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A B S T R A C T   

Ocean surface wave environment due to its randomness has mostly been analyzed and understood from a sta-
tistical way. Accurate and reliable wave prediction is the basic guarantee for ocean transportation and offshore 
operation. However, the significant nonlinearity of the ocean surface wave in real sea will result in a simulation 
and prediction challenge. To solve the problem, this paper proposes a Deep Learning instantaneous prediction 
model based on a Convolutional Neural Network-Long Short Term Memory model (CNN-LSTM) and wavelet 
function proven as the activation function of the neural network model to strengthen the fitting of the nonlinear 
mapping relationship between waves appearing in two successive different time periods. And the results shows 
that the wavelet activation function has better generalization ability than the traditional activation function for 
irregular wave data. In the numerical verification test, the two-parameter spectrum of International Towing Tank 
Conference (ITTC) and the combined model of extreme wave and random wave are used to simulate the irregular 
wave. The standardized time series of free surface elevation is made into a data set for model training and 
verification. In order to improve the performance of the model as accurate as possible, main parameters of the 
model are investigated in this paper. The optimal parameters are obtained and the model tuning suggestion is 
developed for future studies.   

1. Introduction 

Ocean surface wave environment is highly random and complex. It is 
dominated by wind but also affected by ocean current, ocean terrain and 
so on oceanographic elements. It adversely affects ships and offshore 
structures with life threatening risks. Therefore, an accurate prediction 
of ocean wave environment has critical socioeconomic significance. 

However, traditional ocean wave analysis and study focuses on sta-
tistical analysis trying to understand the waves from the frequency 
domain. It provides useful and accurate representation of ocean waves 
statistically over long period. However, it lacks the ability to instanta-
neously predict the upcoming waves which are critical for ships and 
offshore structures to react in order to avoid damages. Therefore, how to 
accurately grasp the rapidly changing wave environment needs further 
study. 

Nowadays, we are in the era of big data and artificial intelligence. 
Deep learning has already been successfully applied to many marine 
research. Artificial neural network (ANN) in the field of deep learning 

could be a solution for instantaneous wave prediction. ANN is derived 
from the simulation of the human brain nervous system and has strong 
self-learning and adaptive capabilities. ANN is widely used in the study 
of nonlinear systems. It can predict the regularity of network traffic 
(Zhao et al., 2019), and it can also predict crude oil production (Chao 
et al., 2019). Accurate ocean current forecasting can be accomplished by 
using ANN (Zhang et al., 2018), and a neural network with wavelet 
activation function can achieve effective forecasting of ship motion in 
waves (Huang, 2019). The analysis of the mooring system and the riser 
system has been carried out based on ANN (De Pina et al., 2013). 
However, in terms of intelligent ships and marine environment fore-
casting based on deep learning, it still needs to be developed (Li et al., 
2021; Peng et al., 2020; Wang et al., 2021). 

For the wave prediction, ANN was successfully applied to predict the 
significant wave height in the east coast of India (Deo et al., 2001), as 
well as the prediction of significant wave height and zero-up-crossing 
wave period for four different warning time horizons (Makarynskyy 
et al., 2005). Moreover, ANN has also been applied to the buoy 
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prediction problem in offshore wave power generation (Castro et al., 
2014), which can also be used to predict offshore wind and wave 
(Abhigna et al., 2017). When analyzing historical time series data, 
recurrent neural networks are generally the better choice (Sadeghifar 
et al., 2017). There are also many research results in the literature on the 
prediction of energy flow in the marine environment (Sanchez et al., 
2018). Furthermore, in terms of short-term and long-term prediction, 
ANN also have an excellent prediction effect (Prahlada, 2012; 
Gómez-Orellana et al., 2022; Guijo-Rubio et al., 2020; Wang et al., 2018; 
Weilisi and Kojima, 2022). 

The ANN takes historical data as input and self-adjusts the network 
parameters of ANN through continuous training and learning, and then 
inputs the test data to make predictions. The ANN prediction method 
finds out the inherent relationship between data samples through its 
structure learning, which saves a lot of time in analyzing data and 
modeling, and is to be operated easily. ANN can analyze any observed 
sequent data, but the ANN method also has some inherent shortcomings, 

like some network structure parameters need to be set empirically and 
the input dimension of ANN has the problem of "dimension curse". 

In this work, an ANN model with multiple inputs and multiple out-
puts based on CNN-LSTM and wavelet activation function is designed 
and used to predict the time series of irregular ocean surface wave 
elevation. The calculation process from the waveform of the first few 
seconds to the waveform of the next few seconds is nonlinear, which is 
one of the fundamental reasons for using ANN, a model that is good at 
fitting nonlinear mapping relationships. Moreover, in mathematics ex-
periments in this paper, the CNN-LSTM has a stronger fitting ability than 
classical model architectures such as traditional LSTM (the main reason 
is placed in Appendix 4), so this architecture was selected. In order to 
achieve the prediction effectively, the important parameters of the 
model will be discussed and analyzed in the study. The main contents of 
this paper are below: Section 2 introduces the theoretical background 
and the mathematics experiment process of this work, including the 
mathematical model of the irregular wave used to simulate ocean sur-
face waves, the proposed ANN model based on CNN-LSTM and wavelet 
activation function. Section 3 compares and analyzes the prediction 
performance of the model with different main parameters, and in order 
to more objectively evaluate the prediction performance of the model, a 
comparison with the classic model is also set. Section 4 presents a brief 
conclusion based on numerical results. 

2. Models and methods 

2.1. Mathematical model of wave 

The data used in this study comes from the mathematical model of 
the ocean surface wave. Firstly, the frequency equipartition method is 
used to select a suitable number of circular frequency-power pairs from 
the wave spectrum. Then, the selected circular frequency-power pairs 
are substituted into the combined model of extreme wave and random 
wave to obtain the irregular free surface elevation in time domain with 
significant nonlinearity, which is exported as the final required input 
and validation data. 

2.1.1. Wave spectrum 
The ITTC two-parameter spectrum used in this paper is a widely used 

wave power spectrum. It is a semi-theoretical and semi-empirical wave 
spectrum derived based on the observation of actual wave, which can 
describe the wave inherent distribution of the energy versus frequency. 
It is often used to approximate the real irregular wave environment in 
the mathematics experiment. 

The spectral density function of the ITTC two-parameter spectrum is 
as follows: 

S(ω)=
173H2

1/3

T4ω5 exp
(

−
691

T4ω4

)

(1) 

According to Eq. (1), when the significant wave height H1/3 and the 
spectral peak period T are determined, the circular frequency ω and its 
corresponding spectral density S(ω) can be obtained. Among them, the 
circular frequency ω and wave number k satisfy the dispersion equation: 

ω2 = gk tanh(kh0) (2) 

Using the sixth-order Pade approximation, an accurate approximate 
solution of the dispersion equation can be obtained (Hunt, 1979): 

kh0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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1 +
∑6

n=1
cnyn

√
√
√
√
√

(3) 

Here, h0 is the depth of still water, which is set to 3 m in this study. 
y=ω2d/g, c1 = 0.6666666666, c2=0.3553553553, c3=0.1608465608, 
c4=0.0632098765, c5=0.0217540484, c6=0.0065407983. Under any 
water depth, the relative errors of Eq. (3) are less than 0.2%. According 

Fig. 1. ITTC two-parameter spectrum.  

Fig. 2. Free surface elevation of the irregular wave.  
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to Eq. (3), the wave number k can be obtained, which is the foundation 
for the following work on simulating irregular wave. 

Based on the ITTC two-parameter spectrum in Eq. (1), a program 
code is written to calculate the wave spectrum, as shown in Fig. 1. The 
significant wave height and peak spectral period are set to 0.1 m and 2.8 
s. The parameter settings can be achieved in the physical tank, which is 

Fig. 3. The technical route of the research in this paper.  

Table 1 
The structure and parameters of the neural network.  

Layers Initial values of related parameters 

Conv1d_1 filters: N_KERNEL_CONV, 
kernel_size: 3, strides: 1 

Batch_normalization None 
Activation Mortlet 
Dropout rate: RATE_DROPOUT 
Conv1d_2 filters: N_KERNEL_CONV, 

kernel_size: 3, strides: 1 
Batch_normalization None 
Activation Mortlet 
Conv1d_3 filters: N_KERNEL_CONV, 

kernel_size: 3, strides: 1 
Batch_normalization None 
Activation Mortlet 
Concatenate input: top-level input and the above three activation outputs 
LSTM_1 units: N_KERNEL_LSTM1, 

return_sequences: True 
Dropout rate: RATE_DROPOUT 
LSTM_2 units: N_KERNEL_LSTM2 
Dropout rate: RATE_DROPOUT 
Activation Mexican_hat 
Batch_normalization None 
Conv1d_4 filters: 1, kernel_size: 3, strides: int(557/(N_KERNEL_LSTM2- 

1)), 
input: top-level input 

Flatten None 
Batch_normalization None 
Add input: outputs of the last two batch_normalization above 
Dropout rate: RATE_DROPOUT 
Dense units: 140 
Activation Gaussian 
Dense units: 280  

Table 2 
Default values of key parameters.  

Names Values 

N_KERNEL_CONV 5 
N_KERNEL_LSTM1 128 
N_KERNEL_LSTM2 64 
RATE_DROPOUT 0.2  

Table 3 
Replacement of activation functions.  

Wavelet functions Classical functions in neural network 

Mortlet Elu 
Mexican_hat Elu 
Gaussian Tanh  

Fig. 4. Neural network structure diagram.  

Fig. 5. Classical wavelet functions.  
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also to facilitate the validation of the conclusions of this paper in a hy-
drodynamic testing facility, i.e. a towing tank or an ocean basin in the 
near future. In addition, regardless of how these parameters are set, this 
has no effect on the research method and corresponding conclusions in 

the paper. In order to improve the simulation efficiency, 75 combined 
waves with spectral density above 10− 5 are selected, and the frequency 
range of energy concentration is obtained. The orange dot in Fig. 1 is the 
frequency corresponding to the wave components based on the wave 
spectrum. 

2.1.2. Combination wave model 
In the simulation of real ocean wave, the extreme wave and random 

Table 4 
Program parameters configuration.  

Parameters Values 

TensorFlow random seed 521 
Loss function Mean Squared Error about 

mean of all output steps 
Optimizer for model training Adam 
Training learning rate 0.001 
Default batch size 64 
Training epochs 80  

Table 5 
Values of the parameters.  

Model names N_KERNEL_CONV 

Model_I1 5 
Model_I2 16 
Model_I3 32  

Fig. 6. Single sample prediction results.  

Fig. 7. Model prediction error comparison.  
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wave combination model is adopted in this paper (Zhao et al., 2009). 
Based on the principle of linear superposition, the model can satisfy the 
mathematical description of irregular wave required in this work: 

η(x, t)=Ep

∑Nf

i=1
ai cos

(
ki
(
x − xp

)
− ωi

(
t − tp

)
+ εi

)

+
(
1 − Ep

)∑
Nf

i=1
ai cos

(
ki
(
x − xp

)
− ωi

(
t − tp

))
(4) 

In Eq. (4), ai, ki and ωi are the amplitude, wave number and circular 
frequency of the ith wave. The εi is the random phase of the ith wave, 
which is the random number in (0, 2π). Ep is the energy ratio coefficient, 
which is used to adjust the degree of energy focus of the generated wave, 
and it is set to 0.7 in this paper. xp and tp is the location and time of the 
largest peak value, which are taken as 10 m and 15 s in this paper, and 
the position variable x will also be taken as 10 m. 

Among them, the parameter Ep that can be flexibly adjusted, which 
allows us to represent a variety of waves conveniently. The flexible and 
diverse representation of the wave will be conducive to further valida-
tion of the developed prediction model. Besides, in the combination 
wave model, the degree of wave energy focus can be increased by 
reducing the Ep (experiments show that freak wave can be generated 
when it is generally less than 0.6). Increasing the degree of wave energy 
focus as much as possible can increase the difficulty of the model pre-
diction task, which is more beneficial for validating the prediction 
performance and generalization of the model. But the work of the paper 
is not a prediction of freak wave, therefore, the Ep is finally set to 0.7. 

The wave amplitude in Eq. (4) can be obtained by wave spectrum: 

ai =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2S(ωi)Δωi

√
(5) 

For Δωi, it is the frequency interval in the frequency equipartition 
method. 

The time series of final irregular wave is shown in Fig. 2. The total 

duration of the simulated wave is 10 min, and the time step is 0.01 s. For 
ease of presentation, only the first 90 s and the last 90 s of data are 
shown in Fig. 2. 

2.2. Data processing and ANN modeling 

In this part, the specific technical map of this paper will be described. 
Fig. 3 shows the technical route of the study in this paper. In the study of 
this paper, the time series of free surface elevation for irregular wave 
needs to be split firstly. One part is used for subsequent model training, 
and the other part is used for the validation of the final model prediction 
performance. After splitting the time series, standardize the two parts of 
the data, separately. It is an essential data preprocessing procedure. 
ANN is more sensitive to standardized distributed data and easier to 
capture the inherent laws in the sample. The training set and the vali-
dation set can be constructed separately from the two standardized time 
series. Then build several groups of ANN models with different param-
eters, and use the training set to train these models. Finally, use these 
trained models to predict the validation set one by one, and calculate the 
performance metrics. After a systematic comparison and analysis of 
these models, the optimal combined parameter of the model will be 
obtained, and corresponding model tuning concept will be proposed. 
The main steps in the mathematics experiment procedure are described 
in details below. 

2.2.1. Data standardization 
Data standardization can transform the data into a standard distri-

bution with a mean value of 0 and a variable value of 1. The neural 
network is more sensitive to values distributed around 0, so standardi-
zation is beneficial for the neural network to fit the data, allowing the 
neural network to better capture the internal laws of the sample. The 
data standardization formula is as follows: 

x∗i =
xi − x

s
(6)  

x =
1
n

∑n

i=1
xi (7)  

s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1
(xi − x)2

√

(8)  

Where x∗
i represents the standardized result of the original data xi, x is 

the mean value of the original data, and s is the standard deviation of the 
original data. 

2.2.2. Production of data sets 
This part describes specific methods for making time series into 

datasets. 
Assuming that the given complete time series L = {x1, x2,⋯, xN} has 

N nodes, for the prediction model, each sample is a time series of length 
k+ l. k time nodes {x1, x2,⋯, xk} are inputs, and the predicted value of 
the subsequent l time nodes {xk+1, xk+2,⋯, xk+l} are outputs, the pre-
diction model will fit the mapping between the them. Therefore, 
N − (k+l) + 1 time series samples constructed from L are as follows: 

{x1, x2,⋯, xk+l}, {x2, x3,⋯, xk+l+1},⋯,
{

xN+1− (k+l),⋯, xN
}

The prediction strategy in this paper is "two periods of free surface 
elevation data are used as input to predict the free surface elevation data 
of the following one period". Besides, the peak period of wave spectrum 
is 2.8s and the time step size is 0.01s, so the "one periods" corresponds to 
280 time steps. Therefore, the number of model input steps should be set 
to 560, and the number of model output steps should be set to 280. 

Since the total duration of the irregular wave is 10 min, and the time- 
series length of the training data is 49,300 (about the first 82% of the 
numerical wave, and the validation set is about the last 18%), the 

Fig. 8. R2 expanded by time step.  

Table 6 
Values of the parameters discussed.  

Model names N_KERNEL_LSTM1 N_KERNEL_LSTM2 

Model_II1 64 32 
Model_II2 128 64 
Model_II3 256 128  
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training set and validation set contain 48461 and 9861 samples, 
respectively. 

2.2.3. Model structure and initial parameters 
Table 1 is the overall structure of the neural network and the initial 

setting of related parameters. There are several constants represented by 
names, which are the key research parameters in this paper. Their values 
will be discussed and determined in this paper, and the initial default 
values are shown in Table 2. Table 1 contains three activation functions, 
which are wavelet functions. In the following study of activation func-
tions, wavelet functions are replaced by activation functions, which are 
commonly used in neural network models. The replacement relationship 
of functions is shown in Table 3. 

In order to show the structure of the neural network more clearly, 
Fig. 4 uses a simple form to describe the main structure of the neural 
network and the internal structures of the blocks in the neural network. 

2.2.4. Wavelet function 
Three classical wavelet functions are used in the process of estab-

lishing the ANN model. It has shock waves with fast decay and limited 
length, which are often used in wavelet analysis. It should be used as 
activation functions of the neural network to further improve the ability 
of the neural network to fit nonlinear data mapping. Fig. 5 shows the 
waveform of the three wavelet functions. It can be seen that the wavelet 
functions have quickly convergent characteristics in the direction of the 
horizontal axis. The expressions of the three wavelet functions are as 
follows: 

Fig. 9. Single sample prediction results.  

Fig. 10. Model prediction error comparison.  
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Mortlet wavelet ψ(x) = cos(5x)⋅exp
(
− x2

2

)

(9)  

Gaussian wavelet ψ(x) = − x⋅exp
(
− x2

2

)

(10)  

Mexican Hat wavelet ψ(x) =
(
1 − 2x2)⋅exp

(
− x2

2

)

(11)  

2.2.5. Performance metrics 
The performance metric is the important basis for quantitative 

evaluation of model prediction. The metrics used in this paper are R 
Squared (R2), Mean Square Error (MSE) and Mean Absolute Percentage 
Error (MAPE), which describe the model prediction bias. It will repre-
sent the accuracy of model prediction from different angles. 

The R2, also known as the coefficient of determination, is a classical 
model performance metric in the fields of statistics and deep learning. It 
indicates how much the predictive value explains the distribution of the 
true value, which is used to measure the overall fitting degree of the 
predictive value to the true value. Given true values yi of all samples and 
the corresponding predictive value ŷi, the R2 is defined as: 

R2 = 1 −

∑N

i=1
(ŷi − yi)

2

∑N

i=1
(yi − y− )2

(12) 

In Eq. (12), y
−

is the average of the true value of all samples, N is the 
number of samples. The value range of R2 is ( − ∞,1], which is close to 
1, indicating that the model fits the data better. In this paper, R2 will be 
evaluated separately for each output step of the model. 

MSE and MAPE represent the distance between two points in space 
based on the Euclidean distance and the Manhattan distance, respec-
tively. Given true values yi of all samples and the corresponding pre-
dictive value ŷi, MSE and MAPE are defined as follows: 

MSE =
1
N

∑N

i=1
(ŷi − yi)

2 (13)  

MAPE =
100%

N

∑N

i=1

⃒
⃒
⃒
⃒
ŷi − yi

yi

⃒
⃒
⃒
⃒ (14) 

The both values are greater than or equal to 0. The closer to 0, the 
smaller the prediction error and the better the performance of the 
model. In this paper, MSE evaluates the mean of all output steps, and 
MAPE evaluates the vectors in the high-dimensional space composed of 
all output steps. 

2.2.6. Program parameters 
In the process of the programming and the model training, it has 

important parameters that need to be determined. The configuration of 
these parameters in this study is shown in Table 4. 

3. Results and discussion 

In this part, the important parameters of the ANN model established 
in this paper will be discussed. These parameters are the hyper param-
eters of the model, which have a great impact on the prediction per-
formance of the model, but the parameter settings lack systematic 
theoretical guidance, and often require multiple attempts based on 
experience to make the model have ideal prediction performance. 

Sections 3.1 to 3.4 will discuss the parameters of the network 
structure, and section 3.5 will discuss the parameters of the model 
training. 

3.1. Comparisons of the convolution kernel number 

In this section, models based on different convolution kernel number 
will be compared and the parameters will be investigated, and the name 
of this parameter is specified as N_KERNEL_CONV. The values are shown 
in Table 5. 

A sample is randomly selected from the training set and the valida-
tion set, respectively, and the prediction results of the models are shown 
in Fig. 6. The first column in Fig. 6 is the prediction of one sample in the 
training set, and the second column is the prediction of one sample in the 
validation set, from top to bottom are the predictions of the Model_I1 to 
the Model_I3. The first 560 steps are the input data of the models, and 
the last 280 steps are the prediction data output by the models and the 
true value of the prediction target. 

Fig. 7 shows the MSE and MAPE of the models on the training set and 
validation set. And Fig. 8 shows the R2 values of the models at all time 
steps, and the 280 prediction time steps are arranged from top to 
bottom. 

In Fig. 6, the three models have good prediction effects on randomly 
selected samples. The overall trend of the waveform and the appearance 
positions of the peak and trough have been effectively predicted, and the 
prediction bias of the phase and frequency is small. Among them, the 
Model_I2 and the Model_I3 have a relatively high degree of fitting to the 
data. 

In Fig. 7, there is a phenomenon in all three models: the training 
error described by MSE is smaller than the validation error, and the 
validation error described by MAPE is smaller than the training error. In 
the comparison among the models, there is a decreasing trend of the four 
error metrics, among which the Model_I3 has the smallest error, and the 
error decreasing trend of the Model_I2 to the Model_I3 is significantly 
smaller than the error decreasing trend of the Model_I1 to the Model_I2, 
and the prediction accuracy tends to converge. 

In Fig. 8, the R2 distribution over time steps of the Model_I2 and the 

Fig. 11. R2 expanded by time step.  

Table 7 
Values of the parameters discussed.  

Model names RATE_DROPOUT 

Model_III1 0.2 
Model_III2 0.3 
Model_III3 0.4  
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Model_I3 are uniform and similar, which confirms the convergence of 
prediction accuracy. The R2 of The Model_I1 obviously decreases in the 
direction of increasing time steps, that is, the relatively later time step 
has a lower fitting degree. 

According to the comparison of the performance of the models on the 

training set and the validation set, it can be seen that none of the three 
models has overfitting. According to the distribution of R2 on the time 
step, it can be seen that the three models do not have a too low fitting 
degree for some time steps. On the whole, the prediction accuracy of the 
model has basically converged when the value of the convolution kernel 
number parameter is 16. If the value of this parameter continues to in-
crease, the model capacity will be increased, on the one hand, the model 
operation speed will decrease, on the other hand, the model will be more 
prone to overfitting. In addition, an appropriate increase of this 
parameter can significantly improve the prediction ability of the model 
for later time steps. 

The size of the number of convolution kernels directly affects the 
capacity of the model. The larger the parameter, the greater the capacity 
of the model, and the lower the probability of underfitting the training 
data. While larger models may generalize better, they also have a greater 
risk of overfitting. In summary, the number of convolution kernels is set 
to 16 is the most appropriate. When this parameter is set to 5, the fitting 
ability is insufficient due to the reduction of the model capacity, and the 
errors are obviously larger than the value of 16. When this parameter is 
set to 32, the model validation error is almost the same as when it is set 
to 16, or even slightly increases, which indicates that the model capacity 
is increased at this time, which not only does not bring the benefit of 
reducing the error, but increases the calculation amount and the risk of 

Fig. 12. Single sample prediction results.  

Fig. 13. Model prediction error comparison.  
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overfitting. 

3.2. Comparisons of the unit number in the LSTM layer 

In this section, models based on different unit number parameters in 
the LSTM layer will be compared, and the names of these parameters are 
specified as N_KERNEL_LSTM1 and N_KERNEL_LSTM2. The names of the 
models and their corresponding parameter values are shown in Table 6. 

In Fig. 9, the three models have good prediction effects on randomly 

selected samples, the overall trend of the waveform and the appearance 
positions of the peak and trough have been predicted effectively, and the 
prediction bias of the phase and frequency is small. The Model_II3 fits 
the data best. 

In Fig. 10, in all three models, the difference between the validation 
error and the training error increases with the increase of the parame-
ters, but the increase does not have an excessive impact on the predic-
tion performance of the model. In the comparison, All the four-error 
metrics have a significant decreasing trend, among which the Model_II3 
has the smallest error, and the decreasing trend of the error has no 
obvious convergent phenomenon. 

In Fig. 11, the R2 distributions of the Model_II1 and the Model_II2 are 
similar in the time step, and the three models all have a slight decrease in 
the fitting degree of the data at the later time steps. In the comparison, 
the R2 has an overall significant increasing trend, and the Model_II3 has 
the best fitting effect. 

According to the comparison of the performance of the models on the 
training set and the validation set, it can be seen that there is no obvious 
overfitting phenomenon for the three models. According to the 

Fig. 14. R2 expanded by time step.  

Fig. 15. Single sample prediction results.  

Fig. 16. Model prediction error comparison.  
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distribution of R2 on the time step, it can be seen that the three models 
have a lower degree of fitting to the relatively later time steps. In gen-
eral, the model has the best prediction performance when the two-unit 
parameters in the LSTM layer are 256 and 128, respectively. At this 
point, the accuracy of the model is good enough. 

The size of the numbers of units in the dual LSTM layer also directly 
affects the capacity of the model. When this parameter reaches the upper 
limit set in the mathematics experiment, the error of the model is still 
significantly reduced, because the capacity improvement of the model 
brings about the improvement of the model fitting ability, and does not 
reach the level of overfitting the model. To sum up, the numbers of units 
in the dual LSTM layer can be greater than or equal to 256 and 128 
respectively. 

3.3. Comparisons of the dropout rate in the dropout layer 

In this section, models based on different dropout rate parameters in 
the Dropout layer will be compared, and the name of this parameter is 
specified at RATE_DROPOUT. The names of the models and their cor-
responding parameters are shown in Table 7. 

In Fig. 12, only the Model_III1 has a good prediction effect on the 
randomly selected samples. The overall trend of the waveform and the 
appearance position of the peak and trough have been predicted effec-
tively, and the prediction bias of the phase and frequency is small. The 
predictions of the other two models are not good. 

In Fig. 13, the validation errors of the three models are not very 
different from the training errors. In the comparison, the four-error 
metrics all have a significant increasing trend, and only the error of 
Model_III1 is within a reasonable range. 

In Fig. 14, the R2 values of the Model_III2 and the Model_III3 are 
obviously insufficient at some time steps, and the three models have a 
reduced degree of fitting to the data at the later time steps. Overall, in 
the comparison of the models, there is a significant decrease in R2, and 
only the Model_III1 has an ideal fitting effect. 

According to the comparison of the performance of the models on the 
training set and the validation set, it can be seen that there is no obvious 
overfitting phenomenon for the three models. According to the distri-
bution of R2 on the time step, it can be seen that the three models have a 
lower degree of fitting to the relatively later time steps. Overall, the 
model has the best prediction performance when the dropout rate 
parameter in the Dropout layer is 0.2. The function of the Dropout layer 
is to improve the overfitting phenomenon of the model, because there 
exists randomness when it works, as well as a greater number of the 
Dropout layer and a larger dropout rate will weaken the stability of the 
model to a certain extent. Therefore, reducing the number of Dropout 
layers and removing Dropout layers in structures other than Dense 
layers may improve the prediction performance of the model. 

In summary, the model is more sensitive to the dropout rate of the 
Dropout layer. Since increasing this parameter, the model performance 
drops significantly from a good level, which indicates that the capacity 
of the model is appropriate under the characteristics of the data studied 
in this paper, and there is no need to take too many measures to suppress 
overfitting, otherwise it will underfit the model. In addition, in the 
follow-up more complex research, in order to improve the generaliza-
tion ability of the model, we can try to increase the capacity of the model 
and at the same time increase the dropout rate of the Dropout layer to 
achieve a balance. 

3.4. Comparisons of the activation function 

In this section, two models are built, the Model_IV1 uses the wavelet 
functions as the activation functions, the Model_IV2 only uses the 
traditional activation functions. 

In Fig. 15, both models have good prediction effects on randomly 
selected samples. The overall trend of the waveform and the appearance 
positions of the peak and trough have been predicted effectively, and the 
prediction bias of the phase and frequency is small. 

In Fig. 16, according to the difference between the validation error 
and the training error, it can be seen that the Model_IV2 has some degree 
of overfitting, while the Model_IV1 has no obvious overfitting. In addi-
tion, the validation error of the Model_IV2 is larger than the Model_IV1, 
and its generalization ability is slightly lower than the Model_IV1. 

In Fig. 17, the fitting degree of the two models to the data at the later 
time steps has decreased, and the fitting of the Model_IV2 is slightly 
insufficient at some time steps. Overall, the fitting effect of the Mod-
el_IV1 is slightly better than the Model_IV2. 

In general, the wavelet activation function has better data mapping 
ability than the traditional activation function, has better prediction 
performance for data with nonlinear mapping relationship, and is more 
suitable for predicting the irregular ocean surface wave elevation in time 
domain. 

In the neural network model of this paper, the action mechanism of 
the wavelet activation function is: first, the front-end network extracts 
the features of the input wave data, and then uses the extracted features 
as the parameters of the wavelet function. Finally, the wavelet functions 
with these different parameters are superimposed to generate the pre-
dicted wave. From the test results, compared with the traditional 
nonlinear activation function, the wavelet activation function is more 
effective for the instantaneous prediction of waves. 

3.5. Further optimization on the training parameters 

After the above discussion of model structure parameters, the model 
will be further optimized in this section. A key training parameter of the 
model will be discussed, which is the training batch size. If the 

Fig. 17. R2 expanded by time step.  

Table 8 
Values of the parameters discussed.  

Model names Batch size 

Model_V1 16 
Model_V2 32 
Model_V3 64 
Model_V4 128 
Model_V5 256  
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parameter is too small, the model will lose the iterative accuracy, and if 
it is too large, the steps per training epoch will be reduced and the model 
will lose generalization. The names of the models and their corre-
sponding parameters are shown in Table 8. 

In Fig. 18, the five models have good prediction effects on randomly 
selected samples. The overall trend of the waveform and the appearance 
positions of the peak and trough have been effectively predicted, and the 
prediction bias of the phase and frequency is small. On the validation 
samples, the model with a larger batch size predicts better, but this 
performance improvement is not too significant. 

In Fig. 19, the validation errors within each of the five models are not 
very different from the training errors. In the comparison, the four-error 
metrics have a decreasing trend. The validation errors from the Mod-
el_V3 to the Model_V4 decrease the most seriously, and the validation 
errors from the Model_V4 to the Model_V5 decrease the least, tending to 
converge. 

Fig. 18. Single sample prediction results.  

Fig. 19. Model prediction error comparison.  
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In Fig. 20, the R2 of the Model_V2 and the Model_V3 have an 
insufficient fit to the data at the later time steps, while the R2 of the 
other models are more uniformly distributed over time steps. Overall, R2 
has a certain increasing trend, and the trend from the Model_V3 to the 
Model_V4 is the largest. The R2 distributions of the Model_V4 and the 
Model_V5 are very similar, and there are obvious signs of convergence. 

According to the comparison of the performance of the models on the 
training set and the validation set, it can be seen that none of the five 
models has obvious overfitting. According to the distribution of R2 on 
the time step, only the Model_V2 and the Model_V3 have a low degree of 
fitting for the relatively later time steps. On the whole, the optimal value 
of the parameter batch size is 128. If the parameter is too small, the 
training samples of the model will be too miscellaneous, which will 
easily make the training of the model unstable. If the parameter is too 
large, it will greatly consume computing resources. 

In summary, the batch size has a significant impact on the model 

performance. Generally speaking, the larger the value, the better the 
model performance, but there are also bottlenecks, and the excessively 
large batch size has extremely high requirements on the hardware. In the 
research data of this paper, when the batch size is 256, the model 
generalization is not significantly improved compared to 128, and it will 
consume more computing resources, so 128 is the most reasonable 
value. 

3.6. More comparison of results 

The above mainly expounds the details of model architecture design, 
parameter tuning and prediction performance comparison. In order to 
more objectively demonstrate the effectiveness and superiority of our 
prediction model, this section will use the model with the optimal pa-
rameters above (Model_best is the Model_I2) against a benchmark and 
the seq2seq which is a classic deep learning time series prediction 
model. Among them, the benchmark is defined as: taking the value of 
the last time step of the input ground-truth sequence for the prediction 
model as the value of all the time steps to be predicted, as shown in 
Fig. 21. 

In Fig. 22, according to the comparison, it can be clearly seen that the 
errors of our model are much smaller than the benchmark and seq2seq. 
In Fig. 23, the benchmark values of R2 are almost all less than 0, which 
means that using the value at the last time step of the input sequence as 
the prediction value of the subsequent time steps has extremely poor 
effect, and this group of benchmark values is not meaningful for Fig. 20. R2 expanded by time step.  

Fig. 21. Benchmark example.  

Fig. 22. Prediction error.  
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comparison. Compared with the R2 coefficient of seq2seq, the R2 of our 
model is maintained at a high level at each time step, while seq2seq only 
has a certain prediction ability for a specific part of the time steps, and 
the R2 coefficients are all smaller than our model. 

4. Conclusions 

Accurate wave prediction can effectively ensure the safety and eco-
nomic benefits of marine transportations and ocean platform operations. 
In this study, an instantaneous prediction model of free surface elevation 
based on CNN-LSTM and wavelet function was established and dis-
cussed. In the case of inputting the time series of free-surface elevation 
of two spectral peak periods of the irregular wave, the high precision 
prediction of the time-series of the subsequent one spectral peak period 
is effectively achieved. The main conclusions of this study are summa-
rized as follows:  

(1) In terms of reducing the model prediction error and improving 
the R2 value, the most reasonable value of the number of 
convolution kernels is 16.  

(2) A larger numbers of units in the dual LSTM layer has a positive 
effect on reducing the model prediction error and improving the 

R2 value, and the number of units in the dual LSTM layer needs to 
be greater than or equal to 256 and 128 respectively.  

(3) The larger the dropout rate of the Dropout layer, the more 
obvious the model is under-fitting and the worse the prediction 
performance. The value should be less than or equal to 0.2.  

(4) The wavelet activation function may make the model have a 
stronger fitting ability on the validation data, and significantly 
weaken the overfitting phenomenon of the model. It indicates 
that the wavelet function as an activation function has more 
advantages in the prediction of the irregular ocean surface waves. 

(5) On the premise of ensuring prediction performance, and consid-
ering the rational use of computing resources, the batch size of 
128 is the most appropriate value.  

(6) Most mathematics experimental models have a lower degree of 
fitting to the relatively later time steps, and certain measures 
should be taken to improve this situation in subsequent work, 
such as using weighted loss. 

In general, this study proposes a designed model which can perform 
high precision instantaneous wave prediction of the irregular ocean 
surface wave in time domain, gives the optimal selection of important 
parameters of the model, and provides model design ideas for the related 
work. 
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Appendix 

1. This figure adds an explanation to the R2 figure in this paper. Different color blocks represent different models, and inside a color block, the R2 
coefficients at each output time corresponding to the model are arranged from top to bottom (R2 based on the validation dataset). This figure not only 
shows the overall performance of the model, but also shows the distribution of the R2 coefficient at the model output time steps. 

Fig. 23. R2 expanded by time step.  
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2. The following are the first-order difference data map and the mean standard deviation map (time window size is 260 time steps) of the entire 
wave time series after standardization. The irregular trend change of the first-order difference value indicates that the time series has significant 
nonlinearity, and the unsteady and irregular mean and standard deviation prove that the time series has obvious non-stationarity. It can be seen from 
the mean and standard deviation map that the moving mean of the wave series has large irregular fluctuations, and the changing trend of the moving 
standard deviation is more severe and irregular, which indicates that the series has strong non-stationarity. For non-stationary time series, difference 
operation is required before forecasting, and convolution operation can meet this requirement, which is one of the reasons for using convolution layer 
in this paper. 
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3. In order to further validate the prediction ability of the algorithm in this paper to actual irregular waves, we test the model on the wave free 
surface elevation data of irregular waves in a towing tank. 

The wave spectrum used in the wave-making in this tank is the JONSWAP spectrum, with a significant wave height of 0.105 m and a spectral peak 
period of 2.03 s (So the number of time steps for model input and output is 406 and 203, respectively. In addition, the model architecture selects the 
optimal architecture in the conclusions. The dataset is divided into 5:1.), the spectral peak factor is 3.3. Under the condition that the ship model scale 
ratio is 1:100, the wave has a return period of 10-years. 

The sampling time of the wave is about 8 min 53 s, the sampling frequency is 100 Hz, and the total length of the data is 53287. To verify the 
accuracy of the waves generated by the wave maker, a wave altimeter was placed 5 m in front of the wave maker. Compare the actual wave with the 
target wave. Comparing the actual wave with the target wave, the measured and theoretical spectrum of irregular waves are compared as follows.

It can be seen from the above figure that the actual measured 
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irregular waves and the preset waves have a good degree of agreement with the power spectrum distribution, which indicates that the irregular waves 
caused by the towing tank in the experiment are effective and reliable. 

The final prediction effect is shown in these figures below. It can be seen from these figures that the prediction performance of the algorithm on real 
water wave data is still ideal in the case of untargeted debugging. This shows that the algorithm has the ability to predict real irregular waves to a 
certain extent.

4. The note on the model architecture and its effectiveness:  

1) In terms of model capacity, the CNN-LSTM in this paper has a deeper number of layers than the classical LSTM, which has an advantage in the 
ability to fit the data.  

2) Further, regarding the specific model architecture, not only the CNN module is added to the work, but the advantages reflected in the final 
prediction result are contributed by the CNN and the residual architecture (originally from the ResNet) as a whole. The mechanism of action of this 
architecture may be related to the theory of Taylor’s formula (convolution operation can realize numerical differentiation operation, and the result 
obtained by adding up multiple orders of differentiation is used as a feature extracted by the model, which is conducive to increasing the fitting 
ability of the model). In addition, CNNs can retain historical information to a large extent, and there is no problem of sequence dependence, which 
can be efficiently parallelized.  

3) The wavelet transform is a new mathematical transformation method based on Fourier analysis, which overcomes the limitations of Fourier 
transform and the disadvantage of Fourier transform window invariance. The wavelet transform mainly realizes multi-scale refinement through 
expansion and translation, highlights the details of the problem to be handled, and effectively extracts local information. The wavelet activation 
function has the advantages of wavelet transformation, which avoids blindness in network design architecture, and accelerates the convergence of 
neural networks and improves model accuracy. 
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