- **1** A smart self-balancing biosystem with reversible competitive
- 2 adsorption of in-situ anion exchange resin for whole-cell catalysis

3 preparation of lignocellulosic xylonic acid

- 4 Yang Lv^{a, b, c}, Shaonuo Zhou^{a, b, c}, Xiaolei Zhang^d and Yong Xu^{* a, b, c}
- 5 ^a Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest
- 6 Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
- 7 210037, People's Republic of China
- 8 ^b Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals,
- 9 Nanjing 210037, People's Republic of China
- 10 ^c Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University),
- 11 Ministry of Education, Nanjing 210037, People's Republic of China
- 12 ^d Department of Chemical and Process Engineering, University of Strathclyde,
- 13 Glasgow, UK G1 1XJ
- 14
- 15 * Corresponding author at: College of Chemical Engineering, Nanjing Forestry
- 16 University. No. 159 Longpan Road, Nanjing 210037. People's Republic of China.
- 17 mail address: xuyong@njfu.edu.cn (Y. X.)
- 18 Tel: +86 025 85427587
- 19 Fax: +86 025 85427587
- 20
- 21
- 22
- 23

This is a peer-reviewed, accepted author manuscript of the following article: Lv, Y., Zhou, S., Zhang, X., & Xu, Y. (2022). A smart self-balancing biosystem with reversible competitive adsorption of in-situ anion exchange resin for whole-cell catalysis preparation of lignocellulosic xylonic acid. Bioresource Technology, 363, [127998]. https://doi.org/10.1016/j.biortech.2022.127998

24 Abstract:

25	Xylonic acid (XA) bioproduction via whole-cell catalysis of Gluconobacter
26	oxydans is a promising strategy for xylose bioconversion, which is hindered by
27	inhibitor formation during lignocellulosic hydrolysates. Therefore, it is important to
28	develop a catalytic system that can directly utilize hydrolysate and efficiently produce
29	XA. Determination of the dynamic adsorption characteristics of 335 anion exchange
30	resin resulted in a unique and interesting reversible competitive adsorption between
31	acetic acid-like bioinhibitor, fermentable sugar and XA. Xylose in crude
32	lignocellulosic hydrolysates was completely oxidized to 52.52 g/L XA in
33	unprecedented self-balancing biological system through reversible competition. The
34	obtained results showed that in-situ resin adsorption significantly affected the direct
35	utilization of crude lignocellulosic hydrolysate for XA bioproduction (p \leq 0.05). In
36	addition, the resin adsorbed ca. 90% of XA during bioconversion. The study achieved
37	a multiple functions and integrated system, "detoxification, neutralization and product
38	separation" for one-pot bioreaction of lignocellulosic hydrolysate.
39	
40	
41	
42	
43	Key words: Xylonic acid, whole-cell catalysis, reversible competitive adsorption
44	on resin, lignocellulosic bio-inhibitors, self-balancing biosystem.

1. Introduction

47	Xylonic acid (XA) is a water-soluble five-carbon organic acid with a wide range
48	of applications, including construction, aquaculture, biological control and chemical
49	industries (Chun et al., 2006; Deppenmeier et al., 2002; Znad et al., 2004), and is one
50	of the top 30 most valuable chemicals according to the U.S. Department of Energy
51	(Cao et al., 2013). In addition, XA is an important platform compound, a precursor of
52	3,4-dihydroxybutanal, 1,4-butanediol and 1,2,4-butantriol, and plays an indispensable
53	role in energetic materials synthesis and pharmaceutical production (Luo et al., 2020;
54	Zhou et al., 2016). It is reported that the whole cell catalytic preparation method of
55	XA production by Gluconobacter oxydans has high selectivity, cell reusability,
56	low-cost and high productivity, which is greatly advantageous compared to the
57	complicated chemical method and the expensive enzyme catalytic method (Chun et al.,
58	2006; Han et al., 2021; Jin et al., 2019).
59	It is known that the effective utilization of xylose can provide a higher profit to
60	the total entire biorefinery economy of lignocellulosic biomass. Additionally, there is
61	ca. 30% xylose content of fermentable carbohydrate compositions in lignocellulosic
62	materials, such as corncob and sugarcane bagasse (Jeffries et al., 2007; Li et al., 2018;
63	Menon & Rao, 2012). Therefore, the development of direct whole cell catalysis and
64	oxidation of acid hydrolysate to produce XA is of great practical significance for
65	xylose and lignocellulosic biomass biorefinery. However, various inevitable
66	degradation chemicals arise from lignocellulosic processing and results in complex
67	biotoxicity and bio-inhibition towards bacterial activity and cell catalysis performance.

68	These include types of HAc, such as small molecular acids, aldehydes, furans and so
69	on (Han et al., 2021; Horvath et al., 2001; Mhlongo et al., 2015). Even though resin
70	can achieve effective detoxification, it can promote considerable sugar loss by over 20%
71	(Lin & Juang, 2009; Schwartz & Lawoko, 2010). Therefore, it is necessary to develop
72	new methods for effective bioutilization of sugar adsorbed on resin.
73	During the whole cell catalytic oxidation of xylose to XA, pH value of the
74	system continuously decreases in relation to the corresponding acid formed, which
75	seriously hinders the catalytic activity of cells (Horvath et al., 2001; Hua et al., 2022).
76	Therefore, it is important to detect and monitor pH, and add an appropriate alkaline
77	neutralizer when required to maintain bioreaction niche stability. Studies have shown
78	that anion exchange resin can adsorb and neutralize automatically allowing the
79	production of XA as a basic agent (Liu et al., 2021a; Ortega et al., 2017).
80	Therefore, this study aims to construct a smart self-balancing biosystem for
81	lignocellulose-based xylonic acid production. The technical objectives of
82	"detoxification, neutralization and separation" were achieved simultaneously in a one
83	reaction tank via in-situ reversible competitive adsorption of anion exchange resin.
84	Furthermore, crude corncob hydrolysate was directly employed in XA bioproduction,
85	which has significance theoretical and practical applications in lignocellulosic
86	hydrolysate bioconversion.
87	2. Materials and methods

88 2.1 Lignocellulosic hydrolysate

89 Corncobs were harvested from Jiangsu Province in China. According to the

90	national Renewable Energy Laboratory protocol determination, corncob contains 34.4%
91	cellulose, 30.5% hemicellulose and 18.6% lignin. Corncob was pulverized to 20-40
92	mesh size. Before pretreatment, all the sieved corncob were dried thoroughly in the
93	sun and air until <8% moisture was obtained, then it was pretreated for 30 min at 150 °C
94	with a solid-liquid ratio of 1:5 (w/v), 1% sulfuric acid (Gu et al., 2021). The resulting
95	crude hydrolysate was called HA, and HB or HC which was twice concentrated or
96	diluted from HA, respectively. The corresponding simulates of HA, HB and HC were
97	called SA, SB and SC, respectively.
98	2.2 Pretreatment of resin
99	Weakly basic anion exchange resin 335 was prepared by reverse polymerization
100	of epichlorohydrin and ethylene polyamine, bearing the following functional groups:
101	-NH ₂ , =NH, and \equiv N (Han et al., 2022). (Huazhen Company, East China University of
102	Science and Technology)
103	The resin was soaked in ethanol solution of ca. twice the volume for 2-3 h. This
104	process was repeated several times and then distilled water was added to the soaking
105	solution without turbidity, followed by washing with distilled water until no ethanol
106	remained. The eluent was shaken sequentially with 1 M NaOH, 1 M HCl and 1 M
107	NaOH for 2 h, then cleaned with deionized water until neutral pH was obtained (Hua
108	et al., 2018; Yue et al., 2018). Subsequently, the moisture content was measured by an
109	infrared moisture meter to calculate the wet weight corresponding to the dry heavy
110	ion exchange resin (Hua et al., 2018).

111 2.3 Adsorption of resin in simulated solution

112 2.3.1 Adsorption and desorption of resin in simulated solution

- 113 10% (w/v) resin was added to the three simulated solutions (SA, SB and SC),
- and the samples were placed in a shaker at 220 rpm and 30 °C for 2 h to achieve
- adsorption equilibrium. The volume of the simulated liquid was 50 mL. The titer of
- 116 various chemicals before and after adsorption was detected by HPAEC, and the
- 117 adsorption ratio was calculated

118 (Adsorption ratio= $\frac{Initial \ titer \ (g/L) - \ Titer \ after \ adsorption \ (g/L)}{Initial \ titer \ (g/L)}$). Subsequently, the resin

- 119 was filtered and then placed in equal volumes of pure water, followed by shaking at
- 120 220 rpm, 30 °C for 2 h. The titer of various chemicals before and after desorption was
- 121 detected, and the desorption ratio was calculated
- 122 (Desorption ratio= $\frac{Titer\ after\ desorption\ (g/L)}{Initial\ titer\ (g/L) Titer\ after\ adsorption\ (g/L)}).$
- 123 2.3.2 Reversible competitive adsorption of various chemicals
- 124 Competitive adsorption of xylose and XA: 10% (w/v) resin was added to xylose
- simulation solution and xylose XA mixture simulation solution, respectively. The
- adsorption equilibrium was reached by shaking at 220 rpm and 30 °C for 2 h. The titer
- 127 of xylose and XA was detected, and the adsorption ratio was calculated.
- 128 Competitive adsorption of Hac and XA: 10% (w/v) resin was added to 10 g/L
- 129 XA. After reaching the adsorption equilibrium, the resin was filtered out and then
- 130 placed in 10 g/L HAc. In the control group, 10% resin was added to 10 g/L HAc, and
- the filtered resin was placed in 10 g/L XA after the adsorption equilibrium was
- 132 reached.

133 2.4 Resin adsorption coupled with whole cell catalysis

134	Separate resin adsorption: SA was added to 20% resin and shaken at 200 rpm 30 °C
135	for 2 h. The filtered SA was directly used for subsequent whole-cell catalysis (Han et
136	al., 2022).

137 In-situ resin adsorption: 20% resin was added at the beginning of whole cell

138 catalysis. The resin remained in the fermentation system throughout the experiment.

139 **2.5 Whole-cell catalysis of** *Gluconobacter oxydans*

140 *G. oxydans* NL71 was derived from ATCC6821 and cultured for 18-24 h in

- 141 proliferation medium (100 g/L sorbitol, 10 g/L yeast extract) at 30 °C and 220 rpm
- 142 (Zhou et al., 2015). Proliferating cells were obtained by freeze-centrifugation at 7104
- 143 g for 5 min (Han et al., 2021). The synthetic medium contained 5.0 g/L yeast extract,
- 144 $0.5 \text{ g/L MgSO}_4, 2.0 \text{ g/L K}_2\text{HPO}_4, 1.0 \text{ g/L KH}_2\text{PO}_4, 5.0 \text{ g/L (NH}_4)_2\text{SO}_4$, and acidic
- 145 lignocellulosic hydrolysate (Liu et al., 2021b). Whole- cell catalysis was performed
- by shaking at 200 rpm and 30 °C for 8-24 h in a 250 mL conical flask containing 50
- 147 mL medium. WCC was performed at a cell density of 5.0 g/L (oven dry weight).

148 Three independent biological replicates were conducted.

149 **2.6 Analytical methods**

150 The concentration of xylose and XA was determined by HPAEC (Thermo

- 151 ICS-5000) coupled with a CarboPacTM PA200 column and pulsed amperometric
- detector. 100 mM NaOH solution was used as mobile phase at a flow rate of 0.3
- 153 mL/min (Han et al., 2021). The concentration of XA adsorbed by the resin was
- 154 measured by first rinsing the cells on the resin surface with deionized water and then
- 155 eluting with 5% hydrochloric acid (Han et al., 2022; Hua et al., 2018). HAc, levulinic

acid (LA), 5-hydroxymethyl-furfural (HMF) and furfural were analyzed via HPLC (Agilent 1200) equipped with Aminex Bio-Rad HPX-87H column and IR detector. 5.0 mM H₂SO₄ solution was used as mobile phase at 0.6 mL/min (Han et al., 2021; Han et al., 2022). Analysis of variance (ANOVA) was performed on the data using Microsoft Excel 2010 software. The data with statistical distribution is ($\overline{X}\pm S$). The significance level was α =0.05.

162 3. Results and discussion

163 **3.1 Reversible competitive adsorption characteristics of various chemicals in**

164 stimulated solution

165 Anion exchange resin 335 contains weakly basic groups, such as primary amine

166 group (-NH₂), secondary amine group (-NHR) or tertiary amine group (-NR₂), which

167 usually dissociate -OH groups in water and act as a weak basic, especially under

acidic conditions (Dharmapriya et al., 2022; Han et al., 2022). Therefore, this resin

169 prefers to adsorb various generalized anion-like compounds in the lignocellulosic

170 hydrolysate, including inhibitors of HAc, LA and so on (Cao et al., 2020; Huang et al.,

171 2020), as well as xylose or newly generated XA. Firstly, the competitive adsorption

172 characteristics of sugars and acids were investigated using 10% (w/v) resin 335

173 loading, in three gradient titers of stimulated solutions including SA, SB and SC

174 (Table 1). The obtained results showed that the concentration of inhibitor compounds

- in SA and SC reduced by >60% after resin adsorption. Hence, the titer of key
- bio-inhibitor HAc was lower than the critical titer value that hinders bacterial
- 177 fermentation(Zhou et al., 2019), and the detoxified solutions were directly utilized for

178	whole-cell catalysis and oxidation (Fig. 1). Although the resin adsorbed ca. 20% of
179	xylose-like sugars in 60.91 g/L sugar solution, 90% of the adsorbed sugars were
180	released from resin matrix into solution again in low sugar concentration
181	environments (Fig. 2). Therefore, the observed automatically reversible adsorption
182	and desorption, that depended on varying sugar titers, gave rise to the possibility to
183	explore in-situ resin adsorption coupled with whole-cell catalysis of fermented xylose
184	and lignocellulosic sugars.
185	Since XA is an organic acid with pK_a 3.39, the produced XA could also be
186	adsorbed on resin 335, allowing separate fermentation of the product and release the
187	product feedback inhibition on whole-cell catalysis. Hence, we investigated the
188	influence of XA production on the adsorption balance of xylose on the resin, which
189	could lead to competitive adsorption between xylose and XA. Based on the above
190	speculation, the competitive adsorption capacity of xylose, HAc and XA on the resin
191	was evaluated.
192	10% resin was added to xylose alone and xylose-XA mixture simulation
193	solutions, respectively. After adsorption equilibrium was reached, the xylose
194	concentration in the mixture was 2.12 g/L, and that in xylose alone was 1.39 g/L
195	(Table 2). Xylose-XA mixture simulation solution significantly affected the
196	adsorption ratio (p \leq 0.05). Hence, XA disturbed the adsorption balance of the xylose
197	and "squeezed" xylose out of the resin. In addition, most sugars can also "walk off "
198	the resin at low concentration (Fig.2). Thus, dual pressure could improve soluble
199	xylose for whole-cell catalysis and oxidation in the resin adsorption and detoxification

200 system.

201	10 g/L XA and 10 g/L HAc solution were also adsorbed by 10% resin,
202	respectively. After adsorption equilibrium was reached, residual XA and HAc in
203	solution were <10%, and HAc concentration was below the detection limit. To further
204	explore the competitive preference to HAc and XA on the studied resin, XA or HAc
205	adsorbed resin was poured in equal volumes of 10 g/L HAc and XA solution,
206	respectively. HAc could not elute XA adsorbed by resin, while XA could elute HAc
207	adsorbed by resin. 0.53 g/L HAc was eluted in the equalized solutions, indicating that
208	HAc was squeezed out by XA in the mixture (Table 3). This may be due the pKa
209	value of HAc being greater than that of XA, resulting in HAc bearing a weaker
210	binding force on the resin. This slightly stronger adsorption property provided an
211	interesting separation technology for XA harvest from xylose fermentation broth, as
212	well as another advantage of in-situ resin adsorption coupled with whole-cell catalysis,
213	especially under HAc-like bio-inhibitors pressure.
214	3.2 Dynamic balance and coupling effects of in-situ resin adsorption combined
214 215	3.2 Dynamic balance and coupling effects of in-situ resin adsorption combined with whole-cell catalysis
214 215 216	3.2 Dynamic balance and coupling effects of in-situ resin adsorption combined with whole-cell catalysis In terms of crude lignocellulosic hydrolysates components, a full-component
214 215 216 217	3.2 Dynamic balance and coupling effects of in-situ resin adsorption combined with whole-cell catalysis In terms of crude lignocellulosic hydrolysates components, a full-component simulation was used to study the combination of in-situ resin adsorption with whole
214 215 216 217 218	3.2 Dynamic balance and coupling effects of in-situ resin adsorption combined with whole-cell catalysis In terms of crude lignocellulosic hydrolysates components, a full-component simulation was used to study the combination of in-situ resin adsorption with whole cell catalysis. Pretreatment of lignocellulosic biomass produced a variety of
214 215 216 217 218 219	3.2 Dynamic balance and coupling effects of in-situ resin adsorption combined with whole-cell catalysis In terms of crude lignocellulosic hydrolysates components, a full-component simulation was used to study the combination of in-situ resin adsorption with whole cell catalysis. Pretreatment of lignocellulosic biomass produced a variety of compounds that severely inhibited energy generation, enzyme activity and protein
 214 215 216 217 218 219 220 	3.2 Dynamic balance and coupling effects of in-situ resin adsorption combined with whole-cell catalysis In terms of crude lignocellulosic hydrolysates components, a full-component simulation was used to study the combination of in-situ resin adsorption with whole cell catalysis. Pretreatment of lignocellulosic biomass produced a variety of compounds that severely inhibited energy generation, enzyme activity and protein synthesis in microbial central carbon metabolic pathways, which enhanced bacterial

detoxification (Holscher & Gorisch, 2006).

223	The separated-resin and in-situ resin adsorption modes were compared. At the
224	preliminary stage, the fermentation rate of the simulant adsorbed by the separated
225	resin was fast. 51.71 g/L XA was obtained after 16 h at the initial productivity of 3.79
226	g/L/h, but the rate gradually decreased with the accumulation of sugar acid. In
227	contrast, the dynamic adsorption of in-situ resin adsorption mode maintained a
228	fermentation rate of up to 3.93 g/L/h after the first stage. Although XA was detected
229	in the medium during fermentation, 52.63 g/L XA was almost completely adsorbed by
230	the resin at the end of fermentation (Fig. 3).
231	Due to the beneficial cooperation of in-situ resin, the pH value of the whole-cell
232	catalysis system was stabilized by an automatic neutralization process. Furthermore,
233	the competitive adsorption and slow acetate release led to an efficiently gradual
234	bio-adaptation of bacterial cells for whole cell catalysis and oxidation. In conjugation
235	with oxidative conversion and metabolism of some inhibitors, the desired
236	comprehensive result of bio-toxicity reduction was achieved (Zhou et al., 2017).
237	Based on the dynamic equilibrium of resin adsorption, the dual effects of higher pK_a
238	and rising titer of XA competed and squeezed the resin-bonded xylose promoting
239	release and return to the fermentation medium(Chowdhury et al., 2011). The extruded
240	xylose was oxidated to XA and significantly improved the total product-yield of
241	whole-cell catalysis (p \leq 0.05). Furthermore, the priorly competitive adsorption was
242	selectively capture XA from the fermentation broth that provided an easy method for
243	both product separation and purification.

244 3.3 Direct XA bio-preparation from crude corncob hydrolysate in the

245 self-balancing biosystem

246	Considering the direct utilization of crude lignocellulosic hydrolysate,
247	hydrolysate A without any pretreatment was first tested (Lin & Juang, 2009). As
248	shown in Fig. 3, hydrolysate A was directly used for XA production by G. oxydans
249	with in-situ resin adsorption. At the early stage of fermentation (0-2 h), the inhibitor
250	titer gradually reduced and remained at a low level (<1 g/L) due to ion exchange
251	between the inhibitors and resin, which benefited G. oxydans to gradually adapt to the
252	inhibitory environment and perform its catalytic oxidation to xylose. Despite the more
253	complex competing anions from degrading fractions in crude lignocellulosic
254	hydrolysates, the free XA concentration in the fermentation solution remained
255	consistently low (<10 g/L), even when self-accumulating during whole-cell catalysis.
256	Therefore, XA maintained a stronger adsorption to the resin over the above
257	competitors. Resin adsorbed and harvested 90% of XA product from the crude
258	lignocellulosic fermentation broth containing 52.52 g/L of XA (Fig. 4). p-value was
259	0.12, indicating that there was no significant difference between biological replicates.
260	Hence, one could define the developed in-situ resin combined with whole-cell
261	catalysis as a smart self-balancing biosystem for XA bioproduction from crude
262	lignocellulosic xylose.
263	In this study the specific cell-catalysis efficiency (SCE) was proposed to
264	comparatively assess the total XA bioconversion performance of different whole-cell
265	catalysis modes by <i>G. oxydans</i> (see supplementary materials). SCE was determined as

266	0.46 g/L/h/g DCW using calcium hydroxide neutralization and precipitation of crude
267	hydrolysate before whole-cell catalysis (Han et al., 2021). This value was improved to
268	0.50 g/L/h/g DCW after replacement with high-oxygen tension fermentation (Zhou et
269	al., 2015). However, the self-balancing biosystem directly catalyzed crude corncob
270	hydrolysate and increased SEC to 0.53 g/L/h/ g DCW without Ca-based detoxification,
271	which was only slight lower than 0.58 g/L/h/ g DCW for the full-component analog
272	solution. This fluctuation was probably related to the complexity of the various
273	undetected components in crude corncob hydrolysate (Zhou et al., 2015; Zhou et al.,
274	2017). Hence, the self-balancing system allowed the cells to ferment directly to crude
275	lignocellulosic hydrolysate, and achieve enhanced cellular productivity.
276	4. Conclusion
277	Harnessing the advantageous properties of anion exchange resin 335 in-situ
278	coupled with whole-cell catalysis, allowed for the development of a smart
279	self-balancing biological system that resulted in "detoxification, neutralization and
280	product separation" in a one-pot bioreaction and the realization of effective XA
281	production directly from crude hydrolysate. The combinative process is important for
282	the theoretical development and practical application of XA bioproduct production
283	from lignocellulosic biomass, owing to its uniqueness, simplicity.

285 There are no conflicts to declare.

286 Acknowledgement

287 Acknowledgements

200 The research was supported by the radional radiatal Science roundation of	288	The research was supported by the National Natural Science Foundation of	
---	-----	--	--

- 289 China (32171730, 32211530071). The authors also would like to thank support from
- the Royal Society International Exchanges 2021 Cost Share grant IEC\NSFC\211370,
- 291 EPSRC grant EP/R010986/1 and Leverhulme Trust Research Grant RPG-2017-254,
- 292 UK.
- 293 **Reference**
- 294 Cao, R., Guo, J.M., Hua, X., Xu, Y. 2020. Investigation on decolorization kinetics and
- thermodynamics of lignocellulosic xylooligosaccharides by highly selective
 adsorption with Amberlite XAD-16N. *Food Chemistry*, **310**.
- 297 Cao, Y.J., Xian, M., Zou, H.B., Zhang, H.B. 2013. Metabolic Engineering of

Escherichia coli for the Production of Xylonate. *Plos One*, **8**(7).

- 299 Chowdhury, Z.Z., Zain, S.M., Rashid, A.K. 2011. Equilibrium Isotherm Modeling,
- 300 Kinetics and Thermodynamics Study for Removal of Lead from Waste Water.
 301 *E-Journal of Chemistry*, 8(1), 333-339.
- 302 Chun, B.W., Dair, B., Macuch, P.J., Wiebe, D., Porteneuve, C., Jeknavorian, A. 2006.
- The development of cement and concrete additive. *Applied Biochemistry and Biotechnology*, **131**(1-3), 645-658.
- 305 Deppenmeier, U., Hoffmeister, M., Prust, C. 2002. Biochemistry and biotechnological
- 306 applications of Gluconobacter strains. *Applied Microbiology and*
- 307 *Biotechnology*, **60**(3), 233-242.
- 308 Dharmapriya, T.N., Shih, H.Y., Huang, P.J. 2022. Facile Synthesis of Hydrogel-Based
- 309 Ion-Exchange Resins for Nitrite/Nitrate Removal and Studies of Adsorption

310	Behavior. Polymers, 14(7).
311	Gu, Y.J., Guo, J.M., Nawaz, A., ul Haq, I., Zhou, X., Xu, Y. 2021. Comprehensive
312	investigation of multiples factors in sulfuric acid pretreatment on the
313	enzymatic hydrolysis of waste straw cellulose. Bioresource Technology, 340.
314	Han, J., Hua, X., Zhou, X., Xu, B., Wang, H., Huang, G.H., Xu, Y. 2021. A
315	cost-practical cell-recycling process for xylonic acid bioproduction from
316	acidic lignocellulosic hydrolysate with whole-cell catalysis of Gluconobacter
317	oxydans. Bioresource Technology, 333 .
318	Han, J., Xu, B., Wang, H., Huang, G., Zhang, X., Xu, Y.J.B.t. 2022. Purification of
319	acidic lignocellulose hydrolysate using anion-exchange resin: Multicomponent
320	adsorption, kinetic and thermodynamic study. 351 , 126979.
321	Holscher, T., Gorisch, H. 2006. Knockout and overexpression of pyrroloquinoline
322	quinone biosynthetic genes in Gluconobacter oxydans 621H. Journal of
323	Bacteriology, 188(21), 7668-7676.
324	Horvath, I.S., Taherzadeh, M.J., Niklasson, C., Liden, G. 2001. Effects of furfural on
325	anaerobic continuous cultivation of Saccharomyces cerevisiae. <i>Biotechnology</i>
326	and Bioengineering, 75 (5), 540-549.
327	Hua, X., Cao, R., Zhou, X., Xu, Y. 2018. Integrated process for scalable bioproduction
328	of glycolic acid from cell catalysis of ethylene glycol. <i>Bioresource Technology</i> ,
329	268 , 402-407.
330	Hua, X., Zhang, C.H., Han, J., Xu, Y. 2022. pH regulatory divergent point for the
331	selective bio-oxidation of primary diols during resting cell catalysis.

332 Biotechnology for Biofuels and Bioproducts, **15**(1).

~ ~ ~		0 17		****	~ •	1110	C1 1	****	**	O II	* *	0 0000
222	Huano	(X)	Zheng	YY	111	W()	Shi	YX	Huano	(†H	Yong	O - 2020
000	muung,	· ∪./x.,	Znong,	1.1.,	,	· •••Q•	, om,	_ I.ZX.,	muung,	O.11.,	rong,	Q.2020.

- 334 Removal of fermentation inhibitors from pre-hydrolysis liquor using
- 335 polystyrene divinylbenzene resin. *Biotechnology for Biofuels*, **13**(1).
- 336 Jeffries, T.W., Grigoriev, I.V., Grimwood, J., Laplaza, J.M., Aerts, A., Salamov, A.,
- 337 Schmutz, J., Lindquist, E., Dehal, P., Shapiro, H., Jin, Y.S., Passoth, V.,
- 338 Richardson, P.M. 2007. Genome sequence of the lignocellulose-bioconverting
- and xylose-fermenting yeast Pichia stipitis. *Nature Biotechnology*, **25**(3),
- 340 319-326.
- Jin, C., Hou, W.L., Yao, R.M., Zhou, P.P., Zhang, H.S., Bao, J. 2019. Adaptive
- evolution of Gluconobacter oxydans accelerates the conversion rate of
- 343 non-glucose sugars derived from lignocellulose biomass. *Bioresource*
- 344 *Technology*, **289**.
- Li, C., Gai, Z.C., Wang, K., Jin, L.P. 2018. Engineering Bacillus licheniformis as a
- 346 thermophilic platform for the production of L-lactic acid from
- 347 lignocellulose-derived sugars (Retraction of Vol 10, art no 235, 2017).
- 348 *Biotechnology for Biofuels*, 11.
- Lin, S.H., Juang, R.S. 2009. Adsorption of phenol and its derivatives from water using
- 350 synthetic resins and low-cost natural adsorbents: A review. *Journal of*
- 351 *Environmental Management*, **90**(3), 1336-1349.
- Liu, J.C., Zhang, Y.B., Miao, Y., Yang, Y., Li, P. 2021a. Alkaline Resins Enhancing
- 353 Li+/H+ Ion Exchange for Lithium Recovery from Brines Using Granular

354	Titanium-Type	Lithium Ion-Sieves.	Industrial &	& Engineering	Chemistrv
004	inamum iype	Entimum fon bieves.	mansman C	c Bugineering	Chemistry

355 *Research*, **60**(45), 16457-16468.

- 356 Liu, X.L., Cao, R., Nawaz, A., ul Haq, I., Zhou, X., Xu, Y. 2021b. Smart removal of
- 357 monosaccharide contaminants in xylo-oligosaccharide slurry using
- 358 sandwich-integration bioprocess of whole-cell catalysis combined with
- electrodialysis separation. *Renewable Energy*, **168**, 1149-1156.
- 360 Luo, J., Huang, K.X., Zhou, X., Xu, Y. 2020. Preparation of highly flexible and
- 361 sustainable lignin-rich nanocellulose film containing xylonic acid (XA), and
- 362 its application as an antibacterial agent. *International Journal of Biological*
- 363 *Macromolecules*, **163**, 1565-1571.
- 364 Menon, V., Rao, M. 2012. Trends in bioconversion of lignocellulose: Biofuels,

365 platform chemicals & biorefinery concept. *Progress in Energy and*

- 366 *Combustion Science*, **38**(4), 522-550.
- 367 Mhlongo, S.I., den Haan, R., Viljoen-Bloom, M., van Zyl, W.H. 2015. Lignocellulosic
- 368 hydrolysate inhibitors selectively inhibit/deactivate cellulase performance.
- 369 *Enzyme and Microbial Technology*, **81**, 16-22.
- 370 Ortega, A., Oliva, I., Contreras, K.E., Gonzalez, I., Cruz-Diaz, M.R., Rivero, E.P.
- 371 2017. Arsenic removal from water by hybrid electro-regenerated anion
- 372 exchange resin/electrodialysis process. *Separation and Purification*
- 373 *Technology*, **184**, 319-326.
- 374 Schwartz, T.J., Lawoko, M. 2010. Removal of Acid-Soluble Lignin from Biomass
- 375 Extracts Using Amberlite Xad-4 Resin. *Bioresources*, **5**(4), 2337-2347.

376	Yue, S.J.	. Bilal. M.	. Song. C.	. Guo. S.C) Li. S., I	Huang, P.,	Hu. H.B.	Wang, W.,
010	140, 0.0.	, Dilai, 111.	$,$ song, \circ .	$, \circ \alpha \circ, \circ \gamma$	··, Ľ, Ď., I			····.,

- 377 Zhang, X.H. 2018. Development of an efficient method for separation and
- 378 purification of brans2,3-dihydro-3-hydroxyanthranilic acid from Pseudomonas
- 379 chlororaphis GP72 fermentation broth. *Separation and Purification*
- 380 *Technology*, **202**, 144-148.
- 381 Zhou, P.P., Yao, R.M., Zhang, H.S., Bao, J. 2019. Unique glucose oxidation catalysis
- 382 of Gluconobacter oxydans constitutes an efficient cellulosic gluconic acid
- 383 fermentation free of inhibitory compounds disturbance. *Biotechnology and*
- 384 *Bioengineering*, **116**(9), 2191-2199.
- Zhou, X., Lu, S.S., Xu, Y., Mo, Y.X., Yu, S.Y. 2015. Improving the performance of
- cell biocatalysis and the productivity of xylonic acid using a compressed
 oxygen supply. *Biochemical Engineering Journal*, **93**, 196-199.
- 388 Zhou, X., Xu, Y., Yu, S.Y. 2016. Simultaneous Bioconversion of Xylose and Glycerol
- to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of
- 390Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter
- 391 oxydans. *Applied Biochemistry and Biotechnology*, **178**(1), 1-8.
- 392 Zhou, X.L., Zhou, X., Xu, Y., Chen, R.R. 2017. Gluconobacter oxydans (ATCC 621H)
- 393 catalyzed oxidation of furfural for detoxification of furfural and bioproduction
- 394 of furoic acid. *Journal of Chemical Technology and Biotechnology*, **92**(6),
- **395 1285-1289**.

397

396Znad, H., Markos, J., Bales, V. 2004. Production of gluconic acid from glucose by

Aspergillus niger: growth and non-growth conditions. Process Biochemistry,

39(11), 1341-1345.

401	Figure	captions
	0	-

402	Fig. 1 Adsorption and desorption of three simulated solutions on resin (p>0.05).
403	(A) and (C) represent the adsorption of sugars and inhibitors, respectively. (B) and
404	(D) represent the desorption of the corresponding adsorbed resin at low
405	concentration.
406	Fig. 2 Schematic diagram of reversible competitive adsorption of various
407	components on resin.
408	Fig. 3 Comparison of fermentation curves by using two resin adsorption modes in
409	stimulated solution (p>0.05).
410	(A) The separate resin adsorption (B) The in-situ resin adsorption
411	Fig. 4 XA bioproduction from the crude lignocellulosic hydrolysate by in-situ
412	resin adsorption coupled with whole-cell catalysis (p>0.05).
413	

Stimulants	GLU	XYL	Ara	HAc	LA	HMF	Furfural
НА	8.63±0.22	60.91±0.24	7.12±0.03	5.37±0.02	0.71±0.02	0.07±0.01	0.64±0.02
HB	17.80±0.12*	127.23±0.31*	14.77±0.07*	11.24±0.21*	1.59±0.13*	$0.34{\pm}0.02^{*}$	1.45±0.14*
HC	3.76±0.04*	26.89±0.11*	3.07±0.01*	2.23±0.05*	0.29±0.02*	0^*	$0.27{\pm}0.03^{*}$

414 **Table 1** Main component titers in three crude corncob hydrolysates (g/L)

415 Note: There were significant differences among HA, HB and HC, *P < 0.05.

Simulanta -	XYL		XYL+XA		
Sinulans	XYL (g/L)	XA(g/L)	XYL (g/L)	XA (g/L)	
Initial	2.56±0.05	0	2.57±0.03	26.21±0.24	
Equilibrium	1.39±0.02	0	2.12±0.02	3.17±0.04	
Adsorption ratio	45.7%	0	17.5% *	87.9% *	

417 **Table 2** The In-situ adsorption of stimulated solution by resin

418 Note: Xylose – XA mixture simulation solution has a significant effect on the adsorption ratio,

419 **P*<0.05.

	HAc elutes 2	XA on resin	XA elutes HAc on resin		
Simulants –	XA	HAc	XA	HAc	
Acidic component	9.87±0.23	0	0	9.79±0.24	
After resin adsorption	1.02±0.21	0	0	0	
After Hac/XA elutes the used resin	0	0.22±0.03	1.53±0.04	0.53±0.02	

Table 3 Comparison of adsorption priority of HAc and XA on resin (g/L)

424 Fig. 1

Fig. 2 428 HAC Glu Glu HMF Glu 14 Glu NH₂ OHн XY Xyi 🖨 Xyi Xv Xyl OH-NR a HAc HAC Furfura Ac Ara H Furfura 🖓 ra 🛞 Ar ↓ Furfural HAc H Furfural Anion exchange I Neutral Acidic XY D 429

434 Fig. 4

435

437	
438	
439	