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24 Abstract: 

25 Xylonic acid (XA) bioproduction via whole-cell catalysis of Gluconobacter 

26 oxydans is a promising strategy for xylose bioconversion, which is hindered by 

27 inhibitor formation during lignocellulosic hydrolysates. Therefore, it is important to 

28 develop a catalytic system that can directly utilize hydrolysate and efficiently produce 

29 XA. Determination of the dynamic adsorption characteristics of 335 anion exchange 

30 resin resulted in a unique and interesting reversible competitive adsorption between 

31 acetic acid-like bioinhibitor, fermentable sugar and XA. Xylose in crude 

32 lignocellulosic hydrolysates was completely oxidized to 52.52 g/L XA in 

33 unprecedented self-balancing biological system through reversible competition. The 

34 obtained results showed that in-situ resin adsorption significantly affected the direct 

35 utilization of crude lignocellulosic hydrolysate for XA bioproduction (p :'.S 0.05). In 

36 addition, the resin adsorbed ea. 90% of XA during bioconversion. The study achieved 

37 a multiple functions and integrated system, "detoxification, neutralization and product 

38 separation" for one-pot bioreaction of lignocellulosic hydrolysate. 

39 

40 

41 

42 
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46 1. Introduction 

47 Xylonic acid (XA) is a water-soluble five-carbon organic acid with a wide range 

48 of applications, including construction, aquaculture, biological control and chemical 

49 industries (Chun et al., 2006; Deppenmeier et al., 2002; Znad et al., 2004), and is one 

50 of the top 30 most valuable chemicals according to the U.S. Department of Energy 

51 (Cao et al., 2013). In addition, XA is an important platform compound, a precursor of 

52 3,4-dihydroxybutanal, 1,4-butanediol and 1,2,4-butantriol, and plays an indispensable 

53 role in energetic materials synthesis and pharmaceutical production (Luo et al., 2020; 

54 Zhou et al., 2016). It is reported that the whole cell catalytic preparation method of 

55 XA production by Gluconobacter oxydans has high selectivity, cell reusability, 

56 low-cost and high productivity, which is greatly advantageous compared to the 

57 complicated chemical method and the expensive enzyme catalytic method (Chun et al., 

58 2006; Han et al., 2021; Jin et al., 2019). 

59 It is known that the effective utilization of xylose can provide a higher profit to 

60 the total entire biorefinery economy of lignocellulosic biomass. Additionally, there is 

61 ea. 30% xylose content of fermentable carbohydrate compositions in lignocellulosic 

62 materials, such as corncob and sugarcane bagasse (Jeffries et al., 2007; Li et al., 2018; 

63 Menon & Rao, 2012). Therefore, the development of direct whole cell catalysis and 

64 oxidation of acid hydrolysate to produce XA is of great practical significance for 

65 xylose and lignocellulosic biomass biorefinery. However, various inevitable 

66 degradation chemicals arise from lignocellulosic processing and results in complex 

67 biotoxicity and bio-inhibition towards bacterial activity and cell catalysis performance. 
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68 These include types of HAc, such as small molecular acids, aldehydes, furans and so 

69 on (Han et al., 2021; Horvath et al., 2001; Mhlongo et al., 2015). Even though resin 

70 can achieve effective detoxification, it can promote considerable sugar loss by over 20% 

71 (Lin & Juang, 2009; Schwartz & Lawoko, 2010). Therefore, it is necessary to develop 

72 new methods for effective bioutilization of sugar adsorbed on resin. 

73 During the whole cell catalytic oxidation ofxylose to XA, pH value of the 

7 4 system continuously decreases in relation to the corresponding acid formed, which 

75 seriously hinders the catalytic activity of cells (Horvath et al., 2001; Hua et al., 2022). 

76 Therefore, it is important to detect and monitor pH, and add an appropriate alkaline 

77 neutralizer when required to maintain bioreaction niche stability. Studies have shown 

78 that anion exchange resin can adsorb and neutralize automatically allowing the 

79 production of XA as a basic agent (Liu et al., 2021a; Ortega et al., 2017). 

80 Therefore, this study aims to construct a smart self-balancing biosystem for 

81 lignocellulose-based xylonic acid production. The technical objectives of 

82 "detoxification, neutralization and separation" were achieved simultaneously in a one 

83 reaction tank via in-situ reversible competitive adsorption of anion exchange resin. 

84 Furthermore, crude corncob hydrolysate was directly employed in XA bioproduction, 

85 which has significance theoretical and practical applications in lignocellulosic 

86 hydrolysate bioconversion. 

87 2. Materials and methods 

88 2.1 Lignocellulosic hydrolysate 

89 Corncobs were harvested from Jiangsu Province in China. According to the 
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90 national Renewable Energy Laboratory protocol determination, corncob contains 34.4% 

91 cellulose, 30.5% hemicellulose and 18.6% lignin. Corncob was pulverized to 20-40 

92 mesh size. Before pretreatment, all the sieved corncob were dried thoroughly in the 

93 sun and air until <8% moisture was obtained, then it was pretreated for 30 min at 150 °C 

94 with a solid-liquid ratio of 1:5 (w/v), 1% sulfuric acid (Gu et al., 2021). The resulting 

95 crude hydrolysate was called HA, and HB or HC which was twice concentrated or 

96 diluted from HA, respectively. The corresponding simulates of HA, HB and HC were 

97 called SA, SB and SC, respectively. 

98 2.2 Pretreatment of resin 

99 Weakly basic anion exchange resin 335 was prepared by reverse polymerization 

100 of epichlorohydrin and ethylene polyamine, bearing the following functional groups: 

101 -NH2, =NH, and =N (Han et al., 2022). (Huazhen Company, East China University of 

102 Science and Technology) 

103 The resin was soaked in ethanol solution of ea. twice the volume for 2-3 h. This 

104 process was repeated several times and then distilled water was added to the soaking 

105 solution without turbidity, followed by washing with distilled water until no ethanol 

106 remained. The eluent was shaken sequentially with 1 M NaOH, 1 M HCl and 1 M 

107 NaOH for 2 h, then cleaned with deionized water until neutral pH was obtained (Hua 

108 et al., 2018; Yue et al., 2018). Subsequently, the moisture content was measured by an 

109 infrared moisture meter to calculate the wet weight corresponding to the dry heavy 

110 ion exchange resin (Hua et al., 2018). 

111 2.3 Adsorption of resin in simulated solution 
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112 2.3 .1 Adsorption and desorption of resin in simulated solution 

113 10% (w/v) resin was added to the three simulated solutions (SA, SB and SC), 

114 and the samples were placed in a shaker at 220 rpm and 30 °C for 2 h to achieve 

115 adsorption equilibrium. The volume of the simulated liquid was 50 mL. The titer of 

116 various chemicals before and after adsorption was detected by HPAEC, and the 

117 adsorption ratio was calculated 

118 (Adsorption rati Initial titer (g/L)- Titer after adsorption (g/L)) S b tl th · . . . . u sequen y e resm Initial titer (g/L) ' 

119 was filtered and then placed in equal volumes of pure water, followed by shaking at 

120 220 rpm, 30 °C for 2 h. The titer of various chemicals before and after desorption was 

121 detected, and the desorption ratio was calculated 

122 (Desorption rati Titer after desorption (g/L) 
Initial titer (g/L)- Titer after adsorption (g/L)). 

123 2.3 .2 Reversible competitive adsorption of various chemicals 

124 Competitive adsorption ofxylose and XA: 10% (w/v) resin was added to xylose 

125 simulation solution and xylose - XA mixture simulation solution, respectively. The 

126 adsorption equilibrium was reached by shaking at 220 rpm and 30 °C for 2 h. The titer 

127 ofxylose and XA was detected, and the adsorption ratio was calculated. 

128 Competitive adsorption ofHac and XA: 10% (w/v) resin was added to 10 g/L 

129 XA. After reaching the adsorption equilibrium, the resin was filtered out and then 

130 placed in 10 g/L HAc. In the control group, 10% resin was added to 10 g/L HAc, and 

131 the filtered resin was placed in 10 g/L XA after the adsorption equilibrium was 

132 reached. 

133 2.4 Resin adsorption coupled with whole cell catalysis 
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134 Separate resin adsorption: SA was added to 20% resin and shaken at 200 rpm 30 °C 

135 for 2 h. The filtered SA was directly used for subsequent whole-cell catalysis (Han et 

136 al., 2022). 

137 In-situ resin adsorption: 20% resin was added at the beginning of whole cell 

138 catalysis. The resin remained in the fermentation system throughout the experiment. 

139 2.5 Whole-cell catalysis of Gluconobacter oxydans 

140 G. oxydans NL71 was derived fromATee6821 and cultured for 18-24 h in 

141 proliferation medium (100 g/L sorbitol, 10 g/L yeast extract) at 30 °Cand 220 rpm 

142 (Zhou et al., 2015). Proliferating cells were obtained by freeze-centrifugation at 7104 

143 g for 5 min (Han et al., 2021). The synthetic medium contained 5.0 g/L yeast extract, 

144 0.5 g/L MgSQ4, 2.0 g/L K2HPO4, 1.0 g/L KH2PO4, 5.0 g/L (NH4)2SO4, and acidic 

145 lignocellulosic hydrolysate (Liu et al., 2021b). Whole- cell catalysis was performed 

146 by shaking at 200 rpm and 30 °C for 8-24 h in a 250 mL conical flask containing 50 

147 mLmedium. wee was performed at a cell density of5.0 g/L (oven dry weight). 

148 Three independent biological replicates were conducted. 

149 2.6 Analytical methods 

150 The concentration ofxylose and XA was determined by HPAEe (Thermo 

151 IeS-5000) coupled with a earboPac™ PA200 column and pulsed amperometric 

152 detector. 100 rnM NaOH solution was used as mobile phase at a flow rate of 0.3 

153 mL/min (Han et al., 2021). The concentration ofXA adsorbed by the resin was 

154 measured by first rinsing the cells on the resin surface with deionized water and then 

155 eluting with 5% hydrochloric acid (Han et al., 2022; Hua et al., 2018). HAc, levulinic 
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156 acid (LA), 5-hydroxymethyl-furfural (HMF) and furfural were analyzed via HPLC 

157 (Agilent 1200) equipped withAminex Bio-Rad HPX-87H column and IR detector. 5.0 

158 mM H2SO4 solution was used as mobile phase at 0.6 mL/min (Han et al., 2021; Han 

159 et al., 2022). Analysis of variance (ANOVA) was performed on the data using 

-
160 Microsoft Excel 2010 software. The data with statistical distribution is ( X±S). The 

161 significance level was a=0.05. 

162 3. Results and discussion 

163 3.1 Reversible competitive adsorption characteristics of various chemicals in 

164 stimulated solution 

165 Anion exchange resin 3 3 5 contains weakly basic groups, such as primary amine 

166 group (-NH2), secondary amine group (-NHR) or tertiary amine group (-NR2), which 

167 usually dissociate -OH groups in water and act as a weak basic, especially under 

168 acidic conditions (Dharmapriya et al., 2022; Han et al., 2022). Therefore, this resin 

169 prefers to adsorb various generalized anion-like compounds in the lignocellulosic 

170 hydrolysate, including inhibitors of HAc, LA and so on (Cao et al., 2020; Huang et al., 

171 2020), as well as xylose or newly generated XA. Firstly, the competitive adsorption 

172 characteristics of sugars and acids were investigated using 10% (w/v) resin 335 

173 loading, in three gradient titers of stimulated solutions including SA, SB and SC 

17 4 (Table 1 ). The obtained results showed that the concentration of inhibitor compounds 

175 in SA and SC reduced by >60% after resin adsorption. Hence, the titer of key 

176 bio-inhibitor HAc was lower than the critical titer value that hinders bacterial 

177 fermentation(Zhou et al., 2019), and the detoxified solutions were directly utilized for 
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178 whole-cell catalysis and oxidation (Fig. 1 ). Although the resin adsorbed ea. 20% of 

179 xylose-like sugars in 60.91 g/L sugar solution, 90% of the adsorbed sugars were 

180 released from resin matrix into solution again in low sugar concentration 

181 environments (Fig. 2). Therefore, the observed automatically reversible adsorption 

182 and desorption, that depended on varying sugar titers, gave rise to the possibility to 

183 explore in-situ resin adsorption coupled with whole-cell catalysis of fermented xylose 

184 and lignocellulosic sugars. 

185 Since XA is an organic acid with pKa 3.39, the produced XA could also be 

186 adsorbed on resin 335, allowing separate fermentation of the product and release the 

187 product feedback inhibition on whole-cell catalysis. Hence, we investigated the 

188 influence of XA production on the adsorption balance of xylose on the resin, which 

189 could lead to competitive adsorption between xylose and XA. Based on the above 

190 speculation, the competitive adsorption capacity of xylose, HAc and XA on the resin 

191 was evaluated. 

192 10% resin was added to xylose alone and xylose-XAmixture simulation 

193 solutions, respectively. After adsorption equilibrium was reached, the xylose 

194 concentration in the mixture was 2.12 g/L, and that in xylose alone was 1.39 g/L 

195 (Table 2). Xylose-XA mixture simulation solution significantly affected the 

196 adsorption ratio (p :S 0.05). Hence, XA disturbed the adsorption balance of the xylose 

197 and "squeezed" xylose out of the resin. In addition, most sugars can also "walk off" 

198 the resin at low concentration (Fig.2). Thus, dual pressure could improve soluble 

199 xylose for whole-cell catalysis and oxidation in the resin adsorption and detoxification 
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200 system. 

201 10 g/L XA and 10 g/L HAc solution were also adsorbed by 10% resin, 

202 respectively. After adsorption equilibrium was reached, residual XA and HAc in 

203 solution were <10%, and HAc concentration was below the detection limit. To further 

204 explore the competitive preference to HAc and XA on the studied resin, XA or HAc 

205 adsorbed resin was poured in equal volumes of 10 g/L HAc and XA solution, 

206 respectively. HAc could not elute XA adsorbed by resin, while XA could elute HAc 

207 adsorbed by resin. 0.53 g/L HAc was eluted in the equalized solutions, indicating that 

208 HAc was squeezed out by XA in the mixture (Table 3). This may be due the pKa 

209 value of HAc being greater than that of XA, resulting in HAc bearing a weaker 

210 binding force on the resin. This slightly stronger adsorption property provided an 

211 interesting separation technology for XA harvest from xylose fermentation broth, as 

212 well as another advantage of in-situ resin adsorption coupled with whole-cell catalysis, 

213 especially under HAc-like bio-inhibitors pressure. 

214 3.2 Dynamic balance and coupling effects of in-situ resin adsorption combined 

215 with whole-cell catalysis 

216 In terms of crude lignocellulosic hydrolysates components, a full-component 

217 simulation was used to study the combination of in-situ resin adsorption with whole 

218 cell catalysis. Pretreatment oflignocellulosic biomass produced a variety of 

219 compounds that severely inhibited energy generation, enzyme activity and protein 

220 synthesis in microbial central carbon metabolic pathways, which enhanced bacterial 

221 cell survival and made fermentation impossible in the crude hydrolysates without 
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222 detoxification (Holscher & Gorisch, 2006). 

223 The separated-resin and in-situ resin adsorption modes were compared. At the 

224 preliminary stage, the fermentation rate of the simulant adsorbed by the separated 

225 resin was fast. 51.71 g/L XA was obtained after 16 hat the initial productivity of 3.79 

226 g/L/h, but the rate gradually decreased with the accumulation of sugar acid. In 

227 contrast, the dynamic adsorption of in-situ resin adsorption mode maintained a 

228 fermentation rate ofup to 3.93 g/L/h after the first stage. Although XA was detected 

229 in the medium during fermentation, 52.63 g/L XA was almost completely adsorbed by 

230 the resin at the end of fermentation (Fig. 3). 

231 Due to the beneficial cooperation of in-situ resin, the pH value of the whole-cell 

232 catalysis system was stabilized by an automatic neutralization process. Furthermore, 

233 the competitive adsorption and slow acetate release led to an efficiently gradual 

234 bio-adaptation of bacterial cells for whole cell catalysis and oxidation. In conjugation 

235 with oxidative conversion and metabolism of some inhibitors, the desired 

236 comprehensive result ofbio-toxicity reduction was achieved (Zhou et al., 2017). 

237 Based on the dynamic equilibrium ofresin adsorption, the dual effects of higher pKa 

238 and rising titer of XA competed and squeezed the resin-bonded xylose promoting 

239 release and return to the fermentation medium(Chowdhury et al., 2011 ). The extruded 

240 xylose was oxidated to XA and significantly improved the total product-yield of 

241 whole-cell catalysis (p :'.S 0.05). Furthermore, the priorly competitive adsorption was 

242 selectively capture XA from the fermentation broth that provided an easy method for 

243 both product separation and purification. 
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244 3.3 Direct XA bio-preparation from crude corncob hydrolysate in the 

245 self-balancing biosystem 

246 Considering the direct utilization of crude lignocellulosic hydrolysate, 

247 hydrolysate A without any pretreatment was first tested (Lin & Juang, 2009). As 

248 shown in Fig. 3, hydrolysate A was directly used for XA production by G. oxydans 

249 with in-situ resin adsorption. At the early stage of fermentation (0-2 h), the inhibitor 

250 titer gradually reduced and remained at a low level (<l g/L) due to ion exchange 

251 between the inhibitors and resin, which benefited G. oxydans to gradually adapt to the 

252 inhibitory environment and perform its catalytic oxidation to xylose. Despite the more 

253 complex competing anions from degrading fractions in crude lignocellulosic 

254 hydrolysates, the free XA concentration in the fermentation solution remained 

255 consistently low (<10 g/L), even when self-accumulating during whole-cell catalysis. 

256 Therefore, XA maintained a stronger adsorption to the resin over the above 

257 competitors. Resin adsorbed and harvested 90% of XA product from the crude 

258 lignocellulosic fermentation broth containing 52.52 g/L ofXA (Fig. 4). p-value was 

259 0.12, indicating that there was no significant difference between biological replicates. 

260 Hence, one could define the developed in-situ resin combined with whole-cell 

261 catalysis as a smart self-balancing biosystem for XA bioproduction from crude 

262 lignocellulosic xylose. 

263 In this study the specific cell-catalysis efficiency (SCE) was proposed to 

264 comparatively assess the total XA bioconversion performance of different whole-cell 

265 catalysis modes by G. oxydans (see supplementary materials). SCE was determined as 
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266 0.46 g/L/h/g DCW using calcium hydroxide neutralization and precipitation of crude 

267 hydrolysate before whole-cell catalysis (Han et al., 2021). This value was improved to 

268 0.50 g/L/h/g DCW after replacement with high-oxygen tension fermentation (Zhou et 

269 al., 2015). However, the self-balancing biosystem directly catalyzed crude corncob 

270 hydrolysate and increased SEC to 0.53 g/L/h/ g DCW without Ca-based detoxification, 

271 which was only slight lower than 0.58 g/L/h/ g DCW for the full-component analog 

272 solution. This fluctuation was probably related to the complexity of the various 

273 undetected components in crude corncob hydrolysate (Zhou et al., 2015; Zhou et al., 

274 2017). Hence, the self-balancing system allowed the cells to ferment directly to crude 

275 lignocellulosic hydrolysate, and achieve enhanced cellular productivity. 

276 4. Conclusion 

277 Harnessing the advantageous properties of anion exchange resin 335 in-situ 

278 coupled with whole-cell catalysis, allowed for the development of a smart 

279 self-balancing biological system that resulted in "detoxification, neutralization and 

280 product separation" in a one-pot bioreaction and the realization of effective XA 

281 production directly from crude hydrolysate. The combinative process is important for 

282 the theoretical development and practical application of XA bioproduct production 

283 from lignocellulosic biomass, owing to its uniqueness, simplicity. 
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401 Figure captions 

402 Fig. 1 Adsorption and desorption of three simulated solutions on resin (p>0.05). 

403 (A) and (C) represent the adsorption of sugars and inhibitors, respectively. (B) and 

404 (D) represent the desorption of the corresponding adsorbed resin at low 

405 concentration. 

406 Fig. 2 Schematic diagram of reversible competitive adsorption of various 

407 components on resin. 

408 Fig. 3 Comparison of fermentation curves by using two resin adsorption modes in 

409 stimulated solution (p>0.05). 

410 (A) The separate resin adsorption (B) The in-situ resin adsorption 

411 Fig. 4 XA bioproduction from the crude lignocellulosic hydrolysate by in-situ 

412 resin adsorption coupled with whole-cell catalysis (p>0.05). 

413 
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414 Table 1 Main component titers in three crude corncob hydrolysates (g/L) 

Stimulants GLU XYL Ara HAc LA HMF Furfural 

HA 8.63±0.22 60.91±0.24 7.12±0.03 5.37±0.02 0.71±0.02 0.07±0.01 0.64±0.02 

HB 17.80±0.12* 127.23±0.31 * 14.77±0.07* 11.24±0.21 * 1.59±0.13* 0.34±0.02* 1.45±0.14* 

HC 3.76±0.04* 26.89±0.11* 3.07±0.01 * 2.23±0.05* 0.29±0.02* o· 0.27±0.03* 

415 Note: There were significant differences among HA, HB and HC, *P<0.05. 

416 
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417 Table 2 The In-situ adsorption of stimulated solution by resin 

XYL XYL+XA 
Simulants 

XYL(g/L) XA(g/L) XYL(g/L) XA(g/L) 

Initial 2.56±0.05 0 2.57±0.03 26.21±0.24 

Equilibrium 1.39±0.02 0 2.12±0.02 3.17±0.04 

Adsorption ratio 45.7% 0 17.5% * 87.9% * 

418 Note: Xylose - XA mixture simulation solution has a significant effect on the adsorption ratio, 

419 *P<0.05. 
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421 Table 3 Comparison of adsorption priority of HAc and XA on resin (g/L) 

HAc elutes XA on resin XA elutes HAc on resin 
Simulants 

XA HAc XA HAc 

Acidic component 9.87±0.23 0 0 9.79±0.24 

After resin adsorption 1.02±0.21 0 0 0 

After Hac/XA elutes the 
0 0.22±0.03 1.53±0.04 0.53±0.02 

used resin 

422 
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