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The impact of initial
imperfections on the fatigue
assessment of tower flange
connections in floating
wind turbines: A review

Tao Zou1, Xinbo Niu1, Xingda Ji1, Mingxin Li1*

and Longbin Tao1,2

1School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and
Technology, Zhenjiang, China, 2Department of Naval Architecture, Ocean and Marine Engineering,
University of Strathclyde, Glasgow, United Kingdom
During the massive manufactures and installations of fixed offshore wind

turbines in China, initial imperfections were often found in the inspection. As

more and more attentions and efforts of the wind energy sector have been

devoted to deepwaters with fixed and floating wind turbines (FWTs), the impact

of such initial imperfections on fatigue assessment is paramount to the reliable

design and safe operation, which warrant rigorous study. This paper presents a

comprehensive review of three different initial imperfections and their impacts

on the fatigue lifetime of FWTs’ tower flange connections. A brief introduction

on FWTs and flange connections is provided at first. This is followed by a

detailed discussion of the environmental loadings and fatigue assessment on

the flange bolted connections. Finally, a comprehensive review of the state-of-

art research on three common initial imperfections, including flatness

divergence, bolt loosening and tower inclination, are presented. Their impact

on fatigue assessment is further discussed.

KEYWORDS

floating wind turbine, fatigue assessment, flatness divergence, bolt loosening, tower
inclination, initial imperfections
1 Introduction

Offshore wind power industry in China is growing rapidly to pursue a net-zero

future. In 2021, the capacity of Chinese offshore wind power increased by 16.9 gigawatt,

more than any other country’s increase. All these offshore wind turbines (OWTs) are

fixed in shallow waters. With such a rapid expansion, the potential of shallow water wind
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power is nearly exhausted. The offshore wind energy sector has

been increasingly focusing on the relatively deep water with

floating wind turbines (FWTs).

Different from fixed OWTs, FWTs are restrained by various

mooring systems typically undergo displacement in six degrees-

of-freedom. They are subjected to wind, wave and current

environmental loadings. The wave load is directly acting on

the foundations or supporting structures. The upper structure is

vulnerable to wind load and dynamic loading from blades’

rotations. The intermediate towers connect the upper structure

and foundations, which are often subjected to multiple cyclic

loadings from different sources. Hence, it has been often

reported on fatigue damage in the tower of an operating wind

turbine (Zou et al., 2021; Gao et al., 2022; Zheng and Chen, 2022;

Wang et al., 2022).

To assess the fatigue damage on FWTs, Kvitten and Moan

(Kvittem and Moan, 2015) presented a set of time-domain

analysis procedures. An aero-hydro-servo-elastic tool FAST

was used to simulate the global response of FWTs. The

authors investigated the effect of simulation duration, number

of random realisations and bin sizes to obtain the distribution of

cyclic hot spot stress over the tower sections. Luan et al. (Fang

et al., 2020; Fang et al., 2021) developed Kvitten’s approach and

extended its capabilities to determine the global forces and

moments in FWTs’ components through a beam element

model. The result of Luan’s approach can output the time-

series of stress over tower sections, which is the boundary

conditions for following local model (flange connections)
Frontiers in Marine Science 02
analysis. Xu et al. (Xu et al., 2019; Xu et al., 2019) upgraded

Kevitten’s approach with fully nonlinear wave theory to

investigate the effect of wave nonlinearity on FWTs’ fatigue

damage and extreme response. They concluded that effect of

wave nonlinearity is significant for FWTs’ surge motions and not

sensitive to tower base bending moments.

During the large number of OWTs’ installations in China, a

lot of imperfect geometric conditions are found in the wind

turbines’ towers. Due to improper manufactures and

installations, different initial imperfections may occur and

undermine the fatigue strength of wind towers, see Figure 1.

To improve the design of FWTs in the future exploitation of

deep waters, the impact of initial imperfections on the fatigue

assessment of FWTs’ towers should be clarified.
2 Floating wind turbines and flanges

The components of FWTs include upper structure (rotor-

nacelle assembly), substructure (tower and foundation) and

mooring system. In the past decades, significant research

focused on the global response simulations of FWTs (Dong

et al., 2012; Kvittem and Moan, 2015; Luan et al., 2017; Luan

et al., 2018; Xu et al., 2019), as it is the foundation for any other

further analysis. It is still challenging to simulate the global

motion of FWTs accurately, because FWTs are flexible and

subjected to wind, wave and current simultaneously, which

makes FWTs’ motions rather complex. Hence, an aero-hydro-
FIGURE 1

Initial imperfections in offshore wind turbines.
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servo-elastic analysis is required to simulate the coupled effect of

environmental loadings on the structural motions. Many

numerical programs have been developed to simulate the

global response of FWTs, as listed in Table 1.

Wind turbine failure is often due to the failure of rotor

blades or of the steel tower (Márquez et al., 2016).Wind turbines’

towers are typically manufactured in steel segments with bolted

flange connections. Due to the stress concentration around the

flange, many fatigue cracks have been found around the flange

connections of the inland wind turbines, see Figure 2. Offshore

FWTs suffer from more severe environmental loadings, thus

more attentions should be paid on their design of flange

connections (Mehmanparast et al., 2020).

The conventional bolted flanges are L-shaped, as seen in

Figure 3. Researchers have extensively investigated the stiffness

and mechanical resisting capacities of conventional L-shape

flanges (Seidel, 2001; Heistermann et al., 2009; Schwingshackl

and Petrov, 2012; Van-Long et al., 2013; Wang et al., 2013).

When wind turbines are installed increasingly from shallow

water into deep water, the thickness and diameter of wind

turbine towers are also increasing to support larger rotors and

nacelles accordingly. Another type of flanges are Reverse

Balanced (RB) flanges, see Figure 3. The RB flange

connections consist of flange plates, stiffening plates, and
Frontiers in Marine Science 03
high–strength blots. Compared to the conventional bolted

flanges, RB flanges have advantages such as higher stiffness

and lower cost (He et al., 2016).

During manufactures and installations, imperfect geometric

flange connections may occur which can lead to initial

imperfections such as flatness divergence or tower inclinations.

In addition, the bolt loosening may also undermine the fatigue

strength of flange connections. The details of these initial

imperfections and their impacts on fatigue damage are

discussed in Section 7.

The design of offshore wind turbines requires both

functionality and safety. For safety purpose, the OWTs should

be strong enough under ultimate limit states (ULS), fatigue limit

states (FLS) and accidental limit states (ALS). Among them, FLS

is especially important for FWTs, because the system is subjected

to millions of cycles of dynamic loads during the whole service

life of FWTs.

According to the experience from inland wind turbine, many

wind turbine collapse cases are due to the fatigue damage on

cylinder tower and flanges (Alonso-Martinez et al., 2019). In

order to ensure the safety of OWTs, the environmental loads,

including wind, wave and current, should be clarified first (Hu

et al., 2020). All these environmental loads induce aerodynamic

and hydrodynamic impacts on the structures.
TABLE 1 Numerical programs for the analysis of floating wind turbines’ global response.

Aerodynamic analysis Hydrodynamic analysis Time-domain simulation of WTs

Turbsim Sesam (HydroD/Wadam) Sesam (SIMA/SIMO+REFLEX)

IEC wind simulator WAMIT OpenFast

Nemoh HAWC2

Bladed
FIGURE 2

Fatigue cracks and fatigue failures of inland wind turbine towers (Zou et al., 2021).
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2.1 Wind

The description of wind can be divided into two parts: spatial

part and temporal part, as seen in Equation (1)

U = us x, y, zð Þ + u1 x, y, z, tð Þ, u2 x, y, z, tð Þ, u3 x, y, z, tð Þ½ �f g (1)

where us(x,y,z) denotes the mean wind speed spatial

variation, and [u1(x,y,z,t), u2(x,y,z,t), u3(x,y,z,t)]. stands for the

temporal variation. The spatial mean wind speed variation is

usually described by wind shears, and the temporal variation is
Frontiers in Marine Science 04
represented by wind turbulence in vertical, longitudinal and

lateral directions. In addition, the temporal variation can also be

represented by frequency spectrum models such as Kaimal or

Mann models. The temporal variation is described as stationary

or non-stationary depending on the time scales. In practice, a

short-term wind condition with 10 minutes period is assumed

as stationary.

For OWTs, wind conditions are the primary external

environmental conditions, while the wave and current

conditions may also play a role. The aerodynamic loads are
FIGURE 3

Configurations of L-shape flanges (up) and reverse balanced flanges (down) (He et al., 2016; Alonso-Martinez et al., 2019) description of
environmental conditions.
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dependent (among other factors) upon the rotational speed of

the rotor, the average wind speed across the rotor plane, the

three-dimensional turbulence intensity, the wind shear, wind

direction changes, the density of the air, the aerodynamic shapes

of the wind turbine components and their interactive effects,

including the aeroelastic effects (DNVGL (2016a)). According to

the blade element momentum theory, wind blows over airfoil

and generates lift force and drag force. These forces rotate the

blades and push the wind tower structure in horizontal direction,

which eventually results in torque and thrust acting on the wind

tower. The other loads acting on the wind tower include the

wind-induced pressure, the eccentric moment from the gravity

of nacelle and blades. The OC3 baseline 5 MW NREL offshore

wind turbine is exemplified here with rated wind speed 11.4 m/s,

rotor diameter 126m, mean torque 2500 KN•m and mean thrust

300KN (Goupee et al., 2017).
2.2 Wave

The distribution of ocean waves is usually described by wave

spectra. Depending on the location and the sea state, wave

spectra contain substantial energy mainly in the range from 5

to 25 seconds. For a FWT, the natural periods of motion should

be designed to avoid resonance. The natural period in heave is

normally above 25 second for a spar and below 5 second for a

tension leg platform. The short-term wave conditions are usually

described as stationary with 1-3 hours, and they are

characterized by wave height and wave period. For instance,

JONSWAP spectrum is used to describe its frequency

distribution of wave energy for fetch-limited seas; Pierson-

Moskowitz (PM) spectrum is for fully developed seas.

Sometimes, a two peak spectrum is used to describe combined

seas with wind wave and swell. To simplify the calculations, a

linear wave assumption is often applied, but the nonlinear effect

of wave is getting more and more attentions these years (Xu

et al., 2019; Xu et al., 2019). Stationarity of wave conditions is

usually assumed for 1-3 hours.

The hydrodynamic forces on slender structures are usually

calculated based on Morison’s formula, which is a semi-

empirical formulation to capture the wave force on a fixed or

floating offshore structures. It’s composed of three terms to stand

for inertia force, drag force and added mass force induced by the

structures’ acceleration in water. For large volume structures,

linear potential theory is recommended to calculate the

diffraction and radiation forces. Computational Fluid

Dynamics (CFD) approach is utilized to mathematically model

a physical-fluid-flow related phenomenon (Gao et al., 2020; Gao

et al., 2021). CFD approach is used to solve strongly nonlinear

problems. It has the highest accuracy if properly verified and

validated but can be computational expensive.

Current may also affect the FWT’s motions especially on

supporting structures of extensive draft, but it mainly acts on the
Frontiers in Marine Science 05
mooring systems and contributes less to fatigue damage on the

towers. Therefore, current force is not discussed here.
3 Fatigue assessment

Fatigue damage is a cumulative process and it requires long-

term sea condition data to predict. Unlike structural failures due

to insufficient ultimate strength, fatigue failures usually attribute to

moderate sea conditions, because the occurrence of moderate sea

conditions is much higher than that of extreme conditions. The

long-term sea conditions are usually represented either by a long-

term distribution of several sea state related parameters or the sum

of short-term sea conditions. A structure’s fatigue design should

ensure that its fatigue strength can resist all these wave conditions

in the operation stage. However, initial imperfections may

introduce stress concentration and undermine the fatigue

strength of flange connections. They should be considered in

the design stage.
3.1 S-N curve based approach

For offshore structures’ design, fatigue damage is usually

calculated based on the S-N curve approach. The fatigue

resistance is represented by S-N curves. If the long-term stress

range distribution is defined as the sum of the Rayleigh

distribution of each short-term stress range corresponding to

each sea state, the cumulative fatigue damage with one slope S-N

curve is given by:

D =
w0Td

a
G 1 +

m
2

� �
o
Nload

n=1
pn o

all   seastates

all   headings

i=1,j=1
rijn 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2m0ijn

p� �m (2)

where D is accumulated fatigue damage, w0.is the average

long-term zero-crossing frequency, a and m are the S-N curve

parameters, Td is the design life of offshore structures G is

gamma function, Nload is total number of load conditions, pn
is the fraction of design life in load condition n, rijn is relative

number of stress cycles in short-term condition i,j, m0ijnthe zero

spectral moment of stress response process.

The stress response spectrum and spectral moments in linear

models are defined as

Ss wjHs,  Tz , qð Þ = Hs wjqð Þj j2·Sh wjHs,  Tzð Þ (3)

mn =
Z
w
o
q+90°

q−90°
f qð Þwn · Ss wjHs,  Tz , qð Þdw (4)

where Hs(w|q) is the transfer function representing the

relation between unit wave amplitude and response, Sn(w|Hs,

Tz) is wave spectrum, f(q) is the wave spreading function. It can
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be seen that, for a particular offshore structure, the fatigue

damage is mainly determined by sea states which are

represented by wave scatter diagrams, as seen in Table 2. The

blocks with dark color background contribute most to the

fatigue damage, because they have much higher frequency

of occurrences.
3.2 Full long-term analysis

As discussed in section 3.2, wave loadings are the primary

source of fatigue damage for offshore structures. In design stage,

it is highly recommended to identify all the wave conditions

which the offshore structures will encounter in their service life.

Wave scatter diagram combines all effective short-term extreme

response distribution associated with their corresponding

probability of occurrence. Each block is defined as the statistical

description of wave conditions over 3 or 6 hours with its significant

wave height (Hs), zero crossing period (Tz) and occurrence. The sea

states in scatter diagrams are characterized based on observations,

measurements or hindcast. Then, the fatigue damage in each short-

term sea state is calculated, and the long-term fatigue damage is

accumulated by the summation of all short-term fatigue damages.
3.3 Global-local methodology

In this section, a global-local methodology of the fatigue

calculation procedure is described, emphasizing the theoretical
Frontiers in Marine Science 06
concepts associated with the modal superposition and fatigue

methods. A general workflow for the global-local fatigue

assessment methodology is suggested in Figure 4, introducing two

different phases of analysis that follow an increasing detail of

geometrical, material and contact properties as the assessment

progresses from the global to the local scale. The two fatigue

analysis phases are systematized as follows. In the first phase, a

global approach based on the accumulation of damage computed

with nominal stresses and S-N curves is introduced. The adopted

global numerical model should be accurate enough to obtain

nominal stresses to be used as input loading for the linear

damage accumulation method. Nonetheless, the available S-N

curves with nominal stress may not properly reflect the local

geometrical and material characteristics of critical details, and

conservative assessment for the fatigue resistance may be

considered. Based on this fatigue analysis result, the critical details

should be identified which require a more refined assessment by

implementing local scale models. Then, in the second phase,

submodelling techniques leveraged by modal superposition

concepts are used to evaluate accurately local fatigue damage. Hot

spot stress and notch stress concepts are proposed to consider more

geometrical and local surfaces details (Horas et al., 2022).
4 External loadings on flange
bolted connections

According to the section above, wind towers are subjected to

various external dynamic and constant loadings. Some of them are
TABLE 2 The wave scatter diagram.

Tz(s)

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 sum

Hs(m) 0.5 1 134 866 1186 634 186 37 6 1 0 0 0 0 0 0 0 3050

1.5 0 29 986 4976 7738 5570 2376 704 161 31 5 1 0 0 0 0 22575

2.5 0 2 198 2159 6230 7450 4860 2066 645 160 34 6 1 0 0 0 23810

3.5 0 0 35 696 3227 5675 5099 2838 1114 338 84 18 4 1 0 0 19128

4.5 0 0 6 196 1354 3289 3858 2686 1275 455 131 32 7 1 0 0 13289

5.5 0 0 1 51 498 1603 2373 2008 1126 464 151 41 10 2 0 0 8328

6.5 0 0 0 13 167 690 1258 1269 826 387 141 42 11 3 1 0 4806

7.5 0 0 0 3 52 270 594 703 525 277 112 37 10 3 1 0 2586

8.5 0 0 0 1 15 98 256 351 297 175 78 28 8 2 1 0 1309

9.5 0 0 0 0 4 33 102 160 152 99 48 19 6 2 0 0 626

10 0 0 0 0 1 11 38 68 72 52 27 11 4 1 0 0 285

11.5 0 0 0 0 0 3 13 27 31 25 14 6 2 1 0 0 124

12.5 0 0 0 0 0 1 4 10 13 11 7 3 1 0 0 0 51

13.5 0 0 0 0 0 0 1 4 5 5 3 2 1 0 0 0 21

14.5 0 0 0 0 0 0 0 1 2 2 1 1 0 0 0 0 8

15.5 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 4

sum 1 165 2091 9280 19922 24879 20870 12898 6245 2479 837 247 66 16 3 1 100000
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acting directly on the wind tower, the rest are acting on nacelles,

blades and substructures. For fatigue assessment of flange bolted

connections, the sensitive areas, where high geometric stress

concentration occurs, should be clarified first. There are basically

two types of sensitive area in the tower: bolts and welding seams.

The local structure of flange bolted connections and sensitive areas

are shown in Figure 1. The external loadings over the tower cross

section are classified as follows:
Fron
1. The torque induced x-axis moments Mx

2. The wind thrust induced y-axis moments My1

3. The wind pressure induced y-axis moments My2

4. The wind induced shear S1
5. The by the eccentric gravity of upper structure (rotor

and nacelle) G1 and its induced y-axis moments My3

6. The gravity of tower itself G2

7. The FWT’s motion induced inertia forces F(i)
In short, the flange connections are mainly subjected to

moments, pressure and shear. The axial stress over the tower

cross section was calculated according to Equation (5). The shear

is neglected due to its minor contribution to fatigue damage.

s =
G
A
+
My tð Þ
Iy

r1cosq −
Mx tð Þ
Iy

r1cosq (5)

G = G1 + G2 (6)

My = My1(t) +My2(t) +My3 (7)
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My3 and gravity loadings are considered as constant

loadings. They do not affect the stress range over the cross

section, but may still play a role in fatigue assessment by

increasing or decreasing the mean stress. For FWTs, the

motion induced inertia forces should be considered.

As FWTs’ substructures are not fixed to the seabed, they

have oscillating motions in six degrees of freedom (DOFs). The

substructure’s motions may influence the aerodynamic

condition of rotor, which makes the aerodynamic loadings on

FWTs much more complicated than those on fixed wind

turbines. Mostafa et al. (Nihei et al., 2012) studied the

interactions between the rotary motion of the wind turbine

blade and the dynamic motion of the Spar type FWT through

both numerical simulations and experiments. Among all

motions in DOFs, surge and pitch are regarded as the most

important ones affecting the FWTs’ aerodynamics (Bayati et al.,

2016; Fang et al., 2020; Fang et al., 2021). Once the aerodynamic

conditions are affected by the substructures’ motions, the

external forces on the wind tower, such as Mx and My1, are

also changed. Hence, it is necessary to consider the impact of

FWTs’ motions in the fatigue assessment. This impact is further

discussed in section 7.3.
5 Numerical model of
flange connections

The research on fatigue assessment for wind turbine towers

requires experiments (Shirani and Härkegård, 2011a; Shirani
FIGURE 4

Workflow of the global-local fatigue assessment methodology for offshore wind turbines.
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and Härkegård, 2011b; Van-Long et al., 2013; Schaumann and

Eichstädt, 2015; Oechsner et al., 2015) or on-site measurements

(Pollino and Huckelbridge, 2012; Benedetti et al., 2013).

However, due to the limit of these measured data, numerical

modelling is more widely used to analyze the fatigue life of local

flange connections. In a numerical model of large flange

connections, the fatigue strength involves many factors which

should be considered (Sutherland, 1999; Ding and Chen, 2013;

Do et al., 2015; Do et al., 2015; Ragan and Manuel, 2016;

Blachowski and Gutkowski, 2016). The large size of flange

connections in OWTs means large dimensions, large number

of bolts and more complex interactions, which makes more

uncertainties in modellings (Redondo and Mehmanparast,

2020). Hobbs et al. (Hobbs, 2000) have investigated the fatigue

strength of M12 high tensile bolts. Their study revealed that

bolted joints’ fatigue strength is highly related to the stiffness

level of joints and the preload level. Couchaux et al. (2017)

pointed out that secondary forces are induced in bolts by the

contact stress between flange parts.

The finite element method (FEM) is a recommended

approach to analyze the stress distribution around flange

connections, as shown in Figure 5. To simplify the modelling

and minimize the computational cost, one or a half flange

segment of interest is usually generated through ANSYS,

ABAQUS or other FEM software. There are three key issues in

the FEM modellings: element selection and mesh, external load

and boundary conditions, preload and fiction between

contact surfaces.

A finite element model should not only have a low

computational requirement but reflect the key characteristics

such as irregular geometries and large deformations. Finite

elements with more nodes, for example SOLID95 in ANSYS,

are often recommended to model the structural parts with

irregular geometries or large deformations; finite elements with

less nodes, for example SHELL93 in ANSYS, for other parts.
Frontiers in Marine Science 08
Besides, a pretension element is used to apply preload on the

bolts. As for meshing, a small mesh size is used to mesh the areas

with high stress concentration; while relatively large mesh size is

adopted for the other areas.

In the fatigue assessment of wind tower, cyclic loadings on

the tower shell sections are simulated by the global simulations

and transferred as the boundary conditions for the local model

simulation. Then, a local model offlange is required to obtain the

stress time series at the sensitive locations. A load transfer

function (LTF) is usually used to calculate the cyclic loadings

at the bolts or welding seams based on the boundary conditions.

The FE model is under compression or tension depending

on where this segment located around the ring flange. The lower

surface of tower shell is usually fixed as the boundary condition.

The whole tower shell also suffers from wind load, and a

preloading force is applied on the bolt and flange. All these

loads are shown in Figure 5.

The preload on the pretension elements connects the upper

and lower parts of flanges together. DNVGL ST-0126 and

DNVGL-OS-C101 have suggested the requirements for the

bolt preloading (DNVGL (2018); DNVGL (2016b)).

Fp ≤ 0:7fubAs (8)

where:

Fp = preloading force

fub = ultimate tensile strength of bolt material

As = stress area of bolt

However, there are many uncertainties exist in the

preloading forces during the installation stage. Attention

should also be paid on the self-loosening effect, which will be

further discussed in Section 7.2. The contact surface between the

flange parts is set as frictional; and the contacts between the bolts

and flanges are often defined as either frictional (Alonso-

Martinez et al., 2019; Weijtjens et al., 2021) or bonded

(Badrkhani Ajaei and Soyoz, 2020), see Figure 6. The frictional
FIGURE 5

Finite element model of ring shape flanges (left); local model of flanges and its boundary conditions (right).
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contacts are defined with frictional coefficients µAjaei and Soyoz

recommended a value of the frictional coefficient between two

flange parts as 0.45 according to DNV-OS-C101 (DNVGL

(2016b)). Gorst et al. (Weijtjens et al., 2021) suggested µ=0.25

for contacts between washers and flange surfaces.
6 Initial imperfection

Flange imperfections have a significant influence on the LTF

(Weijtjens et al., 2021). Since the design criterion of FWTs is

higher than that of fixed wind turbines, it is necessary to pay

more attention on the occurrence of initial imperfections during

the manufacture and installation of FWTs. China’s offshore

industry has manufactured and installed significant number of

offshore wind turbines during recent years. Among them, it is

reported that three types of initial imperfections are most

common to occur. They are flatness divergence, bolt loosening

and tower inclination.
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6.1 Flatness divergence

Under perfect geometric conditions, as the surface pressure

between the two flange parts increases due to the tightening, a

clamp force emerges centrically around the longitudinal bolt axis

as a counterpart of the preload, as shown in Figure 7. With the

clamp force distributed symmetrically around the bolt axis,

external forces acting on the tower shell first diminish the

clamp force before stressing the bolt. However, under

imperfect flatness divergence conditions, the flange contact

surface is not ideally plane due to a flange inclination as, a

flange gap length k and a flange opening length L. The two flange

parts may open, and the clamp force may emerge eccentric from

the bolt’s longitudinal axis when preloading. According to the

location of openings, flatness divergence can be classified as

inner sided, outer sided and parallel, as shown in Figure 8. When

preloading, these gaps close initially, and then clamp solids

emerge. Seidel (2018) investigated the fabrication tolerance of

flange connections in wind turbine towers. His analysis shows
FIGURE 6

Contact surfaces in a local flange.
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that the gap length and tower wall thickness are the driving

factors to affect the gap closing behaviors. It is more difficult to

close those gaps with shorter length and thicker tower walls by

preloading. This conclusion is also confirmed by Lüddecke et al.

(Lüddecke et al., 2019). Jakubowski (Jakubowski and Schmidt,

2003) analyzed the flanges through experiments with these three

different opening types, The result shows that it is most difficult

to close openings with parallel gaps, while the inner sided gaps
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appeared to be less difficult. The outer sider gaps, in contrast,

play a positive role in LTFs.

DIN 18088-3 (DIN (2019)) as well as the DNVGL-ST-0126

(DNVGL (2018)) have stated the requirement for imperfect flanges.

The flatness divergence of one flange must be less than 2 mm in

length over the entire flange circumference and less than 1 mm over

a 30° segment. However,Weijtjens et al. (2021) pointed out that this

requirement is semi-empirical and it does not consider those
FIGURE 7

Clamp forces in a perfect bolted flange (left); the detailed configuration of flatness divergence (right).
A B C

FIGURE 8

Clamp forces in imperfect bolted flanges. (A) Inner sided; (B) Outer sided; (C) Parallel.
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geometric imperfection explicitly. With the widely use of large

flange and bolt diameters, it becomes more andmore challenging to

fulfil all these requirements during the OWT installations.

The flatness divergence may significantly influence the stress

distribution over the whole flanges when external loading is

acting on the tower. According to the standard (DASt, (2013)),

load transfer functions are recommended to describe the

relationship between external force Z and bolt load Fb. With

the increase of external forces, this process can be described in

four stages:
Fron
1. Stresses between the flanges are dominant by bolt

preload, and the contact is closed.

2. Stresses increase and some small imperfection-induced

openings show up. In this case, the clamp solid begins to

degrade.

3. Stresses keeps on increasing and the openings become

large.

4. Flanges and bolts begin to deform plastically.
For fatigue assessment, the first stage account most for

fatigue life. The other stages are relatively less important.

When clamp solids emerge, the stress may distribute

differently depending on the geometric perfection or

imperfection. Figure 9 illustrates that imperfect flange with

flatness divergence has higher bolt load and variance which is

more vulnerable to fatigue damage.

Schaumann and Seidel (2002) measured the stresses in the

ring flanges of an onshore wind turbine. The result indicates that

there is a strong fluctuation of load transfer functions due to the

influence of geometric imperfections. Another research

(Weijtjens et al., 2021) found the existence of flatness
tiers in Marine Science 11
divergences, but all of them satisfy the requirement of

standards. FE models were built and their result was compared

with the measurement. The comparison revealed that it is

necessary to consider the effect of flatness divergence to match

the FE analysis result with on-site measurements.
6.2 Bolt loosening

Ring-shaped flanges are widely used to connect the tubular

steel segments of offshore wind turbine towers. With the high

demand of large capacity generators, the bolts’ size has grown to

M36 or even bigger (Braithwaite and Mehmanparast, 2019). For

safety purpose, high preload forces are applied on flanges by

tightening bolts to keep flange connections close and strong.

However, considerable observations have been recorded that the

flange connections may turn loose during installations and

operations (Badrkhani Ajaei and Soyoz, 2020). The bolt

loosening reduces the clamp forces between flange parts and

lowers the strength of connections (Wegener et al., 2020).

According to standards and guidelines (DNVGL (2016b); IEC,

2005; GL, 2010), all bolts in a flange should be preloaded uniformly.

However, in the installation stage, this requirement is hardly fully

satisfied due to the elastic interaction between nearby bolts or

flanges. Tightening a bolt may affect the other tightened bolts and

reduce their preloading forces. One practical solution is to tighten

all these bolts in a scientific sequence with a limited number of

passes to minimize the variation of their preloading forces (Tsuji

and Nakano, 2002; Abid and Nash, 2006; Nassar et al., 2010;

Braithwaite and Mehmanparast, 2019). Another reason of un-

uniform preloading is that the accurate on-site measurement of

preloading forces is still a challenge to engineers. Meisterling (2010)
FIGURE 9

The relationship between external force Z and bolt load Fb under perfect and imperfect geometry.
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monitored the preload forces of a series of M36 bolts, and found

that the standard deviation of these bolts preload forces is more

than 12%. Nagata et al. (2006) measured the bolt preloading forces

in a vessel and indicated that the scatter of the preloads in the bolts

of a flange can reach 45.2% of the intended preload. In addition,

self-loosening of bolts is often found during OWTs’ operations. It

has been widely accepted that preloaded bolts may loosen themself

when subjected to long term vibrations or cyclic loadings. Cyclic

loadings are the source of fatigue damage. When they loosen the

preloaded bolts and influence the cyclic stress fluctuations, OWT

towers are more vulnerable to fatigue failures.

To investigate the effect of bolt preload level on fatigue strength

of ring shaped flange connections, Ajaei and Soyoz (Badrkhani

Ajaei and Soyoz, 2020) performed the fatigue assessment on a finite

element model of the maximal-loaded segment of the bolted

connection in an on-shore wind turbines. The flanges are

connected by 88 M36 bolts with a designed preload level of

510kN. In order to simulate the process of bolt loosening, five

preload levels are applied as 510kN, 255kN, 127.5kN, 51kN and 10-6

kN. In the numerical model, the upper edge is applied with external

loadings (axial forces and bending moments), and the lower edge is

fixed. The time series of bolt stress is shown in Figure 10. The
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fatigue damage with different preload levels was calculated based on

S-N curves. This research revealed that the reduction of bolt preload

level from 510kN to nearly 0kN can cause an increase of the cyclic

bolt stress ranges and result inmore fatigue damage. In addition, the

bending stresses in higher preload levels contribute much more to

fatigue damage than in lower preload levels.
6.3 Tower inclination

Initial imperfections in flanges or improper installations of

wind turbines may lead to tower inclination of fixed OWTs.

DNVGL-ST-N001 (DNVGL (2016c)) requires that the relative

motion of tilt is 2° in the lifting operation of upper modules.

DNVGL-ST-0126 (DNVGL (2018)) states that the total tolerance

for the tower axis tilt is 0.25°. However, the research on the tower

inclination induced by initial imperfections of flange is rather

limited, because its impact is much less significant than

inclinations from other sources. For fixed offshore wind turbines,

the surrounding seabed soil is losing strength and stiffness under

cyclic external loadings and scour, and the tower inclination is

mainly due to the soil-pile interface behaviors (Zhou et al., 2021).
A B

DC

FIGURE 10

(A) Time series of bolt stress with averages removed under different preloads; (B) Time series of bolt stress under different preloads; (C) stress
range histograms; (D) fatigue damage under different preloads for one minute loading (Badrkhani Ajaei and Soyoz, 2020).
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Tower inclinations for FWTs are, however, inevitable due to

their floating foundations. FWTs typically experience motions

from six DOFs as surge, sway, heave, roll, pitch and yaw

(Jonkman, 2007; Jonkman, 2009). Considerable research has

been conducted for the impact of motions on the aerodynamic

and hydrodynamic performance of a FWT, including surge (Hu

et al., 2015; Micallef and Sant, 2015; Tran and Kim, 2016), heave

(Khosravi, 2015), pitch (Jeon et al., 2014; Hu et al., 2016; Wen

et al., 2018; Wen et al., 2018; Ortolani et al., 2020), yaw (Miao

et al., 2016) and the combined motion like pitch & yaw (Tran

and Kim, 2015), pitch & surge (Bayati et al., 2016) or even surge,

heave & pitch (Liu et al., 2016). Some research concluded that up

to 10° inclination is acceptable for FWTs (Sebastian and

Lackner, 2012a; Rockel et al., 2014; Antonutti et al., 2016).

Among all the motions, pitch and surge are believed to have the

most significant impact on FWT’s aerodynamic performance by

different ways, as listed in Table 3. Fang et al. (Fang et al., 2020; Fang

et al., 2021) validated their numerical model of a 1:50 scale FOWT
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by experiments, and investigated the change of rotor’s

aerodynamics including thrust, torque and rotor power, which

may lead to cyclic loadings on the flange connections and result

in fatigue damage. Their comparisons indicates that pitch and surge

motions with higher amplitude can result in higher range of thrust

and torque variations, as shown in Figure 11. Antonutti et al. (2016)

conducted study focusing on the effect of large inclination on the

hydrodynamic performance of a FOWT and concluded that large

inclinations can amplify the motions of FOWTs. The authors

further pointed out that such impact is also very sensitive to the

relative directions of wind and waves.
7 Conclusions

This paper provides a comprehensive review of the initial

imperfections’ impact on the fatigue assessment of FWT towers’

flange connections. Among the massive recent installations of
FIGURE 11

Comparison of the thrust and torque among different pitch motion (up) and surge motion (down) (Fang et al., 2020; Fang et al., 2021).
TABLE 3 The impact of pitch and surge on aerodynamics of FWTs.

Pitch By changing the relative velocity between air flow and rotors (Bayati et al., 2016)
By changing the flow field state around rotors (Sebastian and Lackner, 2011; Sebastian and Lackner, 2012a; Rockel et al., 2014)
By generating turbulence in the wake field (Hu et al., 2015; Khosravi, 2015).

Surge By changing the relative velocity between air flow and rotors (Farrugia et al., 2014; Liu, 2019)
By moving rotors in or out of the wake field (Sebastian and Lackner, 2012b)
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OWTs in China, three types of initial imperfections were

reported most likely to occur. They are flatness divergence,

bolt loosening and tower inclination. As the global wind

power industry tends to develop progressively towards

deepwater offshore with FWTs, the impact of initial

imperfections can be even more critical thus further studies in

the topic are is warranted and timely.

The initial imperfections are likely to occur during

manufacture and installations of FWTs, which has a negative

impact on the fatigue strength of bolted flange connections. This

paper reviewed recent literature about the impact of these initial

imperfections. The main conclusions are as follows:
Fron
1. Flatness divergence opens the upper and lower flange

parts and results in imperfect geometric conditions. The

clamp force may distribute eccentrically from the bolt’s

longitudinal axis when preloading, and the stress

fluctuations in the hotspots is highly dependent on the

imperfect geometric conditions. The flatness divergence

makes the flange connections more vulnerable to fatigue

damage than under perfect conditions.

2. Large size bolts in the flange connections may lose

preloading forces due to the vibration during the

installation or operation stages. The self-loosening of

preload forces may lead to an increase of cyclic stress

range and result in a reduction of fatigue life.

3. Standards and guidelines have strict requirements for

the tower tilt angle of fixed OWTs. However, due to the

floating substructures, it is impossible to require FWTs

to limit their tower tilt as much as fixed wind turbines.

The research on FWTs’ inclination reveals that the pitch

and surge motions may enlarge the variation of torque

and thrust, which also has a negative impact on the

fatigue strength of flange connections.
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