained using the compatibility
condition (65) for 0 < ϑm < π

2 . The two pictures are qualitatively very different. For the
lower intensity, there is a single critical value l∗/h below which no bent solution is possible,
and above which a single bent solution is present. For the higher intensity, in addition to
l∗/h, there is a second critical value l∗/h below which no bent solution exist. For l∗/h <

l/h < l∗/h there are two bent solutions, and for l/h > l∗/h there is a single bent solution,
as in the other case.

To determine the critical value Ic of the intensity at which the two different behaviours
meet, we examine the compatibility condition (65) for small values of ϑm. To this end, we
need one further term of the Taylor series of f0 near zero,

f0(ϑ) = f0(0) + 1

2
f ′′

0 (0)ϑ2 + 1

24
f

(iv)

0 (0)ϑ4 + O(ϑ6). (69)

A straightforward computation then shows that

∫ ϑm

0

dϑ√
f0(ϑ) − f0(ϑm)

= π

2

√
−2

f ′′
0 (0)

(
1 − 1

16
ϑ2

m

f
(iv)

0 (0)

f ′′
0 (0)

)
+ O(ϑ4

m). (70)

Therefore, given that −f ′′
0 (0) is positive, when f

(iv)

0 (0) is positive we have the situation
shown in Fig. 5 (a) with a single critical value l∗/h. When f

(iv)

0 (0) is negative we have the
situation shown in Fig. 5 (b) with the additional critical value l∗/h.

On the left of Fig. 6 we show for the whole possible range 0 ≤ μ ≤ 1 the critical values
Ic of the intensity where the fourth derivative of f0 at zero changes sign and in the middle



Model for a Photoresponsive Nematic Elastomer Ribbon

Fig. 6 Critical intensity Ic (left) and critical length lc/h (middle) versus μ and the curve (Ic, lc/h) param-
eterized by μ (right) with the relevant values of μ marked by black circles. For length-to-thickness ratios
below the graph in the middle diagram, no bent solutions exist for any intensity

Fig. 7 Energy of equilibrium solutions for I = 2 and I = 30 as a function of 0 ≤ ϑm ≤ π
2 . The length l/h of

the ribbon is implicitly determined by the compatibility condition (65) and can be read off from Fig. 5. For
reference, the grey line shows the energy of the undistored ribbon

the corresponding critical values lc/h obtained by equation (68), lc = l∗(μ, Ic). On the right,
parametrized by μ, we plot the curve of critical points (Ic, lc/h) in the I -l/h plane.

To assess the stability of bent ribbon profiles relative to the ϑ ≡ 0 profile, we compare
energies. In this (limited) perspective we shall say that an equilibrium configuration is stable
if it has less energy than any other configuration.

The total energy of the ribbon in an equilibrium configuration can be expressed as a
function of ϑm by using in the functional (59) the conservation law (61) with the constant
from (62):

Feq(ϑm;I ) =
∫ 1

0
{f0(ϑ;I ) − f0(ϑm;I ) + f0(ϑ;I )}dξ
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=
∫ ϑm

0

{
2f0(ϑ;I ) − f0(ϑm;I )√

f0(ϑ;I ) − f0(ϑm;I )

2hλ0(I )

l

√
μ

3

}
dϑ

= 1∫ ϑm
0

dϑ√
f0(ϑ;I )−f0(ϑm,I )

∫ ϑm

0

2f0(ϑ;I ) − f0(ϑm;I )√
f0(ϑ;I ) − f0(ϑm;I )

dϑ, (71)

where in the first step we have used equation (63) for substituting ξ with ϑ , and in the second
step we have used the condition (65) to replace l/h.

Figure 7 shows the energy of equilibrium solutions for the same two intensities used in
Fig. 5, I = 2 and I = 30, for 0 ≤ ϑm ≤ π

2 . The value of l/h is implicitly defined by the
compatibility condition (65). For I < Ic (Fig. 7 (a)), if a bent solution exists it is always
stable. For I > Ic (Fig. 7 (b)), there can be both unstable and stable bent solutions; the
maximum of Feq is attained for the same value of ϑm as the minimum l∗/h of the function
defined by (65) (see Fig. 5 (b)). As l/h is increased above l∗/h two bent solutions originate
whose energies fall on either side of the maximum in Fig. 7 (b). As l/h keeps increasing, the
solution with the smaller ϑm gradually approaches the trivial solution, having always higher
energy until it merges with it at l/h = l∗/h. Correspondingly, the solution with larger ϑm

keeps reducing its energy: there is then exactly one bent solution with the same energy as
the trivial solution; we denote its maximum deflection angle ϑm by ϑe and the corresponding
length to thickness ratio by le/h.

4.4 Bifurcation Analysis

To summarize what we have established so far, we present in Fig. 8 three graphs in the I -l/h

plane: the solid line shows le/h, where a bent solution exists that has the same energy as
the trivial solution. The dashed line shows l∗/h as given by (68): above this line the trivial
solution is unstable. The dotted line corresponds to the minimum l∗/h of the graph shown
in Fig. 5 (b): below this line, no bent solution exists. The minimum of the graph in Fig. 8
has coordinates (Ic, lc/h) for the chosen value of μ = 1/10, see the right graph in Fig. 6.

While Fig. 8 contains the gist of our analysis, it is rather artificial in that it shows length-
to-thickness ratios as functions of the light intensity. Of course, in an experiment l/h is fixed
and only I can be varied. We display therefore in Fig. 9 the maximum angle ϑm of the ribbon
profile as a function of the intensity. When the light intensity reaches I0, a bifurcation from
the trivial to a bent solution occurs. With increasing intensity, the maximum angle ϑm first
increases but eventually decreases, and at I∗ the bent solution disappears altogether. Upon
then decreasing the light intensity, the trivial solution can be continued up to I ∗, where it
merges with the unstable bent solution. In the interval between I ∗ and I∗ there are three
equilibria, the trivial solution and two bent solutions; our elementary stability taxonomy
is not sufficient to cover all cases: we then call metastable the solution with intermediate
energy, and stable (as before) the one with the least energy (see Fig. 9). One bent solution is
stable in (I ∗, Ie) and the trivial solution is metastable, whereas the trivial solution is stable
in (Ie, I∗) and the same bent solution is metastable. In both intervals one bent solution is
always unstable, the one that merges with the trivial solution at I ∗. The intensities I ∗ and I∗
delimit a hysteresis loop, which encloses the intensity Ie where the stable bent solution has
the same energy as the trivial solution; there a first-order shape transition takes place, which
could be seen as an abrupt snapping back and forth of the ribbon.

The picture is similar for all values of l/h > lc/h. As an example, we show in Fig. 10 the
bifurcation diagram for l/h = 20. For l/h < lc/h, there is literally nothing to see: no bent
solutions exist for any value of the intensity.
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Fig. 8 Critical lengths versus light intensity for μ = 1/10. Along the solid line, a bent solution exists that
has the same energy as the trivial solution. Above the dashed line, the trivial solution is unstable. Below the
dotted line, no bent solution exists. To the left of the minimum, located at the critical point (Ic, lc/l), all three
critical lengths coincide and only the solid line is drawn: below it no bent solution exists, above it the trivial
solution is unstable. In the blow-up on the right the grey line marks l/h = 10, and its intersections with the
graphs are marked I0, I∗, Ie, and I∗: the same intensities are also identified in Fig. 9 below

Fig. 9 Bifurcation diagram for
l/h = 10. The intensities marked
I0, I∗, Ie, and I∗ correspond to
those shown in the right graph in
Fig. 8. As the intensity is
increased from zero, at I0 the
trivial solution becomes unstable
and a bent solution bifurcates up
from ϑ = 0. At I∗ , the trivial
solution enters the scene again,
but here has higher energy than
the bent solution. Both solutions
have equal energy at Ie, and for
intensities above I∗ no bent
solution exists any more

Finally, we show in Fig. 11 numerically computed solutions of the Euler-Lagrange equa-
tion (60) satisfying the boundary conditions (57). The parameters used are μ = 1/10 and
l/h = 10 for a range of intensities between I = 1.25 and I = 8.25, as shown. The angles of
the ribbon on its right end coincide with the values of ϑm shown in Fig. 9.

5 Conclusions

We presented a continuum model for photoresponsive elastomers, whose deformation is
driven by illumination. The (dynamical) interaction of light with a nematogenic polymer
network (hosting photoresponsive molecules) was described within the statistical mechanics
model of Corbett and Warner [6, 7].

Light is responsible for a change in shape of photoresponsive molecules, which, once
activated, deplete the nematic phase, and so have an effect on the nematic scalar order pa-
rameter S. This is what makes these materials different from ordinary nematic elastomers,
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Fig. 10 Bifurcation diagram for
l/h = 20. The structure is the
same as in Fig. 9. The relatively
longer ribbon here leads to a bent
solution that both occurs at a
lower intensity and is sustained
for higher intensities. Also, the
maximum angle is closer to π/2

Fig. 11 Ribbon profiles for varying intensities with μ = 1/10 and l/h = 10. Without illumination, the ribbon
occupies the entire space on the y1 axis between zero and one. When the illumination intensity exceeds
a threshold value, the ribbon begins to extend upwards. With increasing intensity, the ribbon first extends
further up before reaching a maximum height. For even higher intensities, the height first decreases before
the ribbon eventually snaps back to the y1 axis. In the final picture shown, the ribbon is back on the y1 axis
but does not reach the point y1 = 1 because for I > 0 also λ > 1

where a change in S is thermally induced. The spontaneous deformation that ensues pho-
toactivation is likely to change illumination conditions, and this in turn may either enhance
or hamper deformation.

Our main objective was to study the equilibrium of a ribbon illuminated at right angles
on one face in its undeformed configuration. To this end, we performed the reduction of the
total free-energy functional to a thin planar sheet and applied our reduced theory to a ribbon
with a realistic choice of physical parameters collected from the specialized literature. We
found the equilibrium configurations of the illuminated ribbon with the nematic director
frozen along its longer side and represented in closed form their bifurcation scenario.

We proved that the activation process is neither linear nor monotonic: the deflection of
an activated ribbon first increases as expected, but then decreases before vanishing abruptly
upon increasing the light intensity I above a critical value Ie, where the ribbon under-
goes a first-order shape transition. A hysteresis cycle is present about I = Ie, featuring
two metastable configurations of the ribbon. Our bifurcation analysis has also shown that
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for a given length of the ribbon there is an optimal value of I for which the deflection is
maximized.

We have limited our analysis to simple solutions with monotonically increasing profile.
However, the abrupt shape transition at the critical intensity Ie cannot be avoided by allowing
more intricate, non-simple solutions: these would have a higher energy than the simple bent
solution, which in turn already has higher energy than the trivial solution in the interval
(Ie, I∗) before disappearing at I∗.

While deflections and displacements are generally large, dilations and contractions in an
illuminated ribbon remain small. However, there is a critical length of the ribbon (depend-
ing only on the degree of cross-linking in the material) below which no deflection can be
promoted by light, no matter how intense this is: the system is too stiff to gain energy by
bending.

Heuristically, the non-monotonic response of an illuminated ribbon, with its abrupt fall,
could be explained by the coupling between the cis-population fraction φ and the illumi-
nation angle that the direction of propagation of light k makes with the nematic director n

(tangent to the ribbon’s longer side in our case). We remarked that for S > 0 this coupling
is most effective when k and n are orthogonal; when the spontaneous deformation reduces
the illumination angle, photoactivation is reduced, resulting in a negative feedback.

In more mundane terms, we may say that when activating a ribbon with light, we should
be gentle: too high an intensity may easily result in no deflection.

Our theory has limitations too. Perhaps the most conspicuous one is the photo-uniformity
approximation that has been used at various stages. Since we do not account for partial
penetration of light in the ribbon’s cross-section, deflection either towards light or away from
it would have precisely the same energy cost. That deflection actually takes place towards
light (as experimentally observed) should be inferred from ad hoc extrinsic considerations.
Attempts have recently been made to account for the consequences that partial penetration
of light has for the spontaneous deformation of thin flat bodies [8, 38].

Actually, a non-monotonic effect of light intensity upon deformation was also found in
[8], but it was predicted to vanish gradually for very large intensities, not with the abrupt
decay shown here. We have found in our simplified approach that very same lack of mono-
tonicity, which can have important consequences in applications. This establishes that partial
penetration of light is not solely responsible for it.

Appendix A: About the Corbett-Warner Model

In this Appendix, which has a pedagogical character, we give details about the statistical
model by Corbett and Warner presented in Sect. 2. Its contents are derived, with minor
modifications and adaptations, from [6] and [17] (see also [52]).

A.1 Step Tensors

A polymer strand in the reference configuration is represented as a chain of N rigid rods,
each of length a, freely jointed one to the adjacent ones, so that the orientation ui ∈ S

2 of
the ith rod is completely independent from the orientation uj ∈ S

2 of any other rod with
j �= i.14

14It should perhaps be recalled that both photoresponsive molecules in the trans configuration and photoinert
mesogens are treated on the same footing in the reference configuration.
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The span vector vector R0 joining the ends of a strand is thus defined as

R0 := a

N∑
i=1

ui (A.1)

and the step tensor L0 is correspondingly given by

L0 := 3

Na
〈R0 ⊗ R0〉, (A.2)

where the brackets 〈· · · 〉 denote ensemble averaging, as in the main text. By the mutual
independence of rods, also in view of (1) written for Q0 and (A.2), we readily arrive at

L0 = 3Na2

Na
〈u ⊗ u〉 = a(3Q0 + I). (A.3)

Use of the uniaxial representation for Q0 in (A.3) leads us straight to (4a) and (5). It is
perhaps worth noting that for Q0 = 0, which represents the isotropic distribution, L0 = aI,
which accordingly represents a globule of radius a, thus justifying the scaling in definition
(A.2).

To give the principal chain steps (�⊥, �‖) featuring in (4b) the expressions in (6) we
must recall that in the present configuration rods of different lengths coexist in one and the
same polymer strand, while obeying different statistics: photoinert rods of length a are in
the nematic phase, whereas photoactivated rods of length b < a are in the isotropic phase.
Letting φ be the number fraction of the latter, there will be (1 − φ)N rods of length a and
φN rods of length b, so that the span vector R can be written as

R = a

(1−φ)N∑
i=1

ui + b

φN∑
j=1

vj , (A.4)

where ui ∈ S
2 and vj ∈ S

2 are unit vectors along photoinert and photoactivated molecules,
respectively. Now, ui and vj are clearly independent from one another, so that for u and v

representative of their ensembles,

〈u ⊗ v〉 = 0. (A.5a)

Moreover, the v’s are assumed to be distributed isotropically,

〈v ⊗ v〉 = 1

3
I, (A.5b)

and the u’s uniaxially,

〈u ⊗ u〉 = Q + 1

3
I, (A.5c)

with Q as in (2). Making use of all equations (A.5a)–(A.5c) to evaluate the average 〈R ⊗ R〉
from (A.4) and normalizing L to the length Na of the unirradiated polymer, precisely as in
(A.2), we readily arrive at equations (4b) and (6) in the main text.
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A.2 Equilibrium cis-Population

We follow [5, 6], in the reinterpretation given in [17], to calculate the number fraction φ of
photoresponsive molecules in the cis-state resulting from a dynamical equilibrium between
forward and backward isomerizations.

Let N be, as above, the total number of monomers in a polymer strand and let A be the
fraction of photoresponsive molecules among them. Thus, denoting by Nt the number of
trans-molecules and by Nc the number of cis-molecules, conservation of mass requires that

Nt + Nc = AN. (A.6)

The forward reaction rate rt→c is proportional to the product of Nt and the average pro-
jected light intensity along the molecular direction u,

rt→c = �E2
〈
(u · e)2

〉
t
Nt, (A.7)

where � is a constant, E = Ee is the wave electric field, and the average 〈· · · 〉t should only
be computed on the trans-molecules. However, since the latter obey the same statistics as
all nematogenic molecules, the partial trans-average is just the same as the full average,

〈
(n · e)2

〉
t
= 〈

(n · e)2
〉
. (A.8)

The thermally induced backward reaction has a rate simply proportional to Nc,

rc→t = 1

τ
Nc, (A.9)

where τ is a thermal relaxation time. Equilibrium requires that rt→c = rc→t. Inserting (A.9),
(A.8), and (A.7) into this equality, we easily see that

φ = Nc

N
= A

I
〈
(e · n)2

〉
1 + I

〈
(e · n)2

〉 , (A.10)

where I is as in (10) with

I = E2 and Ic = 1

τ�
. (A.11)

To obtain (7) from (A.10), it now suffices to observe that

〈
(e · n)2

〉 = e · 〈u ⊗ u〉e = S(n · e)2 + 1

3
(1 − S), (A.12)

where use has also been made of (1) and (2).
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