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This article addresses the issue of inference in time-varying parameter regression models in the presence of
many predictors and develops a novel dynamic variable selection strategy. The proposed variational Bayes dy-
namic variable selection algorithm allows for assessing at each time period in the sample which predictors are
relevant (or not) for forecasting the dependent variable. The algorithm is used to forecast inflation using over
400 macroeconomic, financial, and global predictors, many of which are potentially irrelevant or short-lived.
The new methodology is able to ensure parsimonious solutions to this high-dimensional estimation problem,
which translate into excellent forecast performance.

1. INTRODUCTION

Regression models that incorporate stochastic variation in parameters have been used by
economists at least since the work of Cooley and Prescott (1976). Thirty years later, Granger
(2008) argued that time-varying parameter (TVP) models might become the norm in econo-
metric inference due to the fact that (as he illustrated via White’s theorem) time variation is
able to approximate generic forms of nonlinearity in parameters. Indeed, initiated by the un-
precedented shocks observed during and after the Global Recession of 2007-09, a large re-
cent literature has established the importance of modeling time variation in the intercept,
slopes, and variance of regressions for forecasting economic time series; see Stock and Wat-
son (2007) for a representative example of a parsimonious model using only a stochastic in-
tercept and stochastic volatilities. At the same time, the stylized fact that economic predictors
are short-lived—that is, predictors are relevant for forecasting the dependent variable only
in short periods of the sample—has emerged in various forecasting problems such as infla-
tion (Koop and Korobilis, 2012), stock returns (Dangl and Halling, 2012), and exchange rates
(Byrne et al., 2018). Following these observations, there is no shortage of recent economet-
ric work on methods for penalized estimation of TVP models via shrinkage as well as vari-
able selection methods; see, for example, Belmonte et al. (2014), Bauwens et al. (2015), Bitto
and Frithwirth-Schnatter (2019), Giordani and Kohn (2008), Kalli and Griffin (2014), Chan
et al. (2012), Korobilis (2021), Kowal et al. (2019), Nakajima and West (2013), Rockova and
McAlinn (2021), and Uribe and Lopes (2017).!

In this article, we add to this literature by proposing a new dynamic variable selection
(DVS) prior and a novel, for the field of economics, Bayesian estimation methodology. In par-
ticular, we propose to use variational Bayes (VB) inference to estimate TVP regressions us-
ing state-space methods. Variational inference has long been used in data science problems
such as large-scale document analysis, computational neuroscience, and computer vision (Blei
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UIn turn, all these papers built on a long tradition in flexible Bayesian modeling of state-space models; see, for ex-
ample, Gerlach et al. (2000), McCulloch and Tsay (1993), and Shively and Kohn (1997).
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et al., 2017). Nevertheless, it is only relatively recently that posterior consistency and other
theoretical properties of these methods have been explored by mainstream statisticians (Wang
and Blei, 2019). Variational inference is a comprehensive estimation methodology that shares
similarities with the Gibbs sampler that many economists traditionally use to estimate TVP
models (see, e.g., Stock and Watson, 2007). Similar to the Gibbs sampler, parameter updates
are derived for one parameter at a time conditional on all other parameters using an iterative
scheme. Unlike the Gibbs sampler, there is no repeated sampling involved and the output of
VB is typically the first two moments of the posterior distribution of parameters. Our first task
is to introduce this estimation scheme in the context of TVP regressions, and contrast it to ex-
isting estimation algorithms used in economics for capturing structural change via TVPs.

Our second contribution lies in the development of a DVS prior that is a conceptually
straightforward extension of the static variable selection prior of George and McCulloch
(1993). The dynamic extension of their popular variable selection prior tackles the nontrivial
econometric problem of allowing some predictor variables to enter the TVP regression only
in some time periods. With p predictors and a sample of T time periods, static variable selec-
tion involves choosing the “best” among 27 possible models. In contrast, in DVS, the model
space becomes 277. Therefore, for dimensions of p and T typically found in macroeconomic
data, the DVS problem can only be approximated using machine learning methods—hence
our proposal to adopt VB inference. Is there a need to consider such a high-dimensional prob-
lem instead of relying on more parsimonious modeling approaches? The answer is yes, as
there is strong support in favor of DVS procedures. Recent empirical evidence suggests that
different factors might be driving predictability of economic variables over time; see Rossi
(2013) for a thorough review of this idea. By specifying our new prior within a VB framework,
we are able to derive an algorithm that is numerically stable and can be extended to much
larger p and T than was possible before, whereas DVS ensures that parsimonious solutions to
the TVP problem are achieved.?

The purpose of the proposed algorithm is prediction and high-dimensional inference. Al-
though we do show using synthetic data that the estimation algorithm is able to do a good
job at recovering the true parameters and dynamic probabilities of inclusion of each predic-
tor, it is important to note that VB is computationally faster than alternative algorithms (e.g.,
Markov chain Monte Carlo (MCMC)) at the cost of introducing some approximation. In gen-
eral, it has been shown that VB may suffer errors in recovering the posterior variance of the
model parameters (Giordano et al., 2018) or lead to general inferential inaccuracies (Frazier
et al., 2022). However, there are two major arguments in favor of using VB, especially for
forecasting. First, it is well established in macroeconomic forecasting (especially after observ-
ing events such as the 2007 global recession, or the 2020 pandemic) that model uncertainty
and structural break uncertainty are far more important than parameter uncertainty in de-
termining forecast accuracy. Therefore, even assuming that VB will always misestimate poste-
rior variances, the algorithm we present here is the only one we know of, in all of economet-
rics, that allows inference with hundreds of TVPs and DVS/shrinkage.® Second, in the high-
dimensional case, we are interested in (where we have many more predictors than observa-
tions) estimation uncertainty will be large even for the most accurate of estimation methods.
In MCMC-based estimation, in particular, bias related to repeated sampling can become trou-
bling.*

2 In particular, many of the algorithms cited above, such as Koop and Korobilis (2012), Kalli and Griffin (2014), or
Nakajima and West (2013), are unable to scale up to TVP regressions with hundreds of predictors.

3 In certain fields, such as causal inference, accurate estimation of parameter uncertainty is of paramount impor-
tance for testing and prediction. In such settings, one can always combine the benefits of machine learning estima-
tors for fitting high-dimensional data, with those of using an unbiased, efficient estimator. For example, Belloni and
Chernozhukov (2013) suggest to use least-squares after performing high-dimensional model selection using a ma-
chine learning estimator, in a procedure they name “post-lasso.” Similar procedures are trivial to devise using the
DVS algorithm proposed in this article.

4When using MCMC methods, the bias due to initialization of the chain and the finite number of Monte Carlo
samples collected (“transient bias”) can be quite large in high-dimensional settings. This is because the larger the di-
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Although our main contribution is methodological, on the empirical front, we specify a
flexible forecasting model for inflation that incorporates the desirable empirical features of
time variation and dynamic shrinkage of coefficients. In a thorough comparison of forecast-
ing models for inflation that summarizes the results of a long literature on this topic, Faust
and Wright (2013) argue that time variation and shrinkage of information are indeed key
principles that emerge from their results. Faust and Wright (2013) specifically mention time
variation in the intercept, but combined with results in Koop and Korobilis (2012) and Rossi
(2013) and others, time variation in predictors is also of paramount importance. The principle
of shrinkage in Faust and Wright (2013) refers to the fact that parsimonious models tend to
do much better in forecasting inflation compared to information-rich models. Therefore, a ma-
jor breakthrough of our empirical approach is to show that a TVP forecasting model of infla-
tion that includes 400+ macroeconomic, financial, and global predictors dominates in most in-
stances, especially when forecasting four and eight quarters ahead, while providing very com-
petitive forecasts in the shorter run. These results are robust across four measures of infla-
tion using U.S. data for the period 1960Q1-2021Q4 and a wide range of competing forecast-
ing models.’ Although we also explore more parsimonious TVP regressions that feature fac-
tors, the specification featuring all predictors has more than 100,000 parameters (442 coeffi-
cients that vary across 7' = 231 quarters), making it probably the least parsimonious specifi-
cation ever considered in the literature of forecasting inflation. Consequently, the excellent
forecasting performance even of the least parsimonious versions of our model serves as a
verification of the excellent ability of the DVS prior to find parsimonious solutions in high-
dimensional settings.

The remainder of the article proceeds as follows: Section 2 introduces the basic princi-
ples of VB inference for approximating intractable posteriors, and applies these principles to
the problem of estimating a simplified TVP regression model. Section 3 introduces the novel
modeling assumptions, namely, DVS and stochastic volatility, and derives an estimation algo-
rithm within the VB framework. In Section 4, we apply the new methodology to the problem
of forecasting U.S. inflation using TVP regressions with many predictors. Section 5 concludes
the article.

2.  VARIATIONAL BAYES INFERENCE IN STATE-SPACE MODELS

By virtue of the fact that VB is not an established estimation methodology in economet-
rics, we first provide a generic discussion of VB as an approximation methodology for in-
tractable posterior distributions. Detailed reviews of VB can be found in Blei et al. (2017) and
Ormerod and Wand (2010), among several others. VB estimation of state-space models is de-
scribed in the monographs of Beal (2003) and Smidl and Quinn (2006), as well as research pa-
pers such as Beal and Ghahramani (2003), Sarkka and Nummenmaa (2009), Tran et al. (2017),
and Wang et al. (2016).

2.1. Basics of Variational Bayes. Consider data y, latent variables s, and (latent) parame-
ters 6. Our interest lies in TVP models that admit a state-space form. Hence, s represents un-
observed state variables, such as time-varying regression coefficients and time-varying mea-
surement error variances, and 6 represents all other parameters, such as the error covariances
in the state equation. The joint posterior of interest is p(s, 8]y) with associated marginal like-
lihood p(y) and joint density of data and parameters p(y, s, 8). When the joint posterior is

mension of the data, the longer the Monte Carlo samples that are needed for inference. Doubling the number of sam-
ples collected can only reduce the Monte Carlo standard error by a factor of +/2. As a result, in high dimensions, ap-
proximate inference algorithms may be preferred to MCMC-based posterior algorithms as more computationally rea-
sonable alternatives; see the excellent discussion of these issues in Angelino et al. (2016).

3 The list of competing models includes simple autoregression, various factor models, parsimonious TVP and struc-
tural breaks regressions, alternative machine learning and shrinkage estimators for regression and classification, and
flexible nonparametric models.
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complex and computationally intractable, we want to find an approximating class of densities
q(s, 0]y) that belongs to a family F of simpler distributions defined over the parameter space
spanned by s, 6. The main idea behind VB inference is to make this approximating posterior
distribution g(s, 8|y) as close as possible to p(s, 8|y), where “distance” is measured with the
Kullback-Leibler divergence®

1) KL(@lp) = [ a6s.0p)10g [ 200 asan

That is, the aim is to find the optimal g*(s, 6]y) that solves

2 q*(s, 0]y) = argmin KL(q||p).
q(s.0ly)eF

Insight for why KL(q||p) is a desirable distance metric arises from a simple rearrangement in-
volving the log of the marginal likelihood (Ormerod and Wand, 2010, p. 142) where it can be
shown that

(3) log p(y) = log p() / p(s. 0ly)dsds = / p(s, 01y) log p(y)dsdd
_ p(y.5,0)/q(s, 6ly)
) B /Q(S’9|y)log{p(S’GIy)/q(s,Bly) }dee
_ p(y,s0)
© ~ [ atowytog {2222 asan + kL alp)

Because KL (q||p) is nonnegative (it is exactly zero when g(s, 0]y) = p(s, 0]y)), the quantity

(©)9(at09) = exp | [ a0 toe | 202 Nasdo | = exp B, 108 (203:5.0)) = o (a5, 0],

becomes a lower bound for the marginal likelihood p(y).” The function G(g(s, 0]y)) is known
as the evidence lower bound (ELBO). Therefore, instead of minimizing the objective function
KL(ql||p) (which cannot be evaluated), we can find an approximating density g*(s, 6]y) that
maximizes the marginal data density p(y) by maximizing the ELBO. We emphasize that G is
a functional on the distribution ¢(s, 8]y). As a result, the ELBO can be maximized iteratively
using calculus of variations.

If we additionally assume the so-called (in Physics) mean field factorization of the form
q(s, 0]y) = q(0]y)q(sly), it can be shown?® that the optimal choices for g(s|y) and g(6|y) are

(7) q(sly) oc exp [ f q(01y)log p(sly, 9)d9} = exp [Eq )y (log p(sly. 0))].

®) 4(01y) o exp [ [ atinogpiov. s)ds] — exp [Eq oy (log p(61y. 5))].

The first expression denotes the expectation over g(8|y) of the conditional posterior for s, and
the second expression denotes the expectation over ¢(s|y) of the conditional posterior for 6.

6 For notational simplicity, we henceforth abbreviate multiple integrals using a single integration symbol.

7 In the following, we denote as E (») the expectation w.r.t. to a function g(e).

8 A formal and thorough derivation of these ideas is given in the excellent monograph of Smidl and Quinn (2006);
see Theorem 3.1 and subsequent results.
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Because g(6|y) is a function of g(s|y), and vice versa, the above quantities can be approxi-
mated iteratively instead of relying on more computationally expensive numerical optimiza-
tion techniques. Given an initial guess regarding the values of (6,s), VB algorithms iterate
over these two quantities until G(g(s, 0]y)) has reached a maximum. Due to similarities with
the expectation-maximization (EM) algorithm of Dempster et al. (1977), this iterative proce-
dure in its general form is sometimes referred to as the variational Bayesian EM (VB-EM) al-
gorithm; see Beal and Ghahramani (2003). It is also worth noting the relationship with Gibbs
sampling. Similar to Gibbs sampling, Equations (7) and (8) involve the full conditional pos-
terior distributions. However, the VB-EM algorithm does not repeatedly simulate from pos-
terior conditionals using Monte Carlo, which makes it computationally faster than existing
Gibbs sampling approaches. Finally, as is the case with all posterior sampling methods, VB in-
ference using the integrals above is simplified if the complete data likelihood belongs to the
exponential family of distributions, and the priors on s and 6 are conjugate; see Blei et al.
(2017) for a detailed discussion.

As an illustration of the ideas above, the next subsection provides a step-by-step deriva-
tion of a VB algorithm in a benchmark TVP regression. Note that a key assumption in all
our derivations is the mean-field factorization of the posterior distribution. Giordano et al.
(2018) show that mean-field VB inference may misestimate posterior variances, even if pos-
terior mean estimates are accurate. Nevertheless, when the main purpose of statistical infer-
ence is prediction, such estimation error is not relevant as long as out-of-sample performance
is good in a mean square error sense. Even when one is interested in causal inference (e.g.,
estimating the effect of a treatment, or obtaining an impulse response from time-series data)
where parameter uncertainty is important for testing, there exist ways to utilize biased or ap-
proximate machine learning estimators in a meaningful way (see discussion in footnote 3 ).

2.2. VB Estimation of a Simple TVP Regression Model. Before collecting all building
blocks of our proposed methodology, we outline a VB algorithm for the univariate TVP re-
gression with time-invariant measurement and state error variances. This simplified model is
of the form

©) Ve =%p + &,

(10) Bi = Bi—1 + 1,

where y, is the time ¢ scalar value of the dependent variable, r =1,.., T, x, is a 1 x p vec-
tor of exogenous predictors and lagged dependent variables, &, ~ N(0, o), 5, ~ N(0, W) with
W = diag(wi, ..., w,) a p x p diagonal matrix,” and w = [wy,...,w,] a p x 1 vector. In
likelihood-based analysis of state-space models, inference is simplified by assuming that ¢, and
1, are independent of one another and we adopt this assumption here. Finally, we use a nota-
tional convention where j, ¢ subscripts denote the jth element of a time-varying state variable,
or parameter, observed only at time ¢, whereas 1 : ¢ subscripts denote all the observations of a
state variable from period 1 up to period ¢.

The model in Equations (9) and (10) has unknown parameters (8.7, o2, w). The prior for
Bi.r is provided by the state equation (10), with the additional assumption of a ¢ = 0 initial
condition of the form p(By) = N(my, P)), whereas for o%, wy, ..., w,, we specify conjugate in-
verse gamma priors. Therefore, the joint prior can be represented as

9 By restricting W not to be a full covariance matrix, coefficients g; and j are uncorrelated a posteriori for i # j,
which might not seem like an empirically plausible assumption. However, allowing for cross-correlation in the state
vector f; may result in counterproductive increases in estimation uncertainty, with this problem being significantly
more pronounced in higher dimensions. A diagonal W allows for a more parsimonious econometric specification, less
cumbersome derivations of posterior distributions, and faster and numerically stable computation; see also Belmonte
et al. (2014), Bitto and Frithwirth-Schnatter (2019), and Rockova and McAlinn (2021) who adopt a similar assump-
tion.
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1) (ﬂm, o?, w) = p(Br.r|w) x p(c?) x p(w)
(12) = ]_[p(ﬂzlﬂ, 1L w) x p(o ]_[p(w;)
T
(13) l_[N(ﬂt 1, W)[Gamma(ay, by)]|~ H[Gamma(clo, ]0)]7

j=1

The Bayesian posterior is proportional to the product of this prior with the likelihood (mea-
surement equation), that is, it has the form

p T
14y p(Bir.o* wlyrr) o p(a?) | [ p(w)) p(ﬂo)[]_[p(ﬂzlﬂz1,w)p(yt|ﬂ[,oz)}.

j=1 =1

This joint posterior of all model parameters is a complex product of densities that is not an-
alytically tractable. Nevertheless, the conditional posteriors are easier to derive, as in this
case, we assume that all parameters (other than the parameter of interest) are known and
their prior distributions become normalizing constants. Under certain conditions, simulating
sequentially samples from the conditional posteriors is equivalent to samples from the joint
posterior. Therefore, it is not surprising that for TVP and general linear state-space models,
the Gibbs sampler is fairly straightforward to apply; see Stock and Watson (2007) for an ap-
plication of this algorithm. However, repeated sampling from high-dimensional posteriors can
be both computationally cumbersome and numerically inefficient (e.g., if covariates are highly
correlated), and for that reason, the Gibbs sampler is a sensible choice for small to medium-
dimensional problems.

Here, we follow a different strategy and define the class of approximating functions
q(Br.7, 0%, wly.7). Among all possible functions g(B1.7, 0%, w|y;.7), we want to find the one
that has hyperparameters that minimize the relative entropy with the true posterior. Follow-
ing the discussion earlier in this section, this problem is equivalent to maximizing the ELBO
of the log-marginal likelihood, that is, it is the solution to

A 27 wl :
(15) q*(ﬁlZTs 0.2’ w|ylZT) = arg max / Q(ﬂlsz 621 w|y1:T) log (q(ﬂlT ? yl T) ) .

a(Brro? wlyir) p(Br.r, 02, wiyr.r)

This maximization problem is simplified once we assume the mean field factorization of the
form q(B1.7, 02, wlyr.r) = q(Br.7Iy1.7)q(c?|y1.7) [1; g(wjlyi.7) for all variational densities. As
a result, using variational calculus (Smidl and Quinn, 2006), we can show that the ELBO is
maximized by iterating through the following recursions:

(16)  q(Birlyrr) o exp /logp(ﬂl;r,oz,wlyl;r)q(ozlyl;r)]_[q(w,-lyl;r)dozdw ,
J

(17)  q(o*ly1r) x exp /logp(ﬂlzTa o, w|}’1:T)(I(ﬁ1:T|)’1:T)Hq(wjlylzT)d,Bl:wa ,
j

(18) q(wjlyr.r) o exp (/ log p(Bi:7. 02, w|y1;r)q(ﬂ1;T|y1:T)q(02|y1;7)dﬂ1;rd02), ji=1,..., P.

The above formulas become equalities after the addition of a normalizing constant. The inte-
grals in these formulas are expectations of the joint posterior w.r.t. the variational posterior
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of all other parameters. Therefore, if we replace the log joint posterior with its expression in
Equation (14), we can achieve further simplifications by noting that expectations are taken
w.r.t. to uncertainty over all other parameters being integrated out. This fact leads to simpli-
fications similar to the ones met in the Gibbs sampler, such that we can rewrite the variational
formulas above in terms of conditional posteriors (see also Equations (7)—(8) of the previous
subsection). For example, Equation (16) can be written as

T T
(19)(Bi:7ly1.1) o exp []Eq(azym-) (10g ]_[p(yrlﬂt, 02)> + Eqwiyir) (log ]_[p(ﬂzlﬂtfl, w))i|

t=1 t=1

This simplification occurs because, w.r.t. g(o%|y.7) and g(wl|y;.7), many of the densities in-
volved in the product in Equations (14) become normalizing constants. Additionally, notice
in the expression above that we are adding to Gaussian log-kernels and then taking their
exponential, which will result in g(B1.7|y1.7) being Gaussian. This result shows more clearly
why finding the variational posterior is trivial only when likelihoods and priors are of the
exponential form, but for more complex densities, calculation becomes nontrivial or impos-
sible. Finally, we can further simplify Equations (17)-(18) that lead in these densities being
inverse gamma. Detailed derivations for general state-space models can be found in Beal
(2003, Chapter 5) and Sarkkd and Nummenmaa (2009), among numerous other data science
sources.

Algorithm 1 provides pseudocode for the basic VB estimation problem described in this
section, without assuming either a (dynamic) variable selection prior, or stochastic volatility in
the measurement equation. The algorithm has to iterate until convergence, typically until the
value of the ELBO has reached a maximum and does not update substantially between two
consecutive iterations. '° Following Equation (6), the ELBO for the example model of this
subsection can be written as

(20) ELBO « E(log (p(y1.7, Bi.7, 0, w)) — log (q(Bi.1, 6>, wlyi.7)))

(21) = E(log p(yi.7|B1:7. o)) + E(log p(Bi.7, 0, w)) — E(log g(Bi.7. 07, wlyr.7))
= E(log p(y1.71B1:7. 0%)) + E(log p(Br.7|w)) + E(log p(c?)) + E (log p(w))

(22) —E(logq(Bi.r1y1.7)) — E(logg(o’y1.7)) — E(log g(w;lyr.7)).

that is, the ELBO is simply the sum of the expected log likelihood and the expected
log prior densities, minus the expected log variational posterior (also known as varia-
tional entropy). Exactly because both the prior and posterior can factorize (due to the
mean field approximation), we can simplify Equation (21) into Equation (22) whose terms
are expectations of much simpler densities. Note that all expectations E are with re-
spect to the components of g(B1.7, 0%, w|y.7) and this conditioning is only omitted for the
sake of notational simplicity. Therefore, all we have to do is to evaluate these log densi-
ties at the posterior mean of the parameters Bi.7, 02, w achieved in each iteration. Since
these are simple densities (mainly normal and gamma), lengthy, detailed derivations are
omitted.

10 Of course, as with any EM-type iterative algorithm, there are no guarantees that the criterion function (ELBO)
will always improve in each iteration, or that a global maximum will be reached. In such cases, we follow much of
the literature in machine learning and set a maximum number of iterations (which in all our computations is equal
to 200).
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ALGORITHM 1 VARIATIONAL BAYES ALGORITHM FOR TVP REGRESSION WITH CONSTANT MEASUREMENT ERROR VARIANCE

1: Choose values of hyperparameters mg, Po, ao, bo, ¢j,0,dj,0 for j =1,...,p. Set + = 1 and initialize o2(0) w0
2: while || (q(6m,02<“>,w“>\y) -% (q(ﬁ(”’”,UQ(V’l),w(V’”\y) | =0 do

3: Step 1: Approximate, V ¢t = 1,...,T, the posterior

4" (Bilyr.r) ~ N (mi')-, Piy))

where my),Pﬁr) vVt =1,..,T, are approximated using the forward covariance Kalman filter and backward information
smoother.
4: Step 2: Approximate the posterior

q<”> (a—2|y]:'l‘) ~G (a(V)J)(V))

2 . -
where a*) = ag + T/2, b0") = by + R/2 and R = Zthl [(yt - wtmgy)) + thY )w;] Set 02(") = b(*) /a(*).

5: Step 3: Approximate, V j = 1, ..., p, the posterior
g (w; M yrr) ~ G (7, d”)

where C](,,) = ¢jo + T/2, dﬁy) = djo + Dj;/2, and Dj; is the jth diagonal element of the matrix D = Z?:l(mty) -
mii)l)’(mgy) - mii)l) + Pir) + Pii)l. Set W) = diag (d(ly)/cgr), .,.,dé")/cﬁ,ﬂ)

6: r=++1

7: end while

8: Upon convergence set ¢* (81,702 wlyr.r) = ¢ (Brrlyrr) x ¢ (o2yrr) x TT5-, ¢ (wjly1.7) using the parameters

(m(ly%, P(lf%, a), b(”),c(lfz)ﬂ d(lyg) obtained during the last iteration of the while loop.

3. VARIATIONAL BAYES INFERENCE IN HIGH-DIMENSIONAL TVP REGRESSIONS

We rewrite for convenience the univariate TVP model

(23) Ve =X B + &,

(24) B = Bi—1 +ns,

where we instead assume that &, ~ N(0, o) with o7 a stochastic (time-varying) variance pa-
rameter, and 5, ~ N(0, W;) where W, = diag(w,) = diag(w1,, ..., w,,) is a p x p diagonal
matrix. The initial condition (time ¢ = 0 prior) of this model is again of the form

(25) p(ﬂo, a(%, wo) = N(my, Py)Gamma(ay, bo)’1 l_[ Gamma(c; o, bjyo)’l.
j

As we explain in detail Subsection 4.2, it is trivial to define default noninformative choices for
myg, Py, ag, by, but more care needs to be exercised in the selection of cj, b;o because W is
high-dimensional; see also the discussion in Amir-Ahmadi et al. (2020).

Introducing time variation in the measurement error variance is important for macroe-
conomic forecasting, as this assumption allows to account for all the large shocks observed
throughout the sample as well as shocks that can possibly occur out-of-sample. Introducing
time variation in the state equation covariance is also important for the type of dynamic prior
we aim to establish in this section. The assumption that w;, varies over time, in turn, allows
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for an adaptive pattern of time variation in 8;,. That is, while g;, is very persistent by being
centered around B;,_1, in the presence of a large, sudden shock at time ¢ the term #, can be-
come temporarily large, thus allowing g;, to adapt to a completely new state. All other as-
sumptions from Subsection 2.2 are maintained. However, now we are also particularly inter-
ested in the case where the number of predictors p is large, possibly p > T. For that reason,
we introduce a DVS prior for g, that provides a regularized posterior and prevents overpa-
rameterization.

3.1. Dynamic Variable Selection. The core ingredient of our modeling approach is a dy-
namic variable/model selection strategy. We specify a DVS prior that extends the “static” vari-
able selection prior of George and McCulloch (1993) and is of the form

(26) Bidlvie Tk ~ (= v ON(0.e x 72,) + 7N (0.72,),
(27) Vjilmo, ~ Bernoulli (7o),
1
(28) — ~ Gamma(go, hy),
T~
J.t
(29) 7o, ~ Beta(1, 1),
for j=1,..., p, where ¢, gy and hy are fixed prior hyperparameters. Variable selection princi-

ples require us to set ¢ — 0, such that the first component in the prior for B;; shrinks the pos-
terior toward zero, whereas the second component has variance 77, which is “large enough”
to allow for unrestricted estimation. The choice between the two components in the prior for
Bj. is governed by the random variable y;, that is distributed Bernoulli and takes values ei-
ther zero or one. If y;, =1 the prior for f;, has a normal prior with zero mean and variance
.» Whereas if y;; = 0 the prior variance becomes cr

Early papers such as George and McCulloch (1993) give very broad guidelines on choos-
ing values for ¢ and 7?2 it such that the first component in Equation (26) has small enough vari-
ance (to force shrinkage) and the second component has large enough variance (to allow un-
restricted estimation). More recently, Narisetty and He (2014) show that selecting and fixing
the prior variances of such mixture priors could, as 7 and p grow, lead to model selection in-
consistency. The authors suggest to specify these parameters to be certain deterministic func-
tions of the data dimensions 7 and p. In our case, we do fix ¢ = 10~ such that the first com-
ponent has always smaller variance, but we assume (tjzj)*l is a random variable that has a
gamma prior. That way this parameter is always updated by the information in the data like-
lihood. The choice of a gamma prior for (z7,)~" implies that the marginal prior for g;, is a
mixture of leptokurtic Student’s T distributions whose components could tend to shrink g;;
toward zero, regardless of whether y;; is zero or one. Therefore, the proposed prior is able
to find patterns of dynamic sparsity as well as impose dynamic shrinkage in TVPs, a property
that is very desirable in high-dimensional settings.!!

1 n signal processing a signal (regression coefficient vector) is typically sparse by default, that is, the researcher
knows a-priori to expect that estimates of several coefficients will tend to be exactly zero. In economics, the sparsity
assumption might not be empirically founded in certain settings; see the discussion in Giannone et al. (2017). In such
cases, a dense model may be preferred, that is, a model where all predictors are relevant with varying weights. Al-
though factor models and principal components have been used widely to model dense models in macroeconomics,
shrinkage methods are also quite reliable for this task. In particular, we note the result in De Mol et al. (2008) that
forecasts from Bayesian shrinkage are highly correlated to forecasts from principal components.
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Finally, it becomes apparent that under this variable selection prior setting, 7, =
E(p(mo,)) = % is the time ¢ prior mean probability of inclusion of all predictors in the TVP
regression, whereas the quantity 7;, = E(p(y;|yi.7)) is the posterior mean probability of in-
clusion in the regression of predictor j at time period ¢, simply referred to as the posterior
inclusion probability (PIP). Due to the fact that all of the hyperparameters y, 7 and 7> are
time-varying, our prior allows to obtain time-varying PIPs whose interpretation extends this
of PIPs in constant parameter settings, such as the one in George and McCulloch (1993), in a

straightforward way.

The full prior of this model is of the form

T
p(Bir. 0%, Wi, YT, Ty Mo tT) = l_[ [P(B:\Bi—1. wi)p(w)p(o}) p(Bilye. 7)) p(x} ) p(¥il 0. ) p(0.) ],
=1

where in the long product on the right-hand side, the first density is the Gaussian TVP
state equation, the second density is the inverse gamma prior implied for the state vari-
ance w,, the third density is the prior of the stochastic volatility parameter o2 (will
deal with this later in this section), and the remaining densities represent the DVS prior
in (26)-(29). Due to the fact that p(B|y,, T?) has the mixture representation defined in
Equation (26), it would be helpful if we replace it with its alternative single-component
representation

P
(30) p(Bi|Vi) ~ HN(O’ Vi),

J=1

where we define v;; = (1— y,-,,)zg X t]%[ + ij,tsz,t and the p x p diagonal matrix V, =

diag(vi,, ..., vp,). Multiplying the joint prior with p(y/|B;, o?) for each ¢ provides the ker-
nel of the joint posterior, which is a complex product of densities. Applying the formulas in
the previous section, and given the hierarchical structure of the DVS prior, the variational
posterior of B1.7 is of the form

T
q(Birlyir) o exp [Eq(alzﬂ,m) (Z log p(y:|B:. af)) +

t=1

T
EwmmeN%MMﬂhW0+

t=1
T

(31) E‘](vl:’l"yt'l) (Z 10gp(ﬂt|‘/t)):|
t=1

Following ideas in Wang et al. (2016) the expression above can be regarded as the joint distri-
bution of a Gaussian linear state-space model with measurement equation given by Equation
(23) and state equation of the form!?

(32) B =FEB 1+,

12 Take Equation (31) for a given period ¢, that is, ignore the summations, and also ingore the term p(y;|8:, o/),
then we have

q(Bi|Bi—1. y1:1) o exp {E(log p(B|B-1. W;)) + E(log p(B:1V7))}

1 P 1,
& exp{_i(ﬁt—ﬁr—l)m 1(.3t—.3z—1)—§ﬂfvr 1ﬂt
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where 7, ~ N(0,W,), with parameter matrices W, = ((W,)"!+ (V;)")"! and F, =W, x
(W,)~!, where W, = diag(w,, ..., wp;) and V; =diag(vi,, ..., vp;). Under this formula-
tion, we can observe that the joint prior variance for g;; is a function of both w;; and vj,,
vVi=1,...,p.

Application of VB updates to the transformed state-space model consisting of Equations
(23) and (32) provides as output estimates m,r Vt, that is, the smoothed posterior mean of
q(B:1y1.7). Conditional on these estimates, derivation of the update steps for y;,, sz,z’ and 7o,
relies also on deriving the expectations of these variables with respect to g(B;|y1.7). There-
fore, extending the analysis of the previous section to accommodate these new parameters,
and similar to derivations found in Gibbs sampling approaches to variable selection (see, e.g.,
the formulas of the conditional posteriors in George and McCulloch, 1993), the updating steps
for the parameters in the DVS prior are the following:

(33) /t\]zt = E[q(t]%tm)] = [ho + (m?’”T + ij,t\T)/Z:I/[gO +1/2],

) o~
N(mj,t|T|0, r,;,)no.z

N<mj,z\T|0’ ’ﬂ%,)ﬁo,z + N(m,',rmzl(), cx ’T\]%t)(l — 70.)

(34) Vie = Elq(yjly:)] =

(35) 0 =Elq(uily)] = A= 75)°¢T} + 7%
p
(36) 7. =Elg(rody)] = |1+ D 71 |/Q+p).
j=1
for each t =1,..,T and j=1,..., p, where, again, expectations E are with respect to the

VB posteriors of each of the parameters showing up on the right-hand side of the equa-
tions above.

3.2. Understanding the Proposed Prior Structure. Before progressing into enhancing our
approach with stochastic volatility and outlining the full estimation steps, a justification of our
choice of prior is in order. A natural question to ask is why not insert the variable selection
prior of Equations (26)—(29) directly into the state equation (24)? To see why this question is
relevant, notice that the TVP regression model in stacked form can be written as the following

1 1

o exp {fil%W,‘lﬂz +BW B - Eﬂ;w—lﬂ,}
1 ~ = ~

exp | =38~ Fbn) W (8.~ g,

where the simplification occurs due to the fact that the function ¢() is derived conditional on B,_; being known and
fixed (i.e., not a random variable). Therefore, the equation above describes the transformed state equation used in fil-
tering and smoothing the VB solution of f;, under the impact of both the original TVP state equation p(B|8;_1, W;)
and the DVS prior p(8|V;).
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pseudolinear regression model:

X 0 07 - - - -
] ABi &1
. xx X - 0 AB> &
Y2
37 o SR I I
37) ABr-1 €1
yr-1 Xr—1 ... xr-1 0
ABr er
yr XT Ce XT X7
where A is the first difference operator and AB, = [ABi4, ..., AB,].'> Under this stacked

formulation, the TVP regression resembles a regular regression model with a right-hand side
matrix that has 7 observations and T p predictors. That is, this formulation shows that the
TVP regression is a high-dimensional, heavily-parameterized model and one would want to
apply a shrinkage prior directly on its coefficients, that is, the prior

(38) ABjalyie: T5 ~ N(O, vj0),
forj=1,....,p,t =1,...,T,where v;, = (1 — y;,)’c x rj%[ + yﬁttf[ and y;,, tj, also have hy-
perprior distributions as in Equations (27)-(29). In practice, this prior is equivalent to apply-

ing the DVS prior to the state variance of the TVP regression,' that is, the prior above im-
plies

(39) ,3j,r|,3j,r—1, Yits 1'12,[ ~ N(,Bj,t—h Uj,t),

which is equivalent to the state variance w;, being replaced with the mixture variance pa-
rameter v;,. Although the prior in (39) seems to be a natural extension of George and
McCulloch (1993) to the TVP model, it is not appropriate for achieving our modeling
aims for high-dimensional inflation forecasting. To see this, consider the static form of the
TVP regression in (37) and the shrinkage prior for the first differences of coefficients in
Equation (38). A value of y;, = 0 implies that v;, — 0 and AB;, — 0, which, in turn, im-
plies that 8;, = B;,—1. Therefore, under sufficient amount of shrinkage over different peri-
ods ¢, the TVP regression model shrinks toward a structural breaks specification. This prior
is desirable if the researcher suspects that the correct specification is a structural breaks
model.

In contrast, our proposed prior is different as it favors the random walk TVP dynamics on
the regression coefficients, which are long established to provide better performance in fore-
casting inflation over structural break alternatives; see Bauwens et al. (2015) and Pettenuzzo
and Timmermann (2017) among numerous others. At the same time, it imposes DVS in the
coefficient of interest 8;, and not its first difference Apg;;. In simulations, when the true model
is a sparse TVP regression—as is the case in the simulations we undertake in the Supporting
Information (see also Subsection 3.5)—our prior performs much better than the alternative
prior in (39).!° Similarly, in the empirical exercise, our proposed prior performs consistently
better in forecasting inflation with many predictors than the prior in (39). This observation is

13 See Korobilis and Shimizu (2021, Section 4.3) for a derivation of this stacked form of the TVP regression model.

14 Within the context of MCMC inference, Amir-Ahmadi et al. (2020) propose a similar approach of specifying hi-
erarchical distributions that are directly applied to the state variance parameter. However, the focus of Amir-Ahmadi
et al. (2020) is not primarily the shrinkage ability of hierarchical priors, rather they use the hierarchical Bayes ap-
proach as a means of updating the prior from the data instead of tuning it subjectively. In contrast, our aim is to de-
velop DVS in a forecasting TVP setting, as motivated in Koop and Korobilis (2012).

15 These results are available from the authors.
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consistent with the large body of recent evidence cited in the Introduction, that supports non-
linearities in the inflation process that is of the TVP form (as opposed to other nonlinear for-
mulations proposed in the past).

3.3. Adding Stochastic Volatility. A vast recent literature highlights the importance of
time-varying volatility in improving point and density forecasts (Clark and Ravazzolo, 2015),
and the purpose of this subsection is to accommodate estimation of the parameter var(e,;) =
o’ in the VB setting. Several elegant algorithms for VB inference in stochastic volatility
models exist in the literature. For example, Naesseth et al. (2017) introduce a VB sequen-
tial Monte Carlo (SMC) algorithm for stochastic volatility models. Tran et al. (2017) pro-
pose a variational Bayes method for intractable likelihoods that does not rely on the mean
field approximation, and apply their algorithm to the estimation of a stochastic volatility
model.

Nevertheless, such algorithms assume an explicit time-series model for the stochastic
volatility parameter, an assumption that is only useful in a setting where one is interested in
forecasting the second moment of a series. In a macroeoconomic setting, we are interested in
forecasting E(y;41|y:, x,) and not its volatility (as it would be the case in empirical asset pric-
ing). At the same time, previous empirical work shows that there are no statistically important
differences when forecasting with alternative specifications of macroeconomic volatility.'® For
that reason, our aim here is not only to render estimation of stochastic volatility precise, but
also numerically reliable and computationally efficient. To achieve this triple aim, we build
on variance discounting ideas for dynamic linear methods as described in West and Harrison
(1997); see also Rockova and McAlinn (2021).

Define ¢, = aiz to be the precision (inverse variance). Following West and Harrison (1997),

we assume that the time ¢ — 1 posterior of ¢ has the following conjugate form:
(40) G-1lyra—1 ~ Gamma(a, 1, b—1).

We do not specify an explicit time-series model for the dynamics of ¢ (e.g., stochastic volatil-
ity or GARCH) because the posterior for ¢, would not be conjugate to the likelihood and
we would fail to obtain fast updates. To maintain this conjugacy, we specify instead the time
t prior of the form

(41) &cly1e—1 ~ Gamma(8a,_y1, 8b,_1),

for a variance discounting factor 0 < § < 1, subject to a choice of hyperparameters ay and by.
By doing so, we assume that ¢, is centered around ¢;_; as if this parameter had random walk
dynamics,!” since it holds that E(¢|y1,—1) = E(¢;_1]y1.—1). However, based on the properties
of the gamma distribution, the dispersion of ¢, is larger to that of ¢,_;.

Under this scheme, the VB update of ¢;, that is, its time ¢ posterior mean has the form

(43) q’;t = IEq(/fi,lyl;r)((;bt|y1:t) = a,/b[,

16 For example, Clark and Ravazzolo (2015) compare a range of specifications for time-varying variance parameters
in univariate and multivariate autoregressive models, and any differences among such specifications are not statisti-
cally important (whereas all volatility specifications are always better relative to constant variance specifications).

17 Even though we have not specified an explicit time-series evolution for ¢;, by using results in Uhlig (1994), we
can show that the proposed variance discounting methodology is equivalent to assuming the following specification:

(42) b =vii-1/9,

for a parameter y,|y1y_1 ~ Beta(8a;_1/2, (1 — 8)a;_1/2).
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where a, = 1/2 + 8a,_1 and d; = %[(y, —x;my7))* + x,Py7x)] + 8b,_1, where my 7, P are the
smoothed mean and variance of B,. Using this scheme, past information in the data is dis-
counted exponentially by the factor §. The scalar § can be seen as a prior hyperparameter
whose choice determines how much relative weight we give to recent versus older observa-
tions, that is, it determines how fast we expect the precision parameter to change over time.
For § = 1, we obtain the posterior under a standard recursive update scheme (similar to re-
cursive least squares), whereas typical values that would allow for faster time variation in
the precision/variance would be between 0.8 and 0.99. Values lower than 0.8 are not empir-
ically advised, since they allow for a large amount of time variation and stochastic variance
estimates become very noisy. In the empirical exercise, we set § = 0.8, a choice that reflects
our prior expectation that macroeconomic data have many abrupt breaks in their second mo-
ments and excess kurtosis during recessions (implying variances that can move very fast over
time).

The previous formulas pertain to the iterative updating of ¢, given ¢,_. Estimates of ¢,
can be smoothed using subsequent observations ¢ + 1, ..., T. Following West and Harrison
(1997), we can approximate smoothed estimates by running a backward recursive filter of the
form

(44) ¢ = (1= 8)¢y + 81,

fort=T-1,...,1, where 5, =Eyg1y.0)(P:1yi+1) and 57 = ar- Once we obtain this update
for the precision ¢, a posterior mean estimate of the volatility o’ can be obtained simply as
the inverse of ¢;.

3.4. The Variational Bayes Dynamic Variable Selection Algorithm. Here, we provide de-
tails of the exact parameter updates that result from VB inference in our proposed specifica-
tion. Algorithm 2 outlines our proposed variational Bayes dynamic variable selection (hence-
forth, VBDVS) algorithm. This algorithm shows an accurate picture of how this would look
like when programmed using a language like MATLAB or R: whereas there are many param-
eters involved in our specification, the code is short and it mostly involves simple scalar opera-
tions within loops over observations T" and predictors p (meaning that the worst-case algorith-
mic complexity of these operations is O(7 p) per each iteration of the external “while” loop).
The only cumbersome operation is the inversion of the p x p matrix P, in line 14 that has
complexity O(p?) for each t. There are four main blocks in this algorithm. Lines 4-12 are a
result of straightforward application of the Kalman filter recursions to the state-space model
of Equations (23) and (32), and lines 13-17 show the approximate backward (smoothing) re-
cursions. Lines 18-27 update the prior hyperparameters of the DVS prior for g;. Finally, lines
28-33 provide updates for the stochastic volatility parameter, as discussed in the previous sub-
section.

In all subsequent numerical evaluations, we iterate Algorithm 2 until the ELBO crite-
rion has converged or a maximum of 200 iterations have been reached (whatever comes
first). The ELBO for this complex model is a generalization of Equation (22), where the
parameter space now also includes all the hyperparameters of the variable selection prior
(t1.7, y1.7, mo.1:7) and o2 is now replaced by 0'12:7- = ¢1.7. To avoid numerical problems that can
show up when doing extensive use of the logarithmic and exponential functions, in practice,
we evaluate a simpler version of the ELBO that only considers the parameters f;.7, w, and in
each iteration, it ignores the values of af:T, T1.7, V1.7, ®o,1.7 as if these were known (and their
respective terms in the ELBO become normalizing constants).

3.5. Numerical Evaluation of VBDVS. We undertake a large-scale simulation study using
synthetic data to find out how fast and accurate the new algorithm is. For the sake of space, re-
sults of this study are available in the Supporting Information. Here we only summarize that
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ALGORITHM 2 VARIATIONAL BAYES ALGORITHM FOR TVP REGRESSION MODEL WITH DYNAMIC VARIABLE SELECTION AND
STOCHASTIC VARIANCE (VBDVS ALGORITHM)

1: Choose values of mg, Py, ao, bo, ¢j,0,dj,0, 90, ho, ¢,

2: v =1
3: while || (q(,(i(“>,w(”)|y)

4: for t =1to T do

=% (a8, w" Vly) | -0 do

5: w) = ((Wﬁ””)f + (Vi““)fl)_
6: PO —w (W“*“)_1

: E]\Vi) 1= FEV) Ev 1t—1

8: Py —FOP,_ B W

9: K(?) *Pi‘? 1 (thETt) lwt+0'2 o= 1))
10: mit) =m{) + K (v - @] )
11 Py) = (1, - K{z,) PYj)_,

12: end for

13: for T=T—-1to 1do

. M) (p) 7!
14: c=P|)F, (Ptlet)
. ") _ . ) ) 0
15: myp=my, +C (mtﬂ\T - mt+1|t)
. ") _ pr ) )
16: P =P +C (PM‘T PM”) c’

17: end for

. () ), () (r) (r
18: Di=P+mypmy . + (Pt—llT +m,
19: R; = {(yt _mtmt\T) +th”T:E£}

20: fort=1to T do

31\Tm§:>;\T) (Ip - Qﬁtm)/

and §; initialize all vectors/matrices.

Predicted mean
Predicted variance
Kalman gain
Filtered mean of 3,

Filtered variance of [,

Smoothed mean of 3,

Smoothed variance of 3

Squared error in state eq.

Squared error in measurement eq.

21: for j=1to pdo
~—2 .
22: Tt ) = (90 +0.5)/ (ho +0.5 [(m;V2|T> P](;)t\T}) Posterior mean of %
23 7 N (107 M) mo P £
H = — o — —= osterior mean of «;,
KA YT G 1>+N(m N u‘“” 2 1=y, D) it
24: ﬁ;yt) = (1 — ‘y\J(T,)) 72 (Y) + (A(VV)) ?it ) Posterior mean of wj¢
25: @] fl(y) = (co+0.5) / (do +0.5Dj; ) Posterior mean of =
ot
26: end for
. (") — g; (1) () . .
27: W) = diag (@07}, ... Wy, 3 State equation cov. matrix
28: v ") = diag (Ag ,),. E)Vt)) Variable selection prior cov. matrix
29: ﬁ(()yg = (1 + Z‘Ll "?](y[ ) /(24 p) Posterior mean of mq¢
30: $§V) = (0ay—1+0.5)/(dbs—1 + 0.5Ry) Filtered mean of U%
t

31: end for

32: for T=T—1to 1do
33: 37 =1 -0)3" +6d(7,
34: end for

35: r=r+1

36: end while

Smoothed mean of

Ry
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when the true data-generating process (DGP) is that of a TVP model, VBDVS is always able
to recover with accuracy parameters and DVS probabilities, especially in high-dimensional
cases. Such results verify that the proposed algorithm is numerically correct and converges to
the desired posterior moments.

In practical situations, the true underlying DGP is not known, and estimation of various al-
gorithms can be erratic. This is the topic of the next section, where VBDVS is evaluated using
a real data set comprising a large panel of macroeconomic and financial variables. Finally, the
Monte Carlo experiments verify that, in high-dimensions, the VBDVS algorithm is orders of
magnitude faster than the fast MCMC sampler of Chan and Jeliazkov (2009). This means that
the algorithm will be even faster compared to several recent MCMC algorithms that allow for
dynamic shrinkage and variable selection (Giordani and Kohn, 2008; Chan et al., 2012; Naka-
jima and West, 2013; Kalli and Griffin, 2014, to name a few).

4. MACROECONOMIC FORECASTING WITH MANY PREDICTORS

4.1. A New Large Data Set for Forecasting Inflation. Following a large literature on TVP
models in macroeconomics, our primary target is to forecast quarterly U.S. inflation. There
exists mixed empirical evidence about the potential of very large data sets to improve fore-
casts of inflation, and in many cases, small, simple models are extremely hard to beat. There-
fore, our aim is to demonstrate that the new DVS methodology can extract meaningful pre-
dictive information from a large number of predictors, even if it is not always and everywhere
the best forecasting methodology. For that reason, we build a novel, high-dimensional data set
that merges predictors from several mainstream aggregate macroeconomic and financial data
sets.!® Our building block is the FRED-QD data set of McCracken and Ng (2020), which we
augment with portfolio data used in Jurado et al. (2015), stock market predictors from Welch
and Goyal (2007), survey data from University of Michigan consumer surveys, commodity
prices from the World Bank’s Pink Sheet database, and key macroeconomic indicators from
the Federal Reserve Economic Data for four economies (Canada, Germany, Japan, United
Kingdom). All data are quarterly, and span the period 1960Q1-2021Q4. When variables are
originally measured at monthly level, quarterly values are constructed by taking the average
over the quarter. All variables are preadjusted from their respective sources for seasonality
(where relevant), and we additionally remove extreme outliers.!”

The data set has 440 variables in total. Out of these, we forecast the series (FRED-QD
mnemonics in parentheses): GDP deflator (GDPCTPI), total CPI (CPIAUCSL), core CPI
(CPILFESL), and PCE deflator (PCECTPI). When each of these price series, F;, is used as
the dependent variable to be forecast s-quarters ahead, we transform it according to the for-
mula y,,, = (400/h) In(P,1;, — P;). We forecast these transformed series one at a time, and the
remaining three price series are included in the list of exogenous predictor variables (439 in
total). The predictor variables are transformed using standard norms in the literature (see,
e.g., McCracken and Ng, 2020): (i) levels for variables that are already expressed in rates (e.g.,
unemployment, interest); (ii) first differences of logarithm for variables measuring population
(e.g., employment), variables expressed in dollars (e.g., GDP), commodity prices, and some
indexes (e.g., industrial production); and (iii) second differences of logarithm for price and
consumption indexes, as well as deflator series. The Supporting Information describes in detail
all variables and transformations, and provides links to all sources.

18 Although one could also think of potential predictors in disaggregated panels obtained in surveys, Internet, or
documents (text data), such novel sources are typically proprietary or require subjective data processing (in the case
of text data), such that forecasting results would be hard to replicate.

19 Following Stock and Watson (2016), we replace outliers using the median of the preceding five observations.
An outlier is defined to be any observation that satisfies |y, — m|/iqgr > k, where m is the median of y, igr is the in-
terquantile range, and x = 4.5.
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TABLE 1
HYPERPARAMETER CHOICES FOR SENSITIVITY ANALYSIS

Case 1 Case 2 Case 3 Notes

IMPORTANT HYPERPARAMETERS

hy 1 1 12 See Equation (28)
Ccjo 1 100 100 See Equation (25)
FIXED HYPERPARAMETERS

£0 1 1 1 See Equation (28)
djo 1 1 1 See Equation (25)
c 104 10~ 104 See Equation (26)
ap 0.01 0.01 0.01 See Equation (25)
by 0.01 0.01 0.01 See Equation (25)
8 0.8 0.8 0.8 See Equation (41)
mj o 0 0 0 See Equation (25)
Pjo 4 4 4 See Equation (25)

4.2. Dynamic Variable Selection at Work: An In-Sample Assessment. Before we set up a
comprehensive out-of-sample forecasting exercise, we first assess in-sample estimates from
the VBDVS by performing a sensitivity analysis to some benchmark prior choices. This ex-
ercise is intended to demonstrate that the new algorithm provides reasonable estimates of
trends, volatilities, and other parameters. Most importantly, it serves as a way to clarify that—
despite the fact that our prior is heavily parameterized—oprior elicitation in the VBDVS algo-
rithm becomes a reasonably straightforward task. As it is impossible to present estimates of
the TVP model using all variables in our data set as predictors, we focus on the results of a
small model. Using the real macro data and the full sample 1960Q1-2021Q4, we illustrate the
effect of different prior choices to the estimation of TVPs in the following regression:

5
(45) 7= B+ o + a2+ Z /3(3+j),sz;f1 + &,
j=1

where ;11 in this example is GDP deflator growth, and ff ™ is the jth principal component
extracted from the remaining 439 exogenous predictors.

Out of all parameters and hyperparameters defined in our algorithm, it is only a handful
that are crucial for inference and forecasting, whereas others can be fixed to reasonable or un-
informative values. Table 1 lists all hyperparameters that need to be chosen in the VBDVS al-
gorithm, separating them into “Important” and “Fixed” hyperparameters. Starting from the
latter group, ap and by are the initial scale and rate parameters of the initial condition of the
precision parameter in Equation (41). Setting ap = by = 0.01 implies that the precision has
prior mean one and variance 100, which is a reasonable uninformative choice. Next, we want
the evolution of inflation stochastic volatility to be fairly fast-moving, so we set § = 0.8 for
reasons explained in Subsection 3.3. Given that p is very large to allow us to obtain mean-
ingful prior information about the regression coefficients g, (e.g., using a training sample),
we allow their initial condition f to be fairly uninformative by setting mo = 0 and Py = 41,,.
The parameter ¢ in the DVS prior has to be small (see discussion in Subsection 3.1) and its
exact value affects the way the algorithm selects each of the two normal components in the
spike and slab prior—that is, it affects the choice between a certain §;; being restricted or
not. We prefer to fix this parameter to ¢ = 0.0001 and allow only r]%z and its prior to deter-
mine the ratio of the prior variances of the two normal components in the mixture prior. The
parameters that are important in our high-dimensional setting are the ones affecting the two
prior variances of the time-varying coefficients §;, namely, the hyperparameters of ‘Cfr and
w;,. Both prior parameters are inverse gamma distributed, so they depend on two tuning hy-
perparameters each. To make tuning easy, we follow a standard norm in Bayesian inference
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Nortes: Solid lines are posterior means from a TVP model with the same predictors estimated using MCMC without
variable selection prior.

FIGURE 1

POSTERIOR MEANS OF TIME-VARYING COEFFICIENT ESTIMATES FROM VBDVS (RED DASHED LINES) USING THE PRIOR VALUES OF
CASE 1 OF TABLE 1

and fix the one of the two parameters of the inverse gamma priors to one. In the case of
rjftz ~ Gamma(gy, hy), we set go = 1, whereas for wftl ~ Gamma(cjo, d;jo), we set djo =1 for
all j. Doing so means that A, can be used to tune the amount of time variation in g;,, whereas
cjo can be used to tune the amount of shrinkage toward zero.

We test, in turn, the effect of using the values in Cases 1-3 of Table 1 to the outcomes of co-
efficients B, to Bg,. Our first prior choice, denoted as “Case 1” in Table 1, selects the fairly
uninformative values c¢jo =1, djo = 1 resulting in the two prior variances of 8;, (namely, erJ
and wj,) to be affected more by the likelihood. As is expected in high-dimensional state-space
models, uninformative choices will be numerically unstable and result to noisy estimates. The
former is not the case as VBDVS (unlike MCMC) does not involve sampling, and the TVPs
can be estimated without numerical problems.”’ However, as Figure 1 reveals, VBDVS does
give quite noisy estimates when adopting a more uninformative prior on the variances of ;.
Figure 1 shows posterior mean estimates from VBDVS (dashed red lines) and it contrasts
these with posterior mean estimates from the same model estimated using MCMC and no
variable selection prior (solid blue line).?! All eight coefficients estimated with VBDVS pro-
vide quite noisy outcomes. The time-varying posterior inclusion probabilities associated with
these TVPs (not shown in this figure) switch almost every period between zero and one in
a noisy fashion. The VBDVS estimates are more regularized toward zero relative to their
MCMC counterparts; however, this first diffuse prior does not identify any patterns of spar-
sity, for example, consecutive periods where TVPs are zero followed by consecutive periods

20 The stability of VBDVS also holds even in the presence of many observations 7 that would make B, explosive
with high probability, as the TVPs evolve as a nonstationary random walk. This point of numerical stability is illus-
trated in the Supporting Information where TVP models for weekly data are estimated without any numerical issues
showing up.

2l Discussion of the prior settings of the MCMC algorithm is provided in the Supporting Information.
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Nortes: Solid lines are posterior means from a TVP model with the same predictors estimated using MCMC without
variable selection prior.

FIGURE 2

POSTERIOR MEANS OF TIME-VARYING COEFFICIENT ESTIMATES FROM VBDVS (RED DASHED LINES) USING THE PRIOR VALUES OF
CASE 2 OF TABLE 1

that they are not zero. Sparsity patterns using these prior values are quite random and noisy
that, in general, is not a desirable feature for economic data.

To prevent such noisy estimates of the TVPs, the remaining two priors in Table 1 (Cases
2-3) illustrate the effects of the value c;o = 100, a choice that imposes a conservative evolu-
tion for each g;;. The assumption that variation in TVPs should be smooth and contained is
used widely in empirical macroeconomic research.”? Fixing ¢, only leaves choice of A to be
important for estimation. Cases 2 and 3 explore two values of hy. The value Ay =1 in Case
2 favors some shrinkage toward zero but also allows the parameters to vary substantially in
some periods. The TVP estimates under this prior are shown in Figure 2, where, again, the
time-varying intercept and first lag are not shrunk, but coefficients of the second own lag and
the five principal components can be zeroed out in some periods and vary smoothly in others.
Figure 3 shows estimates under the choice 4y = 12 that favors more shrinkage toward zero.
In general, larger values shrink more, for example, the choice /4y = 100 (not shown here) ef-
fectively shrinks the TVP regression toward the unobserved components stochastic volatil-
ity (UCSV) specification of Stock and Watson (2007), which is a model with only a time-
varying trend.

This graphical analysis establishes that the priors in Cases 2 and 3 are reasonable default
choices, and as such we built on these choices in the next subsection when forecasting infla-
tion. To have a visual assessment of the time pattern of DVS and shrinkage, Panel (a) of Fig-
ure 4 plots the posterior inclusion probabilities of each regressor associated with the time-
varying coefficient estimates presented in Figure 2 (Case 2 prior). These seem to show the ex-
act periods where each coefficient moves from a state of being restricted to zero to a state

22 See, for example, the “business as usual” prior motivated in Cogley and Sargent (2005) for the case of a vector
autoregression with TVPs.
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FIGURE 4
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VALUES OF CASE 2 OF TABLE 1
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where it is not zero. Panel (b) of the same figure shows the posterior mean of the stochas-
tic volatility estimate from VBDVS versus the estimate from MCMC. Overall, these two es-
timates are comparable throughout the sample. Differences in volatility estimates observed in
the second half of the sample reflect the fact that the two algorithms assume different speci-
fication of o2, and they also rely on different priors in the estimation of B,. In particular, the
fact that the volatility of VBDVS is elevated in the second half of the sample has to do with
the shrinkage of the TVPs: if more TVPs are shrunk toward zero, then the volatility estimates
will compensate by trying to capture the excess time variation. Note that higher variance for
the VBDVS does not translate into worse fit both in-sample and out-of-sample. Total fit de-
pends jointly on the error variance and the number of parameters. VBDVS provides a sparse
solution with more degrees of freedom than MCMC estimates that seem to overfit the data
(in MCMC estimates of the previous figures, all eight coefficients have large values and swing
substantially over time).

4.3. Forecasting Inflation. We forecast inflation using models of the form

(46) Vieh = + G Ve + G2 Vi1 + X By + Erqn,

where y,, is h-step ahead inflation (see Subsection 4.1 for a definition) regressed on an inter-
cept, two own lags, and exogenous predictors. We use a variety of forecasting models. Some
benchmark models are based on Equation (46) but assume constant coefficients (i.e., o = «,
¢1.. = ¢1, and so on), whereas others assume different sets of exogenous predictors. However,
what all models have in common is that they always include an intercept and two own lags of
inflation. Given that our data set is much larger than data sets used before for forecasting in-
flation, and to avoid confusion by specifying different combinations or subsets of predictors,
we only distinguish four simple categories of models: (i) models with no predictors (i.e., only
intercept and autoregressive terms); (ii) models with first five principal components as predic-
tors; (iii) models with 60 principal components as predictors; and (iv) models with all 439 ex-
ogenous predictors. Our list of models representing each category is the following:

* AR: benchmark AR(2) with intercept, estimated with ordinary least squares ordinary
least squares (OLS)

* SBAR: Bayesian structural breaks AR(2) that allows to simulate break-points out-of-
sample following Koop and Potter (2007) and Bauwens et al. (2015)

¢ UCSV: Unobserved components stochastic volatility model proposed by Stock and Wat-
son (2007)

e TVPAR: TVP version of the AR model, with stochastic volatility, estimated with
MCMC

¢ FACS: Builds on benchmark AR specification by augmenting it with first five principal
components estimated with OLS

e BAG/FACS: Same predictors as FACS, estimated as constant parameter regression using
the Bagging algorithm of Breiman (1996)

* DMA/FACS: Same predictors as FACS, estimated as TVP regression using the dynamic
model averaging (DMA) algorithm of Koop and Korobilis (2012)

e TVD/FACS: Same predictors as FACS, estimated as TVP regression using the time-
varying dimension (TVD) algorithm of Chan et al. (2012)

* GPR/FACS: Same predictors as FACS, estimated as a Gaussian process regression

* VBDVS/FACS: Same predictors as FACS, estimated as TVP regression using our DVS
prior with VB

¢ SSVS/FAC60: Builds on benchmark AR specification by augmenting it with first 60 prin-
cipal components, estimated using the SSVS prior with MCMC of George and McCul-
loch (1993)
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e ELN/FAC60: Same predictors as SSVS/FAC60, estimated as a constant parameter re-
gression using the Elastic Net algorithm of Zou and Hastie (2005)

¢ YVBDVS/FAC60: Same predictors as SSVS/FAC60, estimated as a TVP regression using
our DVS prior with VB

e ELN/X: Builds on benchmark AR specification by augmenting it with all 439 predictors,
estimated using the Elastic Net algorithm of Zou and Hastie (2005)

e PLS/X: Same predictors as in ELN/X, estimated as a constant parameter Partial Least
Squares (PLS) regression

¢ VBDVS/X: Same predictors as ELN/X, estimated as a TVP regression using our DVS
prior with VB

The choice of models is motivated by their simplicity and replicability. In particular, the Gaus-
sian process regression, PLS, and Elastic Net algorithms are based on built-in functions in
MATLAB?’s Statistics and Machine Learning Toolbox (MATLAB, 2020), and are fairly easy
to set up. Estimation of these models is done using default settings in MATLAB or default
choices proposed by their respective creators.””> Exact details of these algorithms and their de-
fault settings are provided in the Supporting Information.

In terms of their theoretical and empirical properties, all these models cover a wide spec-
trum of forecasting specifications. The AR(2) is a standard benchmark in macroeconomic
time-series forecasting, and typically performs better than a random walk (which is the bench-
mark for financial data). TVP counterparts of the simple AR(2) (models SB, UCSV, and TV-
PAR) have been shown to forecast inflation well, see Stock and Watson (2007) and Bauwens
et al. (2015). Extracting the first few principal components (factors) is possibly the most popu-
lar way of representing parsimoniously the information in a large data set, see Stock and Wat-
son (2016). A naive factor model uses least squares estimation on a model that has the first
five principal components as exogenous predictors, whereas a second factor model replaces
OLS with the Bagging algorithm of Breiman (1996) that allows to select the “best” factors in a
static way. Next, the DMA algorithm described in Koop and Korobilis (2012), the TVD model
of Chan et al. (2012), and our VBDVS algorithm allow to implement DVS in a TVP setting
using the same first five principal components. The Gaussian process regression is a very flex-
ible kernel-based method that allows us to understand whether inflation can better be fore-
casted by TVPs, or some more complex form of nonlinearity. Moving on to models with 60
factors, we have to drop many previous specifications for computational reasons.>* For that
reason, we use the SSVS algorithm of George and McCulloch (1993), which can be thought of
as the static equivalent of our VBDVS algorithm. The Elastic Net of Zou and Hastie (2005) is
a popular penalized likelihood estimator for high-dimensional data. Finally, our VBDVS algo-
rithm is also estimated with a larger number of factors to find out whether its dynamic shrink-
age properties are useful relative to the naive selection of the first five factors. Finally, we es-
timate models using all 439 exogenous predictors. The Elastic Net is again on the list, and we
also include PLS regression. PLS is similar to principal component analysis, with the main dif-
ference being that factors are extracted with reference to the variable to be predicted. Prin-
cipal components instead only explain the variability in the exogenous predictors, and it may
be the case that their estimates do not carry predictive information for the target variable. Fi-
nally, our VBDVS algorithm is also applied to this full model with all 439 predictors.

In terms of the prior choices used when forecasting with our VBDVS algorithm, these fol-
low the arguments in the previous subsection, see Table 1. We only adapt how “aggressively”
we shrink parameters based on the total number of predictors in each model, which is a pro-
cedure that also has theoretical/asymptotic justification; see the discussion in Narisetty and He
(2014). For model VBDVS/FACS, we set hy = 1; for VBDVS/FAC60, we set hy = 12; and for
VBDVS/X, we set iy = 100. These values constitute choices that can be broadly interpreted as

23 As an example, the penalty parameter in the Elastic Net is estimated using 10-fold cross-validation.
24 For example, DMA and TVD cannot scale up to these large dimensions, Gaussian process regression becomes
overparameterized, and Bagging becomes numerically unstable in some periods of the forecasting exercise.
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TABLE 2
RELATIVE MSFES FOR GDP DEFLATOR (GDPCTPI) AND PCE DEFLATOR (PCECTPI)

GDP deflator PCE deflator

h=1 h=4 h=38 h=12 h=1 h=4 h=38 h=12
MODELS WITH NO PREDICTORS
AR 0.0545 0.0479 0.0485 0.0611 0.1568 0.1142 0.0921 0.0989
SBAR 0.97 0.91 0.72 0.57 0.96 0.81 0.60 0.45
UCSv 1.05 0.97 0.77 0.59 0.98 0.84 0.55 0.41
TVPAR 1.29 1.19 0.88 0.65 1.23 0.91 0.64 0.46
MODELS WITH FIVE FACTORS
FACS5 0.94 1.34 1.64 1.34 1.02 1.31 1.49 1.31
BAG/FACS 0.92 1.29 1.59 1.25 1.05 1.30 1.49 1.31
DMA/FACS 0.97 0.90 1.02 0.88 1.00 0.90 0.93 1.23
TVD/FACS 0.82 0.96 1.02 0.89 1.05 1.03 0.91 0.83
GPR/FAC5 0.92 0.94 0.80 0.64 0.81 0.83 0.60 0.57
VBDVS/FACS 0.95 1.04 0.76 0.59 0.81 0.87 0.59 0.41
MoODELS WITH 60 FACTORS
SSVS/FAC60 0.88 1.26 1.48 1.16 0.94 1.17 1.43 1.10
ELN/FAC60 0.89 1.03 1.47 1.14 0.84 0.95 1.09 0.96
VBDVS/FAC60 1.06 0.87 0.74 0.62 1.00 0.68 0.49 0.48
MODELS WITH 439 PREDICTORS
ELN/X 0.84 1.26 1.58 1.22 0.69 0.98 1.15 0.76
PLS/X 0.92 1.11 1.50 1.28 0.72 0.92 0.98 0.89
VBDVS/X 0.98 0.80 0.64 0.53 0.92 0.67 0.51 0.48

2 Notes: The AR model serves as a benchmark and its entries (shown in italics) are the regular values of the mean
squared forecast error (MSFE) for each forecast horizon & = 1, 4, 8, 12 quarters. Entries for each subsequent model
are MSFEs relative to the values of the AR benchmark. Entries in boldface indicate the best performing model for
each forecast horizon.

EEINA3

“low,” “medium,” “high” shrinkage values. If a practitioner is concerned about choosing prior
hyperparameters in a data rigorous way, it is always possible to follow the suggestions in Koop
and Korobilis (2012) and estimate each model size using a large grid of values for the hyper-
parameter /. In this case, the best forecasting specification can be selected out of all possi-
ble models with different values of iy. The VBDVS algorithm is very fast and allows for such
grid searches.

We forecast & = 1, 4, 8, and 12 quarters ahead. We use 50% of the sample as our initial es-
timation period that, for example, for # = 1 translates to using data for the period 1960Q4—
199001 to forecast 1990Q2. We then add one new observation to the estimation sample and
forecast A-step ahead, until the full sample is exhausted. Since all models that have exogenous
predictors rely on the direct forecasting regression (46), for comparability, we produce direct
AR(2) forecasts as a special case of this equation with no predictors.”> We measure forecast
accuracy using the mean squared forecast error (MSFE) that is the square of the forecast er-
ror (difference between forecast and real value of y,,;) averaged over the out-of-sample eval-
uation period.

Tables 2 and 3 present MSFEs for GDP deflator, PCE deflator, CPI, and Core CPI, for all
competing models and all considered forecast horizons. To be precise, results for the bench-
mark AR(2) are the actual values of the MSFE statistic, whereas results for all other mod-
els are relative to those for the AR(2). This is obtained as the ratio of MSFE, such that a
number lower (higher) than one means that a certain model performs better (worse) than
the AR(2). The immediate message from these tables is that the VBDVS/X is the model that
performs overall best, especially when looking at horizons of 1 and 2 years ahead (h = 4, 8).

25 The alternative would be to specify an AR(2) model linking y, with y,_; and y,_, and then iterate the process 4
periods ahead, a procedure also known as iterated forecasting. By using direct AR(2) forecasts as the benchmark, we
can explicitly assess the exact contribution of various models that introduce exogenous predictors.
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TABLE 3
RELATIVE MSFES FOR CPI (CPIAUCSL) AND CORE CPI (CPILFESL)

Total CPI Core CPI

h=1 h=4 h=28 h=12 h=1 h=4 h=28 h=12
MODELS WITH NO PREDICTORS
AR 0.2087 0.1719 0.1271 0.1331 0.0539 0.0371 0.0385 0.0509
SBAR 0.94 0.68 0.49 0.49 0.92 0.89 0.73 0.52
UCsv 0.92 0.91 0.59 0.44 1.22 0.85 0.74 0.42
TVPAR 1.09 0.84 0.62 0.45 1.25 1.19 0.80 0.50
MODELS WITH FIVE FACTORS
FACS 0.86 1.08 1.14 0.99 1.15 1.39 1.74 1.47
BAG/FACS 0.85 1.05 1.07 0.98 1.09 1.32 1.52 1.29
DMA/FACS 0.83 0.70 0.81 1.00 1.01 1.00 1.11 0.97
TVD/FACS 0.83 0.91 0.73 0.63 0.94 1.05 0.88 0.60
GPR/FACS 1.00 0.70 0.60 0.47 0.99 1.03 0.73 0.60
VBDVS/FACS 0.84 0.84 0.57 0.46 1.00 1.00 0.75 0.41
MODELS WITH 60 FACTORS
SSVS/FAC60 0.76 0.88 0.89 0.66 1.11 1.34 1.53 1.27
ELN/FAC60 0.86 0.90 0.89 0.74 1.18 1.24 1.24 1.17
VBDVS/FAC60 0.89 0.68 0.50 0.42 1.00 0.96 0.70 0.51
MODELS WITH 439 PREDICTORS
ELN/X 0.86 0.84 1.01 0.70 1.22 1.19 1.14 1.29
PLS/X 0.81 0.86 1.01 0.89 1.32 1.61 1.46 1.33
VBDVS/X 0.90 0.66 0.51 0.43 1.00 1.00 0.68 0.43

2Nortes: The AR model serves as a benchmark and its entries (shown in italics) are the regular values of the mean
squared forecast error (MSFE) for each forecast horizon 4 = 1, 4, 8, 12 quarters. Entries for each subsequent model
are MSFEs relative to the values of the AR benchmark. Entries in boldface indicate the best performing model for
each forecast horizon.

VBDVS/FACS and VBDVS/FAC60 are also doing well at horizon & = 12, even though they
marginally outperform the UCSV model that has TVPs but no exogenous predictors.

There are several interesting stylized facts we can derive from these two tables. First, all
TVP models, whether they feature exogenous predictors or not, do a good job in forecasting
all measures of inflation especially at longer horizons. Second, in horizon # = 1, time-varying
parameter models are overall better than the benchmark AR(2); however, models with con-
stant parameters and many exogenous predictors seem to be doing even better. Third, while
all three TVP models with no predictors (SBAR-UCSV-TVPAR) clearly improve over the
benchmark as the forecast horizon increases, this is not true for all models with exogenous
predictors. The usefulness of exogenous predictors seems to be hit-or-miss, greatly depend-
ing on the specification (linear or nonlinear) as well as the efficiency of penalization. For ex-
ample, the GP regression seems to be improving with the horizon, whereas ELN/X forecasts
can deteriorate as the forecast horizon increases. The important thing to notice here is that
VBDVS/FACS, VBDVS/FAC60, and VBDVS/X are all improving with the forecast horizon,
showing that the algorithm is able to penalize sufficiently many of the irrelevant predictors
as well as shrink excess time variation in parameters. For example, for total CPI, the perfor-
mance of the heavily parameterized VBDVS/X follows quite close that of the parsimonious
structural breaks autoregressive (SBAR) model, indicating that the algorithm shrinks VB-
DVS/X toward significantly smaller dimensions. However, for other dependent variables, the
performance of VBDVS/X is completely different (and many times better) than more parsi-
monious TVP models, indicating that the algorithm is utilizing important information in ex-
ogenous predictors (and does so in a superior way to constant parameter regression algo-
rithms such as ELN/X and PLS/X).

To obtain a more detailed picture around patterns of predictability, Figures 5 and 6 plot
the cumulative sum of squared forecast errors over the full out-of-sample evaluation period.
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FIGURE 5

CUMULATIVE SQUARED FORECAST ERRORS OF GDP DEFLATOR INFLATION FORECASTS FOR FOUR KEY CLASSES OF MODELS, FOR
h=1,4,812

These cumulated values are not normalized relative to a benchmark, as in the previous ta-
bles, which means that the lower a line in this plot is, the lower the squared forecast error
of the model associated with that line. For the sake of clarity, we only present results for the
AR(2) benchmark, the TVP-AR(2), the DMA/FACS, and the full VBDVS/X models. It is
clear that for & = 1, substantial differences in the forecasting performance of different mod-
els occur mainly right after the beginning of the Global Recession (circa 2007-08), whereas in
longer horizons, TVP regressions have substantial gains over the AR(2) early in the evalua-
tion sample. When forecasting GDP deflator at horizons & = 1, the AR, TVP-AR, and VB-
DVS models are indistinguishable, whereas the DM A method dominates. However, for one-
step ahead forecasts of CPI, all three TVP specifications, whether they have predictors or not,
clearly dominate the AR(2) benchmark upon the outburst of the Global Recession. It is in-
teresting to observe in the longest horizon, 4 = 8, that the TVP-AR(2) and VBDVS models
provide identical forecasts up around 2005 (GDP deflator) or 2003 (CPI), but after that, VB-
DVS clearly dominates. Therefore, these patterns comply with previous evidence documented
in papers such as Stock and Watson (2007), Faust and Wright (2013), and Koop and Korobilis
(2012): TVP and general structural break autoregressions have long been relevant for fore-
casting inflation, but also sporadically throughout the sample and especially after the Global
Recession, there are several, potentially short-lived, predictors that can be relevant for fore-
casting inflation.

5. CONCLUSIONS

We introduce a comprehensive methodology for forecasting time-series data using TVP dy-
namic regression models. The algorithm allows to estimate regressions with hundreds of pre-
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FIGURE 6

CUMULATIVE SQUARED FORECAST ERRORS OF TOTAL CPI INFLATION FORECASTS FOR FOUR KEY CLASSES OF MODELS, FOR
h=1,42812

dictors, that is, a much larger information set than ever considered in the literature of macroe-
conomic TVP regressions (a literature that spans half a century; see Cooley and Prescott,
1976). Although it is rarely the case in macroeconomic forecasting for excessively large mod-
els to be among the best performing in forecasting, we test our new algorithm in a heavily pa-
rameterized specification (VBDVS/X) and find it provides consistently good forecasts, espe-
cially in longer horizons. Most importantly, the algorithm is able to work well even when ap-
plied to smaller information sets (e.g., when five factors are used as predictors), showing its
potential as a fast and flexible forecasting tool in the toolbox of applied economists. Code that
replicates the results in the Monte Carlo and empirical exercises is provided by the authors.?®

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information sec-
tion at the end of the article.
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