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a b s t r a c t 

This paper follows and integrates the work started in Inam and Lappa (2021, Int. J. of Heat and Mass 

Transfer , 173, 121267 and 2022, Int. J. of Heat and Mass Transfer , 194(12), 122963) for unsteady flow in a 

channel with either a forward facing (FFS) or a backward-facing step (BFS) by removing the constraint 

of two-dimensionality and allowing the flow to develop along the spanwise direction. As a novel aspect 

with respect to the existing literature (where buoyancy effects is these geometries have generally been 

ignored), mixed forced-gravitational convection is examined. The governing equations, formulated accord- 

ing to the Boussinesq approximation, are integrated using an incompressible flow solver. Moreover, as the 

considered flow regime is turbulent [ Ri = O(10 2 ) and Ra = O(10 7 ) for Pr = 1], in order, to reduce the scale of 

the problem to a level where it is affordable, the analysis is developed in the framework of a large eddy 

simulation (LES) approach. Part of the study is devoted to a critical evaluation of the parameters required 

for the implementation of such a model. We show that while in some cases these may result in tur- 

bulent stress underestimation, in other cases, unphysical flow re-laminarization occurs due to excessive 

dissipation occurring on the small scales. The outcomes of the three-dimensional simulations are used to 

clarify some still poorly known aspects, especially the flow behavior in proximity to (before and after) the 

step, i.e. the point where the abrupt change in the channel cross-sectional area occurs. It is shown that 

a strong correlation exists between the regions where the horizontal flow separates and the presence of 

thermal plumes originating from the bottom wall. Moreover, the quantitative differences between two- 

dimensional (2D) and three-dimensional (3D) results are not limited to the patterning behavior at the 

flow macroscopic scale (where energy is injected into the system). The problem dimensionality also af- 

fects the cascading energy phenomena developing inside the inertial range of scales. In particular, while 

the thermal plumes in the FFS display a striking 3D nature, the BFS is characterized by a significant 

macroscopic component of vorticity along the main flow direction. In this specific case, the portion of 

the spectrum corresponding to the inertial regime is shifted towards higher or smaller amplitudes (with 

respect to the equivalent 2D dynamics) depending on the thermal boundary condition considered for the 

channel floor. 

© 2022 Published by Elsevier Ltd. 
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. Introduction 

In a variety of practical and industrial processes, fluids evolve 

nder the effect of an imposed pressure difference in channels or 

ucts with variable geometry [1–18] . These channels often exhibit 

brupt changes in their cross-sectional area or undergo sudden ex- 

ansions or compressions, and the fluid flows which are frequently 

ncountered in many engineering systems over forward and back- 

ard steps can just be regarded as relevant examples of such dy- 

amics. Indeed, setups of such a kind have enjoyed a widespread 

ttention over recent years as exemplars or archetypal systems for 
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he investigation of fluid flow in domains affected by a topography 

nd related underpinning mechanisms. The presence of obstruc- 

ions or steps often leads to the production of vorticity and ensu- 

ng fluid-dynamic instabilities. These in turn produce a great deal 

f mixing of high and low energy fluid, which can have a remark- 

ble influence on the overall flow and heat transfer performances 

f many devices of technological or industrial interest. 

Specific instances or realizations can be found in the fields of 

lectronic equipment and building cooling [19–20] , management of 

uclear reactors [21–22] , industrial heat exchangers [23] , flow in 

ystems with baffles [24] , fluid machinery and flow in pipes and 

alves [25–26] , power plants and hot water installations [27–28] , 

ow in combustion chambers and furnace engineering [29] , etc. 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123767
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2022.123767&domain=pdf
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Nomenclature 

A Domain aspect ratio 

d Total vertical extension 

C Coefficient 

D Resolved strain rate 

ER Ratio of d and the step height 

F Prognostic equation coefficient 

g Gravity acceleration 

l Horizontal step extension 

k wavenumber or kinetic energy 

L Horizontal extension 

L inertial Inertial range extension 

p Pressure 

Pr Prandtl number 

Ra Rayleigh number 

Re Reynolds number 

Ri Richardson number 

s Step height 

t Time 

T Temperature 

u Velocity component along x 

v Velocity component along y 

U forced Inflow (horizontal) velocity 

V Fluid velocity 

x Horizontal coordinate 

y Vertical coordinate 

z Spanwise coordinate 

Subscripts 

cold cold 

cr critical 

forced forced flow 

hot hot 

inertial inertial 

Ra Rayleigh Number 

Re Reynolds Number 

sgs subgrid-scale 

T turbulent 

x x direction 

z z direction 

Greek Symbols 

α Thermal diffusivity 

β Thermal expansion coefficient 

δ Kronecker symbol 

� Mesh size 

�T Temperature difference 

λ Turbulent viscosity coefficient 

ν Kinematic viscosity 

τ Stress 

ω Angular frequency 

ζ Kolmogorov length 

Superscripts 
∗ intermediate velocity field 

In such a context, while the forward-facing step (FFS) has 

pecifically been introduced as a simplified testbed for the analysis 

f the interplay of a flowing fluid with a blunt obstacle and related 

lockage effects, the companion backward-facing step (BFS) has 

argely been used as a paradigm to address a very classical prob- 

em in fluid-dynamics, that is, “flow separation and reattachment”. 

e wish also to recall briefly that the main difference between 

hese two companion configurations essentially originates from the 
2 
rientation of the step, which by inducing a variable shear along 

he horizontal direction breaks the in-plane symmetry with respect 

o the station corresponding to the presence of the step. It is also 

orth recalling that, unlike the more commonly studied backward 

acing step flow, forward-facing step flows are always characterized 

y two recirculation zones, one at the base of the step, and one on 

ts top. 

A vast literature exists on these subjects, too extended to be 

escribed with an adequate level of detail in the present intro- 

uction. Here the discussion is limited to those aspects, which in 

ur opinion still require some attention (we apologize to all whose 

ork is not included in this synthetic account). For some valuable 

eviews of existing studies, the reader may consider Graziani et al. 

30] for the FFS and Erturk [31] , Biswas et al. [32] , and Chen et al.

33] for the BFS; and/or Kherbeet et al. [34] and Xie and Xi [35] for

oth configurations. 

As a critical analysis of the literature described in these re- 

iews would immediately indicate, despite many valuable effort s, a 

nowledge gap still exists with regard to the interplay of thermal 

uoyancy effects and forced convection in these systems. The ma- 

ority of investigations appearing in the literature have addressed 

ituations in which fluid motion was isothermal or, although heat 

ransfer was modeled (between the fluid and the walls delimiting 

he channel), thermal buoyancy was not taken into account. For 

he case of gases, the only exceptions seem to be Abu-Mulaweh 

t al. [36] ; Abu-Mulaweh [37] , Inam and Lappa [38] and Issakhov 

t al. [39] with regard to the FFS and Barbosa-Saldaña et al. [40] ,

hanafer et al. [41] , Issakhov et al. [39] and Inam and Lappa 

42] for the BFS, where some emphasis was put on gravitational ef- 

ects and the related ability to generate thermal plumes and influ- 

nce accordingly the overall flow. For what concerns the behavior 

f liquid metals or nanofluids in these configurations, the reader 

ay consider the recent numerical investigations by Schumm et al. 

43–44] and Gürsoy et al. [45] , respectively. 

As yet indicated by available studies, another gap to be filled 

oncerns the dimensionality of such systems, which in most cases 

ere treated under the constraint of two-dimensionality to avoid 

he otherwise prohibitive computational times required by three- 

imensional (3D) computations (especially when the related non- 

imensional governing parameters, i.e. the Reynolds and Rayleigh 

umbers take relatively high values). 

Effort s based on 3D DNS (direct numerical simulation) are rel- 

tively rare and sparse. Relevant examples for the case of isother- 

al flow are Wilhelm et al. [46] and Le et al. [47] for the FFS and

he BFS, respectively; similarly, for 3D DNS with heat transfer but 

o buoyancy the reader may consider Barbosa-Saldaña and Anand 

48] and Xu et al. [49] , respectively. Not to increase excessively the 

ensity of the required mesh (known to grow with the values of 

he characteristic non-dimensional parameters), these authors ex- 

mined circumstances for which the flow is laminar. 

Attempts based on turbulence models, where the characteris- 

ic parameters can take much higher values are just the begin- 

ing. Initial effort s along these lines have essentially shown that 

hile turbulence modeling methods, such as the Reynolds aver- 

ged Navier–Stokes (RANS) approach, work well in the case of liq- 

id metals, they are generally inadequate in predicting the effects 

f turbulent separating and reattaching flows in non-isothermal 

ases, whereas large eddy simulation (LES) seems to capture prop- 

rly such dynamics. However, only a limited number of LES works 

ave appeared where the BFS with heat transfer was considered 

see, e.g., Avancha and Pletcher [50] , Labbe et al. [51] , Keating et al.

52] ) and even fewer articles have been devoted to the equivalent 

FS (Rao and Lynch [53] ). 

To the best of our knowledge, no work exists where 3D LES 

imulations of mixed flow on the FFS or BFS have been performed. 

he present study may, therefore, be regarded as an attempt to 
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Fig. 1. Considered channels with a sudden variation in the cross-sectional area: a) 

Forward-facing step (FFS), b) Backward-facing step (BFS). 
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ridge this gap through the implementation and application of a 

elevant LES strategy to the general 3D case in which the flow is 

on-isothermal and with a significant level of buoyancy. 

In particular, we build on the two aforementioned earlier in- 

estigations by Inam and Lappa [42] and Inam and Lappa [38] for 

he BFS and the FFS, respectively, where these problems were tack- 

ed in the framework of DNS and under the limiting assumption of 

D flow (required to make the otherwise intractable scale of these 

roblems compatible with available computational resources). In 

hose works some effort was systematically provided to track the 

volution of these systems from initially steady conditions up to 

he onset of chaos on increasing the Rayleigh number at fixed val- 

es of the Richardson number (this parameter accounts for the rel- 

tive importance of natural and forced convection). It was verified 

hat when turbulent conditions are attained, the frequency spectra 

isplay regions (or frequency intervals) where the distribution of 

mplitude aligns with the scaling law originally predicted by Kol- 

ogorov [54–57] ; remarkably, this may be regarded as the neces- 

ary pre-requisite for the application of the LES strategy (we will 

ome back to this important concept in Sect. 2). 

. Mathematical model 

.1. The geometry 

The considered geometrical models are shown in Fig. 1 , to- 

ether with the related system of non-dimensional coordinates. 

Both are characterized by an inflow section and an outflow sec- 

ion located at x = 0 and x = A x , respectively, where A x is the ratio of

he overall length L x of the domain in the horizontal direction to 

ts total vertical extension d . The other boundaries are solid walls. 

ther characteristic geometrical parameter are A z = L z / d and the 

atio of d and the step height s (ER = d / s fixed to 2 in the present

ork, while in line with Refs [ 38 , 42 ], the value considered for the

omain aspect ratio is A x = 10 with the step being located halfway 

etween the inflow and outflow sections, i.e. at x = A x /2 = 5). The

uid (Pr = 1) is injected into the domain at a temperature T cold ,

hile the entire bottom boundary or the horizontal and vertical 

ides of the step only are kept at a larger temperature T hot and 

he entire top boundary is considered thermally insulated. Periodic 

oundary conditions are assumed to hold along the boundaries de- 
3 
imiting the system in the spanwise direction, i.e. at z = 0 and z = L z ,

ith A z set to 1. 

.2. The turbulence model 

The physical foundation of the entire class of existing LES meth- 

ds is linked to the theory that Kolmogorov [54–57] elaborated 

pproximately 80 years go. Stripped to its basics, this model re- 

ies on the two-fold idea that 1) turbulence typically develops a 

ierarchy of scales through which the energy flows from larger 

cales towards smaller scales, and, 2) since it can be expected 

hat the motion of fluid on the small scales has small time scales, 

hese motions are statistically independent of the relatively slow dy- 

amics occurring on the large scale . The most remarkable impli- 

ation of the latter assumption is that the behaviors on small 

cales should depend only on the rate at which the fluid is sup- 

lied with energy by the large-scale flow and on the kinematic 

iscosity; in turn, this allows the postulation of the existence of 

n ‘‘inertial” wavenumber region, i.e. an interval of length scales 

here local equilibrium is attained, i.e. the energy injected in the 

ow per unit time is balanced precisely by the amount of en- 

rgy dissipated per unit time. Moreover, the flux of the cascad- 

ng quantity across any scale is expected to be a function only 

f dynamic variables on that scale, until kinetic energy is fi- 

ally completely dissipated by friction on the smallest possible 

ength scale developed by the considered flow (the so-called Kol- 

ogorov length). This behavior is reflected mathematically by the 

ell-known ω 

−5/3 scaling law that many real flows have proven 

o display in their frequency spectrum in the range of high fre- 

uencies (equivalent to a k −5/3 scaling law in terms of related 

avenumbers). Most remarkably, from a physical point of view, 

his indicates that, under a certain length scale, turbulence takes 

 universal (repetitive) behavior in space, i.e. it becomes homoge- 

eous, isotropic (direction independent) and self-similar (if a por- 

ion of the pattern is enlarged, the pattern displays the same 

roperties). 

These physical and mathematical considerations represent the 

ought aforementioned foundation of the LES approach. As the be- 

avior of turbulence on those scales is universal and obeys pre- 

ise mathematical laws, it can be “modeled”, thereby alleviating 

he user from the burden of capturing those behaviors through a 

umerical resolution comparable with the Kolmogorov length scale 

i.e. by means of very dense grids). 

Put simply the hallmark of LES is that small-scale motion 

smaller than the so-called “filter width”) is implicitly removed 

rom the numerical simulation and determined as a function of lo- 

al flow conditions. Typically, this is achieved through the intro- 

uction of the concept of eddy viscosity ( νT ), i.e. in order to filter 

ut all the scales under a certain limit (namely the scale of the 

esh effectively used for the numerical simulation), the kinematic 

iscosity ν of the considered fluid must be enriched with an addi- 

ional term that accounts for the frictional effects occurring on the 

umerically neglected scales (generally called “unresolved” scales 

o distinguish them from the flow “resolved”, i.e. the velocity field 

etermined numerically). As one may expect, this additional term 

typically referred to as the subgrid-scale viscosity) depends (grows 

ith) the size of the effectively used mesh, which may be regarded 

s the essence of the so-called Smagorinsky [58] model. 

For turbulence in non-isothermal fluids (with buoyancy), how- 

ver, besides kinetic energy, turbulent thermal energy, whose den- 

ity scales with the square of the local temperature fluctuations, 

ust also be regarded as a relevant aspect of the problem. In anal- 

gy with the arguments elaborated before for the kinetic energy, 

his additional form of energy can be thought of (see, e.g., the ar- 

uments elaborated by Kraichnan [59] ) as being injected at a large 

ength scale, namely the vertical distance over which a tempera- 
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ure difference is maintained, and dissipated at small length scales 

y the thermal diffusivity. 

Although, Bolgiano [60] and Obukhov [61] could show that in a 

tably stratified fluid, the kinetic energy spectrum can become E(k) 

 k −11/5 if the thermal flux largely exceeds the kinetic energy flux, 

owever, Kumar et al. [62] and Bhattacharjee [63] have confirmed 

hat for a convectively unstable configuration like that considered 

n the present study, Kolmogorov arguments for the scaling of the 

nergy spectrum are still applicable (i.e. E(k) ∝ k −5/3 ). This is the 

equired principle allowing to treat the cascading behavior of ther- 

al energy in a fashion similar to that used for the turbulent ki- 

etic energy, that is, through the introduction of a turbulent ther- 

al diffusivity αT to be added to that of the fluid ( α) (Wong and

illy [64] ). This parameter can be related to the turbulent viscosity 

T , through a simple constant scaling factor, i.e. the so-called tur- 

ulent Prandtl number Pr T (defined as νT / αT in analogy with the 

lassical fluid Prandtl number Pr = ν/ α). 

As a result, the original set of governing equations for mass, 

omentum and energy can be turned into an equivalent set of 

pace-averaged equations and their solution can capture a large 

nterval of scales, which range from the smallest physically rele- 

ant one when the filter width tends to zero (in this condition the 

pace-averaged equations tend to original flow equations) to the 

mean’ large-scale turbulent flow when a very large filter width 

s assumed. Different variants of this approach exist and have 

een used with various degrees of success in the literature. In the 

riginal Smagorinsky algebraic model (also known as 0-equation 

odel), the parameter νT depends only on the size of the mesh 

nd the local value of the resolved strain rate, i.e. 

T = 

˜ λ2 

√ 

2 D 

2 

i j (1) 

here D i j is the resolved strain rate (in dimensional form) 

 i j = 

1 

2 

(
∂ u i 

∂x j 
+ 

∂ u j 

∂x i 

)
(2) 

nd 

˜ λ = C s �, � is the mesh size and C s is a constant value in

he model that must be specified prior to a simulation. Although 

his approach has led to valuable results (Majander and Siiko- 

en [65] and references therein), more sophisticated versions have 

een introduced over the years to fix some drawbacks of the orig- 

nal implementation. Here, we refer to the so-called one-equation 

odel that Yoshizawa and Horiuti [66] elaborated to improve the 

ocal balance assumption between the subgrid-scale energy pro- 

uction and dissipation adopted in the 0-equation version. 

With this model, the subgrid-scale kinetic energy is defined 

s 

 sgs = 

1 

2 

τkk = 

1 

2 

( u k u k − u k u k ) (3) 

nd νT is computed as 

T = C k �
√ 

k sgs (4) 

Accordingly, the subgrid scale stress tensor reads 

ij = u i u j − u i u j = 

1 

3 

τkk δij + 

(
τij −

1 

3 

τkk δij 

)
1 

3 

τkk δij − 2 νT dev 
(
D 

)
ij 

= 

2 

3 

k sgs δij − 2 νT dev 
(
D 

)
ij 

(5) 

The subgrid-scale kinetic energy required for the determination 

f νT is computed resorting to the aforementioned hypothesis of 

ocal equilibrium, that is, the balance between the subgrid scale 

nergy production and dissipation, which in mathematical form 

an be casted in compact form as 

 : τ + C ∈ 
k 1 . 5 sgs = 0 (6) 

�

4 
here the operator “:” is a double inner product of two second- 

ank tensors (i.e. the summation of the nine products of the corre- 

ponding tensor components of the two tensors) and C ∈ is a sec- 

nd constant required by the model in addition to C k . Taking into 

ccount Eq. (5) and by indicating with I the unit matrix, Eq. (6) can

e further rearranged as 

 : 

(
2 

3 

k sgs I − 2 νT de v ( D ) 
)

+ C ∈ 
k 1 . 5 sgs 

�
= 0 → 

 : 

(
2 

3 

k sgs I − 2 C k �
√ 

k sgs de v ( D ) 
)

+ C ∈ 
k 1 . 5 sgs 

�
= 0 → 

 

k sgs 

(
C ∈ 
�

k sgs + 

2 

3 

tr( D ) 
√ 

k sgs − 2 C k �
(
de v ( D ) : D 

))
= 0 → 

k sgs + b 
√ 

k sgs − c = 0 (7) 

For which the solutions can be simply obtained as 

 sgs = 

(
−b ± √ 

b 2 − 4 ac 

2 a 

)2 

(8) 

Where 
 

 

 

 

 

 

 

 

 

a = 

C ∈ 
�

b = 

2 

3 

tr( D ) 

c = 2 C k �
(
de v ( D ) : D 

)
(9) 

In the case of incompressible flow, this reduces to 
 

 

 

b = 

2 

3 

tr( D ) = 0 

c = 2 C k �
(
de v ( D ) : D 

)
= C k �

∣∣D 

∣∣2 
(10) 

here | D | = 

√ 

2 D : D . 

Therefore, by substitution of Eq. (10) into Eq. (8) one gets 

 sgs = 

c 

a 
= 

C k �
2 
∣∣D 

∣∣2 

C ∈ 
(11) 

nd by further substituting Eq. (11) into Eq. (3) , the turbulent vis- 

osity finally reads: 

T = C k 

√ 

C k 
C ∈ 

�2 
∣∣D 

∣∣ (12) 

Notably, by comparing it with Eq. (1) at the basis of the alge- 

raic Smagorinsky model, it follows that 

T = (C s �) 
2 
∣∣D 

∣∣ → C 2 s = C k 

√ 

C k 
C ∈ 

→ C k = 

(
C 4 / 3 s C 1 / 3 ∈ 

)
(13) 

This value has finally to be corrected to fix the otherwise un- 

hysical behavior by which the subgrid-scale viscosity would not 

ecome zero on solid walls (where standard viscous effects are 

ominant and tend to damp turbulence effects). The assumption 

f a constant νT in these regions (where | D | is relatively high) 

ould overestimate the subgrid-scale stresses and might prevent 

ow transition to turbulence (we will come back to this important 

oncept in Sect. 4). Here we limit ourselves to highlighting that the 

ssue can be fixed in a relatively simple way by using the damping 

unction originally proposed by van Driest [67] , namely 

T = C k 

√ 

C k 
C ∈ 

�2 
(
1 − e −y + / 25 

)2 ∣∣D 

∣∣ (14) 

here y + = y u / ν is the distance from the wall in wall coordinates

see, e.g., Moghadam et al. [68] ), by which the correct asymptotic 
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ehavior is recovered ( u being the velocity component in a direc- 

ion parallel to the wall). 

As a concluding remark for this section, we wish to highlight 

hat although, as mentioned before, much more sophisticated ver- 

ions of the LES approach can be found in the literature, here we 

ntentionally resort to this specific variant (the one-equation model 

y Yoshizawa and Horiuti) as, besides proving relevant results, its 

elative simplicity is instrumental in revealing some possible pit- 

alls generally associated with this class of methods in relation to 

ows of mixed forced-buoyant nature and not too high values of 

he Rayleigh number (as further shown later in this work). 

.3. Balance equations, boundary conditions and characteristic 

umbers 

As made evident by the treatment of the Smagorinsky model 

laborated in Sect. 2.2, the LES approach relies on a space-averaged 

ersion of the balance equations for mass, momentum and energy, 

hich are formally similar to the original equations, the only dif- 

erence being represented by the presence of an additional coeffi- 

ient, namely, the turbulent kinematic viscosity and thermal diffu- 

ivity in front of the diffusive term appearing in the momentum 

nd energy equations, respectively. Using as reference quantities, 

 , α/ d , ρα2 / d 2 , d 2 / α and �T for the geometrical coordinates, ve-

ocity ( V ), pressure ( p ), time ( t ) and temperature ( T ), respectively,

he non-dimensional form such of equations simply reads [69] : 

 · V = 0 (15) 

∂ V 

∂t 
= −∇ p − ∇ · [ V V ] + ( 1 + Pr ν∗

T ) ∇ 

2 V − Pr RaT i g (16) 

∂T 

∂t 
+ ∇ · [ V T ] = ( 1 + α∗

T ) ∇ 

2 T (17) 

here ν∗
T = νT /ν and α∗

T = αT /α, i g is the unit vector along the 

irection of gravity and Ra is the Rayleigh number, classically de- 

ned as 

a = 

gβT �T d 3 

να
(18) 

here the parameter βT is the well-known fluid thermal expan- 

ion coefficient, which accounts for the variations of fluid density 

nduced by thermal effects (as implicitly defined by the Boussinesq 

pproximation, where density is assumed to be linearly propor- 

ional to temperature). The other dimensional quantity g appear- 

ng there is the gravity acceleration. Problem closure requires that 

he proper boundary conditions are specified along the boundaries 

f the system. These bring in another non-dimensional parameter, 

amely, the Reynolds number evaluated using as reference velocity, 

he uniform (along y and z) velocity U forced with which the fluid is 

njected into the domain: 

e = 

U f orced d 

ν

This parameter appears in the set of boundary conditions im- 

osed at x = 0, namely, 

 = 0 ( inflow ) , T = 0 ( cold fluid ) and u = PrRe (19) 

The other required conditions read 

 = v = w = 0 on all solid walls (20) 

having indicated with u, v and w , the velocity components along 

, y and z , respectively) and 

 = A x ( outflow ) : 
∂ V 

∂t 
+ F 

∂ V 

∂x 
= 0 , 

∂T 

∂t 
+ F 

∂T 

∂x 
= 0 (21)
t

5

Eq. (21) is the so-called “prognostic’ equation, by which the 

ccurrence of unphysical oscillations of the thermofluid-dynamic 

ariables at the outlet can be prevented. The quantity F appearing 

n front of the space gradient is a constant generally set equal to 

he averaged velocity perpendicular to the boundary F = V · ˆ n [70–

1] . 

The following additional thermal boundary conditions are con- 

idered for the boundary delimiting the fluid from below and from 

bove. 

op wall ( y = 1 ) ∂ T /∂ y = 0 ( adiabatic ) (22) 

tep vertical side ( x = A x / 2 ) , T = 1 ( isothermal ) (23) 

Step horizontal side (y = ER 

−1 ): 

FS ( A x / 2 ≤ x ≤ A x ) , T = 1 ( isothermal ) (24) 

FS (0 ≤ x ≤ A x / 2) , T = 1 ( isothermal ) (25) 

Channel floor (y = 0) 

FS (0 ≤ x ≤ A x / 2) , ∂ T /∂ y = 0 ( adiabatic ) (26) 

r T = 1 ( isothermal ) (27) 

FS (A x / 2 ≤ x ≤ A x ) , ∂ T / ∂ y = 0 ( adiabatic ) (28) 

r T = 1 ( isothermal ) (29) 

Moreover periodic boundary conditions (PBC) have been set at 

 = 0 and z = A z for both temperature and velocity. 

Considered together, the balance equations and the related 

oundary conditions indicate that the overall problem is governed 

y three independent parameters, namely Pr, Ra and Re. These 

an also be conveniently combined into a single non-dimensional 

roup, known as the Richardson number: 

i = 

gβT �T d 

U 

2 
f orced 

= 

Ra 

Pr Re 2 
(30) 

The need for this extra characteristic group stems from its abil- 

ty to provide ‘a priori’ an estimate of the relative importance of 

uoyancy and forced convection. In the literature various examples 

an be found where it was used to categorize the dynamics of hy- 

rid thermal-forced convection into different regimes (e.g., the so- 

alled ‘near and far field’ models [72–73] ) and plume instabilities 

74–75] . 

. The numerical method 

In line with the earlier effort s by [ 38 , 42 ], the problem described

n the preceding sections has been tackled taking advantage of the 

omputational platform OpenFOAM, which in turn relies on the 

ell-known PISO approach for the solution of the Navier-Stokes 

quations (whose main principles are illustrated in the following). 

.1. The projection method 

It works by taking the pressure term out of the momentum 

quation ( Eq. (16) ). In practice, the momentum balance equation 

s solved without accounting for the pressure gradient to give an 

nitial “guess” V 

∗ for the velocity 

∂ V 

∗

∂t 
= 

[
−∇ · [ V V ] + Pr ∇ 

2 V + Pr RaT i g 
]

(31) 

The pressure gradient that was previously ignored is then rein- 

roduced into the provisional velocity V 

∗ obtained through solution 
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f Eq. (31) to correct it 

 V = ) V 

∗ − ξ ) ∇ p (32) 

where ξ is a constant generally set equal to the time integration 

tep �t). The pressure is unknown at this point, meaning this stage 

f the process is only a formality. From a practical point of view, 

he pressure itself is found by substituting the corrected velocity 

xpression into the mass balance equation ( Eq. (15) ); this leads to 

 new equation elliptic in nature: 

 

2 p = 

1 

�t 
∇ · V 

∗ (33) 

hich is typically solved assuming homogeneous Neumann con- 

itions along the external boundary of the computational domain. 

nce the pressure has been determined, the initially purely formal 

q. (32) can be turned into an effective relationship for the evalua- 

ion of the final velocity field. The additional Neumann conditions 

equired for Eq. (33) (generally called ‘numerical’ because they are 

ot specified by the ‘physics’ of the considered problem) formally 

esult from imposing at the boundaries the effective (physical) ve- 

ocity, by which the need to correct the fluid velocity along the 

eriphery of the considered fluid domain is relaxed and accord- 

ngly the pressure gradient can be set to zero. The vector field V 

etermined in this way satisfies the continuity equation, i.e. it is 

ncompressible, has the same vorticity that the velocity field ap- 

earing in the original momentum equation would have (because 

orticity does not depend on the pressure gradient) and satisfies 

he physical boundary conditions. According to the Hodge theorem 

Ladyzhenskaya [76] ), this therefore corresponds to a solution of 

he original (un-modified set of equations). 

With OpenFoam, Eqs. (31 - 33 ) are numerically discretized re- 

orting to a collocated grid approach, which means that all the 

rimitive variables are stored in the center of the computa- 

ional cells while proper coupling of velocity and pressure is ob- 

ained via a special interpolation scheme [77] . Moreover, solution 

f Eq. (33) is implemented in the framework of a Generalized 

eometric-Algebraic Multi-Grid (GAMG) method, while the sys- 

em of algebraic equations obtained through discretization of the 

omentum and energy equations (by means of central-difference 

chemes) is solved through a Preconditioned Bi-Conjugate Gradient 

PBiCG). An Incomplete Lower Upper (DILU) preconditioner is used 

or the predictor step of the momentum equation only. 

As a concluding remark for this section, we wish to recall that 

he entire approach described here has been repeatedly validated 

hrough comparison with other results and available test cases in 

he literature for a wide ranging set of conditions, which include 

ases with buoyancy flow generated by heated surfaces with dif- 

erent inclinations and other benchmarks about geometries with 

udden variations in the shape (such information is not duplicated 

ere for the sake of brevity; the interested reader may consider the 

xtensive validation sections reported in [ 38 , 42 , 78 ]). 

.2. Mesh requirements 

The selection of a relevant mesh for the application of the 

ES approach is not as straightforward as one would imagine (Ce- 

ik et al. [79] ). The empirical criteria valid for inertially-driven, 

.e. forced, flows (see, e.g., Goergiadis et al. [80] , Choi and Moin 

81] and references therein) are not directly applicable to circum- 

tances in which thermals (thermal plumes of buoyant origin) con- 

ribute significantly to the development of turbulence (Farhangnia 

t al. [82] ). For natural or mixed convection, special care must be 

rovided to satisfy the fundamental (crucial) requirement at the 

asis of the LES philosophy, that is, the size of the mesh must be

ocated within the inertial range of space scales . 

This apparently innocuous argument implies that a meaning- 

ul strategy must be found to evaluate a priori the upper and 
6 
ower boundaries of the inertial range in the overall interval of 

pace scales relevant to the considered problem. In this regard, 

t is worth recalling that some useful correlations exist by which 

he scale delimiting this interval from below (that is, the so-called 

olmogorov length scale, ζ , i.e. the length scale at which the cas- 

ading energy is finally dissipated) can be estimated. This quan- 

ity typically depends on the considered values of the characteris- 

ic numbers, which measure the relative importance of the forces 

hat induce fluid motion with respect to those which hinder it. 

n the present case, these are the Reynolds number, which ac- 

ounts for the relative importance of inertial and viscous forces, 

nd the Rayleigh number, which represents the relative importance 

f buoyant effects with respect to the counteracting influence of 

iscosity and thermal diffusion. In the presence of concurrent driv- 

ng forces (inertia and buoyancy in the present case), the most re- 

trictive condition should be considered, i.e. the one for which the 

mallest possible value of the Kolmogorov length is obtained. For 

hat concerns, inertia-driven flows, it is known that 

Re 
∼= 

Re −3 / 4 (34) 

This correlation should be used when forced flow is dominant, 

.e. for Ri < O(1). For dominant thermal convection ( Ri > O(1)), sim- 

lar relationships are available in terms of the Rayleigh number. 

hese differ according to whether thermal convection is produced 

y heated vertical or horizontal walls (see, e.g., Paolucci [83] and 

err [84] , respectively). 

Ra ⊥ = π
(

16 Pr 

Ra 

)3 / 8 

(35) 

Ra || = 1 . 3 Ra −0 . 32 (36) 

As we are in the situation in which Ri > O(1), and values of Pr

nd Ra for which ζRa ⊥ > ζRa || , Eq. (36) should therefore be con- 

idered as the effective Kolmogorov-length controlling law, giving 

or Ra = 10 7 , ζ∼= 

7.5 × 10 −3 . Any mesh with size � larger than this

ill obviously fall within the inertial range of scales, which sets 

 first bullet for the proper definition of the mesh size. A mesh 

ith too large size, however, might be located beyond the upper 

oundary of the inertial range, which indicates that estimates of 

he Kolmogorov length alone are not enough to close this problem 

an upper boundary of the inertial range is also needed). 

In practice, still assuming (in line with the considerations above 

n the Kolmogorov length scale) the heating from below situation 

s the turbulence controlling condition, the extension L inertial of the 

nertial range can be estimated using the relevant information pro- 

ided by De et al. [85] , who yielded the following relationships: 

 iner tial = 2 . 22 Ra −0 . 196 in the bulk (37a) 

 iner tial = 1 . 01 Ra −0 . 18 in proximity to the heated wall (37b) 

hich give for Ra = 10 7 , L inertial = 9.4 × 10 −2 and L inertial = 5.5 × 10 −2 ,

hereby constraining the required (non-dimensional) mesh size in 

he range 7.5 × 10 −3 ≤�≤5.5 × 10 −2 . 

In order to verify the consistency of such approach, we have 

ompared the frequency spectrum obtained through DNS with that 

roduced by the LES approach in equivalent conditions for some 

epresentative cases. As illustrated in Sect. 4, by virtue of this 

odus operandi we have verified the ability of the LES to prop- 

rly reproduce the system dynamics over a wide interval of fre- 

uencies, until (as expected) a “cutoff” frequency is reached that 

orresponds to the flow wavenumber beyond which the flow is no 

onger resolved numerically because the effect of turbulence are 

mplicitly taken into account via the model described in Sect. 2.2. 
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Fig. 2. Snapshots of velocity (magnitude) field (a) and temperature distribution (b) for the FFS ( Ri = 100) with adiabatic floor (LES, C k = 1 × 10 −3 and Pr T = 0.9). 
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. Results 

To compare the simulations on an equal footing for different 

ydrodynamic conditions, a fixed value of the Rayleigh number has 

een considered, i.e. Ra = 10 7 , in line with the arguments provided 

n Sect. 3.2. Moreover, in order to have the same mass flow rate 

or the FFS and the BFS, the Richardson number has been set to 

00 and 25, respectively (the Richardson number, defined through 

q. (30) being based on U forced , i.e. the constant velocity of the fluid

t the “inflow section”, which has a different vertical extension ac- 

ording to whether the FFS or the BFS is considered). 

At this stage, we wish to recall that the LES approach has been 

uccessfully applied to pure thermal convection [ 64 , 86-88 ], cir- 

umstances involving various kinds of jets in cross flow (Li and 

a [89] ), fluid currents (without buoyancy) in ducts with “turbula- 

ors” [ 1 , 5 , 8 , 12 , 15 ] and forced flows in ducts with buoyancy effects

 21 , 90-92 ]. 

Although the ranges of values of Pr T and C s commonly used 

re 0.4 ≤Pr T ≤1 [86–87] and 0.065 ≤C s ≤0.2 (Li and Ma [89] ), or

.0265 ≤C k ≤0.119 (assuming C ∈ = 1.048), general consensus exists 

hat universally valid values for these parameters do not exist and 

hat a proper choice of them should be based on careful compari- 

on with experiments or with the outcomes of dedicated DNS. We 

ish to remark that this specific aspect becomes even more critical 

or the present work, where conditions for which the flow has just 

ntered the turbulent regime are considered and for which, there- 

ore, the values traditionally used in the literature may not work 

roperly. 

Towards the end to determine reliable estimates for such pa- 

ameters, a preliminary set of simulations has been conducted 

omparing the outcomes of the LES model with DNS simulations. 

Given the otherwise prohibitive cost of 3D DNS computations, 

nd taking advantage of the isotropic (universal) nature of turbu- 

ence on small scales (described in Sect. 2.2), in particular, this 

nitial study has been conducted in the framework of a two- 

imensional (2D) framework, as illustrated in detail in Sect. 4.1. 

.1. Comparison of LES with DNS 

In the light of the criteria illustrated in Sect. 3.2, a mesh 

ize of 740 × 120 has been used for all the 2D LES simulations 

ith Ra = 10 7 (such a choice corresponding to �x = 1.35 × 10 −2 ,

y = 8.3 × 10 −3 ), whereas for the corresponding DNS the mesh size 

as been based on the Kolmogorov length scale, i.e. Eq. (36) (which 

mplies �x =�y = 7.5 × 10 −3 ). The values of C k and turbulent 

randtl number have been changed continuously over a certain 
7

ange to understand which set of values can reproduce the DNS 

esults with an acceptable agreement. 

Initially, such an iterative procedure has been implemented for 

he FFS with adiabatic floor. By virtue of extensive parametric anal- 

sis, the best values for both constants C k and Pr T have been found 

o be Pr T = 0.9 and C k ∼= 

10 −3 . As the reader will realize by inspect-

ng Fig. 2 , the velocity and temperature fields, display the same 

ynamics observed for the DNS case (see Fig. 7d in [38] , where a

esh with the size of the Kolmogorov length scale was used). The 

esults are indeed consistent in terms of number of plumes present 

n the domain at a given instant and related velocity of propagation 

n the downstream direction. 

As an additional check, the entire frequency spectrum has been 

lotted for both cases. As qualitatively and quantitatively substan- 

iated by Fig. 3 , both the spectra for LES and DNS follow the Kol-

ogorov law in a wide interval of frequencies. As expected, some 

ppreciable differences can only be spotted for ω ≥ O(10 5 ), which 

s consistent with the principles of the LES strategy (the spatiotem- 

oral behavior on very small scales or high frequencies being im- 

licitly taken into account via the subgrid viscosity rather than be- 

ng captured directly by the numerical simulation). 

In order to determine the sensitivity of the constant C k to the 

xtent of buoyancy effects present in the domain, the same para- 

etric analysis has been repeated considering the equivalent con- 

guration in which the entire bottom wall of the channel is hot. 

his additional set of simulations has revealed that the agreement 

etween LES ( Fig. 4 ) and DNS still holds for C k = 2 × 10 −3 and

r T = 0.9. 

For the sake of completeness, as shown in Fig. 5 , we have also 

etermined the relationship between the ratio of the main fre- 

uencies (corresponding to the average velocity of plume propa- 

ation along the horizontal direction) obtained by means of DNS 

nd LES and the constant C k . The major significance of this figure 

esides in its ability to make evident that an excessive increase in 

his parameter can cause a mitigation of the dominant flow fre- 

uency until a completely steady state is attained for C k = 0.1. 

This may be regarded as a clear example of a well-known short- 

oming of the LES approach, i.e. its tendency to induce flow re- 

aminarization due to excessive dissipation occurring on the small 

cales if the value of the constant appearing in the expression of 

he subgrid viscosity is not properly tuned. The Smagorinsky model 

s known to often over-predict subgrid-scale dissipation and mod- 

fy the true energy cascade. Just to cite a few examples, Montaz- 

rin et al. [93] found the Smagorinsky coefficient for squirrel-cage 

ans to be considerably less than its classical value C s = 0.166 (cor- 

esponding to C k = 0.094); similarly, Bartosiewicz and Duponcheel 
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Fig. 3. Frequency spectrum for the FFS ( Ri = 100) with adiabatic floor (numerical probe position x = 7.9, y = 0.65): a) DNS, b) LES. 

Fig. 4. Snapshots of velocity (magnitude) field (a) and temperature distribution (b) for the FFS ( Ri = 100) with hot floor (LES, C k = 2 × 10 −3 and Pr T = 0.9). 

Fig. 5. LES/DNS ratio of main flow frequency (FFS with hot floor, the spline is used 

to guide the eye). 

[  

C

t

d

a

b  

t

w

s

s

r

s

t

a

s

w

(

t

a

u

fl

i

f

t

m

d

a

u

a

a T 
94] observed that even a value as small as C s = 0.027 (equivalent to

 k 
∼= 

8 × 10 −3 ) can cause flow re-laminarization in some regions of 

he fluid domain. This problem becomes even more critical if con- 

itions for which the flow has just entered the turbulent regime 

re considered. Relevant information about this specific point can 

e found in the earlier studies by Inam and Lappa [ 42 , 38 ] where

he evolution of hybrid convection for both FFS and BFS systems 
8 
as tracked as a function of the Rayleigh number from steady 

tates up to fully developed turbulence. For the values of Ri con- 

idered in the present work, chaos was observed for Ra ∼= 

10 7 as a 

ealization of the complex unsteady behavior of thermal plumes 

parked by earlier flow Hopf bifurcations. In turn, these were found 

o be the outcome of the complex interplay of inertial and buoy- 

ncy effects [ 42 , 38 ]. 

As indicated by the present study, the choice of the Smagorin- 

ky constant becomes a particularly delicate aspect in problems 

ere initial transition to time-periodic flow and later to turbulence 

on further increasing the governing parameters) is supported by 

he aiding influence of fluid-dynamic disturbances of shear-driven 

nd buoyant nature. Too high values of this constant may cause an 

nphysical alteration of the velocity of propagation of waves in the 

uid domain (slowing down the trains of thermal plumes travel- 

ng in horizontal direction) and even prevent completely the flow 

rom developing the required hierarchy of bifurcations that leads 

o chaotic behavior. 

To demonstrate the validity of these arguments (and the related 

odus operandi), the procedure implemented for the FFS has been 

uplicated to determine the equivalent optimal parameters of C k 
nd Pr T for the BFS configuration. The outcomes of the related sim- 

lations (summarized in Figs. 6 and 7 for the cases with adiabatic 

nd hot floor, respectively) essentially confirm that C k = 2 × 10 −3 

nd Pr = 0.9 would still be relevant choices. 



M. Lappa and S. Inam International Journal of Heat and Mass Transfer 202 (2023) 123767 

Fig. 6. Snapshots of velocity (magnitude) field (a) and temperature distribution (b) for the BFS ( Ri = 25) with adiabatic floor (LES, C k = 2 × 10 −3 and Pr T = 0.9). 

Fig. 7. Snapshots of velocity (magnitude) field (a) and temperature distribution (b) for the BFS ( Ri = 25) with hot floor (LES, C k = 2 × 10 −3 and Pr T = 0.9). 
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.2. Three-dimensional mixed convection for Ri = 100 (FFS) 

After determining the optimal values of the LES parameters by 

hich good agreement is obtained between DNS and LES (the lat- 

er being conducted, as explained before, with a coarser mesh such 

hat its size is in located within the inertial range ), dedicated 3D 

imulations have been performed. In particular, this section deals 

ith the FFS case. In the light of the earlier results provided by 

he 2D approach (Sect 4.1), a mesh with 740 × 120 × 60 points 

as been used (corresponding to a total of more than 5 million 

omputational nodes, with �x = 1.35 × 10 −2 , �y = 8.3 × 10 −3 and 

z = 1.66 × 10 −2 ). Obviously, these computations have been exe- 

uted with the specific intent to clarify the role potentially played 

n the considered problem by the third spatial direction. A detailed 

escription of the corresponding dynamics in 2D can be found in 

nam and Lappa [38] and, for the sake of brevity, it is not dupli-

ated here. Rather, we limit ourselves to recalling that, in the adi- 

batic floor case, the flow is characterized by the onset of thermal 

lumes in the region above the step and their propagation in the 

ownstream direction. In particular, while for Ra = 10 6 , their spac- 

ng is regular and plumes appear at a distance l from the leading 

dge (i.e. the corner of the step) that is approximately 5 times the 

eight of the step i.e. l ∼= 

5/2, for Ra = 10 7 , plumes are produced

t a much smaller distance from the leading edge ( l ∼= 

2). Moreover, 

lumes are no longer evenly distributed in space and display rela- 

ively chaotic dynamics [38] . 

As a fleeting glimpse into Fig. 8 (adiabatic floor case) would 

onfirm, most of these characteristics are retained in the 3D case, 
9 
.e. a plume-free region can still be identified above the step (with 

xtension l ∼= 

2) and plumes display quite an irregular behavior 

n the remaining space. The most striking difference with respect 

o the 2D case is represented by the morphology of the thermals, 

hich now nucleate in the form of rising ‘columns’ of fluid dis- 

ributed along the spanwise direction, actually marking a transition 

rom an initially 2D behavior to a fully 3D scenario at a distance l 

 

2 from the step leading edge. In particular 3 distinct plumes can 

e seen along z in proximity to the corner ( Fig. 8 ); as time passes

nd plumes are transported by the imposed forced flow, however, 

oalescence phenomena are enabled. As a result of plume merg- 

ng, the number of plumes in the spanwise direction (i.e. the flow 

avenumber along z) is reduced, while their transversal size and 

ertical extension grow continuously until these convective struc- 

ures leave the system through the outlet. 

If the adiabatic floor is replaced with a hot boundary (at the 

ame temperature of the step), the scenario becomes even more 

omplex ( Fig. 9 ). The plume nucleation region is transferred from 

he top surface of the step to the heated floor. When plumes ini- 

ially traveling along the floor meet the hot vertical surface of 

he step, they interact with the related (vertical) thermal bound- 

ry layer producing well-defined convective features. Most surpris- 

ngly, these thermals are able to retain their identity (in the sense 

hat, despite the interaction with the vertical thermal boundary 

ayer, 3 distinct plumes originating from the floor of the channel 

an still be identified in proximity to the vertical side of the step). 

he caps of these plumes (being reinforced by the fluid rising due 

o continuity as a result of the reduction in the available cross- 
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Fig. 8. Snapshots of three-dimensional thermal plumes for the FFS ( Ri = 100) with 

adiabatic floor. The snapshots are at a) t = 0.04843, b) t = 0.04885, c) t = 0.04926, d) 

t = 0.04972. 

Fig. 9. Snapshots of three-dimensional thermal plumes for the FFS ( Ri = 100) with 

hot floor. The snapshots are at a) t = 0.04219, b) t = 0.04286, c) t = 0.04350, d) t 

= 0.04416, e) t = 0.04483. 
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Fig. 10. Temperature signals measured by three numerical probes evenly spaced 

along the spanwise direction (z = 0.25, 0.5 and 0.75) located before and after the 

step for the FFS case ( Ri = 100) with hot floor: a) x = 4.75, y = 0.75 (before the step), 

b) x = 5.25, y = 0.25 (after the step, the presence of peaks in one signal seems to ex- 

clude the possibility to have peaks with comparable amplitude in the other signals). 
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c

ectional area) extend well-beyond the vertical extension of the 

tep and, as such, are able to interfere directly with the flow de- 

eloping after the step. Every time that the cap of one of these 

lumes impinges on the top surface of the step, a new plume is 

reated along this boundary. Accordingly, no buffer (plume-free) 

egion exists. 

In order to provide additional insights into this scenario, the 

ignals measured by two disjoint sets of thermocouples (numerical 

robes), located before and after the step, respectively, have been 

onsidered. In particular, each set consists of three probes evenly 

paced along the spanwise direction at a relative non-dimensional 

istance of 0.25 from one another. Moreover, the vertical distance 

f these thermocouples from the underlying solid boundary is 0.25 
10 
nd their horizontal distance from the step location is yet 0.25 (i.e. 

he two sets are located at x = 4.75 and 5.25, respectively). 

Interestingly, (see Fig. 10 ) while before the step, peaks of simi- 

ar magnitude are present in all the signals (with peak overlap at 

ome times, which indicates plume coexistence along the spanwise 

irection), after the step, significant peaks can be seen in one sig- 

al at a time. As an example, while for t < 0.049, prominent max- 

ma can only be detected in the blue signal, for t > 0.049 this role

s transferred to the red signal. This apparently innocuous obser- 

ation has important implications in terms of flow structure and 

lume evolution. Indeed, it indicates that the wavenumber under- 

oes a strong decrease across the step. Before the step, “more”

lumes (up to “three” along the spanwise extension A z of the do- 

ain) can be present at the same time at a fixed station x, whereas

eyond the step, only a plume with relatively extended horizontal 

ross-diameter is allowed. This can be alternately located in prox- 

mity to the z = A z boundary (blue signal), or at z ∼= 

A z /2 (red signal).

As a concluding remark for this section, we wish to highlight 

hat comparison of the 2D and 3D frequency spectra for both the 

FS with adiabatic and hot floor (not shown for the sake of brevity) 

as led to the conclusion that, despite some differences in the low- 

requency range (the spectrum in this interval being more ener- 

etic in the 3D case due to the smaller size and larger number of 

lumes in this case), the amplitude distributions are almost iden- 

ical in the inertial range (where they align with the Kolmogorov 

aw). This indicates that the mechanisms driving the cascading be- 

avior of energy for the FFS do not depend significantly on the 

imensionality of the problem. 

.3. Three-dimensional mixed convection for Ri = 25 (BFS) 

Having completed a sketch of the 3D dynamics for the FFS case, 

e now turn to interpreting the equivalent findings for the BFS 

onfiguration. Following the same approach undertaken in the ear- 
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Fig. 11. Snapshots of three-dimensional thermal plumes for the BFS case ( Ri = 25) 

with adiabatic floor. The snapshots are at a) t = 0.03242, b) t = 0.03313, c) t = 0.03401, 

d) t = 0.03459, e) t = 0.03514, f) t = 0.03574. 

l

n

t

m

p

 

b

o

x  

d

t

(

e

t

d

r

p

c

a

p

Fig. 12. Temperature signals measured by three numerical probes evenly spaced 

along the spanwise direction (z = 0.25, 0.5 and 0.75) located before and after the 

step for the BFS case ( Ri = 25) with adiabatic floor: a) x = 4.75, y = 0.75 (before the 

step), b) x = 5.25, y = 0.25 (after the step). 
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ier sections, an incremental understanding of the considered phe- 

omena is achieved through the stepwise consideration, first, of 

he simpler configuration with adiabatic floor, and, then of the 

ore complex scenario where the floor is kept at the same tem- 

erature of the step. 

As evident in Fig. 11 , for the BFS with adiabatic floor, a 3D insta-

ility develops along the thermal boundary layer in the left portion 

f the channel (i.e. in the region of reduced cross-sectional area, 

 < A x /2). This is revealed by the presence of bulges or sinusoidal

istortions in the isosurfaces of velocity, which finally evolve in 

hermal plumes apparently originating from the step trailing edge 

the corner). While initially the flow separates and reattaches sev- 

ral times producing bulges that display a weak modulation along 

he spanwise direction (3 peaks along z), it is only in correspon- 

ence of the corner (x ∼= 

A x /2) that well-defined (distinct) rising cur- 

ents with horizontally extended caps are produced. 

These observations are complemented by Fig. 12 where the 

robe signals have been reported considering again stations lo- 

ated before and after the step. It shows that in this case the peaks 

re not mutually exclusive. Unlike the behavior seen in Fig. 10 b, 

eaks detected by different probes occur approximately at the 
11 
ame times in Fig. 12 a, which indicates plumes can exist in par- 

llel along the spanwise direction (as also witnessed by Fig. 11 ). 

However, while a synchronous plume behavior can be seen just 

efore the step, a well-defined correlation can no longer be iden- 

ified after it. Moreover, both the signal amplitude and frequency 

ndergo a significant decrease, which indicates that just after the 

ection x = A x /2 the degree of unsteadiness is largely reduced (the 

robes being located at x = 5.25, y = 0.25). 

As a final look at Fig. 13 would indicate, a weak recirculation re- 

ion is created just downstream of the step (with the fluid moving 

rom right to left along the floor of the channel). Vice versa a rela- 

ively strong horizontal jet can still be seen in the upper half of the 

hannel. However, owing to the vigorous plumes originating from 

he step (the corner) and the vortices which are periodically re- 

eased from their caps, such a jet undergoes a significant modula- 

ion in time, especially for A x /2 < x < 3A x /4. Strong mixing occurs in

his abscissa interval as a result of the presence of the aforemen- 

ioned vortices, which travel continuously in the downstream di- 

ection ( Fig. 13 ). Along these lines, the next figure of the sequence

 Fig. 14 ) illustrates that mixing is effective not only in xy planes. 

he flow has a significant velocity component along the spanwise 

irection too, as demonstrated by the presence of several visible 

ortices in planes perpendicular to the x axis. Only for x ≥3A x /4 

he almost perfect parabolic profile of horizontal velocity that is 

ypical of the planar Poiseuille flow is re-established ( Fig. 13 a) and 

ixing effects become relatively weak ( Fig. 15 a). 

Fig. 15 b sheds some additional light on this behavior, by show- 

ng that for x ≥3A x /4 the temperature becomes essentially uniform 

ver 90% of the entire vertical extension of the channel, with the 

0% residual cold fluid being located under the warm fluid (stable 

hermal stratification). 

Comparison with the equivalent 2D pattern ( Fig. 6 ) is instru- 

ental in showing that when the flow is prevented from develop- 

ng a velocity component in the spanwise direction, the horizontal 

urrent entering the region with increased cross-section area (the 

forementioned jet) can survive for a longer time before losing its 
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Fig. 13. Snapshots of velocity (magnitude) field (a) and temperature distribution (b) for the BFS ( Ri = 25) with adiabatic floor (plane z = 0). 

Fig. 14. Snapshots of velocity and temperature fields in the yz plane for x = 5A x /8 = 6.25 (BFS with adiabatic floor). 

Fig. 15. Snapshots of velocity and temperature fields in the yz plane for x = 3A x /4 = 7.5 (BFS with adiabatic floor). Comparison with Fig. 14 indicates that the magnitude of 

velocity is significantly (one order of magnitude) smaller and the distribution of temperature becomes much more uniform. 
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dentity. The key to understanding this behavior lies in considering 

hat in 2D no vorticity like that shown in Figs. 14 a and 15 a can

e produced, thereby allowing the fluid leaving the step to use the 

vailable kinetic energy to spread along the x direction. 

If the adiabatic floor is replaced with a thermally heated bound- 

ry (yet at the same temperature of the step), as anticipated, 

he complexity of the problem increases ( Fig. 16 ). A “sea” of 

hermal plumes develop on the floor of the channel for x > A x /2.

owever, plumes still manifest along the top boundary of the 

tep as a result of the aforementioned disturbance propagat- 
12 
ng along (growing inside) the thermal boundary layer located 

here. 

Unlike the situation examined for the BFS with adiabatic floor, 

n this case, the behavior in proximity to the corner does not de- 

end only on what happens in the region with reduced cross- 

ectional area (i.e. for x < A x /2). Just after the step a localized clock-

ise oriented vortex is created in the lower half of the domain as 

 consequence of buoyancy effects and the tendency of the sepa- 

ated main flow to reattach to the bottom. Comparison of Figs 13 a 

nd 17 a, indicates that in this case the vortex is relatively strong. 
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Fig. 16. Snapshots of three-dimensional thermal plumes for the BFS case ( Ri = 25) 

with hot floor. The snapshots are at a) t = 0.02999, b) t = 0.03072, c) t = 0.03145, d) 

t = 0.03235, e) t = 0.03290. 
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ccordingly, a current is established along the floor, by which ther- 

al plumes are transported in the upstream direction (i.e. towards 

he step). Owing to this effect, heat is funneled into the vertical 

oundary layer developing along the vertical wall of the step and 

his contributes to strengthen the plumes there (the mechanism 

eing similar to that already described for the FFS case with hot 

oor). 

Due to this phenomenon two different regions of plume growth 

an be identified for x > A x /2, one in which the vertical exten- 

ion of the plumes decreases along x (from the step position to- 

ards the reattachment line), and a second region where plume 

ize grows in the downstream direction (from the reattachment 

ine towards the outflow section). Put differently, two counter- 

ropagating waves or trains of thermals affect the portion of the 

hannel with increased cross-sectional area at the same time. 

hese originate from the line where the flow leaving the step hits 
Fig. 17. Snapshots of velocity (magnitude) field (a) and temperature distr

13 
he floor, and for each of them, plume growth is caused by the 

dditional heat being injected inside plumes from below as time 

asses and the concurrent plume merging phenomena (the latter 

ause the coalescence of plumes initially located at different posi- 

ions along the spanwise direction). 

At this stage, it should also be emphasized that the above- 

entioned reattachment phenomenon and ensuing ‘returning’ flow 

occurring for relatively small values of the Reynolds number such 

s those considered in the present work) should not be confused 

ith the similar mechanisms, which are enabled in the absence of 

uoyancy when a current interacts with an obstacle mounted in a 

irection perpendicular to it (see, e.g., Mousazadeh et al. [17] for 

e based on the obstacle height = 300). In the absence of thermal 

uoyancy, the reversed flow is created due to the interaction of 

he hairpin vortices located in the wake region downstream the 

bstacle. In the present situation (the equivalent Reynolds number 

ased on the step height being ∼= 

316), the reattachment should be 

egarded as a consequence of the buoyancy effect itself, which, as 

xplained before, leads to the emergence of a strong roll located 

ust after the step (this roll being not formed in the adiabatic floor 

ase, see again Fig. 13 ). 

Correlation of Fig. 17 with the equivalent 2D results ( Fig. 7 ) is

lso instructive. It qualitatively substantiates the realization that 

he 3D flow is more chaotic, as also confirmed by the more uni- 

orm (due to mixing) distribution of temperature established in 

he domain for x > A x /2 and y > 1/2. Unlike the BFS with adiabatic

oor, the highest values of velocity for x > A x /2 can be found in

he lower half of the channel as a consequence of the train of 

hermal plumes developing there, whereas extended regions can 

e seen in the upper half of the domain where the fluid moves 

n opposite direction (which explains the different inclination taken 

y the plumes for y > 1/2). This may be regarded as an important

istinguishing mark with respect to the equivalent 2D simulations 

 Fig. 7 ) where this effect is not present (plumes displaying a con- 

tant inclination to the right over the entire channel vertical ex- 

ension). Again, the distribution of velocity and temperature in the 

lane xz can be used to demonstrate the increased level of com- 

lexity taken by the 3D flow in terms of flow structure and tem- 

erature distribution ( Figs. 18 and 19 ). Notably, in this case, the al- 

ost perfect parabolic profile of horizontal velocity typical of the 

lanar Poiseuille flow is not recovered. 

A final characterization of the observed dynamics in proxim- 

ty to the step can be gained by considering once again the probe 

ignals ( Fig. 20 ). While the temperature evolution displays a syn- 

hronous behavior just before the step (denoting a quasi-2D sce- 

ario, Fig. 20 a), a well-defined correlation can no longer be iden- 

ified after the step ( Fig. 20 b), which (in agreement with the in-

ormation reported in Fig. 18 ) indicates that the flow gains 3D be- 
ibution (b) for the BFS ( Ri = 25) with hot bottom wall (plane z = 0). 
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Fig. 18. Snapshots of velocity and temperature fields in the yz plane for x = 5A x /8 = 6.25 (BFS with hot floor). 

Fig. 19. Snapshots of velocity and temperature fields in the yz plane for x = 3A x /4 = 7.5 (BFS with hot floor). Comparison with Fig. 18 indicates that the magnitude of velocity 

does not change significantly. 
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avior as soon as the fluid enters the region of increased cross- 

ectional area. 

For the sake of completeness, Fig. 21 illustrates the frequency 

pectra for the cases with adiabatic and hot floor, respectively. It 

s evident that both align with the ω 

−5/3 law put forward by Kol- 

ogorov. However, a difference can be spotted in terms of energy 

ontent. The frequency spectrum for the hot floor case ( Fig. 21 b) 

isplays a richer content in the high-frequency range, and this is 

ue to the presence of an increased number of thermal plumes 

put simply, the higher number of plumes passing through the lo- 

ation of probe results in a continuous addition of high frequency 

omponents to the spectrum). 

Interestingly, for the adiabatic floor case, an interval of frequen- 

ies exists where the 2D flow is more energetic (this happens 

or ω≥10 3 , see Fig. 21 a). A proper justification for this counter- 

ntuitive behavior can be elaborated in its simplest form on the 

asis of the argument that in the 3D case the almost perfect 

arabolic profile of horizontal velocity that is typical of the pla- 

ar Poiseuille flow is re-established at a certain horizontal dis- 

ance from the step, whereas this does not happen in 2D (com- 

are again Figs. 6 and 13 ); to elucidate further the significance of 

his observation, one should keep in mind that the flow partial re- 

aminarization for x > 3A x /4 is essentially a result of the uniform 

emperature distribution produced there by the strong mixing ef- 
t

14 
ects experienced by the fluid in the preceding portion of the chan- 

el, i.e. for x < 3A x /4 (the less energetic nature of the spectrum at

igh frequencies for x > 3A x /4 in the 3D case can be directly rooted

nto this specific behavior, i.e. the absence of buoyancy effects). 

. Discussion 

Following up on the last argument provided in the earlier sec- 

ion, the present text is finally used as an opportunity to discuss 

ritically the main outcomes of the present 3D investigation in re- 

ation to what is already known for the companion problem with 

o buoyancy (i.e. the cases with purely forced flow ). As already dis- 

ussed to a certain extent in the introduction, only a few studies 

ave appeared where the 3D problem was tackled. Taking into ac- 

ount the main findings of these investigations, here emphasis is 

ut on analogies and differences with respect to the hybrid flow 

onfigurations treated in Sects. 4.2 and 4.3. 

In line with those sections, here the discussion progresses 

hrough the examination of both the FFS and the BFS. As a fleet- 

ng glimpse into the existing literature for the forced flow case 

ould immediately reveal, indeed, these two paradigms do not 

ave a linear historical trajectory, in the sense that they have al- 

ays simultaneously been used over the years to get insights into 

he behavior of flows with sudden contractions or expansions. 
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Fig. 20. Temperature signals measured by three numerical probes evenly spaced 

along the spanwise direction (z = 0.25, 0.5 and 0.75) located before and after the 

step for the BFS case ( Ri = 25) with hot floor: a) x = 4.75, y = 0.75 (before the step), 

b) x = 5.25, y = 0.25 (after the step). 
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t is well known that, regardless of the orientation of the step, 

hese forced flows are always characterized by some degree of sep- 

ration and ensuing generation of vorticity and eventually flow 

nstabilities. 

In particular, for the isothermal FFS, regardless of the dimen- 

ionality of the problem (be it 2D or 3D), the flow separates and 

eattaches in two different regions. More precisely, one recircu- 

ation zone is created upstream of the step adjacent to the bot- 

om wall, while the second recirculation (typically in the form 

f a small bubble stretched in the horizontal direction) nucleates 

djacent to the stepped wall downstream of the step edge. It is 

nown that the related dynamics are governed by the Reynolds 
ig. 21. Frequency spectrum for the BFS ( Ri = 25) (color legend: black-3D results, red-2D re

oor, b) hot floor. 

15 
umber. On increasing this parameter, the size of these recircula- 

ion zones generally grows. Moreover, the point of where flow sep- 

ration occurs ahead of the step tends to migrate in the upstream 

irection. 

Available 3D numerical studies for this problem are due to 

ilhelm et al. [46] , Barbosa-Saldaña and Anand [48] and Scheit 

t al. [95] (we will provide similar information about the BFS 

ater in this section). Towards the end to gain better insight into 

he three-dimensionality that is typically observed in the afore- 

entioned separation regions before the step, Wilhelm et al. 

46] conducted high-resolution simulations in the framework of a 

ixed spectral/spectral-element method. Moreover, a linear stabil- 

ty study of the flow at the step was also performed. Assuming a 

alue of the Reynolds number 330 and periodic boundary condi- 

ions along the spanwise direction, it was found that the differ- 

nce between the two-dimensional field and the averaged three- 

imensional field is marginal, making clear that the 3D break- 

p of the separation region at the step is only a weak perturba- 

ion to the two-dimensional base flow (the amplitude of the span- 

ise velocity component being small in comparison to the max- 

ma of the streamwise and normal velocities at the step). Never- 

heless, for a larger value of the Reynolds number (Re = 8 × 10 3 ),

cheit et al. [95] found the departure from 2D flow to become 

ore evident. By plotting the isosurfaces of the fluctuating pres- 

ure, they could reveal spanwise-elongated structures close to 

he edge of the step. These were observed to grow in stream- 

ise extent downstream of the step and finally pair with each 

ther. 

Our work adds another piece to the puzzle by showing that 

uoyancy can significantly contribute to determine the dominant 

ynamics both before and after the step. As already shown in Sect. 

.2 (where Re ∼= 

316), if the Richardson number is of O(10 2 ) (i.e. 

uoyancy effects are sufficiently strong, Ra = 10 7 in our case), the 

endency of fluid to rise along the vertical (hot) side of the step 

an suppress or weaken the relatively large recirculation which would 

therwise be established there ( Figs. 2 and 4 ). 

This effect, however, should not be misread as implying a ten- 

ency of the flow to retain a two-dimensional behavior. As already 

iscussed in Sect. 4.2, although, it can annihilate or cause shrink- 

ge of the recirculation ahead of the step, buoyancy can cause sig- 

ificant 3D details. A good impression of these can be achieved by 

resenting the flow streamlines for both cases with adiabatic and 

ot floor ( Fig. 22 ). 
sults, blue-Kolmogorov scaling, numerical probe position x = 9, y = 0.25): a) adiabatic 
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Fig. 22. 3D streamlines (snapshots) for the FFS ( Ri = 100, Ra = 10 7 ): a) adiabatic floor, 

b) hot floor. 

Fig. 23. FFS ( Ri = 100, Ra = 10 7 , adiabatic floor): a) distribution of ∂ u/ ∂ y at y = 0.5, b) 

T at y = 0.65. 
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Fig. 24. FFS ( Ri = 100, Ra = 10 7 , hot floor): a) distribution of ∂ u/ ∂ y at y = 0.5, b) T at 

y = 0.65. 

Fig. 25. FFS ( Ri = 100, Ra = 10 7 , hot floor): a) distribution of ∂ u/ ∂ y at y = 0 for x < 5, 

b) T at y = 0.15 for x < 5. 
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The significance of these additional figures resides in their abil- 

ty to make evident that the flow separates and reattaches sev- 

ral times along the top horizontal surface of the step. Although 

 phenomenological similarity might be established with the find- 

ngs reported for a larger value of the Reynolds number by Scheit 

t al. [95] , we wish to point out that these phenomena should not 

e regarded as an outcome of a purely hydrodynamic mechanism. 

n the present case, thermal plumes ( Figs. 8 and 9 ) do play a sig-

ificant role in causing the flow evolution. Separation essentially 

ccurs as a result of the interaction of the horizontal flow with 

he vertical currents established in the stem of the plumes. Owing 

o the peculiar distribution of plumes along the z axis, separation 

nd attachment occur at different positions in the spanwise direc- 

ion for different streamlines . This is also qualitatively and quantita- 

ively substantiated by the figures reported in the following, which 

how the distribution of the derivative of the horizontal compo- 

ent of velocity with respect to the vertical coordinate evaluated 

long the solid wall delimiting the fluid domain from below. The 

egions where this derivative takes a value ∼= 

0 obviously represent 

he loci of points where the flow has just undergone separation. 

Along these lines, for the FFS with adiabatic floor ( Fig. 23 ), com-

arison of the distribution of ∂ u/ ∂ y along the solid top boundary 

f the step and the temperature taken at a station y just outside 

he thermal boundary layer is instrumental in showing that a close 

orrespondence exists between the loci of points where thermal 

lumes are located and flow separation occurs. Such a figure is 
16 
seful as it also clearly reveals the quiet zone located between the 

dge of the step and the station where plumes start to nucleate. 

Moving on to the case with hot floor ( Figs. 24 and 25 ),

panwise-elongated structures close to the edge of the step sim- 

lar to those originally observed in the purely forced flow case by 

cheit et al. [95] can be recognized ( Fig. 24 a). As the fluid moves

here in the upstream direction (as confirmed by the negative sign 

f the shear rate in Fig. 24 a), this indicates that a small bubble ad-

acent to the stepped wall downstream of the step edge can be cre- 

ted in this case. However, the strict connection between plumes 

nd flow separation still holds. In particular, Fig. 25 demonstrates 

hat the flow separation occurring before the step must be ascribed 

ssentially to the nucleation and growth of thermals in that area. 

All these arguments logically pave the way to the remainder of 

his section, where we turn our attention to the companion BFS 

onfiguration (for which the dynamics are appreciable more com- 

lex). As the reader might expect at this stage, we follow the same 

pproach undertaken for the FFS and start again from a survey 

f the general dynamics known for the purely forced flow (and a 

hort description of the related available 3D results). 

In analogy with the FFS, forced BFS flow is known to separate 

s a result of the abrupt variation in the cross-sectional area and 

ther related hydrodynamic effects. A single recirculation (between 

he step trailing edge and the reattachment point along the chan- 

el floor) is produced for relatively small values of the Reynolds 

umber. However, if the Reynolds number is increased, recircula- 

ions of higher order can appear along the ceiling (secondary and 

ertiary rolls, etc.). Consensus exists in the literature that the reat- 
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Fig. 26. 3D streamlines (snapshots) for the FFS ( Ri = 25, Ra = 10 7 ): a) adiabatic floor, 

b) hot floor. 

Fig. 27. BFS ( Ri = 25, Ra = 10 7 , adiabatic floor): a) distribution of ∂ u/ ∂ y at y = 0.5, b) T 

at y = 0.65. 
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Fig. 28. BFS ( Ri = 25, Ra = 10 7 , hot floor): a) distribution of ∂ u/ ∂ y at y = 0.5, b) T at 

y = 0.65. 
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achment length associated with the primary roll can be reduced 

ith an increase in ER (for small or moderate values of Re), while 

aking the Reynolds number higher can have a two-fold effect, i.e. 

 displacement of this point in the downstream direction and the 

nset of time-dependence. As an example, the formation and de- 

achment from the step of large-scale vortices was found to be the 

rimary cause of the periodic movement of the reattachment lo- 

ation in the two-dimensional study by Friedrich and Arnal [96] ; 

hese authors observed that the free-shear layer emanating from 

he step had a vertical motion causing the reattachment location 

o oscillate. 

Three-dimensional studies of relevance to the subject include 

hose by Le et al. [47] and Xu et al. [49] . In particular, the analysis

y Le et al. [47] for ER = 1.20 and Re = 2500 is extremely instructive

s they provided a comprehensive characterization of the dynam- 

cs of separation and reattachment for the case with no buoyancy. 

ost interestingly, it was observed that the large-scale roll-up of 

he shear layer extending to the reattachment region is produced 

y many small, high-intensity counter-rotating vortices originating 

rom the step (trailing) edge. As a result of existing spanwise phase 

hifts in the nucleation time of these vortices, the temporal trace 

f the reattachment locations on the floor of the channel can dis- 
17 
lay a saw-tooth shape (see Fig. 3 in their work). A simple ratio- 

ale for this behavior was elaborated as follows: “the shear layer 

olls up forming a large-scale structure behind the step, as the large- 

cale structure grows, the reattachment locations travel downstream; 

he reattachment length then suddenly decreases indicating a detach- 

ent of the turbulent large-scale structure from the step ” (this evo- 

ution was also tracked in terms of pressure fluctuations given the 

nown correspondence of low pressure regions with the centers of 

oherent vortices). 

Later, Xu et al. [49] have shed some additional light on these 

ehaviors by showing that the vortexes shed constantly and pe- 

iodically in the downstream direction as a result of the Kelvin–

elmholtz instability occurring in the shear layer of the primary 

ecirculation zone can give rise to repeated separation phenomena 

long the remaining extension of the channel (see Fig. 12 in their 

ork for ER = 2 and Re = 10 0 0). 

When buoyancy enters the dynamics, however, a significant de- 

arture from the known scenario for purely forced flow takes place 

see Fig. 26 ). For the BFS with either adiabatic or hot floor ( Figs. 27

nd 28 , respectively), alternating separation and reattachment phe- 

omena start to affect the flow directly in the region of reduced 

ross-sectional area, i.e. above the step. This is evident in the dis- 

ribution of ∂ u/ ∂ y, where bands of alternating colors can clearly be 

ecognized. The almost straight nature of these bands is consistent 

ith what has been reported in Sect. 4.3, where some emphasis 

as been put on the initially almost two-dimensional nature of this 

henomenon. 

Cross comparison of Figs. 27 and 28 for the cases with adia- 

atic and hot floor, respectively, however, indicates that, a notable 

ifference exists, i.e. the 3D nature of the flow in proximity to the 

tep is much more marked in the latter case. The root cause for 

his dissimilarity (yet ascribable to the presence of plumes) has al- 

eady been clarified in Sect. 4.3. Here we limit ourselves to empha- 

izing that along the hot floor ( Fig. 29 ) a well-defined correlation 

an still be defined between the regions where separation occurs 

 ∂ u/ ∂ y ∼= 

0) and those where thermals are located. In proximity to

he step, the existence of a recirculation along the bottom floor is 

itnessed by the opposite sign of ∂ u/ ∂ y in Fig. 29 a; downstream

f this region, separation essentially occurs in regions which are 

tretched along the x direction. As qualitatively substantiated by 

ig. 29 b, these yet correspond to thermal plumes. These are also 

isible in the spanwise cut through the flow at x = 3A x /4 = 7.5 pro-

ided in Fig. 19 b and in the 3D view of Fig. 16 , and assume this

pecific flattened (sail-like) shape owing to their interaction with 

he horizontal ‘wind’. 

On the basis of these arguments one may therefore conclude 

hat the convoluted structure of the flow (visible in Fig. 26 b) is pri-

arily a consequence of the eruptive phenomena originating from 
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Fig. 29. BFS ( Ri = 25, Ra = 10 7 , hot floor): a) distribution of ∂ u/ ∂ y at y = 0 for x > 5, b) 

T at y = 0.15 for x > 5. 
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he thermal boundary layer at the bottom as a result of buoyancy 

ffects, rather than a manifestation of a Kelvin–Helmholtz instabil- 

ty like that reported by Xu et al. [49] . 

. Conclusions 

The present study may be regarded as a follow up on two 

arlier investigations where these problems were tackled in the 

ramework of DNS and under the limiting assumption of 2D flow 

required to make the otherwise intractable scale of these prob- 

ems compatible with available computational resources). 

Here the constraint of two-dimensionality has been removed in 

rder to reduce the gap between physical reality (where distur- 

ances in the spanwise direction may represent a relevant aspect 

f the problem) and the virtual environment represented by CFD. 

In order to reduce once again the scale of the problem to a 

evel where it is affordable, the analysis has been developed using 

 LES strategy by which notable computational savings have been 

btained. In particular, this approach has been adopted to model 

he behavior of the flow in 3D situations for which no informa- 

ion or relevant data can be found in the existing literature (values 

f the Richardson number of O(10 2 ) and a value of the Rayleigh 

umber for which the flow has just entered the turbulent regime). 

Critical comparison of 2D and 3D results has been instrumen- 

al in showing that when the flow is allowed to develop along the 

hird direction, appreciable differences emerge. These are not lim- 

ted to the macroscopic scale (where energy is injected into the 

ystem), but in some circumstances can also have an impact on the 

ascading energy phenomena developing inside the inertial range 

f scales. While for the FFS the differences essentially affect the 

tructure of plumes, for the BFS they are more substantial as they 

mply the generation of a significant macroscopic component of 

orticity along the main flow direction and the displacement of 

he portion of the spectrum corresponding to the inertial regime 

owards higher or smaller amplitudes (depending on the thermal 

oundary condition considered for the channel floor). 

From a macrophysical (coarse-grained) point of view, interest- 

ngly, the sudden variation in the channel cross-sectional area 

an be associated to an abrupt change in the flow characteristic 

avenumber in the spanwise direction (FFS case) and/or the step 

orner can behave as a locus of accumulation of thermal plumes 

nd generation of both transverse and longitudinal vorticity (BFS 

ase). From a fine-grained (micromechanical) standpoint, for the 

FS with adiabatic floor, the strong mixing induced in the fluid af- 
18 
er the step can cause temperature homogenization and/or stable 

tratification at a certain distance from it with ensuing suppression 

f buoyancy convective effects and flow re-laminarization. Vice 

ersa for the BFS with hot floor, the intrinsically small scale nature 

f 3D plumes can cause an enhancement of the high-frequency 

omponents present in the inertial range. 

Meaningful comparison with the earlier literature, synergisti- 

ally exploiting some definitions and concepts elaborated for the 

ases where only hydrodynamic effects play a role, has led to the 

onclusion that, for the considered set of parameters, separation of 

orizontal flow essentially occurs as a result of its interaction with 

he vertical currents connected with thermal plumes. Depending 

n the mutual interference between flow with significant vertical 

hear (the forced flow) and currents featuring intense horizontal 

hear (the plumes), many complexities and a rich variety of flow 

henomena can take place, which are otherwise prevented if the 

resence of buoyancy is neglected. 

Another of the main conclusions of the present study is that the 

idespread practice of using values of the Smagorinsky constant 

ocated in theoretically determined intervals (which have proven to 

ork in some circumstances) should be deeply re-thought. Mixed 

orced-buoyant flows can display a peculiar hierarchy of bifurca- 

ions before entering the turbulent state where both disturbances 

f hydrodynamic (shear-driven) and thermal (buoyant) nature can 

lay a substantial role. Over-predictions or over-estimation of the 

magorinsky constant may result in suppression of some of these 

echanisms therefore leading to resolved states that do not repro- 

uce properly reality as they lack some of the related physical be- 

aviors. 
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