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ABSTRACT 

Data breaches are not only on the increase but firms struggle to detect, defend and 
respond to such breaches. A data breach opens a period of crisis for the affected firm, 
generates complex information, and requires providing information to a variety of 
stakeholders in a timely and proper manner. This article reports one of the first studies 
on the impact of social media exposure by affected firms on stock price reaction to a 
data breach announcement. Using an event study methodology on a sample of 87 data 
breaches from 73 US publicly-traded firms from 2011 to 2014, we find that use of 
social media exposure at the time of a data breach exacerbates the negative stock price 
to the announcement. Interestingly, we find that this negative association is contingent 
on traditional media visibility; the effect is positive for low-visibility companies. Based 
on our results, we posit that there is a need for a contingency model for social media 
communication during firm crises and such a model should be based at least on firm 
size, visibility and the type of crisis. 
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1. Introduction 

In the current business environment, firms rely heavily on information systems and data 

analytics to build their competitive advantage (LaValle, Lesser, Shockley, Hopkins, and 

Kruschwitz 2011; Chen, Chiang, and Storey 2012). The amount of data organizations 

collect, store and process has grown exponentially in the last few years (LaValle et al. 

2011; Liu and Ye 2016). This data usually contains valuable and sensitive information 

about customers, business partners, and about the organization itself. Therefore, a data 

loss or the involuntary disclosure of such information may generate significant damage 

for the affected organization. Given the rapid growth of the number the data breaches 

over the last few years (Ponemon Institute 2018), cyber security for firms has become a 

real concern for managers, investors and regulators (Ponemon Institute 2016; Verizon 

2017). 

In this paper, we investigate the effect of social media exposure by affected firms on 

stock price reaction to a data breach announcement in order to understand whether such 

an alternative communication channel mitigates or exacerbates the cost of a data breach. 

A data breach is defined as an incident that involves unauthorized access to sensitive, 

protected, or confidential data1 resulting in the compromise or potential compromise of 

either confidentiality, integrity, or availability of an information asset (Gordon, Loeb, 

and Zhou 2011). The number of information systems breaches is growing every year 

and the increasing popularity of cloud computing, mobile devices and big data 

exacerbate this issue (Romanosky, Hoffman, and Acquisti 2014; Abbasi, Saker abd 

Chiang 2016). As such, firms are investing more and more in ways to protect their 

information systems from cyber-attacks (Srinidhi, Yan, and Tayi 2015). According to 

the Privacy Rights Clearinghouse, 543 million records were lost between January 2005 

                                                
1 Health information, personal identifiable information, trade secrets or intellectual property, and/or personal financial data are 
typical examples of sensitive and confidential information (Sen and Borle 2015). 
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and January 2012 as a consequence of 2,800 data breaches (Risius and Beck 2015). 

Data breaches impose significant costs on the affected companies both in the short and 

long term. Short-term costs are due to investigation and remediation activities, legal 

advisory, fines, and lost transactions (Aral, Dellarocas, and Godes 2013). A prominent 

example of the short-term cost of a data breach is ChoicePoint. In early 2006, the 

Federal Trade Commission (FTC) imposed a $10 million fine against ChoicePoint as a 

consequence of a massive data breach that involved 160,000 records; the company also 

agreed to pay another $5 million to compensate affected individuals (Federal Trade 

Commission – FTC 2009). Long-term costs are related to loss of present and future 

revenues as well as the deterioration of customers’ and partners’ trust (Charette, Adams, 

and White 1997; Cavusoglu, Mishra, and Raghunathan 2004; Aral et al. 2013; Dennis, 

Wixom, and Tegarden 2015). These long-term costs usually represent most of the 

overall cost of a data breach (Goel and Shawky 2009; Gatzlaff and McCullough 2010). 

However, they are extremely hard to quantify. For this reason, empirical researchers 

adopt stock price reaction (i.e. stock return) as a proxy (Goel and Shawky 2009; 

Gatzlaff and McCullough 2010) and have shown that a breach may cause a loss in firm 

value of up to 5.5 percent (Campbell, Gordon, Loeb, and Zhou 2003). 

Given its unexpected nature and the potential harm that a data breach may generate, it 

clearly fits the definition of a company crisis proposed by Schultz, Utz, and Göritz 

(2011)2. In this context, timely communication can limit potential harm (Lee, Hutton, 

and Shu 2015) and this is one of main concerns for regulators in the case of a data 

breach. However, investigating a data breach is complex and may require a significant 

amount of time and deep technical capabilities (Casey 2006). As a result, details about 

the incident may not become apparent or public for some time resulting in uncertainty 

                                                
2 According to Schultz et al. (2011). a firm’s crisis can be defined as ‘a specific, unexpected and non-routine event or series of 
events that create high levels of uncertainty and threaten, or are perceived to threaten, an organization’s high priority goals’. 
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which may adversely affect the market reaction (Kalev, Liu, Pham, and Jarnecic 2004). 

during this period. Similarly, the explanation surrounding the data breach 

announcement may be complex therefore how this information is communicated is 

particularly important (Coombs 2007; Utz, Schultz, and Glocka 2013). 

Firms have usually relied on traditional media (i.e. the press) to disseminate information 

(Blankerspoon, Miller, and White 2014). However, traditional media may not always be 

the most useful communication channel in the context of a crisis as it tends to focus on 

highly visible firms since they attract larger readership (Miller 2006; Barber and Odean 

2008). As a result, low visibility firms, which represent the largest part of the market, 

struggle in reaching their stakeholders through traditional media, and this may be 

particularly detrimental in the context of company crisis. The emergence of social 

media has signaled a step change in recent years offering firms an alternative 

communication channel through which they can disseminate information more 

effectively, to a wider audience, and at a relatively low cost.  

Social media is a set of internet-based tools and applications that allow users to create 

(consume) content that can be consumed (created) by others and which enables and 

facilitates connections (Hoffman and Novak 2012). Social media is now widely adopted 

by firms for corporate communication and has been recognized as an official 

communication channel (Securities and Exchange Commission – SEC 2013). Studies 

suggest that (i) social media represents nowadays the main source of information for an 

increasing number of people (Jansen, Zhang, Sobel, and Chowdury 2009; Coombs 

2014), (ii) that information disseminated through such a communication channel has 

impact on stock returns and information asymmetry (Blankerspoon et al. 2014; Jung, 

Naughton, Tahoun, and Wang 2015), and (iii) that it is an effective communication 

channel during company crises (Lee et al. 2015; Jahng and Hong 2017). 
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Among different social media platforms, many studies focus on Twitter since it is the 

most commonly adopted for social investor communication and company event 

disclosure (Blankerspoon et al. 2014; Jung et al. 2015). Furthermore, Twitter has the 

peculiarity of being a largely open network and it also has the unique feature of 

‘retweeting’, which makes it a powerful mechanism for information sharing 

(Kietzmann, Hermkens, McCarthy and Silvestre 2011; Stieglitz and Dang-Xuan 2013).  

In this study, we specifically focus on Twitter since anecdotal evidence reveals that 

firms try to exploit its characteristics to disseminate information about data breaches. 

For example, on September 3rd 2014, following a breach to their payment card system, 

The Home Depot (@HomeDepot) tweeted: “To keep customers updated, we’ve posted a 

message about news reports of a possible payment data breach thd.co/update”. In this 

context, social media represents a useful communication channel. It allows the breached 

firm to bypass information intermediaries and easily disseminate its intended message 

(Lee et al. 2015), potentially lowering the cost of the breach (Ponemon Institute 2016) 

and exposure to litigation risk (Swanson, Kirsch, and Dunigan 2013). Despite these 

advantages, some studies advise caution in how the value of social media is measured 

since social media per se cannot generate value without the implementation of an 

adequate communication strategy and without the allocation of adequate resources 

(Culnan, McHugh and Zubillaga 2010; Jung et al. 2015). In fact, social media generates 

an expectation of instant feedback to the public and meeting such expectation may be 

challenging during a crisis when the number of requests can be overwhelming 

(Stephens and Malone 2009; Jahng and Hong 2017). Furthermore, due to the virality 

typical of social media and to the potential high number of information requests, a 

company may lose control of the information flow, thereby in fact worsening an already 

serious situation (Blankerspoon et al. 2014; Jung et al. 2015; Lee et al. 2015; Jahng and 

Hong 2017). Therefore, by increasing corporate organization’s exposure to the public 
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(Conway and Ward 2007), social media may also increase the risk of a potential crisis 

escalation (Siah Ann Mei, Bansal and Pang 2010). Ultimately, understanding the effect 

of social media usage around data breaches is critical to providing guidance to firms 

that suffer data breaches and this study aims to shed light on its potential contrasting 

impacts. 

Our study contributes to the literature on data breaches in two pivotal ways. Firstly, to 

our knowledge, this is the first study that investigates the impact of communication and 

disclosure via social media on market reaction to data breach announcements. Previous 

studies have focused on breach characteristics and firm characteristics. We therefore 

provide novel and important insights for management into communications strategy 

around data breaches. Secondly, our study contributes to the ongoing debate on the 

economic impact of data breach announcements by providing new evidence of a 

negative price reaction to news of a data breach. Our study also contributes to the 

literature on the impact of social media for crisis communication by investigating the 

role of social media in the context of data breach disclosure, and by providing unique 

evidence of a significant benefit to social media for low visibility firms in particular, 

which typically struggle in gaining attention in traditional media. 

The rest of the paper is organized as follows. The next section presents the theoretical 

development and the research hypotheses. The following section describes the research 

design and the data collection. We then present the results of the empirical analyses and 

the robustness tests, and conclude by discussing the implications of the study and 

directions for future research. 

2. Hypotheses Development 

Disseminating information around a breach event quickly is a requirement under 

compliance with the Security Breach Notification Laws (SBNLs), which have been 
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enacted in the US since 20033. Academic literature on crisis communication clearly 

suggests that it is even more important to spread the information to a large audience in 

order to limit the potential harm and repair any associated reputation damage; to this 

aim, the use of social media may be particularly beneficial (Seeger 2006). Furthemore, 

social media allows firms to provide timely updates about the investigation and 

remediation of the data breach therefore reducing uncertainty and communicating the 

firm’s competence in handling the crisis, hence lessening stakeholders’ negative beliefs 

(Lee et al. 2015). 

However, the adoption of social media in the context of a data breach may also have a 

detrimental effect which may ultimately worsen the stock price reaction. As mentioned 

above, a company crisis like a data breach is likely generate large volumes of 

interactions with the public. In this context, keeping control over the information flow 

may be challenging and at the same time paramount (Lee et al. 2015; Jahng and Hong 

2017). If such control is not maintained, the reputation damage may be more 

pronounced due to the spreading of misinformation around the breach event. 

The conflicting arguments outlined so far match with the conclusions of Aral et al. 

(2013, p. 9), who state that “there is, currently, little understanding with respect to the 

best ways in which companies should organize and manage social media.” In the light 

of the above, and being the first study investigating the effect of social media usage in 

the context of data breach disclosure, we are not able to predict what would be the 

impact of social media and so state our first research hypothesis in null form. 

H1: Social media exposure has no impact on the negative stock price reaction to data 

breach announcements. 

                                                
3 Since 2002, when the first SBNL was enacted California, 47 states Forty-seven states, the District of Columbia, Guam, Puerto 
Rico and the Virgin Islands have enacted their own SNBLs (NCSL 2017). However, SBNLs still significantly differ from each other 
creating uncertainty in terms of disclosure requirements (Winn 2009; Stevens 2012). 
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With the first hypothesis establishing whether a relationship exists between general 

social media exposure and the stock market reaction to data breach announcements, 

more nuanced effects must next be considered. It is noted that traditional media 

accommodates high visibility firms, while low visibility firms struggle in reaching a 

large audience with their company specific news (Miller 2006; Barber and Odean 

2008). This may be particularly detrimental when information has to be disclosed 

quickly, as in the case for data breach events. The risk is that low visibility firms, 

though they detect the breach quickly, cannot disseminate the event information 

effectively because they do not command enough attention in traditional media and, 

therefore, face larger relative damage. Social media levels the playing field somewhat 

by providing low visibility firms direct access to a potentially wider audience and a 

greater prospect of market attention than would otherwise be possible (Lee et al. 2015). 

As such, it provides the affected firm with an opportunity to disclose data breach event 

information in a more effective manner. Given this important innovation provided by 

social media, we test whether there is a difference in market reaction between high and 

low visibility firms. Our contention is that, in contrast to high visibility firms, low 

visibility firms benefit from having the level of market attention afforded by its social 

media presence, over and above the case of either no traditional media or very limited 

traditional media news coverage. For high visibility firms, a social media presence 

simply adds to an already established level of market attention. We therefore state our 

second hypothesis as follows. 

H2: Social media exposure decreases the negative stock price reaction to data breach 

announcements for low visibility firms. 

While we have thus far focused on general social media communication, we consider 

next the specific case where social media is used as the outlet to disclose a breach event. 

Although the disclosure of a data breach is mandatory, under security breach 
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notification laws, the communication of the event on social media is voluntary. Prior 

studies show that firms are likely to use voluntary disclosure to share positive news 

while they are more reluctant to voluntarily disclose bad news (Mayew 2008; Larcker, 

Larcker, and Tayan 2012). Jung et al. (2015) provide evidence of such a tendency in 

using social media. Since a data breach is bad news, and with this bad news being 

broadcast to a wide audience using social media, we expect the negative price reaction 

to the announcement to be larger if a firm discloses the event through its social media 

account. Our third hypothesis is therefore stated as follows. 

H3: Firm of social media to disclose a data breach increases the negative stock price 

reaction. 

3. Data and Research Methodology 

In this study, we adopt an event study methodology (MacKinlay 1997) to investigate 

whether and how social media exposure affects the stock price reaction to a data breach 

announcement. The event study methodology is based on the efficient market theory 

which states that new information in the market will fully reflect in a firm's stock price. 

Because the market should not be capable of anticipating when firms will make a data 

breach announcement, it is appropriate to use the event methodology to catch 

unexpected business events in the stock market (Chai, Kim, and Rao 2011). 

4.1 Multivariate Regression Models 

The following regression model is used to test H1 and H2: 

 !"#$,& = () + (+,-.//01$,& + (234-_,67$,& + 
+(8,-.//01$,&×34-_,67$,& 
+(:!4;/14<=$,& + >$,& 

(1) 
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The dependent variable in Equation (1) is the cumulative abnormal return (CAR) over a 

two-day period starting on the announcement day (0; +1) (hereafter, the event period) 

(Cavusoglu et al. 2004; Gatzlaff and McCullough 2010). We adopt the market model 

(Fama et al. 1969) to estimate daily abnormal returns (ARs) and then sum up the daily 

ARs over the event period to obtain the cumulative abnormal returns (CARs), which is 

proxy for price reaction to the announcement (Campbell et al. 2003; Cavusoglu et al. 

2004; Gatzlaff and McCullough 2010). The market model equation is shown in 

Equation (2). 

 #$,? −	#B? = ($ + C$(#6? − #B?) + >$,? (2) 

where Ri,t is the stock return for firm i on day t; RFt is the risk-free interest rate on day t; 

RMt is the stock return of market on day t; αi is Jensen’s alpha for firm i,; βi is the 

CAPM slope parameter for firm i (i.e., the systematic risk of the return of firm i, relative 

to the return of the entire market, and often denoted as the beta of the stock); and εit is 

the model’s error term. 

To capture the effect of social media exposure on price reaction, we adopt two indicator 

variables (i.e. Twitter and Low_TMV) and the interaction variable between them 

(Twitter x Low_TMV). Twitter is equal to 1 when a company had an active Twitter 

account (Java, Song, Finin, and Tseg 2007) when the breach occurred, and 0 otherwise. 

Low_TMV identifies firms with low visibility on traditional media; as such it is equal to 

1 if the average daily number of newspaper articles during the estimation period was 

below the first tercile threshold, and 0 otherwise. The interaction variable (Twitter x 

Low_TMV) allows us to explore if there is a difference between high and low visibility 

firms. The regression coefficient of Twitter tests H1, while the regression coefficient of 

the interaction variable tests H2.  
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A second regression model is used to test whether the use of social media to disclose 

breach events decreases the negative stock price reaction to data breach announcements 

(H3). This model is specified as follows: 

 !"#$,& = () + (+,-00/FG0;/$,& + (234-_,67$,& 
+(8,-00/FG0;/$,&×34-_,67$,& 
+(:!4;/14<=$,& + >$,& 

(3) 

The dependent variable is still the CARs over the event window, but the variables of 

interest are different. In order to capture the effect of a data breach announcement 

trough social media, we create an indicator variable (TweetEvent) that denotes whether 

a firm announced the breach on its Twitter account or not. The interaction variable 

TweetEvent x Low_TMV reveals if the announcement of a breach through a firm’s 

Twitter account generates a differential effect for low visibility companies. The 

coefficient on this interaction term will provide some complementary insights into H3. 

Our models also include four categories of control variables: (a) controls for breach 

characteristics; (b) controls for traditional media activity; (c) controls for social media 

activity4; and (d) controls for firm characteristics. 

We begin with defining the first group of controls. The cost of a data breach, and, 

therefore, the market reaction to the announcement, depends on the breach type 

(Campbell et al. 2003; Cavusoglu et al. 2004; Gatzlaff and McCulloug 2010). In this 

paper, we adopt the classification proposed by the Privacy Rights Clearinghouse5. We 

adopt six different indicator variables to identify breaches due to (a) a payment card 

fraud (Card), (b) an unintended information disclosure (Disc), (c) an attack by a hacker 

(Hack), (d) an insider misbehavior (Insd), (e) a lost, discarded or stolen portable device 

                                                
4 This group of control variables are only included in Equation (3) since we run this regression only on the subsample of firms that 
had an active Twitter account at the time of the breach. 
5 https://www.privacyrights.org/node/1398. 
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(Port), and (f) an unknown reason (Unkn)6. In order to avoid collinearity issues, we do 

not include Unkn in the regression model and keep it as baseline. Stock price reaction 

may also be affected by the number of records breached (Campbell et al. 2003; 

Cavusoglu et al. 2004; Gatzlaff and McCulloug 2010). However, this information is not 

always provided at the moment of the announcement. This may be due to the absence of 

breached records or, more likely, to ongoing investigation; this creates more uncertainty 

around the overall cost of the breach. We adopt an indicator variable (RecordsKnown) 

that indicates whether a firm disclosed the exact number of breached records when it 

disclosed the event. We also control for the presence of prior breaches7 by adding the 

indicator variable PriorBreach since investors might penalize more those firms affected 

by multiple incidents (Gatzlaff and McCulloug 2010). 

Following Lee et al. (2015), we include also a control variable for traditional media and 

social media activity in our model. AbnTradMedia is constructed as presented in 

Equation (4), where TradMedia is the average daily number of newspaper articles 

during the event period (0,+1) while NTradMedia is the average daily number of 

newspaper articles during a 120-day estimation period ending five days before the event 

(-125,-6)8. This variable provides a measure of the abnormal attention a firm attracts 

around a data breach announcement. 

 
"H;,1IJ60J.I$,& =

,1IJ60J.I$,& − K,1IJ60J.I$,&
K,1IJ60J.I$,&

 
(4) 

 

                                                
6 The Privacy Right Clearinghouse classification includes two more breach categories: physical loss (Phys) if the breach is due to 
lost, discarded or stolen non-electronic records; and stationary device (Stat) if the breach is due to lost, discarded or stolen stationary 
electronic devices. Since none of the events in our sample fall into these categories, we do not create any indicator variable for 
them. 
7 Our approach is similar to Gatzlaff and McCullough (2010), who highlight the need to consider some defined number of years 
before the sampling period, so as not to bias the results. With our sample running from January 2011 to December 2014, we 
consider all events reported by Privacy Right Clearinghouse since 2005 in constructing this variable. 
8 While Lee et al. (2015) adopt a 60-day estimation period ending the day before the event, we opt for a longer time window (120 
days) in order to have better assess firms’ visibility (the shorter the time window, the higher the probability that very low-visibility 
firms have no media coverage). Furthermore, the estimation period ends five days before the announcement in order to avoid the 
presence of possible rumors or information leakages. The time between the detection of a data breach and its disclosure may vary 
considerably since Security Breach Notification Laws do not define precise disclosure timelines and allow delays if a police 
investigation is underway (Faulkner 2007). 
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Control variables for social media activity include (a) AbnTweet which measures the 

abnormal Twitter activity of the firm during the event period, and (b) the natural 

logarithm of the number of followers of the firm’s account on the announcement day 

(Followers) which provides a measure of the size of the potential audience. Equation (5) 

shows how we construct AbnTweet. In particular, Tweet (NTweet) is the average daily 

number of tweets generated by the Twitter account of firm i during the event period 

(estimation period) of event j. 

 
"H;,-00/$,& =

,-00/$,& − K,-00/$,&
K,-00/$,&

 
(5) 

We also include control variables for firm characteristics like (a) the size of the affected 

company measured as the natural logarithm of total assets (Size) (Cavusoglu et al. 2004; 

Gatzlaff and McCullough 2010); (b) its growth opportunities proxied by the market-to-

book ratio (Growth) (Gatzlaff and McCullough 2010); and (c) whether it operates in an 

industry with high expectations9 in terms of cyber security (HighExp) (Gatzlaff and 

McCullough 2010). 

Finally, following Lee et al. (2015), we include the interaction variables between Size 

and the other control variables in the model presented in Equation (1) for model 

specification purposes. Table 1 reports a definition and data source for each variable 

included in our models. 

Insert Table 1 here 

  

                                                
9 According to Gatzlaff and McCullough (2010), banking institutions (SIC codes 6011-6099), insurance firms (SIC codes 6311-
6399) and technology companies (SIC codes 7371-7379) fall in this category. 
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4.2 Sample and Data 

We build our sample starting from the list of breaches that occurred from January 2011 

to December 2014 as compiled by Privacy Rights Clearinghouse10. While the number of 

Twitter users has increased since 2010 (Lee et al. 2015), the actual number of tweets, 

which denotes the real activity, only increased dramatically in 201111. For this reason, 

we adopt 2011 as the starting year of our sample. 

The initial event list included 2,257 breaches. Being interested in analyzing the stock 

price reaction to the announcement, we deleted all events that affected non-publicly 

traded companies (2,034). We then searched on Lexis-Nexis and Twitter12 to determine 

if any information leakage occurred for any of the breaches in our sample within seven 

days before the official announcement date and, if this was the case, we adjusted the 

event date to the date of this first newspaper article or tweet. This occurred for 14 

events. We also used Lexis-Nexis to check whether any confounding event13 occurred 

in a seven-day period before the announcement of a given breach. 57 events were 

excluded on this basis. In case of multiple events for the same firm, we required the 

events to be at least 130 days apart from each other. This was necessary to avoid that 

the event period of an incident falls within the estimation period of a following breach 

affecting the same firm therefore introducing a bias in the latter. We excluded 47 events 

that did not meet this condition. In order to ensure a sample of comparable events, we 

excluded 9 events that were announced during weekends or public holidays. Finally, we 

                                                
10 http://www.privacyrights.org/data-breach. This dataset has been adopted in other recently published studies (e.g. Higgs, Pinsker, 
Smith, and Young 2016; Rosati et al., 2017).  
11  According to Twitter statistics, the number of tweets per day was 35 million in 2010, and 200 million in 2011. See 
https://blog.twitter.com/2010/measuring-tweets for further details. 
12 We checked for information leakage in the tweets generated from or mentioning the company account. 
13 We consider confounding events all earnings announcements, merger and acquisitions news or rumors, CEO and/or top executive 
turnover. 
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excluded 23 events because of missing values. Our final sample therefore consists of 87 

events corresponding to 73 individual firms14. 

We searched for the main Twitter accounts or for customer services Twitter accounts on 

the firms’ websites and then used Twitter advanced search to check whether the firms 

tweeted about the data breach15. When a firm had both active main and customer service 

Twitter accounts, we considered only the customer service accounts as this would more 

likely be targeted by customers’ complaints (Li, Berens, and De Maertelaere 2013). 

Finally, given that Security Breach Notification Laws were enacted in different years 

across different states, we checked that all firms in our final sample were subject to 

mandatory disclosure when the breach occurred. Table 2 summarizes the sampling 

process. Table 3 provides relative frequencies of events over time, while Table 4 reports 

the number of events per breach type. 

For this study, we retrieved data from three other sources. Daily stock price and market 

index data was sourced from Thomson Reuters Datastream. We collected the number of 

newspaper articles using Lexis-Nexis PowerSearch16 . The Twitter data came from 

TwitterCounter 17 , which provides daily statistics on active Twitter accounts. 

TwitterCounter statistics include the daily number of tweets generated from a specific 

account as well as the daily number of followers and followings. 

Insert Table 2 here 

Insert Table 3 here 

Insert Table 4 here 

                                                
14 The limited sample size reflects the data availability and the need to apply adequate filters in order to reduce possible noise. Both 
the sampling criteria and the size of our sample are in line with previous studies on the same topic (Cavusoglu et al. 2004; Gatzlaff 
and McCulloug 2010; Gordon et al. 2011). 
15 We searched whether any tweet was generated from the official Twitter account containing the following keywords in the event 
period ‘breach OR breached OR breaches OR hacker OR hacked OR attack’. All the tweets retrieved were manually inspected to 
ensure that they were related to the announcement of the data breach that affected the company that generated the message. 
16 Following Lee et al. (2015), we searched for company name or ticker symbol in the headlines or the lead paragraph of newspaper 
articles. 
17 http://twittercounter.com/. 
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4. Results and Discussion 

4.1 Univariate Analysis 

Table 5 reports the cumulative abnormal returns (CARs) over different time windows. 

Although the focus of this study is on the most immediate impact of the announcement 

over the days (0,+1), looking at different time windows is useful to understand how 

long the effect of the announcement lasts and whether there is a price under-/over-

reaction to the announcement. Panel A in Table 5 shows that a data breach has a 

negative impact over a three-day period starting at the announcement day (0,+2), but the 

largest price drop occurs over the first two days (0,+1) when breached firms lose on 

average 1.6 percent of their market value. Results show also that the stock price 

recovers three days after the announcement, which indicates that a breach causes only a 

short-term negative effect on stock price. To check for price under- or over-reaction, we 

also estimated CARs over a seven-day period starting four days after the announcement 

(from day +4 to day +10). If there was under-(over-)reaction, the stock price would fall 

(increase) over this period. Panel A shows that CARs from day +4 to day +10 are, on 

average, positive and statistically different from zero, unveiling a price over-reaction to 

the announcement. As discussed above, the exact extent (and cost) of a breach is not 

always clear from its detection and disclosure. This creates uncertainty among investors, 

which might cause a price drop; such uncertainty might then decrease progressively as 

firms provide additional information. Panel B, instead, provides a comparison between 

the two subsamples of firms with and without active Twitter accounts. Results suggest 

that the two subsamples are not statistically different from one another; the only 

difference is in the percentage of firms with negative CARs over a three-day event 

window (0,+2), where 81 (60) percent of firms with (without) Twitter have a negative 

price change. 
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Insert Table 5 here 

Table 6 shows the descriptive statistics of the variables included in our regression 

models. We winsorized all continuous variables at 1 and 99 percent to avoid any outlier 

that could alter the results. Panel A shows that, as reported above, the average price 

change (CARs) is 1.6 percent. 25 percent of the events in our sample caused a price 

drop larger than 2.6 percent while another 25 percent caused a moderate increase. The 

average value of AbnTradMedia reveals that traditional media pays a lot of attention to 

data breaches since the number of newspaper articles concerning the events in our 

sample increases, on average, by 32 percent over the event period. Looking at social 

media activity, results show that breached firms increase their Twitter activity, on 

average, by 10 percent, and that only 9 percent of firms with an active Twitter account 

decide to disclose the event through their account suggesting opportunistic behavior in 

social media communication (Jung et al. 2015). Finally, the number of records breached 

is disclosed for just 35 percent of the events in our sample, while almost 40 percent of 

the events are preceded by other breaches. 

Panel B in Table 6 compares the average values between the two subsamples of firms, 

those with and without an active Twitter account. Results show that there is a 

statistically-significant difference only regarding the percentage of low-visibility firms 

in the two subsamples. Indeed, they represent around 19 (49) percent of observations in 

the Twitter (Non-Twitter) subsample. This evidence might signal that low-visibility 

firms did not value the potential benefit of social media communication. 

Insert Table 6 here 

We also performed a correlation analysis among all the variables included in our 

regression models. The results (not tabulated) confirm the existence of a positive 

relationship between company size and traditional media coverage, and show evidence 

of no strong correlations between different explanatory variables therefore suggesting 
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that multicollinearity should not affect the results of our regression model (Gujarati and 

Porter 2003). 

4.2 Effect of Social Media Exposure on Stock Price 

In order to test the research hypotheses H1-H3, we adopt a pooled ordinary least-

squares (OLS) regression with time fixed effects. 

Panel A in Table 7 presents OLS coefficients and levels of significance for each the 

variables of the models presented in Equation (1). This regression involves all 87 events 

in our sample and the variables of interest are Twitter and Twitter x Low_TMV since 

they test H1 and H2 respectively. 

The results show that the potential negative effects of social media communication 

outweigh its potential benefits in the context of data breach announcements. The 

coefficient of Twitter is negative and statistically significant. This indicates that a firm’s 

social media exposure worsens the stock price reaction, on average, by 1.2 percent 

following a data breach announcement. This leads us to reject H1. This result is the 

opposite of the one obtained by Lee et al. (2015), who show that the use of interactive 

social media (i.e. Twitter and Facebook) lowers the negative market reaction to product 

recall announcements, and provides evidence that different crises need different 

communication strategies (Utz et al. 2013). The complexity of security breach 

notifications laws and the greater uncertainty around costs are likely factors for the 

difference in results.  

In contrast to the above, social media exposure for low visibility firms mitigates the 

negative effect of the breach, on average, by 3.5 percent (see coefficient of Twitter x 

Low_TMV). This result confirms that social media provides low-visibility firms with the 

opportunity to engage in a more effective communication and supports H2. 

Insert Table 7 here 
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Table 8, instead, presents the OLS coefficients and the levels of significance for the 

variables of the model presented in Equation (2). This regression is run only on the 

subsample of 32 events that involved firms with an active Twitter account when the 

breach occurred. The coefficient of TweetEvent tests H3, while the coefficient of 

TweetEvent x Low_TMV provides further evidence for H2. 

The results show that the disclosure of a data breach on social media (TweetEvent) 

exacerbates the negative price response to the announcement. In particular, the price 

drops by 5.2 percent more compared to other companies that have an active Twitter 

account, but do not disclose the event directly from their account. This leads us to 

accept H3 and suggests that spreading bad news to a larger audience does not represent 

a convenient communications strategy in the context of a data breach. However, it 

seems to be an effective strategy for low visibility firms. The coefficient of the 

interaction variable (TweetEvent x Low_TMV), indeed, shows that the event disclosure 

through the Twitter account of a low-visibility firm mitigates the negative price 

response by 4.4 percent. This result provides a further confirmation of H2. 

Two other factors are worth attention. Firstly, the abnormal Twitter communication of a 

breached firm (AbnTweet) increases the negative price reaction, on average, by 10 

percent. This result is a clear signal that firms tend not to adopt effective 

communication strategies in their social media usage and/or that they cannot keep 

(enough) control of the information flow. Secondly, the larger the audience (i.e. 

followers), the more negative the price response to announcement, as evidenced by the 

negative coefficient of Followers. In particular, the result indicates that stock prices 

decrease, on average, by 0.53 percent for every 100 followers. 

Insert Table 8 here 
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5. Robustness Test 

The dependent variable of both regression models employed in this study is the 

cumulative abnormal returns (CAR). As shown above, we estimate CARs based on the 

Market Model (Fama et al. 1969). Fama and French (1993) propose an alternative 

model to estimate CARs. Their model, known as the Three-factor Model, includes two 

factors other than the market index return which are the difference of returns between 

(a) firms with small and large market capitalization and (b) firms with high and low 

book-to-market ratio. The Three-factor Model equation is shown in Equation (6). 

 #$,? −	#B? = ($ + C$(#6? − #B?) + L$M6N? + O$P63? + >$,? (6) 

where Ri,t is the stock return for firm i on day t; RFt is the risk-free rate on day t; RMt is 

the return of the market on day t; SMBt is the difference between the returns on a 

portfolio of small and large stocks on day t; HMLt is the difference between the return 

on a portfolio of high and low book-to-market stocks on day t; αi, βi, δi and γi are the 

model intercept and sensitivity parameters, respectively, for firm i; and εi,t is the 

model’s error term.  

In order to ensure that the results of our analysis do not depend on the estimation model 

adopted, we estimate CARs using the Three-factor Model and run the regressions using 

the new CARs as dependent variable. The results (not tabulated) are consistent with 

ones discussed above, therefore we can conclude that the results of this study are robust 

to the CAR estimation model specification. 

Finally, to ensure that our findings on low visibility firms are not driven by the 

threshold adopted, we repeat the analysis adopting a quartile-based classification. In this 

case, low visibility firms are the ones with an average daily number of newspaper 

articles during the estimation period below the first quartile threshold. The results (not 
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tabulated) are consistent also in this case, therefore we can conclude that the results of 

this study are robust to different visibility classification criteria. 

6. Conclusion 

This paper investigates whether the use of social media affects the price reaction to a 

data breach announcement. Our empirical analysis suggests that communication via 

social media (i.e. Twitter) tends to exacerbate the negative impact of data breach 

announcements on stock price, causing an average additional decrease of 1.2 percent 

over a two-day event period (0,+1),. Further analyses suggest that the negative effect of 

social media is even more pronounced when firms (a) disclose the event through their 

Twitter account (-5.2 percent), (b) increase the communication via social media (i.e. 

number of tweets) in the event period, and (c) have a larger audience on social media 

(i.e. followers). However, our results also suggest that the impact of social media is 

positive for low-visibility firms. 

The contribution of this study is threefold. Firstly, the study provides new insights into 

the cost of data breaches by adding communication via social media as a new 

significant factor affecting the price reaction to a data breach announcement. In so 

doing we provide additional evidence on the effectiveness of the use of social media for 

crisis communication, but we also contribute to the ongoing debate on the net effect that 

social media generates in crisis communication by providing evidence of a differential 

impact based on firms’ visibility on traditional media. Our study provides evidence and 

important practical information for firms making communication decisions in crises 

such as these. Although there is a generalized positive view on the adoption of social 

media in firms’ communications, managers should also be aware of the challenges that 

it generates, and of the peculiarity of the crisis they are dealing.  

Social media and stock price reaction to data breach announcements: evidence from US listed companies



22 
  

Secondly, our paper provides further evidence of a negative price reaction to data 

breach announcements contributing to the debate about the economic impact of data 

breaches and showing additional potential outcomes related to the way the information 

is delivered to the stakeholders. 

Thirdly, our study contributes to the research on the impact of company disclosure 

through social media on stock market by confirming that it significantly affects the 

stock price and providing evidence of a positive impact on low visibility firms in regard 

of data breach announcements. By showing that social media usage is likely to either 

help or hinder a firm in the context of a crisis, these results are likely to be useful for 

industry as they highlight the need for a contingent crisis communication strategy based 

on firm visibility and on the type of crisis a firm is facing. 

This study is also subject to some limitations. Firstly, our analysis considers only 

Twitter as a social media platform. Although Twitter is the most accepted platform in 

the financial community, alternative social media platforms (e.g. Facebook) are 

available to firms or indeed firms may decide to disclose events through a number of 

platforms at the same time to reach different stakeholders. The use of alternative 

platforms, potential interconnections between them, and stakeholders’ preferences are 

not considered in this study, therefore further research on this would be informative. 

Secondly, our analysis is based on daily statistics about the use of social media. It does 

not allow us to investigate the content of the messages which might convey more 

information about the firms’ communication strategies. Text mining may provide 

interesting insights on what type of information breached firms provide. Moreover, an 

analysis of the communication patterns between breached firms and corresponding 

stakeholders might reveal how information flows within the network and if breached 

firms tend to have a proactive (i.e. provide updates on the incidents) or reactive 

approach (i.e. just reply to customers’ or investors’ enquiries). Further research in this 
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field would shed additional light on firms’ communication strategy around data breach 

announcements and bad news disclosure in general. 
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Table 1. Variable Description and Data Sources 

Variable   Description   Source 
          
CARs(0,1)   Cumulative abnormal returns calculated 

as the sum of the differences between 
the actual daily stock returns and the 
expected stock returns (estimated 
through the Market Model) during the 
event period. 

  DataStream Professional 

Twitter   The variable equals 1 if the firm has an 
active Twitter account when the data 
breach occurred. 

  Individual Twitter accounts 

Low_TMV   The variable equals 1 if the firm has an 
average daily number of newspaper 
articles during the estimation period 
below the first tercile threshold. 

  Lexis-Nexis   

Twitter x Low_TMV   Interaction variable between Twitter and 
Low_TMV. 

    

TweetEvent   The variable equals 1 if the firm posts a 
tweet announcing the data breach during 
the event period. 

  Individual Twitter accounts 

TweetEvent x 
Low_TMV 

  Interaction variable between TweetEvent 
and Low_TMV. 

    

AbnTweet   Abnormal Twitter activity measured as 
the difference between the average daily 
number of tweets during the event and 
the estimation period, scaled by the 
average daily number of tweets during 
the estimation period. 

  TwitterCounter 

Followers   Natural logarithm of the number of 
followers of the Twitter account of the 
firm on the announcement day. 

  TwitterCounter 

Card   The variable equals 1 if the breach is 
due to payment card fraud. 

  Privacy Rights 
Clearinghouse 

Disc   The variable equals 1 if the breach is 
due to unintended information 
disclosure. 

  Privacy Rights 
Clearinghouse 

Hack   The variable equals 1 if the breach is 
due to a hacker attack. 

  Privacy Rights 
Clearinghouse 

Insd   The variable equals 1 if the breach is 
due to insider misbehavior. 

  Privacy Rights 
Clearinghouse 

Port   The variable equals 1 if the breach is 
due to a lost, discarded or stolen 
portable device. 

  Privacy Rights 
Clearinghouse 

Unkn   The variable equals 1 if the cause of the 
breach is unknown. 

  Privacy Rights 
Clearinghouse 

RecordsKnown   The variable equals 1 if the number of 
breached records is disclosed at the first 
announcement. 

  Privacy Rights 
Clearinghouse 

PriorBreach   The variable equals 1 if the firm had 
other breach(es) before the event. 

  Privacy Rights 
Clearinghouse 
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AbnTradMedia   Abnormal number of newspaper articles 
calculated as the difference between the 
average daily number of newspaper 
article during the event and the 
estimation period, scaled by the average 
daily number of newspaper articles 
during the estimation period. 

  Lexis-Nexis   

Size   Natural logarithm of firm’s total assets 
at the end of the fiscal year before the 
event. 

  DataStream Professional 

Growth   The ratio between the book and the 
market value of firm’s equity at the end 
of the fiscal year before the event. 

  DataStream Professional 

HighExp   The variable equals 1 if the firm 
operates in the banking, insurance of 
tech industries (SIC codes 6011-6099, 
6311-6399, 7371-7379). 

  DataStream Professional 

 
 
 
 

Table 2. Sample Definition 

  Number of events 

Filters Full Sample   Twitter   No-Twitter 

Events reported by Privacy Rights 
Clearinghouse (2011-2014) 2,257         

Non-publicly traded firms (2,034)         
Events with possible confounding 

announcements  (57)         

Events overlapping (47)         
Announcement during weekends or public 

holidays (9)         

Missing data (23)         

Final Sample 87   32   55 

Number of firms 73   29   44 

This table describes the sampling process. The event is defined as the data breach announcement 
reported by Privacy Rights Clearinghouse or the first newspaper article reporting the event. The final 
sample includes 87 data breaches affecting 73 individual firms. Columns ‘Twitter’ and ‘No-Twitter’ 
report the number of data breaches and firms with or without an active Twitter handle respectively. 
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Table 3. Events Distribution over Time 

    Full Sample   Twitter   No-Twitter 

Year   No. of 
Events %   No. of 

Events %   No. of 
Events % 

2011   26 29.89%   8 9.20%   18 20.69% 

2012   19 21.84%   9 10.34%   10 11.49% 

2013   30 34.48%   8 9.20%   22 25.29% 

2014   12 13.79%   7 8.05%   5 5.75% 

TOT   87 100.00%   32 36.78%   55 63.22% 

This table provides the distribution of the events over time for the full sample as well as for the 
subsamples of firms with (Twitter) and without (No-Twitter) an active handle.  

 

 
 
 
 
 
 
 
 
Table 4. Events Distribution per Type of Data Breach 

    Full Sample   Twitter   No-Twitter 

Type of Breach   No. of 
Events %   No. of 

Events %   No. of 
Events % 

Payment card Fraud   6 6.90%   2 2.30%   4 4.60% 

Disclosure   14 16.09%   2 2.30%   12 13.79% 

Hacker   26 29.89%   15 17.24%   11 12.64% 

Insider   17 19.54%   7 8.05%   10 11.49% 

Portable device   5 5.75%   3 3.45%   2 2.30% 

Unknown   8 9.20%   3 3.45%   5 5.75% 

TOT   87 100.00%   32 36.78%   55 63.22% 

This table provides distribution of the events per type of data breach for the full sample as well as for 
the subsamples of firms with (Twitter) and without (No-Twitter) an active handle. Breach categories 
correspond to the ones proposed by Privacy Rights Clearinghouse.  
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Table 5. Cumulative Abnormal Returns Analysis 

Panel A: Cumulative Abnormal Return Analysis for the Full Sample over Different Time-Windows 

Time Windows Mean p-Value� (H0=0) Median p-Value� (H0=0) Standard 
Deviation 

Percentage of 
negative 
CARs 

p-
Value� (H0=50%) 

(0,1) -0.016 0.000 *** -0.014 0.000 *** 0.027 72.20% 0.000 *** 

(0,2) -0.008 0.029 ** -0.008 0.002 *** 0.036 66.00% 0.001 *** 

(0,3) 0.010 0.025 ** 0.009 0.025 ** 0.041 38.10% 0.019 ** 

(4,10) 0.037 0.000 *** 0.031 0.000 *** 0.080 29.90% 0.000 *** 

This panel provides CARs' mean value, median value, standard deviation and percentage of negative CARs together with p-Values associated with the t-Tests of their 
significance. � *, **, *** Indicate significance at the 10 percent, 5 percent, and 1 percent or lower levels, respectively. 

Panel B: Cumulative Abnormal Return Analysis for the Twitter and No-Twitter Subsamples over Different Time-Windows 

  Mean Percentage of negative CARs         

Time Windows Twitter No-Twitter p-Value Twitter No-Twitter p-Value         

(0,1) -0.018 -0.014 0.512 78.13% 70.91% 0.468           

(0,2) -0.016 -0.007 0.254 81.25% 60.00% 0.041 **         

(0,3) 0.001 0.011 0.294 50.00% 32.73% 0.114           

(4,10) 0.018 0.043 0.156 31.25% 27.27% 0.697           

This panel provides CARs’ mean value, percentage of negative CARs for Twitter and No-Twitter Subsamples. The p-Values are the level of significance of the t-Tests under 
the null hypothesis of equal mean in the two subsamples.� *, **, *** Indicate significance at the 10 percent, 5 percent, and 1 percent or lower levels, respectively. 
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Table 6. Descriptive Statistics 

Panel A: Sample Descriptives 

Variable   n   Mean   Std. 
Dev.   P25   Median   P75 

CAR(0,1)   87   -0.016   0.027   -0.026   -0.014   0.001 

Size   87   9.716   1.946   8.331   10.008   11.344 

Growth   87   0.282   7.110   0.193   0.405   0.961 

AbnTradMedia   87   0.326   0.733   0.036   0.119   0.384 

AbnTweet   32   0.101   0.061   0.046   0.103   0.138 

Followers   32   11.703   1.882   10.955   11.685   12.285 

TweetEvent   32   0.094   0.296             

Low_TMV   87   0.333   0.488             

RecordsKnown   87   0.356   0.482             

PriorBreach   87   0.391   0.491             

HighExp   87   0.264   0.444             

This panel provides descriptive statistics for the main variables included in the regression analysis. 
Descriptive statistics include mean (Mean), standard deviation (Std. Dev.), first quartile (P25), median 
(Median), and third quartile (P75). All the variables are presented in Table 1. 
Panel B: Sample Descriptives for Twitter and No-Twitter Subsamples 

Variable   Twitter   No-
Twitter   p-Value           

CAR(0,1)   -0.018   -0.014   0.512             

Size   9.978   9.564   0.342             

Growth   -0.860   0.947   0.256             

AbnTradMedia   0.362   0.305   0.726             

Low_TMV   0.188   0.491   0.005 ***           

RecordsKnown   0.375   0.345   0.784             

PriorBreach   0.438   0.364   0.502             

HighExp   0.188   0.309   0.220             

n   32   55                 
This panel provides the mean values of the main variables included in the regression analysis for the 
Twitter and No-Twitter subsamples. P-values denote the level of significance of the t-Tests under the null 
hypothesis of equal means in the two subsamples.� *, **, *** Indicate significance at the 10 percent, 5 
percent, and 1 percent, respectively. All the variables are presented in Table 1. 
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Table 7. Regression Results: General Use of Social Media 

Dependent Variable: CARs(0,1) 

Variable   E[sign]   Coefficient Std. Err. t-Stat p-Value 

Intercept       -0.0172 0.048 -0.36 0.721   

Twitter   +/-   -0.0119 0.007 -1.69 0.096 * 

Low_TMV       -0.0103 0.009 -1.15 0.256   

Twitter x Low_TMV   +   0.0350 0.011 3.17 0.002 *** 

Card       -0.2342 0.185 -1.27 0.210   

Disc       0.0771 0.053 1.45 0.154   

Hack       0.0350 0.045 0.79 0.435   

Insd       0.0602 0.057 1.05 0.298   

Port       0.0662 0.051 1.30 0.197   

RecordsKnown       -0.0211 0.038 -0.55 0.582   

PriorBreach       -0.0145 0.043 -0.34 0.739   

AbnTradMedia       -0.0003 0.000 -1.11 0.271   

Size       0.0015 0.005 0.27 0.791   

Growth       0.0051 0.003 1.77 0.081 * 

HighExp       -0.2574 0.079 -3.26 0.002 *** 

Card X Size       0.0187 0.016 1.17 0.248   

Disc X Size       -0.0064 0.006 -1.07 0.288   

Hack X Size       -0.0038 0.005 -0.74 0.463   

Insd X Size       -0.0046 0.006 -0.75 0.455   

Port X Size       -0.0064 0.006 -1.07 0.290   

RecordsKnown X Size       0.0021 0.004 0.58 0.565   

PriorBreach X Size       0.0020 0.004 0.48 0.636   

AbnTradMedia X Size       0.0000 0.000 1.29 0.203   

Growth X Size       -0.0010 0.001 -1.86 0.067 * 

HighExp X Size       0.0245 0.008 3.08 0.003 *** 

Year Fixed Effects       Yes 

R-squared       0.49 

F-Stat       6.35 

p-Value       0.000 

N       87 
This table provides OLS coefficients, heteroskedasticity-consistent standard errors, t-statistics and p-values 
for the variables included in the regression model presented in Equation (1).� *, **, *** indicate 
significance at the 10 percent, 5 percent, and 1 percent, respectively. All the variables are presented in 
Table 1. 
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Table 8. Regression Results: Specific Use of Social Media 

Dependent Variable: CARs(0,1) 

Variable   E[sign]   Coefficient Std. Err. t-Stat p-Value 

Intercept       0.0680 0.023 2.94 0.011 ** 

TweetEvent   -   -0.0520 0.008 -6.20 0.000 *** 

TweetEvent x Low_TMV   +   0.0443 0.013 3.36 0.005 *** 

AbnTweet       -0.1318 0.056 -2.35 0.035 ** 

Followers       -0.0061 0.002 -3.43 0.004 *** 

Card       -0.0423 0.008 -4.99 0.000 *** 

Disc       0.0221 0.012 1.85 0.088 * 

Hack       0.0145 0.007 1.97 0.070 * 

Insd       0.0179 0.009 1.96 0.072 * 

Port       -0.0126 0.015 -0.86 0.405   

RecordsKnown       0.0063 0.007 0.87 0.398   

PriorBreach       -0.0073 0.008 -0.92 0.376   

AbnTradMedia       0.0002 0.000 4.60 0.000 *** 

Size       -0.0010 0.002 -0.59 0.564   

Growth       0.0003 0.000 2.70 0.018 ** 

HighExp       0.0251 0.015 1.71 0.112   

Year Fixed Effects       Yes 

R-squared       0.82 

F-Stat       26.41 

p-Value       0.000 

N       32 

This table provides OLS coefficients, heteroskedasticity-consistent standard errors, t-statistics and p-values 
for the variables included in the regression model presented in Equation (2).� *, **, *** indicate 
significance at the 10 percent, 5 percent, and 1 percent, respectively. All the variables are presented in 
Table 1. 
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